
Yugoslav Journal of Operations Research
24 (2014) Number 2,165-186
DOI: 10.2298/YJOR131030041E

OPTIMAL RECOMBINATION IN

GENETIC ALGORITHMS FOR

COMBINATORIAL OPTIMIYATION

PROBLEMS – PART II

Anton V. EREMEEV
Sobolev Institute of Mathematics, Laboratory of Discrete Optimization

630090, Novosibirsk, Russia
eremeev@ofim.oscsbras.ru
Julia V. KOVALENKO

Omsk F.M. Dostoevsky State University,
Institute of Mathematics and Information Technologies,

644077, Omsk, Russia
juliakoval86@mail.ru

Received: July 2013 / Accepted: October 2013

Abstract: This paper surveys results on complexity of the optimal recombination
problem (ORP), which consists in finding the best possible offspring as a result of
a recombination operator in a genetic algorithm, given two parent solutions. In
Part II, we consider the computational complexity of ORPs arising in genetic algo-
rithms for problems on permutations: the Travelling Salesman Problem, the Short-
est Hamilton Path Problem and the Makespan Minimization on Single Machine and
some other related problems. The analysis indicates that the corresponding ORPs
are NP-hard, but solvable by faster algorithms, compared to the problems they are
derived from.
Keywords: Genetic Algorithm, Optimal Recombination Problem, complexity,
crossover, permutation problems.
MSC: 90C59, 90C10.

Performance of genetic algorithms (GA) depends significantly upon the choice
of the crossover operator, where the components of parent solutions are combined
to build the offspring. This survey is devoted to complexity and solution methods of
the Optimal Recombination Problem (ORP), which consists in finding the best pos-
sible offspring as a result of a crossover operator, given two feasible parent solutions
(see Part I for a formal definition). The experimental results of M. Yagiura and
T. Ibaraki [30], C. Cotta, E. Alba and J.M. Troya [8], W. Cook and P. Seymour [6],
D. Whitley, D. Hains and A. Howe [29] indicate that optimal recombination may
be used successfully in the GAs for problems on permutations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27056931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

166 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

Part II of this survey is structured as follows. The computational complexity
of ORP for the Travelling Salesman Problem is considered in Section 1 both for
the symmetric case and for the general case. Strong NP-hardness of these optimal
recombination problems is proven and solving approaches are proposed. The ORP
for Shortest Hamiltonian Path Problem is shown to be strongly NP-hard as well. A
closely related problem of Makespan Minimization on Single Machine is considered
in Section 2: it is shown that on one hand the ORP for this problem is strongly NP-
hard, on the other hand, almost all instances of this ORP are efficiently solvable.
Sections 3 and 4 are devoted to issues for further research and concluding remarks.

1 TRAVELLING SALESMAN PROBLEM

In this section we consider the Travelling Salesman Problem (TSP): suppose
a digraph G without loops or multiple arcs is given. The set of vertices of G is V
and a set of arcs is A. A weight (length) cij ≥ 0 of each arc (i, j) ∈ A is given as
well. It is required to find a Hamiltonian circuit of minimum length.

If for each arc (i, j) ∈ A there exists a reverse one (j, i) ∈ A and cij = cji, then
the TSP is called symmetric and G is assumed to be an ordinary graph. Without
this assumption, we will call the problem the general case of TSP.

Feasible solution to the TSP may be encoded as a sequence of the vertex
numbers in the TSP tour, or as a permutation matrix where the element in row i
and column j equals one iff the vertex j immediately follows the vertex i in the
TSP tour. (For the sake of consistency with definition of NP optimization problem
(see Part I or [2]), one may assume that the elements of the matrix are written
sequentially in a string x ∈ Sol.)

