Tomasz Juszczyk, Irmina A. Zioło

ON SOME FAMILIES

 OF ARBITRARILY VERTEX DECOMPOSABLE SPIDERS
Abstract

A graph G of order n is called arbitrarily vertex decomposable if for each sequence $\left(n_{1}, \ldots, n_{k}\right)$ of positive integers such that $\sum_{i=1}^{k} n_{i}=n$, there exists a partition $\left(V_{1}, \ldots, V_{k}\right)$ of the vertex set of G such that for every $i \in\{1, \ldots, k\}$ the set V_{i} induces a connected subgraph of G on n_{i} vertices. A spider is a tree with one vertex of degree at least 3 . We characterize two families of arbitrarily vertex decomposable spiders which are homeomorphic to stars with at most four hanging edges.

Keywords: arbitrarily vertex decomposable graph, trees.

Mathematics Subject Classification: 05C05, 05C35.

1. INTRODUCTION

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $|V(G)|=n$. A sequence $\tau=\left(n_{1}, \ldots, n_{k}\right)$ of positive integers is called admissible for G if $n_{1}+\ldots+n_{k}=n$. We shall write $\left(\left(n_{1}\right)^{s_{1}}, \ldots,\left(n_{l}\right)^{s_{l}}\right)$ for the sequence $(\underbrace{n_{1}, \ldots, n_{1}}_{s_{1}}, \ldots, \underbrace{n_{l}, \ldots, n_{l}}_{s_{l}})$. If $\tau=$ $\left(n_{1}, \ldots, n_{k}\right)$ is an admissible sequence for the graph G and there exists a partition $\left(V_{1}, \ldots, V_{k}\right)$ of the vertex set $V(G)$ such that for each $i \in\{1, \ldots, k\}$ the subgraph $G\left[V_{i}\right]$ induced by V_{i} is a connected graph on n_{i} vertices, then τ is called G-realizable or realizable in G and the sequence $\left(V_{1}, \ldots, V_{k}\right)$ is said to be a G-realization of τ or a realization of τ in G. Each set V_{i} will be called a τ-part of a realization of τ in G. A graph G is called arbitrarily vertex decomposable (avd for short) if each admissible sequence for G is realizable in G.

Arbitrarily vertex decomposable graphs have been investigated in several papers ([1-5] for example). The problem originated from some applications to computer networks ([1]).

The investigation of avd trees is motivated by the fact that a connected graph is avd if its spanning tree is avd.

In [4] the authors proved that every tree of maximum degree at least 7 is not avd and conjectured that every tree with maximum degree at least 5 is not avd. This conjecture was proved in [2]:

Theorem 1.1. If tree T is arbitrarily vertex decomposable then $\Delta(T) \leq 4$. Moreover every vertex of degree four in T is adjacent to a leaf.

Let $T=(V(T), E(T))$ be a tree. A vertex $v \in V(T)$ is called primary if $d(v) \geq 3$. A leaf is a vertex of degree one in T. Let the path P be a subgraph of T such that one of its end vertices is a leaf in T, the other one is a primary vertex in T and all internal vertices of P have degree two in T. We will call such a path an arm of T. Let v be a primary vertex of a tree T such that v is an end vertex of two arms A_{1}, A_{2} of T. Let y_{i} be the other end vertex of A_{i} and $x_{i} \in V\left(A_{i}\right)$ the neighbour of $v, i=1,2$. Define $T\left(A_{1}, A_{2}\right)$ to be a tree with $V\left(T\left(A_{1}, A_{2}\right)\right)=V(T)$ and $E\left(T\left(A_{1}, A_{2}\right)\right)=E(T)-\left\{v x_{2}\right\} \cup\left\{y_{1} y_{2}\right\}$.

In [1] and, independently, in [5] the authors observed that:
Lemma 1.2. Let T be an arbitrarily vertex decomposable tree and let A_{1}, A_{2} be arms of T that share a primary vertex of T. Then the tree $T\left(A_{1}, A_{2}\right)$ is arbitrarily vertex decomposable, too.

That gives a reason for the investigation of avd trees which are homeomorphic to a star $K_{1, q}$, where q is three or four. If $q=2$ such a tree is a path which is avd.

A spider is a tree with one primary vertex. Such a tree has q arms $A_{i}, i=1, \ldots, q$, where q is the degree of the primary vertex. Let a_{i} be the order of $A_{i}, i=1, \ldots, q$. The structure of a spider is determined by the sequence of orders of its arms. Since the ordering of this sequence is not important, we will assume that $a_{1} \leq a_{2} \leq \ldots \leq a_{q}$ and we will denote the above defined spider by $S\left(a_{1}, \ldots, a_{q}\right)$.

