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2Dept. d’Inform̀atica i Matem̀atica Aplicada, Universitat de Girona, Girona, Spain

Received: 23 September 2005 – Revised: 10 February 2006 – Accepted: 6 March 2006 – Published: 6 June 2006

Abstract. Daily precipitation is recorded as the total amount
of water collected by a rain-gauge in 24 h. Events are mod-
elled as a Poisson process and the 24 h precipitation by a
Generalised Pareto Distribution (GPD) of excesses. Hazard
assessment is complete when estimates of the Poisson rate
and the distribution parameters, together with a measure of
their uncertainty, are obtained. The shape parameter of the
GPD determines the support of the variable: Weibull domain
of attraction (DA) corresponds to finite support variables as
should be for natural phenomena. However, Fréchet DA has
been reported for daily precipitation, which implies an infi-
nite support and a heavy-tailed distribution. Bayesian tech-
niques are used to estimate the parameters. The approach
is illustrated with precipitation data from the Eastern coast
of the Iberian Peninsula affected by severe convective pre-
cipitation. The estimated GPD is mainly in the Fréchet DA,
something incompatible with the common sense assumption
of that precipitation is a bounded phenomenon. The bounded
character of precipitation is then taken as a priori hypothe-
sis. Consistency of this hypothesis with the data is checked
in two cases: using the raw-data (in mm) and using log-
transformed data. As expected, a Bayesian model checking
clearly rejects the model in the raw-data case. However, log-
transformed data seem to be consistent with the model. This
fact may be due to the adequacy of the log-scale to represent
positive measurements for which differences are better rela-
tive than absolute.

1 Introduction

The goal of hazard assessment is to estimate the probability
of occurrence of large events in a given lifetime. Hazardous
events due to natural or anthropogenic phenomena (precip-
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itation, earthquakes, wind, eruptions, floods, fires, etc.) are
often modelled by marked Poisson processes: events are as-
sumed to occur as a point Poisson process in time, and mag-
nitude of events is assumed to be random, independent from
the time-occurrence process and from event to event.

This simple model may be useful in situations when one is
interested in rare but dangerous events. However, the scarcity
of data leads to highly uncertain parameter estimates, a prob-
lem which can be overcome using Bayesian estimation (Gel-
man et al., 1995; Coles, 2001) to account for uncertainty. A
standard model for large magnitude events is the Generalised
Pareto Distribution (GPD) (Embrechts et al., 1997), leading
to a global model with four parameters: the rate of the Pois-
son process; the scale and shape for the GPD; and a reference
threshold. The reference threshold is assessed empirically
and afterwards validated. This assessment is a key point of
the analysis because a trade-off must be made between a high
threshold, guaranteeing a better model fit, and the number of
available data with magnitude over it. The other three param-
eters are considered jointly distributed, and are estimated us-
ing Bayesian techniques. Prior information is obtained from
expert opinions or physical knowledge.

This approach was used byEgozcue and Ramis(2001) to
analyse precipitation in Eastern Spain using a database cov-
ering 30 years (Romero et al., 1998). Heavy precipitation is
a serious weather hazard in the Valencia region, especially in
autumn. Every year several events exceeding 100 mm daily
precipitation occur. Strong convective systems are respon-
sible for it, and precipitation tends to discharge over short
periods. For example, in Gandı́a, on 3 November 1987,
more than 800 mm were recorded in 24 h. Some of these
events produce floods and severe damage to properties, in-
frastructure and agriculture, like the one that destroyed the
Tous dam (Valencia) on 20 October 1982. The main prob-
lem in the study performed byEgozcue and Ramis(2001)
appeared to be that excesses exhibit a heavy, unbounded, up-
per tail, something contradictory with the naturally bounded
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Fig. 1. Observed daily precipitation at Vergel de Racons (Alicante,
Spain), 1964–1993.

character of precipitation. Precipitation in 24 h must be lim-
ited due to several physical reasons: water content in the
atmosphere is limited, the movement of convective cells is
limited, and also the time of precipitation. These facts have
been neglected by many authors for the sake of simplicity,
because actual physical upper limit is not known (e.g.Coles
and Tawn, 1996; Egozcue and Ramis, 2001; DeMichele and
Salvadori, 2003).