Unfortunately, there are |V | different sequences of vertices encoding the same
Hamiltonian circuit. The second encoding has an advantage that a Hamiltonian
circuit is uniquely represented by a permutation matrix. Therefore, in what follows
we assume the second encoding. If this encoding is used in the symmetric case, it is
sufficient to define only the elements above the diagonal of the matrix, so the rest
of the elements are dismissed from subsequent consideration in the symmetric case.

The encoding by permutation matrix defines an ORP that consists in finding
a shortest travelling salesman’s tour which coincides with two given feasible parent
solutions in those arcs (or edges), which belong to both parent tours and does not
contain the arcs (or edges) which are absent in both parent solutions.

1.1 Symmetric Case

In [21] it is proven that recognition of Hamiltonian grid graphs (the Hamil-
ton Cycle Problem) is NP-complete. Recall that a graph G′ = (V ′, E′) with vertex
set V ′ and edge set E′ is called a grid graph, if its vertices are the integer vectors
v = (xv, yv) ∈ Z2 on plane, i.e., V ′ ⊂ Z2, and a pair of vertices is connected by
an edge iff the Euclidean distance between them is equal to 1. Here and below, Z
denotes the set of integer numbers. Let us call the edges that connect two vertices
in Z2 with equal first coordinates vertical edges. The edges that connect two ver-
tices in Z2 with equal second coordinates will be called horizontal edges.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 167

Figure 1: Example of two parent tours used in reduction from Hamilton Cycle
Problem to ORP in symmetric case.

Let us assume that V ′ > 4, graph G′ is connected and there are no bridges
in G′ (note that if any of these assumptions is violated, then existence of a Hamil-
tonian cycle in G′ can be recognized in polynomial time). Now, we will construct
a reduction from the Hamilton Cycle Problem for G′ to an ORP for a complete
edge-weighted graph G = (V,E), where V = V ′.

Let the edge weights cij in G be defined so that if a pair of vertices {vi, vj}
is connected by an edge of G′, then cij = 0; all other edges in G have the weight 1.
Consider the following two parent solutions of the TSP on graph G (an example of
graph G′ and two parent solutions for the corresponding TSP is given in Fig. 1).

Let ymin = minv∈V ′ yv, ymax = maxv∈V ′ yv. For any integer y ∈ {ymin, . . . ,
ymax}, the horizontal chain that passes through vertices v ∈ V ′ with yv = y by
increasing values of coordinate x is denoted by P y. Let the first parent tour follow
the chains P ymin , P ymin+1, . . . , P ymax , connecting the right-hand end of each chain P y

with y < ymax to the left-hand end of the chain P y+1. Note that these connections
never coincide with vertical edges because G′ has no bridges. To create a cycle,
connect the right-hand end vTR of the chain P ymax to the left-hand end vBL of the

168 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

chain P ymin .

The second parent tour is constructed similarly using the vertical chains.
Let xmin = minv∈V ′ xv, xmax = maxv∈V ′ xv. For any integer x ∈ {xmin, . . . , xmax},
the vertical chain that passes monotonically in y through the vertices v ∈ V ′,
such that xv = x, is denoted by Qx. The second parent tour follows the chains
Qxmin , Qxmin+1, . . . , Qxmax , connecting the lower end of each chain Qx with x < xmax

to the upper end of chain Qx+1. These connections never coincide with horizontal
edges since G′ has no bridges. Finally, the lower end vRB of chain Qxmax is connected
to the upper end vLT of chain Qxmin .

Note that the constructed parent tours have no common edges. Indeed,
common slanting edges do not exist since V ′ > 4. The horizontal edges belong to the
first tour only, except for the situation where yvRB

= yvLT and the edge {vRB, vLT}
of the second tour is oriented horizontally. But if the first parent tour included the
edge {vRB, vLT} in this situation, then the edge {vRB, vLT} would be a bridge in
graph G′. Therefore, the parent tours can not have the common horizontal edges.
Similarly, the vertical edges belong to the second tour only, except for the case
where xvTR

= xvBL
and the edge {vTR, vBL} of the first tour is oriented vertically.

