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ON SOME FAMILIES
OF ARBITRARILY VERTEX DECOMPOSABLE SPIDERS

Abstract. A graph G of order n is called arbitrarily vertex decomposable if for each sequence
(n1, . . . , nk) of positive integers such that

Pk
i=1 ni = n, there exists a partition (V1, . . . , Vk)

of the vertex set of G such that for every i ∈ {1, . . . , k} the set Vi induces a connected
subgraph of G on ni vertices. A spider is a tree with one vertex of degree at least 3. We
characterize two families of arbitrarily vertex decomposable spiders which are homeomorphic
to stars with at most four hanging edges.
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1. INTRODUCTION

LetG be a graph with vertex set V (G) and edge set E(G). Let |V (G)| = n. A sequence
τ = (n1, . . . , nk) of positive integers is called admissible for G if n1 + . . . + nk = n.
We shall write ((n1)s1 , . . . , (nl)sl) for the sequence (n1, . . . , n1︸ ︷︷ ︸

s1

, . . . , nl, . . . , nl︸ ︷︷ ︸
sl

). If τ =

(n1, . . . , nk) is an admissible sequence for the graph G and there exists a partition
(V1, . . . , Vk) of the vertex set V (G) such that for each i ∈ {1, . . . , k} the subgraph
G[Vi] induced by Vi is a connected graph on ni vertices, then τ is called G-realizable
or realizable in G and the sequence (V1, . . . , Vk) is said to be a G-realization of τ or
a realization of τ in G. Each set Vi will be called a τ -part of a realization of τ in G.
A graph G is called arbitrarily vertex decomposable (avd for short) if each admissible
sequence for G is realizable in G.

Arbitrarily vertex decomposable graphs have been investigated in several papers
([1–5] for example). The problem originated from some applications to computer
networks ([1]).

The investigation of avd trees is motivated by the fact that a connected graph is
avd if its spanning tree is avd.
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In [4] the authors proved that every tree of maximum degree at least 7 is not avd
and conjectured that every tree with maximum degree at least 5 is not avd. This
conjecture was proved in [2]:

Theorem 1.1. If tree T is arbitrarily vertex decomposable then ∆(T ) ≤ 4. Moreover
every vertex of degree four in T is adjacent to a leaf.

Let T = (V (T ), E(T )) be a tree. A vertex v ∈ V (T ) is called primary if d(v) ≥ 3.
A leaf is a vertex of degree one in T . Let the path P be a subgraph of T such
that one of its end vertices is a leaf in T , the other one is a primary vertex in T
and all internal vertices of P have degree two in T . We will call such a path an
arm of T . Let v be a primary vertex of a tree T such that v is an end vertex of
two arms A1, A2 of T . Let yi be the other end vertex of Ai and xi ∈ V (Ai) the
neighbour of v, i = 1, 2. Define T (A1, A2) to be a tree with V (T (A1, A2)) = V (T )
and E(T (A1, A2)) = E(T )− {vx2} ∪ {y1y2}.

In [1] and, independently, in [5] the authors observed that:

Lemma 1.2. Let T be an arbitrarily vertex decomposable tree and let A1, A2 be arms
of T that share a primary vertex of T . Then the tree T (A1, A2) is arbitrarily vertex
decomposable, too.

That gives a reason for the investigation of avd trees which are homeomorphic to
a star K1,q, where q is three or four. If q = 2 such a tree is a path which is avd.

A spider is a tree with one primary vertex. Such a tree has q arms Ai, i = 1, . . . , q,
where q is the degree of the primary vertex. Let ai be the order of Ai, i = 1, . . . , q.
The structure of a spider is determined by the sequence of orders of its arms. Since
the ordering of this sequence is not important, we will assume that a1 ≤ a2 ≤ . . . ≤ aq
and we will denote the above defined spider by S(a1, . . . , aq).

The first result characterizing the avd spider was found in [1] and, independently,
in [5].

We will denote by gcd(a, b) the greatest common divisor of two positive integers
a and b.

Theorem 1.3. The spider S(2, b, c), 2 ≤ b ≤ c is arbitrarily vertex decomposable if
and only if gcd(b, c) = 1. Moreover, each admissible and non-realizable sequence in
S(2, b, c) is of the form ((d)k), where b ≡ c ≡ 0(mod d) and d ≥ 2.