While analysing the underlaying reasons for heavy tail
behaviour of precipitation, one can realise that 10 mm and
20 mm precipitations are one double of the other, whereas
500 mm and 510 mm are both large rainfalls and may be
considered similar. Only few observers would characterise
these differences using the ordinary differences of 10 mm.
Most people would prefer a relative measure of difference,
i.e. the first case corresponds 100·(20−10)/10=100% incre-
ment of the first rainfall, while in the second case, it is only
100·(510−500)/500=2%. The comparison of 0 mm precipi-
tation and 10 mm is more dramatic: the first one corresponds
to “no rainfall” or “no event”; the second one is definitively
“rainfall” and, therefore, the difference is no longer quanti-
tative but qualitative. These appreciations are mainly sub-
jective and may depend on the particular application but, at
least, put a question mark on the use of the ordinary distance
to quantify differences between rainfall events. A logarith-
mic transformation of rainfall data gives a way to handle
these problems of scale: the relative scale is transformed into
the ordinary one and positive data become just real (positive
or negative). This kind of discussion on the natural scale
of positive data is general (Pawlowsky-Glahn and Egozcue,
2001) and logarithmic transformation of positive data may
be recommended in many applications.

The present goal is to compare the behavior of a pre-
cipitation sample in its original scale (raw-data) and log-
transformed data (log10-data) using the above described haz-
ard model and Bayesian estimation of parameters. The con-
sidered model is based on the following hypotheses: a) daily
precipitation is bounded in the upper tail and the uppermost

value is assumed unknown; b) large events occur in time as
a Poisson process; c) precipitation in 24 h is random and dis-
tributed GPD over a suitable threshold. Moreover, it is inde-
pendent from event to event and the time occurrence.

Hypothesis a), being a common sense one, appears to be
quite inconsistent with the data when the analysis is per-
formed using raw-data. However, log10-data do not show this
inconsistency. The whole model is checked using Bayesian
p-values for both data sets.

2 Precipitation data

To study the effect of scale transformation, a single rain-
gauge is selected from the data base byRomero et al.(1998).
This data base contains records of daily precipitation along
30 years (1964–1993) for 72 rain-gauges in Valencia region
(Eastern Iberian Peninsula). The selected rain-gauge is lo-
cated at Vergel de Racons (Alicante; 38.842◦ N, 0.012◦ E).
Only daily precipitation over 25 mm is considered, and the
maximum daily precipitation in a moving window of 7 days
is extracted. In order to obtain independent events, consecu-
tive maxima are forced to be separated more than three days;
whenever two or more are closer than three days, only the
largest daily precipitation is considered. The obtained set of
192 events is represented in Fig.1. They range from 25 mm
up to the maximum observed, namely 305 mm daily precipi-
tation. Along this study the original precipitation values are
used (raw-data) as well as the log10-transformed data (log10-
data).

3 Hazard model

The Poisson point-process model used for natural event oc-
currences is assumed stationary, something contradictory
with the seasonal character of precipitation, or even with
some long term trend. However, if attention is restricted to
high magnitude events, the yearly periodic component can
be neglected because these events occur with return periods
much longer than one year. Moreover, long term trends like
those possibly induced by a climate change are hardly de-
tected along a 30 years record. Hence, results of the analysis
using stationary models should be considered carefully for
predictive uses. Precipitation events exceeding a threshold
u are modelled as points in time. For each event, a mag-
nitude or sizeX (daily precipitation in this case) is usually
taken as a random variable. The assumptions used are: (a)
magnitudes are independent from the point process itself; (b)
they are independent from event to event; (c) all magnitudes
have the same distributionFX; and (d) the occurrence of the
events in time follows a Poisson process. Thus, the number
of events,N(u), occurring in a given arbitrary time interval,
t , is governed by the Poisson probability(n=0, 1, 2, . . .)

P[N(u) = n|λ(u), t] =
1

n!
(λ(u)t)ne−λ(u)t , (1)
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whereλ(u) stands for the rate of the Poisson process given
the thresholdu. This model is sometimes known as the
Craḿer-Lundberg model.

The event magnitude,X, is modelled only in the upper
tail of its distribution using the peak-over-threshold method
(Embrechts et al., 1997). The excess over the threshold
u is defined asY={X−u|X>u} and uses the relationship
(y=x−u>0)

1 − FY (y) = P[Y > y|X > u] =
1 − FX(x)

1 − FX(u)
, (2)

whereFY is the excess distribution. Equation (2) links the
distributions ofX andY .