But in this case the parent tour can not contain the edge {vTR, vBL}, since G′ has
no bridges.

Note also that the union of edges of parent solutions contains E′. Conse-
quently, any Hamiltonian cycle in graph G′ is a feasible solution of the ORP. At the
same time, a feasible solution of the ORP has zero value of objective function iff it
contains only the edges of E′. Therefore, the optimal value of objective function in
the ORP under consideration is equal to 0 iff there exists a Hamiltonian cycle in
graph G′. So, the following theorem is proven.

Theorem 1.1 [13] Optimal recombination for the TSP in the symmetric case is
strongly NP-hard.

In [21] it is also proven that recognition of grid graphs with a Hamiltonian
path is NP-complete. Optimal recombination for this problem consists in finding a
shortest Hamiltonian path, which uses those edges where both parent tours coincide,
and does not use the edges absent in both parent tours. The following theorem is
proved analogously to Theorem 1.1.

Theorem 1.2 [13] Optimal recombination for the problem of finding the shortest
Hamiltonian path in a graph with arbitrary edge lengths is strongly NP-hard.

Note that in the proof of Theorem 1.2, unlike in Theorem 1.1, it is impossible
simply to exclude the cases where graph G′ has bridges. Instead, the reduction
should treat separately each maximal (by inclusion) subgraph without bridges.

Many scheduling problems with setup times contain the problem of finding
the shortest Hamiltonian path in a digraph as a special case. In this case the
vertices correspond to jobs, the arcs correspond to setups and the arc lengths define
the setup times. In view of numerous applications of scheduling problems with
setup times, in Section 2 the problem of finding the shortest Hamiltonian path in a
digraph is treated as a scheduling problem.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 169

Figure 2: A pair of parent circuits for the case of G′ = K3. It is supposed that the
incident edges are enumerated as follows. For vertex v1 : ev1,1 = e1, e

v1,2 = e3; for
vertex v2 : ev2,1 = e1, e

v2,2 = e2; for vertex v3 : ev3,1 = e2, e
v3,2 = e3.

1.2 The General Case

In the general case of TSP, the ORP is not a more general problem than
the ORP considered in Subsection 1.1 because in the problem input we have two
directed parent paths while in the symmetric case, the parent paths were undirected.
Even if the distance matrix (cij) is symmetric, a pair of directed parent tours defines
a significantly different set of feasible solutions, compared to the undirected case.
Therefore, the general case requires a separate consideration of ORP complexity.

Theorem 1.3 [13] Optimal recombination for the TSP in the general case is strongly
NP-hard.

Proof. We use a modification of the textbook reduction of the Vertex Cover Prob-
lem to the TSP [17].

Suppose an instance of a Vertex Cover Problem is given as a graph G′ =
(V ′, E′). It is required to find a vertex cover of minimal size in G′. Let us assume
that the vertices in V ′ are enumerated, i.e. V ′ = {v1, . . . , vn}, where n = |V ′|, and
let m = |E′|.

Consider a complete digraphG = (V,A) where the set of vertices V consists of
|E′| cover-testing components, each one containing 12 vertices: Ve = {(vi, e, k), (vj , e, k) :
1 ≤ k ≤ 6} for each e = {vi, vj} ∈ E′, i < j. Besides that, V contains n selector
vertices denoted by a1, . . . , an, and a supplementary vertex an+1.

Let the parent tours in graph G be the two circuits defined below (an example
of a pair of such circuits for the case of G′ = K3 is provided in Fig. 2).

170 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

1. Each cover-testing component Ve, where e = {vi, vj} ∈ E′ and i < j is
visited twice by the first tour. The first time, it visits the vertices that correspond
to vi in the sequence

(vi, e, 1), . . . , (vi, e, 6), (1)

the second time, it visits the vertices corresponding to vj , in the sequence

(vj , e, 1), . . . , (vj , e, 6). (2)

2. The second tour goes through each cover-testing component Ve, where
e = {vi, vj} ∈ E′ and i < j in the following sequence:

(vi, e, 2), (vi, e, 3), (vj , e, 1), (vj , e, 2), (vj , e, 3), (vi, e, 1),

(vi, e, 6), (vj , e, 4), (vj , e, 5), (vj , e, 6), (vi, e, 4), (vi, e, 5).