In [1] the authors characterized avd S(2, 2, b, c) using avd S(3, b, c):

Proposition 1.4. The spider S(2, 2, b, c), 2 ≤ b ≤ c is arbitrarily vertex decomposable
if and only if the following conditions hold:

1. The spider S(3, b, c) is arbitrarily vertex decomposable,
2. The numbers b, c are odd,
3. b 6≡ 2(mod 3) or c 6≡ 2(mod 3).

In [3] the authors investigated two families of spiders: S(2, 2, b, c) and S(3, b, c).
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Theorem 1.5. The spider S(2, 2, b, c) of order n, 3 ≤ b ≤ c, is arbitrarily vertex
decomposable if and only if the following conditions hold:

1. gcd(b, c) = 1,
2. gcd(b+ 1, c) = 1,
3. gcd(b, c+ 1) = 1,
4. gcd(b+ 1, c+ 1) = 2,
5. n 6= αb+ β(b+ 1) for α, β ∈ N.

Theorem 1.6. The spider S(3, b, c) of order n, 3 ≤ b ≤ c, is arbitrarily vertex
decomposable if and only if the following conditions hold:

1. gcd(b, c) ≤ 2,
2. gcd(b+ 1, c) ≤ 2,
3. gcd(b, c+ 1) ≤ 2,
4. gcd(b+ 1, c+ 1) ≤ 3,
5. n 6= αb+ β(b+ 1) for α, β ∈ N.

The main result of this paper are Theorems 2.1 and 2.2 of Section 2 which give a
complete characterization of avd spiders S(2, 3, b, c) and S(4, b, c).To prove them we
will also use the following results:

Proposition 1.7 ([1]). The spider S(a1, a2, a3), a1 ≤ a2 ≤ a3, is arbitrarily vertex
decomposable if and only if every admissible sequence ((q)s1 , (q + 1)s2), s2 > 0, q ≤
a1 + a2− 2 and every admissible sequence (m, (r)t1 , (r+ 1)t2), t2 > 0, 1 ≤ m ≤ r− 1,
r ≤ a1 − 3, has a realization in S(a1, a2, a3).

Proposition 1.8 ([2]). The spider S(2, a1, a2, a3), a1 ≤ a2 ≤ a3, is arbitrarily vertex
decomposable if and only if the following conditions hold:

1. The spider S(a1, a2, a3), a1 ≤ a2 ≤ a3, is arbitrarily vertex decomposable.
2. Every admissible sequence ((q)s1 , (q + 1)s2), s2 > 0, q ≤ a1 + a2 − 2 and every

admissible sequence (m, (r)t1 , (r + 1)t2), t2 > 0, 0 < m ≤ r − 1, r ≤ a1 − 3, has a
realisation in S(2, a1, a2, a3).

Proposition 1.9 ([6]). The graph G is arbitrarily vertex decomposable if and only
if every admissible sequence (n1, . . . , nk) with ni ≥ 2 for each i = 1,. . . ,k, has a
realization in G.

Given an admissible sequence τ = (n1, . . . , nk) for a graph G of order n, we will use
the following convention to describe a realization (V1, . . . , Vk) of τ in G. We choose an
ordering s = (v1, . . . , vn) of the vertex set of G. Then we define the τ -parts according
to the sequence s, that is V1 = {v1, . . . , vn1}, V2 = {vn1+1, . . . , vn1+n2} and so on.

2. ARBITRARILY VERTEX DECOMPOSABLE SPIDERS
S(2, 3, b, c) AND S(4, b, c)

Theorem 2.1. The spider S(2, 3, b, c) of order n, 3 ≤ b ≤ c, is arbitrarily vertex
decomposable if and only if the following conditions hold:

(1) gcd(b, c) = 1,



150 Tomasz Juszczyk, Irmina A. Zioło

(2) max{gcd(b+ 1, c), gcd(b, c+ 1), gcd(b+ 1, c+ 1), gcd(b+ 2, c),
gcd(b, c+ 2)} ≤ 2,

(3) max{gcd(b+ 1, c+ 2), gcd(b+ 2, c+ 1), gcd(b+ 2, c+ 2)} ≤ 3,
(4) n 6= αb+ β(b+ 1) + γ(b+ 2) for α, β, γ ∈ N,
(5) If b = 2h, h ∈ N, h ≥ 3 then n 6= αh+ β(h+ 1) for α, β ∈ N.