Hazard parameters can be obtained from the model. For
instance, the return period of events whose magnitudeX ex-
ceedsx is

τ(x) =
τ(u)

1 − FY (x − u)
, u ≤ x , (3)

whereτ(u)=1/λ(u). Also, non-exceedance probabilities of
the thresholdu in a lifetimeL are

P[N(x) = 0|L] = exp[−λ(x)L] , (4)

whereλ(x)=1/τ(x).
WhenFY is specified, the hazard model is complete for

excess valuesy>u. The option here selected is the Gener-
alised Pareto Distribution (GPD). GPD is a simple and parsi-
monious model for excesses, as it is the limiting distribution
for excesses wheneveru is high enough (Pickands, 1975) and
it is general enough as it includes both finite and infinite sup-
port distributions. GPD is given by(β>0, y>0)

FY (y|ξ, β) = 1 −

(
1 +

ξy

β

)−1/ξ

, (5)

with ξ andβ the shape and scale parameters. The support of
Y is the positive real lineR+ for ξ≥0, while it is bounded in
the interval[0, −β/ξ ] for ξ<0. Forξ=0, Eq. (5) takes the
exponential form

FY (y|ξ = 0, β) = 1 − exp

(
−

y

β

)
. (6)

Asymptotically, GPD approaches the upper tail of continu-
ous distributions. According to the type of the upper tail,
maxima extracted from such distributions correspond to dif-
ferent extreme value distributions, namely Gumbel, Weibull
and Fŕechet, frequently merged in the so-called generalised
extreme value distribution (Embrechts et al., 1997). GPD’s
are classified into three domains of attraction (DA) referred
to the kind of maxima they generate. Distributions with
exponentially decaying upper tails belong to the Gumbel
DA and are approached by a GPD withξ=0 (exponential).
Bounded upper tail distributions correspond to the Weibull
DA and are approached by a GPD withξ<0. The Fŕechet

DA contains distributions with heavy upper tails correspond-
ing to GPD’s withξ>0. GPD’s in the Weibull and Gumbel
domain have both mean and variance, but this does not apply
to Fŕechet DA. If ξ≥1, the mean does not exist, and vari-
ance is not defined forξ≥0.5, thus remarking the heavy tail
behavior of GPD’s in the Fréchet DA.

Natural phenomena are physically bounded; thus, their
magnitude should be in the Weibull DA. However, heavy
tail distributions have been reported, in particular for intense
precipitation in different climates (Coles and Tawn, 1996;
Egozcue and Ramis, 2001). Data in Fig.1, reported in raw
scale, behave in this way, as is shown later. This fact is usu-
ally considered to be due to lack of data, but the reason might
be simply an inappropriate scale. In the present case study, a
logarithmic scale reveals a clear Weibull DA for precipitation
events.

This is not unimportant, as one should be aware that, from
a theoretical point of view, a log-transformation of a GPD
random variable cannot transform an unbounded support into
a limited one. In fact, log-transformation of a distribution in
the Gumbel and Fréchet DA’s are transformed into distribu-
tions in the Gumbel DA.

4 Bayesian estimation of parameters

The selected hazard model has four parameters: the absolute
thresholdu; the rate of the Poisson process of events which
magnitude is larger thanu, λ(u); and the shape and scale pa-
rameters of the GPD,ξ andβ, for excesses overu. Due to
scale reasons, we prefer to re-define the Poisson parameter
asz=z(u)= log10λ(u)=− log10 τ(u). The four parameters
must be estimated from the data set to evaluate hazard pa-
rameters.

The absolute thresholdu is selected according to crite-
ria discussed in Sect.5 and, here, we assume that it has
been already chosen. The remaining three parameters,z,
ξ andβ, are estimated using Bayesian methods developed
in Egozcue and Ramis(2001) and Egozcue and Tolosana-
Delgado(2002). According to the Bayesian paradigm, these
parameters are assumed to be random variables. Their joint
probability densities,fzξβ(z, ξ, β) andfzξβ(z, ξ, β|D), ac-
count for their uncertainty before (prior) and after (posterior)
using the data sample, symbolised byD.

The prior density represents our knowledge about param-
eters previous toD. The key assumption is thatz(u) is inde-
pendent from(ξ, β), i.e.fzξβ(z, ξ, β)=fz(z)·fξβ(ξ, β). Sec-
tion6describes the assessment of the prior in the present case
study.