The first parent tour connects the cover-testing components as follows. For
each vertex v ∈ V ′ order arbitrarily the edges incident to v in graph G′ in se-
quence: ev,1, ev,2, . . . , ev,deg(v), where deg(v) is the degree of vertex v in G′. In
the cover-testing components, following the chosen sequence ev,1, ev,2, . . . , ev,deg(v),
this tour passes 6 vertices in each of the components (v, e, k), k = 1, . . . , 6, e ∈
{ev,1, ev,2, . . . , ev,deg(v)}. Thus, each vertex of any cover-testing component Ve,
e = {u, v} ∈ E′ will be visited by one of the two 6-vertex sub-tours.

The second tour passes the cover-testing components in an arbitrary order of
edges Ve1 , . . . , Vem , entering each component Vek for any ek = {vik , vjk} ∈ E′, ik <
jk, k = 1, . . . ,m, via vertex (vik , ek, 2) and exiting through vertex (vik , ek, 5). Thus,
a sequence of vertex indices i1, . . . , im is induced (repetitions are possible). In what
follows, we will need the beginning i1 and the end im of this sequence.

The parent sub-tours described above are connected to form two Hamiltonian
circuits in G using the vertices a1, . . . , an+1. The first circuit is completed using the
arcs (

a1, (v1, e
v1,1, 1)

)
,
(

(v1, e
v1,deg(v1), 6), a2

)
,(

a2, (v2, e
v2,1, 1)

)
,
(

(v2, e
v2,deg(v2), 6), a3

)
,

. . . ,(
an, (vn, e

vn,1, 1)
)
,
(

(vn, e
vn,deg(vn), 6), an+1

)
,
(
an+1, a1

)
.

The second circuit is completed by the arcs(
a1, a2

)
, . . . ,

(
an−1, an

)
,
(
an, an+1

)
,

(
an+1, (vi1 , e1, 2)

)
,
(

(vim , em, 5), a1

)
.

Assign unit weights to all arcs
(
ai, (vi, e

vi,1, 1)
)
, i = 1, . . . , n in the complete

digraph G. Besides that, assign weight n+1 to all arcs of the second tour which are
connecting the components Ve1 , . . . , Vem , the same weights are assigned to the arcs(
an+1, (vi1 , e1, 2)

)
and

(
(vim , em, 5), a1

)
. All other arcs in G are given weight 0.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 171

Figure 3: An ORP solution R(C) corresponding to the vertex cover {v1, v3} of
graph G′ = K3.

Note that for any vertex cover C of graph G′, the set of feasible solutions
of ORP with two parents defined above contains a circuit R(C) with the following
structure (see an example of such a circuit for the case of G′ = K3 in Fig. 3).

For each vi ∈ C the circuit R(C) contains the arcs
(
ai, (vi, e

vi,1, 1)
)

and(
(vi, e

vi,deg(vi), 6), ai+1

)
. The components Ve, e ∈ {evi,1, evi,2, . . . , evi,deg(vi)} are

connected together by the arcs from the first tour. For each vertex vi which does
not belong to C, the circuit R(C) has an arc (ai, ai+1). Also, R(C) passes the arc
(an+1, a1).

The circuit R(C) visits each cover-testing component Ve by one of the two
ways:

1. If both endpoints of an edge e belong to C, then R(C) passes the compo-
nent following the same arcs as the first parent tour.

2. If e = {u, v}, u ∈ C, v 6∈ C, then R(C) visits the vertices of the component
in sequence

(u, e, 1), (u, e, 2), (u, e, 3), (v, e, 1), . . . , (v, e, 6), (u, e, 4), (u, e, 5), (u, e, 6).