Proof. Necessity. If d1 = gcd(b, c) ≥ 2 or d2 = max{gcd(b + 1, c), gcd(b, c + 1)} ≥ 3
or d3 = max{gcd(b + 1, c + 1), gcd(b + 2, c), gcd(b, c + 2)} ≥ 3 or d4 = max{gcd(b +
1, c + 2), gcd(b + 2, c + 1)} ≥ 4 or d5 = gcd(b + 2, c + 2) ≥ 4 then the following
sequences (2, (d1)

n−2
d1 ) or ((d2)

n−1
d2
−1, d2 + 1) or ((d3)

n
d3 ) or (d4 − 1, (d4)

n+1
d4
−1) or

((d5 − 1)2, (d5)
n+2
d5
−2), respectively, are admissible but not realizable. If n = αb +

β(b+ 1) + γ(b+ 2), where α, β, γ ∈ N then the sequence ((b)α, (b+ 1)β , (b+ 2)γ) is
admissible and not realizable. If n = αh + β(h + 1), where h = b

2 ∈ N, h ≥ 3 then
the sequence ((h)α, (h+ 1)β) is admissible and not realizable.
Sufficiency. Let Ai, i = 1, . . . , 4 be arms of S(2, 3, b, c), 3 ≤ b ≤ c, of orders 2, 3,
b and c, respectively. Let v be a primary vertex of S(2, 3, b, c). Set A1 = {v, v2

1},
A2 = {v, v3

1 , v
3
2}, A3 = {v, vb1, . . . , vbb−1} and A4 = {v, vc1, . . . , vcc−1}, such that vv2

1 ,
vv3

1 , v3
1v

3
2 , vvb1, vbi vbi+1, vvc1, vcjvcj+1 are edges of S(2, 3, b, c), i = 1, . . . , b − 2, j =

1, . . . , c − 2. Let τ = (n1, . . . , nk) be an admissible sequence for S(2, 3, b, c). We
assume that n1 ≤ . . . ≤ nk.

By Proposition 1.8, Proposition 1.9 and Theorem 1.6 we may assume that τ =
((n1)k1 , (n1 + 1)k2), where k1, k2 ∈ N and 2 ≤ n1 ≤ b+ 1.

If n1 = 2 then by Theorem 1.3 there is the realization (V2, . . . , Vk) of the se-
quence (n2, . . . , nk) in S(2, b, c) and hence ({v3

1 , v
3
2}, V2, . . . , Vk) is a realization of τ

in S(2, 3, b, c). We may asume that n1 ≥ 3.
Since max{gcd(b + 1, c + 1), gcd(b + 2, c), gcd(b, c + 2)} ≤ 2, we have τ 6= ((3)k)

and hence especially nk ≥ 4. Since nk ≤ b + 2, by the condition (4), we obtain
that n1 ≤ b − 1, nk ≤ b. We define the sequence (V1, . . . , Vk) of τ -parts according
to s1 = (vb1, v

b
2, . . . , v

b
b−1, v

c
c−1, . . . , v

c
1, v, v

2
1 , v

3
1 , v

3
2). Suppose that the construction

does not give a realization of τ in S(2, 3, b, c). It follows that there is i0 such that
vbb−1, v

c
c−1 ∈ Vi0 . Since nk ≤ b, n1 ≤ b − 1, we have 2 ≤ i0 ≤ k − 1. If |Vi0 ∩

V (A3)| ≤ nk − 4 then we modify the ordering of elements of τ , we obtain τ =
(ni0 , ni0+1, . . . , nk, n1, . . . , ni0−1) and we define the sequence of τ -parts according to
s2 = (vcc−1, v

c
c−2, . . . , v

c
1, v, v

2
1v

3
1 , v

3
2 , v

b
1, v

b
2, . . . , v

b
b−1) and we obtain a realization of τ

in S(2, 3, b, c). Hence we may assume that |Vi0 ∩ V (A3)| ≥ nk − 3.
We will use the following notation: d = nk − ni0 , r = |Vi0 ∩ V (A3)| − (nk − 4).

It is easily seen that d + r + |Vi0 ∩ V (A4)| = 4. Since |Vi0 ∩ V (A4)| ≥ 1, d ≤ 1, we
obtain that 1 ≤ r ≤ 3 or 1 ≤ r ≤ 2 for d = 0 or d = 1, respectively. Observe that
b =