The core of Bayesian estimation is to use Bayes’ theorem
to obtain the posterior from the prior and the data. Bayes’
theorem, under the stated assumption about the prior, states
that

fzξβ(z, ξ, β|D) = C L(z, ξ, β|D) · fz(z) · fξβ(ξ, β) , (7)
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Fig. 2. Posterior density ofξ , β for raw-data. u=45 mm. Flat prior. High probability of Fréchet DA. Lower-Left grey triangle is a
null-likelihood zone due to observations.

whereC is a normalising constant andL(z, ξ, β|D) is the
likelihood of the data. The likelihood can also be factorised,

L(z, ξ, β|D) = P[N(u) = n|z, t0] ·

m∏
j=1

fY (yj |ξ, β) , (8)

whereD has been made explicit as the numberN(u)=n of
excessesyj=xj−u overu, the excesses themselves, and the
observation timet0.

The posterior density in Eq. (7) is itself the result of the
Bayesian estimation, but it is also the basis to obtain the
distribution of other hazard parameters, like return periods,
Eq. (3), or non-exceedance probabilities, Eq. (4). When it
is assumed that the estimated GPD is in the Weibull DA
with probability 1, i.e. the magnitudeX is surely limited by
ysup=−β/ξ , two additional hazard parameters can be con-
sidered: the maximum attainable magnitude,xsup=u+ysup,
and the probability of a magnitudex to be attainable, i.e.
P[x<u+ysup|D].

These hazard parameters are easily approached from the
posterior density. Sincez, ξ , andβ, are random and jointly
distributed asfzξβ(z, ξ, β|D), hazard parameters are also
random and can be described by their probability densities. A
simulated sample ofz, ξ , andβ, generates a sample of each
desired hazard parameter. From this derived sample, cen-
tral tendency parameters, e.g. the median, provide point esti-
mates, and the sample quantiles determine credible intervals.
These type of estimates of hazard parameters (return periods,
exceedance probabilities,ysup) will be used in Sect.7.

As an example of Bayesian estimation, Fig.2 shows the
estimation ofξ andβ for raw-data using an absolute thresh-

old u=45 mm. The prior has been set to a uniform distribu-
tion over a large enough square of(ξ, β)-values. Therefore,
the posterior is, up to a constant, the likelihood of the ex-
cesses. Figure2 represents the posterior density in the plane
ξ , β. Each point in the plane(ξ, β) corresponds to a GPD,
and the value offξβ(ξ, β|D) to the relative likelihood of the
parameters. An important feature is thatξ≥0 (Fŕechet DA)
contains the most likely points for the parameters and, con-
sequently, Fŕechet DA is clearly more probable than Weibull
DA, thus confirming the Fŕechet DA behaviour of the raw-
data. In contrast, Fig.3 shows the posterior for log10-data.
Again the prior was uniform in a large enough domain, so
that the posterior is essentially the normalised likelihood. In
this case, Weibull DA is largely more probable than Fréchet
DA, thus remarking the opposite behaviour of raw-data and
log10-data.

The mode of(ξ, β) is easily located in Figs.2 and 3,
they correspond to the maximum likelihood estimates of
the parameters. For raw-data, they areξ̂ML=0.14 (Fŕechet
DA), β̂ML=37; for log10-data, the results arêξML=−0.24
(Weibull DA), β̂ML=0.29. The sample distribution and the
estimated GPD can be represented in a QQ-plot, Fig.4 for
raw-data and Fig.5 for log10-data. In both figures the ref-
erence is an exponential distribution (GPD-Gumbel DA) fit-
ted to the data (diagonal line). In Fig.5 quantile, given in
log10 scale have been translated back into raw scale in mm to
make the comparison easier. Sample distributions are repre-
sented only by markers (filled for upper corners; hollow for
lower corners). In both figures the maximum likelihood esti-
mated GPD’s are also shown (full lines) together with a band
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Fig. 3. Posterior density ofξ , β for log10-data.u = 1.653= log10(45). Flat prior. High probability of Weibull DA. Lower-left grey triangle
is a null-likelihood zone due to observations.
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Fig. 4. QQ-plot with GPD(ξ=0) as reference (diagonal line). Sam-
ple distribution of raw-data: filled and hollow markers correspond
to upper and lower corners of the stepwise function; maximum like-
lihood estimated GPD, full line; dotted lines: 5% acceptance region
for Kolmogorov-Smirnov test.