One can check straightforwardly that this sequence does not violate the ORP con-
straints.

In general, the circuit R(C) is a feasible solution to the ORP because, on one
hand, all arcs used in R(C) are present at least in one of the parent tours. On the

172 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

other hand, both parent tours contain only the arcs of the type(
(u, e, 2), (u, e, 3)

)
,
(

(u, e, 4), (u, e, 5)
)
,
(

(v, e, 1), (v, e, 2)
)
,(

(v, e, 2), (v, e, 3)
)
,
(

(v, e, 4), (v, e, 5)
)
,
(

(v, e, 5), (v, e, 6)
)

within the cover-testing components Ve, e = {u, v} ∈ E′, where vertex u has smaller
index than v. All of these arcs belong to R(C). The total weight of circuit R(C)
is |C|.

Now, each feasible solution R to the constructed ORP defines a set of ver-
tices C(R) as follows: vi, i ∈ {1, . . . , n} belongs to C(R) iff R contains an arc(
ai, (vi, e

vi,1, 1)
)

.

Let us consider only such ORP solutions R that have the objective value at
most n. These solutions do not contain the arcs that connect the cover-testing com-

ponents in the second parent tour. They also do not contain the arcs
(
an+1, (vi1 , e1, 2)

)
and

(
(vim , em, 5), a1

)
. Note that the set of such ORP solutions is non-empty, e.g.

the first parent tour belongs to it.

Consider the case where the arc
(
ai, (vi, e

vi,1, 1)
)

belongs to R. Each cover-

testing component Ve with e = {vi, vj} ∈ E′ in this case may be visited in one of
the two possible ways: either the same way as in the first parent tour (in this case,
vj must also be chosen into C(R) since R is Hamiltonian), or in the sequence

(vi, e, 1), (vi, e, 2), (vi, e, 3), (vj , e, 1), . . . , (vj , e, 6), (vi, e, 4), (vi, e, 5), (vi, e, 6)

(in this case, vj will not be chosen into C(R)). In view of the assumption that the arc(
ai, (vi, e

vi,1, 1)
)

belongs toR, the cover-testing components Ve, e ∈ {evi,1, evi2, . . . , evi,deg(vi)}
are connected by the arcs of the first tour, and besides that, R contains the arc(

(vi, e
vi,deg(vi), 6), ai+1

)
. Note that the total length of the arcs in R equals |C(R)|,

and the set C(R) is a vertex cover in graph G′, because the tour R passes each
component Ve in a way that guarantees coverage of each edge e ∈ E′.

To sum up, there exists a bijection between the set of vertex covers in graphG′

and the set of feasible solutions to the ORP of length at most n. The values of
objective functions are not changed under this bijection, therefore the statement of
the theorem follows. �

1.3 Transformation of the ORP into TSP on Graphs With
Bounded Vertex Degree

In this Subsection, the ORP problems are connected to the TSP on graphs
(digraphs) with bounded vertex degree, arbitrary positive edge (arc) weights and a
given set of forced edges (arcs). It is required to find a shortest Hamiltonian cycle
(circuit) in the given graph (digraph) that passes all forced edges (arcs).

1.3.1 General Case

Consider the general case of ORP for the TSP, where we are given two par-
ent tours A1, A2 in a complete digraph G = (V,A). This ORP problem may be

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 173

transformed into the problem of finding a shortest Hamiltonian circuit in a supple-
mentary digraph G′ = (V ′, A′). The digraph G′ is constructed on the basis of G
by excluding the set of arcs A\(A1 ∪ A2) and contracting each path that belongs
to both parent tours into a pseudo-arc of the same length and the same direction
as those of the path. The lengths of all other arcs that remained in G′ are the
same as they were in G. A shortest Hamiltonian circuit C ′ in G′ transforms into
an optimum of the ORP problem by substitution of each pseudo-arc in C ′ with the
path that corresponds to it.