∑i0−1
i=1 ni + 1 + r + (nk − 4) =

∑i0−1
i=1 ni + nk + r − 3 and c =

∑k−1
i=i0

ni + 1− r.
Let us suppose that nk−1 − n1 ≥ r. We modify the ordering of elements of τ

and we consider τ = (nk−1, n2, . . . , nk−2, n1, nk). We define the sequence of τ -parts
according to s1 and, since 0 ≤ |Vi0 ∩ V (A3)| − (nk−1 − n1) ≤ nk − 4, either we
obtain a realization of τ or vbb−1, v

c
c−1 ∈ Vj0 , where j0 = io for i0 < k − 1

and j0 = 1 for i0 = k − 1. In the second case we modify the ordering of ele-
ments of τ such that τ = (ni0 , ni0+1, . . . , n1, nk, nk−1, n2, . . . , ni0−1) if i0 < k − 1
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or τ = (n1, nk, nk−1, n2, . . . , nk−2) if i0 = k− 1 and we define the sequence of τ -parts
according to s2. Since |Vj0 ∩ V (A3)| ≤ nk − 4, we obtain a realization of τ . Hence we
may assume that nk−1 − n1 < r.

If τ = ((n1)k) then b = i0n1 +r−3, c = (k−i0)n1 +1−r and hence max{gcd(b, c+
2), gcd(b+ 1, c+ 1), gcd(b+ 2, c)} ≥ n1 ≥ 3, contrary to (2). If τ = ((n1)k−1, n1 + 1)
then d = 1 and hence r ∈ {1, 2}. Since b = i0n1 + r − 2, c = (k − i0)n1 + 1 − r, we
obtain that max{gcd(b, c+ 1), gcd(b+ 1, c)} ≥ n1 ≥ 3, contrary to (2). Therefore we
may assume that nk−1 = n1 + 1.

Let us suppose that τ = (n1, (n1 + 1)k−1). Then r ∈ {2, 3}. Since b = i0(n1 + 1) +
r − 4 and c = (k − i0)(n1 + 1) + 1− r, we obtain that max{gcd(b+ 1, c+ 2), gcd(b+
2, c+ 1)} ≥ n1 + 1 ≥ 4, contrary to (3). Hence we may assume that n2 = n1.

Let us suppose that i0 = 2. Then d = 1, r = 2 and b = 2n1, contrary to (5). We
may assume that i0 ≥ 3, and hence k ≥ 4.

If i0 = k − 1 then b =
∑k−2
i=1 ni + nk + r − 3 ≥ nk + r and c = nk + 1 − r, which

contradicts the assumption b ≤ c. Hence we may assume that i0 ≤ k − 2 and hence
k ≥ 5.

Let us suppose that (nk−1 + nk−2) − (n1 + n2) ≥ r. We modify the ordering
of elements of τ and we consider τ = (nk−1, nk−2, n3, . . . , nk−3, n2, n1, nk). We de-
fine the sequence of τ -parts according to s1. Combining condition nk−1 − n1 < r
with the values of d and ni, i = 2, k − 2, k − 1 we obtain that 0 ≤ |Vi0 ∩
V (A3)| − [(nk−1 + nk−2) − (n1 + n2)] ≤ nk − 4. Then either we obtain a real-
ization of τ or vbb−1, v

c
c−1 ∈ Vj0 , where j0 = i0 for i0 < k − 2 and j0 = 2 for

i0 = k − 2. In the second case we modify the ordering of elements of τ such
that τ = (ni0 , ni0+1, . . . , nk−3, n2, n1, nk, nk−1, nk−2, n3, . . . , ni0−1) if i0 < k − 2 or
τ = (n2, n1, nk, nk−1, nk−2, n3, . . . , nk−3) if i0 = k − 2 and we define the sequence of
τ -parts according to s2. Since |Vj0 ∩ V (A3)| ≤ nk − 4, we obtain a realization of τ .
Hence we may assume that (nk−1 + nk−2)− (n1 + n2) < r.

It is not difficult to check that then we have two possibilities: either τ =
((n1)k−2, (n1 + 1)2), r = 2 or n1 = n2, nk−2 = nk−1 = nk = n1 + 1, r = 3.

If τ = ((n1)k−2, (n1 + 1)2) and r = 2 then b = i0n1, c = (k − i0)n1 and hence
gcd(b, c) ≥ n1 ≥ 3, contrary to (1). Hence n1 = n2, nk−2 = nk−1 = nk = n1 + 1 and
r = 3. If τ = ((n1)2, (n1 + 1)k−2) then b = i0(n1 + 1) − 2, c = (k − i0)(n1 + 1) − 2
and hence gcd(b+ 2, c+ 2) ≥ n1 + 1 ≥ 4, contrary to (3). Therefore we may assume
that k ≥ 6 and n3 = n1.