The first result characterizing the avd spider was found in [1] and, independently, in [5].

We will denote by $\operatorname{gcd}(a, b)$ the greatest common divisor of two positive integers a and b.

Theorem 1.3. The spider $S(2, b, c), 2 \leq b \leq c$ is arbitrarily vertex decomposable if and only if $\operatorname{gcd}(b, c)=1$. Moreover, each admissible and non-realizable sequence in $S(2, b, c)$ is of the form $\left((d)^{k}\right)$, where $b \equiv c \equiv 0(\bmod d)$ and $d \geq 2$.

In [1] the authors characterized avd $S(2,2, b, c)$ using avd $S(3, b, c)$:
Proposition 1.4. The spider $S(2,2, b, c), 2 \leq b \leq c$ is arbitrarily vertex decomposable if and only if the following conditions hold:

1. The spider $S(3, b, c)$ is arbitrarily vertex decomposable,
2. The numbers b, c are odd,
3. $b \not \equiv 2(\bmod 3)$ or $c \not \equiv 2(\bmod 3)$.

In [3] the authors investigated two families of spiders: $S(2,2, b, c)$ and $S(3, b, c)$.

Theorem 1.5. The spider $S(2,2, b, c)$ of order $n, 3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. $\operatorname{gcd}(b, c)=1$,
2. $\operatorname{gcd}(b+1, c)=1$,
3. $\operatorname{gcd}(b, c+1)=1$,
4. $\operatorname{gcd}(b+1, c+1)=2$,
5. $n \neq \alpha b+\beta(b+1)$ for $\alpha, \beta \in \mathbf{N}$.

Theorem 1.6. The spider $S(3, b, c)$ of order $n, 3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. $\operatorname{gcd}(b, c) \leq 2$,
2. $\operatorname{gcd}(b+1, c) \leq 2$,
3. $\operatorname{gcd}(b, c+1) \leq 2$,
4. $\operatorname{gcd}(b+1, c+1) \leq 3$,
5. $n \neq \alpha b+\beta(b+1)$ for $\alpha, \beta \in \mathbf{N}$.

The main result of this paper are Theorems 2.1 and 2.2 of Section 2 which give a complete characterization of avd spiders $S(2,3, b, c)$ and $S(4, b, c)$. To prove them we will also use the following results:

Proposition 1.7 ([1]). The spider $S\left(a_{1}, a_{2}, a_{3}\right), a_{1} \leq a_{2} \leq a_{3}$, is arbitrarily vertex decomposable if and only if every admissible sequence $\left((q)^{s_{1}},(q+1)^{s_{2}}\right), s_{2}>0, q \leq$ $a_{1}+a_{2}-2$ and every admissible sequence $\left(m,(r)^{t_{1}},(r+1)^{t_{2}}\right), t_{2}>0,1 \leq m \leq r-1$, $r \leq a_{1}-3$, has a realization in $S\left(a_{1}, a_{2}, a_{3}\right)$.
Proposition 1.8 ([2]). The spider $S\left(2, a_{1}, a_{2}, a_{3}\right), a_{1} \leq a_{2} \leq a_{3}$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. The spider $S\left(a_{1}, a_{2}, a_{3}\right)$, $a_{1} \leq a_{2} \leq a_{3}$, is arbitrarily vertex decomposable.
2. Every admissible sequence $\left((q)^{s_{1}},(q+1)^{s_{2}}\right), s_{2}>0, q \leq a_{1}+a_{2}-2$ and every admissible sequence $\left(m,(r)^{t_{1}},(r+1)^{t_{2}}\right), t_{2}>0,0<m \leq r-1, r \leq a_{1}-3$, has a realisation in $S\left(2, a_{1}, a_{2}, a_{3}\right)$.

Proposition 1.9 ([6]). The graph G is arbitrarily vertex decomposable if and only if every admissible sequence $\left(n_{1}, \ldots, n_{k}\right)$ with $n_{i} \geq 2$ for each $i=1, \ldots, k$, has a realization in G.