(dotted or dashed lines) that represents the 5% acceptance re-
gion for the Kolmogorov-Smirnov goodness-of-fit test. The
different behavior of the data and fitted GPD with respect to
the exponential confirms the Fréchet DA behavior of raw-
data (Fig.4) and the Weibull DA in the case of log10-data
(Fig. 5). In both cases, the estimated GPD could not be re-
jected at 5% significance level.
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Fig. 5. QQ-plot with GPD(ξ=0) as reference (diagonal line). Sam-
ple distribution of log10-data: filled and hollow markers correspond
to upper and lower corners of the stepwise function; maximum like-
lihood estimated GPD, full line; dotted lines: 5% acceptance region
for Kolmogorov-Smirnov test.

5 Absolute threshold selection

The first step in the estimation is the selection of an appropri-
ate reference thresholdu. A graphical technique (Embrechts
et al., 1997) can be applied attending to the fact that, for GPD
distributed excesses and foru′

≥u, the mean excess is linear
with respect tou′ (ξ<1),

E[X − u′
|X > u′

≥ u] =
β + ξu′

1 − ξ
. (9)

Inspection of the mean excess function was performed for
the raw data and log10-data. Figures6 and7 show sample
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Fig. 6. Mean excess function for raw-data, squares. Number of
excesses, no marker, secondary axis.

estimates of the mean excess function for both data samples.
The lines with markers correspond to the sample average ex-
cess over each threshold. The number of excesses used to
compute the mean excess is superimposed to indicate the ac-
curacy of the estimated mean. From Eq. (9), positive slopes
of the mean excess function indicate that the data set cor-
responds to a Fréchet DA distribution (heavy and unlimited
tails), whereas negative slopes suggest data from GPD’s of
the Weibull DA (limited support). In order to guess an abso-
lute threshold, we look for the smallest threshold for which
the mean excess function can be assumed to be linear from
this point on, according to Eq. (9). In general, a tradeoff
between a good fit and the number of excesses should be
done to retain a good deal of data in the subsequent estima-
tion. From the expected excess functions we have guessed
u=45 mm for raw-data, andu=1.85 for log10-data, which
corresponds to 63 mm. However, lower absolute thresholds
seem to be also acceptable for log10-data.

This kind of selection of absolute threshold is mainly sub-
jective, and a statistical validation is convenient. A way to

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1.4 1.6 1.8 2.0 2.2 2.4

log10-threshold(mm)

E
x

p
e

c
te

d
 e

x
c

e
s

s

0

20

40

60

80

100

120

140

160

180

200

N
 e

v
e

n
ts

Fig. 7. Mean excess function log-data, triangles. Number of ex-
cesses, no marker, secondary axis.

do this is to check the goodness-of-fit of excesses to the
GPD, but this requires the previous estimation of the GPD.
The procedure is the following: Fix an absolute threshold
as a candidate and obtain the marginal posterior ofξ and
β, fξβ(ξ, β|D); for each(ξ, β) on a grid, compute the p-
value of the Kolmogorov-Smirnov (KS) goodness-of-fit test
α(ξ, β); then, approximate the predictive KS-p-value,

αpred =

∫
α(ξ, β) fξβ(ξ, β|D) dξ dβ , (10)

by a weighted average. Figure8 shows the values ofα(ξ, β)

for log10-data assuming an absolute thresholdu=1.653,
equivalent to 45 mm. The p-value has been computed only
for points in which the posterior is not negligible. Fig-
ure 9 shows the results ofαpred for both raw-data and
log10-data using different absolute thresholds. These re-
sults suggest that, with the exception of thresholds near
25 mm for raw-data, there are no evidences for rejection
of the GPD model. For further comparisons between raw-
data and log10-data, thresholds ofu=45 mm for raw-data and
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Fig. 8. Significance of KS goodness-of-fit test,α(ξ, β), for log10-data.u=1.653 mm.

u= log10(45)=1.653 have been finally chosen. This decision
is supported by a KS-predictive p-value of about 0.4.

6 Prior knowledge implementation

Prior density forz has been assumed uniform for a very wide
range of values corresponding to a non-informative prior. We
have renounced to an informative prior because we assume
there are enough data (88 excesses overu=45 mm) to esti-
matez quite accurately, and any soft information would be
superseded by the likelihood of the data. Prior density for
GPD parameters has been assessed following the methods
developed inEgozcue and Ramis(2001) andEgozcue and
Tolosana-Delgado(2002).