If i0 = 3 then d = 1 and hence r ≤ 2, a contradiction. Hence 4 ≤ i0. If i0 = k − 2
then 4n1 + 1 ≤ b ≤ c = 2n1, a contradiction. Hence i0 ≤ k − 3 and k ≥ 7. We
obtain that n1 = n2 = n3, nk−2 = nk−1 = nk = n1 + 1, r = 3 and 4 ≤ i0 ≤ k − 3.
Then d = 0 and hence nk−3 = n1 + 1. We modify the ordering of elements of τ
and we consider τ = (nk−1, nk−2, nk−3, n4, . . . , nk−4, n3, n2, n1, nk). We define the
sequence of τ -parts according to s1. Let us suppose that the construction does not
give a realization of τ . Then we modify the ordering of elements of τ and we consider
τ = (ni0 , ni0+1, . . . , nk−4, n3, n2, n1, nk, nk−1, nk−2, nk−3, n4, . . . , ni0−1) if i0 < k − 3
or τ = (n3, n2, n1, nk, nk−1, nk−2, nk−3, n4, . . . , nk−4) if i0 = k − 3. We define the
sequence of τ -parts according to s2 and obtain a realization of τ .
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Theorem 2.2. The spider S(4, b, c) of order n, 4 ≤ b ≤ c, is arbitrarily vertex
decomposable if and only if the following conditions hold:

(1) gcd(b, c) = 1 or gcd(b, c) = 3,
(2) max{gcd(b+ 1, c), gcd(b, c+ 1), gcd(b+ 1, c+ 1), gcd(b+ 2, c),

gcd(b, c+ 2)} ≤ 3,
(3) max{gcd(b+ 1, c+ 2), gcd(b+ 2, c+ 1), gcd(b+ 2, c+ 2)} ≤ 4,
(4) n 6= αb+ β(b+ 1) + γ(b+ 2) for α, β, γ ∈ N,
(5) If b = 2h, h ∈ N, h ≥ 4 then n 6= αh+ β(h+ 1) for α, β ∈ N.

Proof. We will use the similar method to that in the proof of Theorem 2.1.
Necessity. If d1 = gcd(b, c) 6∈ {1, 3} or d2 = max{gcd(b + 1, c), gcd(b, c + 1)} ≥ 4

or d3 = max{gcd(b + 1, c + 1), gcd(b + 2, c), gcd(b, c + 2)} ≥ 4 or d4 = max{gcd(b +
1, c + 2), gcd(b + 2, c + 1)} ≥ 5 or d5 = gcd(b + 2, c + 2) ≥ 5 then the following
sequences (2, (d1)

n−2
d1 ) or ((d2)

n−1
d2
−1, d2 + 1) or ((d3)

n
d3 ) or (d4 − 1, (d4)

n+1
d4
−1) or

((d5 − 1)2, (d5)
n+2
d5
−2), respectively, are admissible but not realizable. If n = αb +

β(b+ 1) + γ(b+ 2), where α, β, γ ∈ N then the sequence ((b)α, (b+ 1)β , (b+ 2)γ) is
admissible and not realizable. If n = αh + β(h + 1), where h = b

2 ∈ N, h ≥ 4 then
the sequence ((h)α, (h+ 1)β) is admissible and not realizable.

Sufficiency. Let Ai, i = 1, 2, 3 be arms of S(4, b, c), 4 ≤ b ≤ c, of orders 4, b
and c, respectively. Let v be a primary vertex of S(4, b, c). Set A1 = {v, v4

1 , v
4
2 , v

4
3},

A2 = {v, vb1, . . . , vbb−1} and A3 = {v, vc1, . . . , vcc−1}, such that vv4
1 , v4

i v
4
i+1, vvb1, vbjvbj+1,

vvc1, vcl v
c
l+1 are edges of S(4, b, c), i = 1, 2, j = 1, . . . , b− 2, l = 1, . . . , c− 2. Let τ =

(n1, . . . , nk) be an admissible sequence for S(4, b, c). We assume that n1 ≤ . . . ≤ nk.
If there is i0 ∈ {1, . . . , k} such that ni0 = 3 then we set Vi0 = {v4

1 , v
4
2 , v

4
3} and

obtain a realization of τ in S(4, b, c). Hence we may assume that ni 6= 3 for i ∈
{1, . . . , k}.