Given an admissible sequence $\tau=\left(n_{1}, \ldots, n_{k}\right)$ for a graph G of order n, we will use the following convention to describe a realization $\left(V_{1}, \ldots, V_{k}\right)$ of τ in G. We choose an ordering $s=\left(v_{1}, \ldots, v_{n}\right)$ of the vertex set of G. Then we define the τ-parts according to the sequence s, that is $V_{1}=\left\{v_{1}, \ldots, v_{n_{1}}\right\}, V_{2}=\left\{v_{n_{1}+1}, \ldots, v_{n_{1}+n_{2}}\right\}$ and so on.
2. ARBITRARILY VERTEX DECOMPOSABLE SPIDERS $S(2,3, b, c)$ AND $S(4, b, c)$
Theorem 2.1. The spider $S(2,3, b, c)$ of order $n, 3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:
(1) $\operatorname{gcd}(b, c)=1$,
(2) $\max \{\operatorname{gcd}(b+1, c), \operatorname{gcd}(b, c+1), \operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c)$, $\operatorname{gcd}(b, c+2)\} \leq 2$,
(3) $\max \{\operatorname{gcd}(b+1, c+2), \operatorname{gcd}(b+2, c+1), \operatorname{gcd}(b+2, c+2)\} \leq 3$,
(4) $n \neq \alpha b+\beta(b+1)+\gamma(b+2)$ for $\alpha, \beta, \gamma \in \mathbf{N}$,
(5) If $b=2 h, h \in \mathbf{N}, h \geq 3$ then $n \neq \alpha h+\beta(h+1)$ for $\alpha, \beta \in \mathbf{N}$.

Proof. Necessity. If $d_{1}=\operatorname{gcd}(b, c) \geq 2$ or $d_{2}=\max \{\operatorname{gcd}(b+1, c), \operatorname{gcd}(b, c+1)\} \geq 3$ or $d_{3}=\max \{\operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c), \operatorname{gcd}(b, c+2)\} \geq 3$ or $d_{4}=\max \{\operatorname{gcd}(b+$ $1, c+2), \operatorname{gcd}(b+2, c+1)\} \geq 4$ or $d_{5}=\operatorname{gcd}(b+2, c+2) \geq 4$ then the following sequences $\left(2,\left(d_{1}\right)^{\frac{n-2}{d_{1}}}\right)$ or $\left(\left(d_{2}\right)^{\frac{n-1}{d_{2}}-1}, d_{2}+1\right)$ or $\left(\left(d_{3}\right)^{\frac{n}{d_{3}}}\right)$ or $\left(d_{4}-1,\left(d_{4}\right)^{\frac{n+1}{d_{4}}-1}\right)$ or $\left(\left(d_{5}-1\right)^{2},\left(d_{5}\right)^{\frac{n+2}{d_{5}}-2}\right)$, respectively, are admissible but not realizable. If $n=\alpha b+$ $\beta(b+1)+\gamma(b+2)$, where $\alpha, \beta, \gamma \in \mathbf{N}$ then the sequence $\left((b)^{\alpha},(b+1)^{\beta},(b+2)^{\gamma}\right)$ is admissible and not realizable. If $n=\alpha h+\beta(h+1)$, where $h=\frac{b}{2} \in \mathbf{N}, h \geq 3$ then the sequence $\left((h)^{\alpha},(h+1)^{\beta}\right)$ is admissible and not realizable.
Sufficiency. Let $A_{i}, i=1, \ldots, 4$ be arms of $S(2,3, b, c), 3 \leq b \leq c$, of orders 2,3 , b and c, respectively. Let v be a primary vertex of $S(2,3, b, c)$. Set $A_{1}=\left\{v, v_{1}^{2}\right\}$, $A_{2}=\left\{v, v_{1}^{3}, v_{2}^{3}\right\}, A_{3}=\left\{v, v_{1}^{b}, \ldots, v_{b-1}^{b}\right\}$ and $A_{4}=\left\{v, v_{1}^{c}, \ldots, v_{c-1}^{c}\right\}$, such that $v v_{1}^{2}$, $v v_{1}^{3}, v_{1}^{3} v_{2}^{3}, v v_{1}^{b}, v_{i}^{b} v_{i+1}^{b}, v v_{1}^{c}, v_{j}^{c} v_{j+1}^{c}$ are edges of $S(2,3, b, c), i=1, \ldots, b-2, j=$ $1, \ldots, c-2$. Let $\tau=\left(n_{1}, \ldots, n_{k}\right)$ be an admissible sequence for $S(2,3, b, c)$. We assume that $n_{1} \leq \ldots \leq n_{k}$.

By Proposition 1.8, Proposition 1.9 and Theorem 1.6 we may assume that $\tau=$ $\left(\left(n_{1}\right)^{k_{1}},\left(n_{1}+1\right)^{k_{2}}\right)$, where $k_{1}, k_{2} \in \mathbf{N}$ and $2 \leq n_{1} \leq b+1$.

If $n_{1}=2$ then by Theorem 1.3 there is the realization $\left(V_{2}, \ldots, V_{k}\right)$ of the sequence $\left(n_{2}, \ldots, n_{k}\right)$ in $S(2, b, c)$ and hence $\left(\left\{v_{1}^{3}, v_{2}^{3}\right\}, V_{2}, \ldots, V_{k}\right)$ is a realization of τ in $S(2,3, b, c)$. We may asume that $n_{1} \geq 3$.