Prior information is mainly used to give bounds of the ad-
missible domain for the GPD-parametersξ andβ. Our prior
hypothesis are referred to the Mediterranean area. They are
ordered by decreasing influence in the estimation:

A. Daily precipitation is a bounded phenomenon.

B. A daily precipitation of 2000 mm is almost impos-
sible. Precipitation events larger than 45 mm attain
2000 mm with probability less than 10−4 (almost im-
possible events).

C. Precipitation events larger than 45 mm exceed 100 mm
with probability less than 0.5 (upper probability of char-
acteristic events).

D. A precipitation of 400 mm must be possible, although it
may not be observed (surely attainable event).
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Fig. 9. Predictive p-values of the KS-goodness-of-fit test. Raw-
data, full line and squares; log10-data, dotted-dashed line and trian-
gles. Critical value of 0.05, dashed line.

E. Frequencies of events are decreasing with precipitation;
the decreasing is, at least, linear.

F. A typical event with precipitation larger than 45 mm is
100 mm, which occurs approximately with probability
0.1 (characteristic event).

The most important assumption isA. It essentially implies
that we only consider GPD’s in the Weibull DA (ξ<0) for
both raw-data and log10-data. Figures10 and11 show the
corresponding prior densities forξ and β. AssumptionA
is reflected in the upper bound ofξ . AssumptionB (al-
most impossible events) is physically based. In Fig.11 it
appears as a border cutting the upper-right corner of the rep-
resented domain, so excluding all GPD’s not fulfillingB.
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Fig. 10. Prior density for GPD parameters,ξ , β, for raw-data.u=45 mm.

Fig. 11. Prior density for GPD parameters,ξ , β, for log10-data.u=1.653.

This condition does not appear in the represented domain
in Fig. 10. It could be verified at whichever rain-gauge in
the Mediterranean zone. AssumptionC is a weak condi-
tion based on the behaviour of convective precipitation in
the Eastern Mediterranean sea; it can be observed regularly
in this region. It produces a similar effect to conditionB;
the corresponding border appears in both figures as an upper
limit of the prior support, thus excluding too largeβ val-
ues. AssumptionD is quite subjective, although, in general,

experience in the Mediterranean area clearly supports it and
there is no physical reason to assume that 400 mm is not at-
tainable. It excludes GPD’s in the lower-left triangle with a
vertex in(ξ=0, β=0); for these distributions precipitation of
400 is not attainable. For raw-data, assumptionE means that
−0.5<ξ , becauseξ=−0.5 corresponds to a triangular GPD.
For log10-data we apply the same rule. However, the state-
mentE does not match exactly−0.5<ξ in the log-scale. Fig-
ure10does not show the valueξ=−0.5 because conditionsC
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Fig. 12. Posterior density for GPD parameters,ξ , β, for raw-data.u=45 mm.

andD imply E. Both priors have been forced to be flat inside
the domain defined by conditionsA throughE, but decreas-
ing to zero at the borders. Finally, assumptionF roughly
defines a characteristic event that is used to place the mode
of both priors; its influence is weak. Figures10and11show
contours of the resulting priors for raw-data and log10-data
respectively.

Although the stated assumptions are weak and reasonable,
they collate with the information from raw-data. Figure2
shows that most of the posterior probability is placed in the
Fréchet DA (ξ>0) when the prior does not constrain it to
the Weibull DA (ξ<0). However, according to our main hy-
pothesis, i.e. daily precipitation is a bounded phenomenon,
the prior for raw-data (Fig.10) is restricted to the Weibull
DA. This contradiction between observed raw-data and prior
assumptions does not hold for log10-data because their likeli-
hood is mainly located in the Weibull DA, as shown in Fig.3.

7 Daily precipitation hazard estimation

For both raw-data and log10-data, hazard parameters are es-
timated using the priors in Figs.10 and 11, in agreement
with the assumption that daily precipitation is a bounded phe-
nomenon. The obtained posteriors are shown in Figs.12and
13, respectively. Simulated samples of(z, ξ, β) are obtained
according to their joint posterior distribution, and character-
istics of the posterior distribution of hazard parameters are
then estimated.