Let us suppose that ni0 = 2 for any i0 ∈ {1, . . . , k}. Since τ 6= (2, (3)k−1), if we set
Vi0 = {v4

2 , v
4
3} then by Theorem 1.3 we obtain a realization of τ in S(4, b, c). Hence we

may assume that ni 6= 2 for i ∈ {1, . . . , k}. Then by Proposition 1.9 and Proposition
1.7 we have that τ = ((n1)k1 , (n1 + 1)k2), where k1, k2 ∈ N and 4 ≤ n1 ≤ b + 2. If
nk = b + 3 then the sequence (V1, . . . , Vk) such that [V (A1) ∪ V (A2)] ⊂ Vk and for
i = 1,. . . ,k − 1, Vi ⊂ [V (A3)\{v}] is a realization of τ in S(4, b, c). We may assume
that nk ≤ b+2. By the condition (4) we obtain that n1 ≤ b−1, nk ≤ b. We define the
sequence (V1, . . . , Vk) of τ -parts according to s1 = (vb1, v

b
2, . . . , v

b
b−1, v

c
c−1, . . . , v

c
1, v,

v4
1 , v

4
2 , v

4
3). Suppose that the construction does not give a realization of τ in S(4, b, c).

It follows that there is i0 such that vbb−1, v
c
c−1 ∈ Vi0 . Since nk ≤ b and n1 ≤ b − 1,

we have 2 ≤ i0 ≤ k− 1. Using similar arguments to that in the proof of Theorem 2.1
we may assume that |Vi0 ∩ V (A2)| ≥ nk − 3. We will use the following notation:
d = nk−ni0 , r = |Vi0∩V (A2)|−(nk−4). It is easily seen that d+r+|Vi0∩V (A3)| = 4.
Since |Vi0 ∩ V (A3)| ≥ 1, d ≤ 1, we obtain that 1 ≤ r ≤ 3 or 1 ≤ r ≤ 2 for d = 0 or
d = 1, respectively. Observe that b =

∑i0−1
i=1 ni + nk + r − 3, c =

∑k−1
i=i0

ni + 1− r.
Using a similar method to that in the proof of Theorem 2.1 we obtain that if

nk−1−n1 ≥ r then there is a realization of τ in S(4, b, c). Hence we may assume that
nk−1 − n1 < r.
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If τ = ((n1)k) then max{gcd(b + 2, c), gcd(b + 1, c + 1), gcd(b, c + 2)} ≥ n1 ≥ 4,
contrary to (2). If τ = ((n1)k−1, n1 + 1) then d = 1 and hence r ∈ {1, 2} and
max{gcd(b + 1, c), gcd(b, c + 1)} ≥ n1, contrary to (2). If τ = (n1, (n1 + 1)k−1) then
r ∈ {2, 3} and hence max{gcd(b+ 2, c+ 1), gcd(b+ 1, c+ 2)} ≥ n1 + 1 ≥ 5, contrary
to (3). Hence we may assume that k ≥ 4 and n1 = n2, nk = nk−1 = n1 + 1.

Using similar method to that in the proof of Theorem 2.1 we may assume that
k − 2 ≥ i0 ≥ 3 and that (nk−1 + nk−2)− (n1 + n2) < r. Then we obtain that either
τ = ((n1)k−2, (n1 + 1)2), r = 2 or n1 = n2, nk−2 = nk−1 = nk = n1 + 1, r = 3. In the
first case b = i0n1, c = (k − i0)n1 and gcd(b, c) ≥ n1 ≥ 4 contrary to (1). We may
assume that n1 = n2, nk−2 = nk−1 = nk = n1 + 1 and r = 3.

If τ = ((n1)2, (n1 + 1)k−2) then b = i0(n1 + 1) − 2, c = (k − i0)(n1 + 1) − 2 and
gcd(b+ 2, c+ 2) ≥ n1 + 1 ≥ 5, contrary to (3). Hence we may assume that k ≥ 6 and
n3 = n1. Since r = 3, we obtain that d = 0 and hence i0 ≥ 4. If i0 = k − 2 then
4n1 + 1 ≤ b ≤ c = 2n1, a contradiction. Hence i0 ≤ k − 3 and k ≥ 7.

Since r = 3, we have ni0 = nk = n1 + 1 and especially nk−3 = n1 + 1. Then,
similarly to the proof of Theorem 2.1, we obtain a realization of τ in S(4, b, c).

Corollary 2.3. The number of arbitrarily vertex decomposable spiders S(2, 3, b, c)
and S(4, b, c) is infinite.

Proof. It is not difficult to check that for b and c such that b ∈ {60s + 1, 60s + 13,
60s+ 49, s ≥ 0}, c = b+ 3 the assumptions (1)–(5) of Theorem 2.1 and assumptions
(1)–(5) of Theorem 2.2 hold.
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