Since $\max \{\operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c), \operatorname{gcd}(b, c+2)\} \leq 2$, we have $\tau \neq\left((3)^{k}\right)$ and hence especially $n_{k} \geq 4$. Since $n_{k} \leq b+2$, by the condition (4), we obtain that $n_{1} \leq b-1, n_{k} \leq b$. We define the sequence $\left(V_{1}, \ldots, V_{k}\right)$ of τ-parts according to $s^{1}=\left(v_{1}^{b}, v_{2}^{b}, \ldots, v_{b-1}^{b}, v_{c-1}^{c}, \ldots, v_{1}^{c}, v, v_{1}^{2}, v_{1}^{3}, v_{2}^{3}\right)$. Suppose that the construction does not give a realization of τ in $S(2,3, b, c)$. It follows that there is i_{0} such that $v_{b-1}^{b}, v_{c-1}^{c} \in V_{i_{0}}$. Since $n_{k} \leq b, n_{1} \leq b-1$, we have $2 \leq i_{0} \leq k-1$. If $\mid V_{i_{0}} \cap$ $V\left(A_{3}\right) \mid \leq n_{k}-4$ then we modify the ordering of elements of τ, we obtain $\tau=$ $\left(n_{i_{0}}, n_{i_{0}+1}, \ldots, n_{k}, n_{1}, \ldots, n_{i_{0}-1}\right)$ and we define the sequence of τ-parts according to $s^{2}=\left(v_{c-1}^{c}, v_{c-2}^{c}, \ldots, v_{1}^{c}, v, v_{1}^{2} v_{1}^{3}, v_{2}^{3}, v_{1}^{b}, v_{2}^{b}, \ldots, v_{b-1}^{b}\right)$ and we obtain a realization of τ in $S(2,3, b, c)$. Hence we may assume that $\left|V_{i_{0}} \cap V\left(A_{3}\right)\right| \geq n_{k}-3$.

We will use the following notation: $d=n_{k}-n_{i_{0}}, r=\left|V_{i_{0}} \cap V\left(A_{3}\right)\right|-\left(n_{k}-4\right)$. It is easily seen that $d+r+\left|V_{i_{0}} \cap V\left(A_{4}\right)\right|=4$. Since $\left|V_{i_{0}} \cap V\left(A_{4}\right)\right| \geq 1, d \leq 1$, we obtain that $1 \leq r \leq 3$ or $1 \leq r \leq 2$ for $d=0$ or $d=1$, respectively. Observe that $b=\sum_{i=1}^{i_{0}-1} n_{i}+1+r+\left(n_{k}-4\right)=\sum_{i=1}^{i_{0}-1} n_{i}+n_{k}+r-3$ and $c=\sum_{i=i_{0}}^{k-1} n_{i}+1-r$.

Let us suppose that $n_{k-1}-n_{1} \geq r$. We modify the ordering of elements of τ and we consider $\tau=\left(n_{k-1}, n_{2}, \ldots, n_{k-2}, n_{1}, n_{k}\right)$. We define the sequence of τ-parts according to s^{1} and, since $0 \leq\left|V_{i_{0}} \cap V\left(A_{3}\right)\right|-\left(n_{k-1}-n_{1}\right) \leq n_{k}-4$, either we obtain a realization of τ or $v_{b-1}^{b}, v_{c-1}^{c} \in V_{j_{0}}$, where $j_{0}=i_{o}$ for $i_{0}<k-1$ and $j_{0}=1$ for $i_{0}=k-1$. In the second case we modify the ordering of elements of τ such that $\tau=\left(n_{i_{0}}, n_{i_{0}+1}, \ldots, n_{1}, n_{k}, n_{k-1}, n_{2}, \ldots, n_{i_{0}-1}\right)$ if $i_{0}<k-1$
or $\tau=\left(n_{1}, n_{k}, n_{k-1}, n_{2}, \ldots, n_{k-2}\right)$ if $i_{0}=k-1$ and we define the sequence of τ-parts according to s^{2}. Since $\left|V_{j_{0}} \cap V\left(A_{3}\right)\right| \leq n_{k}-4$, we obtain a realization of τ. Hence we may assume that $n_{k-1}-n_{1}<r$.