A typical hazard parameter, introduced in Eq. (3), is the re-
turn period of events which magnitude exceed a given thresh-
old. Figure14 shows the results. At a first sight, one con-

firms the large uncertainty of the estimates, visualised by the
(0.05, 0.95) credible interval for both raw-data and log10-
data (thin lines-hollow markers). Other important differences
between the two samples are also revealed. Median return
periods (thick lines-filled markers) for raw-data are clearly
larger than for log10-data. For instance, for the 300 mm daily
precipitation, 190 years using raw-data are obtained, and 29
years using log10-data, a difference of one order magnitude.
This is not negligible, even taking into account the large un-
certainty of the results. To understand the importance intu-
itively, one should take into account that one event of more
than 300 mm has been recorded in the available sample run-
ning along 30 years. This fact predisposes us to accept the
results based on log10-data more easily than those based on
raw data.

Differences between the two samples appear as well when
comparing exceedance probabilities of a given level of pre-
cipitation in 50 years. Exceedance probabilities are com-
plementary to non-exceedance probabilities, introduced in
Eq. (4). Results for both samples are shown in Fig.15. For
instance, for the level of 400 mm, raw-data gives a median
exceedance probability of 0.015 in 50 years, whereas for
log10-data this probability is 0.37.

In a particular case study, it may be difficult to believe
that certain precipitation levels may be attainable. Therefore,
raising the question whether they are actually attainable or
not makes sense. The estimation of the probability of one
particular value being attainable is possible because we are
assuming bounded distributions for precipitation (Weibull
DA). Figure 15 shows these probabilities. They are very
important from the engineering point of view, because civil
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Fig. 13. Posterior density for GPD parameters,ξ , β, for log10-data.u=1.653.
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Fig. 14. Estimated log10-return periods, log10τ(x). Squares,
raw-data; triangles, log10-data. Thick lines-filled markers, median
of posterior distribution; thin lines-hollow markers, 0.05 and 0.95
quantiles.

works do not need to be designed for non attainable actions.
Consider for example precipitation of 700 mm, which has a
probability of 0.92 of being attainable using raw-data, and
a lower one, 0.71, using log10-data. Looking at this and
higher values for precipitation, one recognizes the conserva-
tive character of conclusions drawn from raw-data, compared
to those derived from log10-data. In the same Fig.15, it is
easy to see that raw-data give overall lower probabilities of
exceedance in 50 years compared to probabilities given by
log10-data. Thus, while raw-data are conservative concern-
ing the attainable character of a precipitation level, log10-data
are so for probabilities of exceedance in 50 years.
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Fig. 15. Exceedance probabilities in 50 years. Squares, raw-data;
triangles, log10-data. Thick lines-filled markers, median of poste-
rior distribution; thin lines-hollow markers, 0.05 and 0.95 quantiles.
Probability of attainable precipitation, dashed lines.

An estimation of the upper-limit of precipitation is also
possible, although it is very uncertain and the corresponding
distribution is very asymmetric. The mode of the posterior
distribution of this upper limit,−β/ξ , was 788 mm for raw-
data and 759 mm for log10-data. However, these values cor-
respond to low quantiles: probability of the upper-limit being
larger than 788 mm is about 0.87 for raw-data; for log10-data,
the probability of an upper-limit greater than 759 mm is ap-
proximately 0.65 thus showing the asymmetry of these esti-
mates. In this case the difference between the two samples is
not so large.

Two main points derive from these results: uncertainty
of the estimates is large and the results from raw-data and
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log10-data differ substantially. The first one is a consequence
of the short record (30 years) we are using to estimate occur-
rence of long-term large events. The second one confronts
the analyst with the choice of the appropriate model for the
data: which scale gives more sensible results? Reasons sup-
porting the log10 scale option have been exposed in the previ-
ous sections. A quantitative study on adequacy of the model
for both samples follows.

8 Bayesian Model checking

In order to quantify consistency of a model in a Bayesian
framework, model checking techniques have been developed
recently (Meng, 1994; Gelman et al., 1996). They are based
on the comparison of the observed data with replicated data
obtained using the estimated model. We centre our attention
on the GPD-model for excesses. It includes the(ξ, β)-prior,
the corresponding posterior, and the GPD itself.