Note that there are at most two ingoing arcs and at most two outgoing arcs
for each vertex in G′. The TSP on such a digraph is equivalent to the TSP on a cubic
digraph G′′ = (V ′′, A′′), where each vertex v ∈ V ′ is substituted by two vertices
v̌, v̂, connected by an artificial arc (v̌, v̂) of zero length. All arcs that entered v,
now enter v̌, and all arcs that left v are now outgoing from v̂. Let an arc e ∈ A′′
be forced, if it corresponds to a pseudo-arc in G′. Such arcs e ∈ A′′ are called
pseudo-arcs as well.

A solution to the TSP problem on digraph G′′ may be obtained through
enumeration of all feasible solutions to a TSP with forced edges on a supplementary
graph Ḡ = (V ′′, Ē). Here, a pair of vertices u, v is connected iff these vertices were
connected by an arc (or a pair of arcs) in the digraph G′′. An edge {u, v} ∈ Ē
is assumed to be forced if (u, v) or (v, u) is a pseudo-arc or an artificial arc in the
digraph G′′. A set of forced edges in Ḡ will be denoted by F̄ . All Hamiltonian cycles
in Ḡ w.r.t. the set of forced edges may be enumerated by means of the algorithm
proposed in [12] in time O(|V ′′| · 2(|Ē|−|F̄ |)/4). Then, for each Hamiltonian cycle Q
from Ḡ in each of the two directions we can check if it is possible to pass a circuit
in G′′ through the arcs corresponding to edges of Q, and if possible, compute the
length of the circuit. This takes O(|V ′′|) time for each Hamiltonian cycle. Note
that |Ē| − |F̄ | = d ≤ |E′| ≤ 2n, where d is the number of arcs which are present in
one of the parents only. Consequently, the time complexity of solving the ORP on
graph G is O(n · 2d/4), which is O(n · 1.42n).

Implementation of the method described above may benefit in the cases where
the parent solutions have many arcs in common.

1.3.2 Symmetric Case

Suppose the symmetric case takes place and two parent Hamiltonian cycles
in graph G = (V,E) are defined by two sets of edges E1 and E2. Let us construct
a reduction of the ORP in this case to a TSP with a set of forced edges on a graph
where the vertex degree is at most 4.

Similar to the general case, the ORP reduces to the TSP on a graph G′ =
(V ′, E′) obtained from G by exclusion of all edges that belong to E\(E1 ∪E2) and
contraction of all paths that belong to both parent tours. Here, by contraction we
mean the following mapping. Let Puv be a path with endpoints in u and v, such
that the edges of Puv belong to E1 ∩E2 and Puv is not contained in any other path
with edges from E1 ∩ E2. Assume that contraction of the path Puv maps all of its
vertices and edges into one forced edge {u, v} of zero length. All other vertices and
edges of the graph remain unchanged. Let F ′ denote the set of forced edges in G′,
which are introduced when the contraction is applied to all paths wherever possible.

The vertex degrees in G′ are at most 4, and |V ′| ≤ n. If an optimum of

174 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

the TSP on graph G′ with the set of forced edges F ′ is found, then substitution of
all forced edges by the corresponding paths yields an optimal solution to the ORP
problem. (Note that the objective functions of these two problems differ by the
total length of contracted paths.)

The search for an optimum to the TSP on graph G′ may be carried out by
means of the randomized algorithm proposed in [12] for solving TSP with forced
edges on graphs with vertex degree at most 4. Besides the problem input data this
algorithm is given a value p, which sets the desired probability of obtaining the
optimum. If p ∈ [0, 1) is a constant which does not depend on the problem input,
then the algorithm has time complexity O((27/4)n/3), which is O(1.89n).