If $\tau=\left(\left(n_{1}\right)^{k}\right)$ then $b=i_{0} n_{1}+r-3, c=\left(k-i_{0}\right) n_{1}+1-r$ and hence $\max \{\operatorname{gcd}(b, c+$ $2), \operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c)\} \geq n_{1} \geq 3$, contrary to (2). If $\tau=\left(\left(n_{1}\right)^{k-1}, n_{1}+1\right)$ then $d=1$ and hence $r \in\{1,2\}$. Since $b=i_{0} n_{1}+r-2, c=\left(k-i_{0}\right) n_{1}+1-r$, we obtain that $\max \{\operatorname{gcd}(b, c+1), \operatorname{gcd}(b+1, c)\} \geq n_{1} \geq 3$, contrary to (2). Therefore we may assume that $n_{k-1}=n_{1}+1$.

Let us suppose that $\tau=\left(n_{1},\left(n_{1}+1\right)^{k-1}\right)$. Then $r \in\{2,3\}$. Since $b=i_{0}\left(n_{1}+1\right)+$ $r-4$ and $c=\left(k-i_{0}\right)\left(n_{1}+1\right)+1-r$, we obtain that $\max \{\operatorname{gcd}(b+1, c+2), \operatorname{gcd}(b+$ $2, c+1)\} \geq n_{1}+1 \geq 4$, contrary to (3). Hence we may assume that $n_{2}=n_{1}$.

Let us suppose that $i_{0}=2$. Then $d=1, r=2$ and $b=2 n_{1}$, contrary to (5). We may assume that $i_{0} \geq 3$, and hence $k \geq 4$.

If $i_{0}=k-1$ then $b=\sum_{i=1}^{k-2} n_{i}+n_{k}+r-3 \geq n_{k}+r$ and $c=n_{k}+1-r$, which contradicts the assumption $b \leq c$. Hence we may assume that $i_{0} \leq k-2$ and hence $k \geq 5$.

Let us suppose that $\left(n_{k-1}+n_{k-2}\right)-\left(n_{1}+n_{2}\right) \geq r$. We modify the ordering of elements of τ and we consider $\tau=\left(n_{k-1}, n_{k-2}, n_{3}, \ldots, n_{k-3}, n_{2}, n_{1}, n_{k}\right)$. We define the sequence of τ-parts according to s^{1}. Combining condition $n_{k-1}-n_{1}<r$ with the values of d and $n_{i}, i=2, k-2, k-1$ we obtain that $0 \leq \mid V_{i_{0}} \cap$ $V\left(A_{3}\right) \mid-\left[\left(n_{k-1}+n_{k-2}\right)-\left(n_{1}+n_{2}\right)\right] \leq n_{k}-4$. Then either we obtain a realization of τ or $v_{b-1}^{b}, v_{c-1}^{c} \in V_{j_{0}}$, where $j_{0}=i_{0}$ for $i_{0}<k-2$ and $j_{0}=2$ for $i_{0}=k-2$. In the second case we modify the ordering of elements of τ such that $\tau=\left(n_{i_{0}}, n_{i_{0}+1}, \ldots, n_{k-3}, n_{2}, n_{1}, n_{k}, n_{k-1}, n_{k-2}, n_{3}, \ldots, n_{i_{0}-1}\right)$ if $i_{0}<k-2$ or $\tau=\left(n_{2}, n_{1}, n_{k}, n_{k-1}, n_{k-2}, n_{3}, \ldots, n_{k-3}\right)$ if $i_{0}=k-2$ and we define the sequence of τ-parts according to s^{2}. Since $\left|V_{j_{0}} \cap V\left(A_{3}\right)\right| \leq n_{k}-4$, we obtain a realization of τ. Hence we may assume that $\left(n_{k-1}+n_{k-2}\right)-\left(n_{1}+n_{2}\right)<r$.

It is not difficult to check that then we have two possibilities: either $\tau=$ $\left(\left(n_{1}\right)^{k-2},\left(n_{1}+1\right)^{2}\right), r=2$ or $n_{1}=n_{2}, n_{k-2}=n_{k-1}=n_{k}=n_{1}+1, r=3$.

If $\tau=\left(\left(n_{1}\right)^{k-2},\left(n_{1}+1\right)^{2}\right)$ and $r=2$ then $b=i_{0} n_{1}, c=\left(k-i_{0}\right) n_{1}$ and hence $\operatorname{gcd}(b, c) \geq n_{1} \geq 3$, contrary to (1). Hence $n_{1}=n_{2}, n_{k-2}=n_{k-1}=n_{k}=n_{1}+1$ and $r=3$. If $\tau=\left(\left(n_{1}\right)^{2},\left(n_{1}+1\right)^{k-2}\right)$ then $b=i_{0}\left(n_{1}+1\right)-2, c=\left(k-i_{0}\right)\left(n_{1}+1\right)-2$ and hence $\operatorname{gcd}(b+2, c+2) \geq n_{1}+1 \geq 4$, contrary to (3). Therefore we may assume that $k \geq 6$ and $n_{3}=n_{1}$.