To replicate data from the estimated model the steps are:
(a) Simulate GPD parameters,ξ (j), β(j), according to the ob-
tained posterior distribution; (b) simulate an-sample,y(j)

rep,
from a GPD with parametersξ (j), β(j). This can be repeated
a large enough number of times. Each replicatedn-sample,
y

(j)
rep, is compared to the originaln-sample of excesses,yobs,

using a function,T =T (y, ξ, β), known as discrepancy func-
tion. T is intended to express the features one wants to check
in the model and can be defined ad hoc. The actual compari-
son is performed using a Bayesianp-value,

αp = P[T (yrep, ξ, β) ≤ T (yobs, ξ, β)] , (11)

whereξ andβ are distributed according to their joint pos-
terior, and the sampleyrep as a GPD conditional to the
parametersξ and β. In a consistent model, the observed
data should appear (through the discrepancy function) mixed
with replicated samples and not separated from them. From
this point of view, p-values close to 0 or to 1 indicate
some inconsistency in the model. Clearly, the kind of
inconsistency checked depends on the discrepancy func-
tion. Once the replicated samples have been obtained,αp

is easily estimated as the proportion of times in which
T (y

(j)
rep, ξ

(j), β(j))≤T (yobs, ξ
(j), β(j)).

We are mainly interested in checking the compatibility of
observed data with the GPD model of excesses, and our prior
assumptions concerning the domain of attraction of the data-
sample. Therefore, the value ofξ corresponding to a partic-
ular data-set is a suitable explanatory function. An estimator
of ξ given the sample of excesses is then a reasonable choice
for a discrepancy function. Rough, but intuitively effective
estimators ofξ , (ξ<1), andβ areξ̂ andβ̂ minimising

m∑
k=1

n(uk) (ek − (a + buk))
2 , a =

β

1 − ξ
, b =

ξ

1 − ξ
, (12)

whereui , ui ≥ u, are pre-defined thresholds for excesses,
n(uk) is the number of excesses in the sample exceedinguk,
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Fig. 16. Bayesianp-values. Raw-data: full line, squares. log10-
data: dashed-dotted line, triangles. 0.05 reference level: dashed
line.

andek is the average excess overuk. This is equivalent to
fitting a regression line to the estimated mean excesses as
a function of the threshold, as suggested by Eq. (9). The
regression is actually weighted by the number of excesses
used to estimateek.

For each excess sample, observed or replicated, we define
T =ξ̂ . We realise thatξ andβ do not appear explicitly inT
but, when calculated for a replicated sample,ξ (j) andβ(j)

play a role through the GPD distribution. We expect this dis-
crepancy function to be sensible to situations in which prior
and likelihood disagree.

Figure 16 shows thep-values of Eq. (11) for a number
of different absolute thresholds and for both raw-data and
log10-data. For raw-data and thresholds under 80 mm, the
model is suspicious of inconsistencies. Recall that the cho-
sen threshold was 45 mm both for raw-data and for log10-
data. For higher thresholds, the model becomes acceptable,
although the number of available data decreases to less than
30 excesses (Fig.6) and uncertainty increases accordingly.
Contrarily, for log10-data, the model checking is satisfactory
for all used thresholds. These results quantitatively confirm
that raw-data are hardly compatible with the assumption that
excesses have a bounded distribution.

9 Conclusions

Estimation of hazard parameters is highly uncertain mainly
due to lack of data. Using a Bayesian approach, this uncer-
tainty can be monitored as shown in the study of a 30-year
precipitation series obtained from a rain-gauge at Vergel de
Racons (Alicante). Events can be modelled as a Poisson
process, and the upper tail of daily precipitation as Gener-
alised Pareto distributed. The final model is validated using a
Bayesian model checking. Two considerations about precip-
itation lead the approach: (a) differences in precipitation are
relative, calling for a log-scale, and (b) precipitation is finite.
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The present case study shows that a log-transformation,
which satisfies the first condition, naturally leads to a model
which also satisfies the second one. In fact, excesses of the
log10 transformed data can be assumed to follow a Gener-
alised Pareto distribution in the Weibull domain of attraction
(bounded upper tail), in agreement with the finite character
of precipitation. Results for untransformed data showed that
a Generalised Pareto distribution in the Weibull domain of
attraction is not compatible with the upper tail of the obser-
vations. This result stands in agreement with a preliminary
study which leads to some distribution in the Fréchet domain
of attraction (heavy, unbounded upper tail), a behaviour pre-
viously reported for other precipitation data sets.

These results support the idea that, for strictly positive
data, not only for precipitation, for which a relative scale
appears to be natural, taking log’s might be not unimpor-
tant. When using a natural scale, some modelling require-
ments, such as goodness-of-fit or compatibility with physi-
cal assumptions, appear to be fulfilled in an easier way than
when using the usual raw scale in real space.
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