When the crossover operator is used in a GA, an additional parameter Pc

may be defined to tune the probability of performing recombination. If such a
parameter is given, Pc ∈ [0, 1), then one may assign p = Pc. In case Pc = 1, the
optimal recombination may be performed using a deterministic modification of the
algorithm from [12] (corresponding to p = 1) which requires greater computation
time.

There may be some room for improvement of the algorithms, proposed in [12]
for the TSP on graphs with vertex degrees at most 3 or 4 and forced edges, in terms
of the running time. Thus, it seems to be important to continue studying this
modification of the TSP.

2 MAKESPAN MINIMIZATION ON SINGLE
MACHINE

Consider the Makespan Minimization Problem on a Single Machine, denoted
by 1|svu|Cmax, which is equivalent to the problem of finding the shortest Hamilton-
ian path in a digraph.

The input consists of a set of jobs V = {v1, . . . , vk} with positive processing
times pv, v ∈ V . All jobs are available for processing at time zero, and preemption is
not allowed. A sequence dependent setup time is required to switch a machine from
one job to another. Let svu be the a non-negative setup time from job v to job u
for all v, u ∈ V , where v 6= u. The goal is to schedule the jobs on a single machine
so as to minimize the maximum job completion time, the so-called makespan Cmax.

Let π = (π1, . . . , πk) denote a permutation of the jobs, i. e. πi is the i-th job on

the machine, i = 1, . . . , k. Put s(π) =
∑k−1
i=1 sπi,πi+1 . Then the problem 1|svu|Cmax

is equivalent to finding a permutation π∗ that minimizes the total setup time s(π∗).
We assume that the binary encoding of solutions to this NP optimization

problem is given by a permutation matrix, where the element in row i, column u
equals 1 iff the i-th executed job is the job u. For the sake of convenience, how-
ever, we will continue referring to feasible solutions in terms of permutations where
appropriate.

Note that the permutation matrices could be used for encoding the solutions
to problem 1|svu|Cmax so that a unit element of the matrix reflects a setup between
a pair of jobs (similar to the encoding of TSP solutions in Section ??). Experi-
mental studies of GAs indicate, however, that the solution encodings based on the
sequence of jobs (as the one used in this section) yield better results in solving the

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 175

scheduling problems [25].

2.1 NP-Hardness of Optimal Recombination

In what follows, we will use some remarkable results known for the Shortest Hamilto-
nian Path Problem with Vertex Requisitions: given a complete digraph G = (X,U),
where X = {x1, . . . , xn} is the set of vertices, U = {(x, y) : x, y ∈ X,x 6= y} is the
set of arcs with nonnegative weights ρ(x, y), (x, y) ∈ U . Besides that, a family of
vertex subsets (requisitions) Xi ⊆ X, i = 1, . . . , n, is given, such that:
C1: |Xi| 6 2 for all i = 1, . . . , n;
C2: 1 6 |{i : x ∈ Xi, i = 1, . . . , n}| 6 2 for all x ∈ X;
C3: if x ∈ Xi and x ∈ Xj , where i 6= j, then |Xi| = |Xj | = 2, and if x ∈ Xi for a
unique i, then |Xi| = 1.

Let F denote the set of the bijections from Xn = {1, . . . , n} to X that satisfy
the condition f(i) ∈ Xi, i = 1, . . . , n, for all f ∈ F . The problem asks for a

mapping f∗ ∈ F , such that ρ(f∗) = min
f∈F

ρ(f), where ρ(f) =
n−1∑
i=1

ρ(f(i), f(i + 1))

for f ∈ F . In what follows, this problem is denoted by I.
There always exists at least one feasible solution f1 to Problem I. Indeed,

such a solution exists iff there is a perfect matching W in the bipartite graph Ḡ =
(Xn, X, Ū) where the subsets of vertices of bipartition Xn, X have equal size and the
set of edges is Ū = {(i, x) : i ∈ Xn, x ∈ Xi}. Note that if the degree of a vertex i ∈
Xn in Ḡ equals d (1 6 d 6 2) then, in view of conditions C2 and C3, the degree of all
vertices adjacent to i is also equal to d. Thus for any Y ⊆ Xn holds |Y | 6 |{x ∈ X :
x ∈ Xi, i ∈ Y }| and the existence of W follows from the König-Hall Theorem [5].
Besides that, the perfect matching W = {(1, x1), (2, x2), . . . , (n, xn)} ⊆ Ū may be
found in polynomial time using the König-Hall Algorithm [5]. A feasible solution
to problem I is obtained assuming f1(i) = xi, i = 1, . . . , n.