If $i_{0}=3$ then $d=1$ and hence $r \leq 2$, a contradiction. Hence $4 \leq i_{0}$. If $i_{0}=k-2$ then $4 n_{1}+1 \leq b \leq c=2 n_{1}$, a contradiction. Hence $i_{0} \leq k-3$ and $k \geq 7$. We obtain that $n_{1}=n_{2}=n_{3}, n_{k-2}=n_{k-1}=n_{k}=n_{1}+1, r=3$ and $4 \leq i_{0} \leq k-3$. Then $d=0$ and hence $n_{k-3}=n_{1}+1$. We modify the ordering of elements of τ and we consider $\tau=\left(n_{k-1}, n_{k-2}, n_{k-3}, n_{4}, \ldots, n_{k-4}, n_{3}, n_{2}, n_{1}, n_{k}\right)$. We define the sequence of τ-parts according to s^{1}. Let us suppose that the construction does not give a realization of τ. Then we modify the ordering of elements of τ and we consider $\tau=\left(n_{i_{0}}, n_{i_{0}+1}, \ldots, n_{k-4}, n_{3}, n_{2}, n_{1}, n_{k}, n_{k-1}, n_{k-2}, n_{k-3}, n_{4}, \ldots, n_{i_{0}-1}\right)$ if $i_{0}<k-3$ or $\tau=\left(n_{3}, n_{2}, n_{1}, n_{k}, n_{k-1}, n_{k-2}, n_{k-3}, n_{4}, \ldots, n_{k-4}\right)$ if $i_{0}=k-3$. We define the sequence of τ-parts according to s^{2} and obtain a realization of τ.

Theorem 2.2. The spider $S(4, b, c)$ of order $n, 4 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:
(1) $\operatorname{gcd}(b, c)=1$ or $\operatorname{gcd}(b, c)=3$,
(2) $\max \{\operatorname{gcd}(b+1, c), \operatorname{gcd}(b, c+1), \operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c)$,
$\operatorname{gcd}(b, c+2)\} \leq 3$,
(3) $\max \{\operatorname{gcd}(b+1, c+2), \operatorname{gcd}(b+2, c+1), \operatorname{gcd}(b+2, c+2)\} \leq 4$,
(4) $n \neq \alpha b+\beta(b+1)+\gamma(b+2)$ for $\alpha, \beta, \gamma \in \mathbf{N}$,
(5) If $b=2 h, h \in \mathbf{N}, h \geq 4$ then $n \neq \alpha h+\beta(h+1)$ for $\alpha, \beta \in \mathbf{N}$.

Proof. We will use the similar method to that in the proof of Theorem 2.1.
Necessity. If $d_{1}=\operatorname{gcd}(b, c) \notin\{1,3\}$ or $d_{2}=\max \{\operatorname{gcd}(b+1, c), \operatorname{gcd}(b, c+1)\} \geq 4$ or $d_{3}=\max \{\operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b+2, c), \operatorname{gcd}(b, c+2)\} \geq 4$ or $d_{4}=\max \{\operatorname{gcd}(b+$ $1, c+2), \operatorname{gcd}(b+2, c+1)\} \geq 5$ or $d_{5}=\operatorname{gcd}(b+2, c+2) \geq 5$ then the following sequences $\left(2,\left(d_{1}\right)^{\frac{n-2}{d_{1}}}\right)$ or $\left(\left(d_{2}\right)^{\frac{n-1}{d_{2}}-1}, d_{2}+1\right)$ or $\left(\left(d_{3}\right)^{\frac{n}{d_{3}}}\right)$ or $\left(d_{4}-1,\left(d_{4}\right)^{\frac{n+1}{d_{4}}-1}\right)$ or $\left(\left(d_{5}-1\right)^{2},\left(d_{5}\right)^{\frac{n+2}{d_{5}}-2}\right)$, respectively, are admissible but not realizable. If $n=\alpha b+$ $\beta(b+1)+\gamma(b+2)$, where $\alpha, \beta, \gamma \in \mathbf{N}$ then the sequence $\left((b)^{\alpha},(b+1)^{\beta},(b+2)^{\gamma}\right)$ is admissible and not realizable. If $n=\alpha h+\beta(h+1)$, where $h=\frac{b}{2} \in \mathbf{N}, h \geq 4$ then the sequence $\left((h)^{\alpha},(h+1)^{\beta}\right)$ is admissible and not realizable.

Sufficiency. Let $A_{i}, i=1,2,3$ be arms of $S(4, b, c), 4 \leq b \leq c$, of orders $4, b$ and c, respectively. Let v be a primary vertex of $S(4, b, c)$. Set $A_{1}=\left\{v, v_{1}^{4}, v_{2}^{4}, v_{3}^{4}\right\}$, $A_{2}=\left\{v, v_{1}^{b}, \ldots, v_{b-1}^{b}\right\}$ and $A_{3}=\left\{v, v_{1}^{c}, \ldots, v_{c-1}^{c}\right\}$, such that $v v_{1}^{4}, v_{i}^{4} v_{i+1}^{4}, v v_{1}^{b}, v_{j}^{b} v_{j+1}^{b}$, $v v_{1}^{c}, v_{l}^{c} v_{l+1}^{c}$ are edges of $S(4, b, c), i=1,2, j=1, \ldots, b-2, l=1, \ldots, c-2$. Let $\tau=$ $\left(n_{1}, \ldots, n_{k}\right)$ be an admissible sequence for $S(4, b, c)$. We assume that $n_{1} \leq \ldots \leq n_{k}$.

If there is $i_{0} \in\{1, \ldots, k\}$ such that $n_{i_{0}}=3$ then we set $V_{i_{0}}=\left\{v_{1}^{4}, v_{2}^{4}, v_{3}^{4}\right\}$ and obtain a realization of τ in $S(4, b, c)$. Hence we may assume that $n_{i} \neq 3$ for $i \in$ $\{1, \ldots, k\}$.

Let us suppose that $n_{i_{0}}=2$ for any $i_{0} \in\{1, \ldots, k\}$. Since $\tau \neq\left(2,(3)^{k-1}\right)$, if we set $V_{i_{0}}=\left\{v_{2}^{4}, v_{3}^{4}\right\}$ then by Theorem 1.3 we obtain a realization of τ in $S(4, b, c)$. Hence we may assume that $n_{i} \neq 2$ for $i \in\{1, \ldots, k\}$. Then by Proposition 1.9 and Proposition 1.7 we have that $\tau=\left(\left(n_{1}\right)^{k_{1}},\left(n_{1}+1\right)^{k_{2}}\right)$, where $k_{1}, k_{2} \in \mathbf{N}$ and $4 \leq n_{1} \leq b+2$. If $n_{k}=b+3$ then the sequence $\left(V_{1}, \ldots, V_{k}\right)$ such that $\left[V\left(A_{1}\right) \cup V\left(A_{2}\right)\right] \subset V_{k}$ and for $i=1, \ldots, k-1, V_{i} \subset\left[V\left(A_{3}\right) \backslash\{v\}\right]$ is a realization of τ in $S(4, b, c)$. We may assume that $n_{k} \leq b+2$. By the condition (4) we obtain that $n_{1} \leq b-1, n_{k} \leq b$. We define the sequence $\left(V_{1}, \ldots, V_{k}\right)$ of τ-parts according to $s^{1}=\left(v_{1}^{b}, v_{2}^{b}, \ldots, v_{b-1}^{b}, v_{c-1}^{c}, \ldots, v_{1}^{c}, v\right.$, $\left.v_{1}^{4}, v_{2}^{4}, v_{3}^{4}\right)$. Suppose that the construction does not give a realization of τ in $S(4, b, c)$. It follows that there is i_{0} such that $v_{b-1}^{b}, v_{c-1}^{c} \in V_{i_{0}}$. Since $n_{k} \leq b$ and $n_{1} \leq b-1$, we have $2 \leq i_{0} \leq k-1$. Using similar arguments to that in the proof of Theorem 2.1 we may assume that $\left|V_{i_{0}} \cap V\left(A_{2}\right)\right| \geq n_{k}-3$. We will use the following notation: $d=n_{k}-n_{i_{0}}, r=\left|V_{i_{0}} \cap V\left(A_{2}\right)\right|-\left(n_{k}-4\right)$. It is easily seen that $d+r+\left|V_{i_{0}} \cap V\left(A_{3}\right)\right|=4$. Since $\left|V_{i_{0}} \cap V\left(A_{3}\right)\right| \geq 1, d \leq 1$, we obtain that $1 \leq r \leq 3$ or $1 \leq r \leq 2$ for $d=0$ or $d=1$, respectively. Observe that $b=\sum_{i=1}^{i_{0}-1} n_{i}+n_{k}+r-3, c=\sum_{i=i_{0}}^{k-1} n_{i}+1-r$.

Using a similar method to that in the proof of Theorem 2.1 we obtain that if $n_{k-1}-n_{1} \geq r$ then there is a realization of τ in $S(4, b, c)$. Hence we may assume that $n_{k-1}-n_{1}<r$.

If $\tau=\left(\left(n_{1}\right)^{k}\right)$ then $\max \{\operatorname{gcd}(b+2, c), \operatorname{gcd}(b+1, c+1), \operatorname{gcd}(b, c+2)\} \geq n_{1} \geq 4$, contrary to (2). If $\tau=\left(\left(n_{1}\right)^{k-1}, n_{1}+1\right)$ then $d=1$ and hence $r \in\{1,2\}$ and $\max \{\operatorname{gcd}(b+1, c), \operatorname{gcd}(b, c+1)\} \geq n_{1}$, contrary to (2). If $\tau=\left(n_{1},\left(n_{1}+1\right)^{k-1}\right)$ then $r \in\{2,3\}$ and hence $\max \{\operatorname{gcd}(b+2, c+1), \operatorname{gcd}(b+1, c+2)\} \geq n_{1}+1 \geq 5$, contrary to (3). Hence we may assume that $k \geq 4$ and $n_{1}=n_{2}, n_{k}=n_{k-1}=n_{1}+1$.

Using similar method to that in the proof of Theorem 2.1 we may assume that $k-2 \geq i_{0} \geq 3$ and that $\left(n_{k-1}+n_{k-2}\right)-\left(n_{1}+n_{2}\right)<r$. Then we obtain that either $\tau=\left(\left(n_{1}\right)^{k-2},\left(n_{1}+1\right)^{2}\right), r=2$ or $n_{1}=n_{2}, n_{k-2}=n_{k-1}=n_{k}=n_{1}+1, r=3$. In the first case $b=i_{0} n_{1}, c=\left(k-i_{0}\right) n_{1}$ and $\operatorname{gcd}(b, c) \geq n_{1} \geq 4$ contrary to (1). We may assume that $n_{1}=n_{2}, n_{k-2}=n_{k-1}=n_{k}=n_{1}+1$ and $r=3$.

If $\tau=\left(\left(n_{1}\right)^{2},\left(n_{1}+1\right)^{k-2}\right)$ then $b=i_{0}\left(n_{1}+1\right)-2, c=\left(k-i_{0}\right)\left(n_{1}+1\right)-2$ and $\operatorname{gcd}(b+2, c+2) \geq n_{1}+1 \geq 5$, contrary to (3). Hence we may assume that $k \geq 6$ and $n_{3}=n_{1}$. Since $r=3$, we obtain that $d=0$ and hence $i_{0} \geq 4$. If $i_{0}=k-2$ then $4 n_{1}+1 \leq b \leq c=2 n_{1}$, a contradiction. Hence $i_{0} \leq k-3$ and $k \geq 7$.

Since $r=3$, we have $n_{i_{0}}=n_{k}=n_{1}+1$ and especially $n_{k-3}=n_{1}+1$. Then, similarly to the proof of Theorem 2.1, we obtain a realization of τ in $S(4, b, c)$.

Corollary 2.3. The number of arbitrarily vertex decomposable spiders $S(2,3, b, c)$ and $S(4, b, c)$ is infinite.

Proof. It is not difficult to check that for b and c such that $b \in\{60 s+1,60 s+13$, $60 s+49, s \geq 0\}, c=b+3$ the assumptions (1)-(5) of Theorem 2.1 and assumptions (1)-(5) of Theorem 2.2 hold.

Acknowledgments

The research was partially supported by AGH University of Science and Technology grant 1142004.

REFERENCES

[1] D. Barth, O. Baudon, J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002), 205-216.
[2] D. Barth, H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006), 469-477.
[3] S. Cichacz, A. Görlich, A. Marczyk, J. Przybyło, M. Woźniak, Arbitrarily vertex decomposable caterpillars with four or five leaves, Discussiones Math. Graph Th. 26 (2006) 2, 291-305.
[4] M. Horňák, M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003), 49-62.
[5] M. Horňák, M. Woźniak, On arbitrarily vertex decomposable trees, Discrete Math. 308 (2008), 1268-1281.
[6] R. Kalinowski, M. Pilśniak, M. Woźniak, I.A. Zioło, Arbitrarily vertex decomposable suns with few rays, Discrete Math. 309 (2009), 3726-3732.

Tomasz Juszczyk
tom.juszczyk@gmail.com
AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Electronics al. Mickiewicza 30, 30-059 Kraków, Poland

Irmina A. Zioło
ziolo@agh.edu.pl
AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Kraków, Poland
Received: October 10, 2007.
Revised: November 18, 2009.
Accepted: January 4, 2010.