It is clear that with |Xi| = 1, i = 1, . . . , n, the problem I is trivial, since
the feasible solution is unique. Therefore in what follows we shall assume that
there exists such i ∈ Xn that |Xi| = 2. Then there is at least one more feasible
solution f2 to the problem I, where f2(i) = Xi\{f1(i)} for such i that |Xi| = 2,
and f2(i) = f1(i) otherwise.

Let us now proceed to complexity analysis of the ORP for 1|svu|Cmax. First
of all note that the problem I reduces to it. Indeed, associate each vertex xi ∈ X
of digraph G to a job vi, i = 1, . . . , n, let the number of jobs be n and let the setup
times svi,vj be equal to ρ(xi, xj) for all vi, vj ∈ V , i 6= j. Assuming π1 = f1 and
π2 = f2, we obtain a polynomial-time reduction of problem I to the ORP under
consideration. In view of properties of this reduction, if I were strongly NP-hard,
this would imply that the ORP for 1|svu|Cmax is strongly NP-hard as well.

In [27], A.I. Serdyukov showed the strong NP-hardness of the TSP with
Vertex Requisitions, which is the TSP with a family of requisitions defined as above,
except that conditions C2 and C3 are dismissed, and the goal is to find such a

mapping f̃∗, that ρ̃(f̃∗) = min
f∈F

ρ̃(f), where ρ̃(f) =
n−1∑
i=1

ρ(f(i), f(i+1))+ρ(f(n), f(1))

for any f ∈ F . Let us denote this problem by Ĩ. In what follows it will be shown
via a Turing reduction from problem Ĩ that problem I is NP-hard in the strong
sense.

176 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

Proposition 2.1 [16] The problem I is strongly NP-hard.

Proof. Let us show that given an instance of problem Ĩ with a family
of requisitions Xi, i = 1, . . . , n, it is possible to construct efficiently an equivalent
family of requisitions that will satisfy conditions C1 – C3 or, alternatively, to prove
that the instance has no feasible solutions.

The equivalent family of requisitions is constructed by the following sequence
of transformations, where the vertices and requisitions are labelled as fathomed or
unfathomed. Initially all vertices and requisitions are labelled as unfathomed.

1. If there exists a vertex x ∈ X such that {i ∈ Xn : x ∈ Xi} = ∅, then
problem Ĩ has no feasible solutions. No further transformations required.

2. Perform the following operations until only the two-element requisitions
will remail among the unfathomed ones: find an unfathomed subset Xi = {x}
(i. e. |Xi| = 1) and delete the vertex x from the other requisitions it belongs
to; in case the resulting family of requisitions contains such Xj that |Xj | = 0,
this implies that Ĩ has no feasible solutions and no further transformations are
required; otherwise, label the vertex x and the subset Xi as fathomed.

3. Perform the following operations until among the unfathomed vertices
there will be only the vertices that belong to exactly 2 requisitions and each of
these requisitions is of cardinality 2: find an unfathomed vertex x that belongs
only to one subset Xi = {x, y}; if the vertex y also belongs only to the subset Xi,
then the instance of Ĩ has no feasible solutions and no further transformations are
required; otherwise assume Xi = {x} and label the vertex x and the subset Xi as
fathomed.

It is clear that the obtained family of requisitions is equivalent to the original
one and satisfies conditions C1 – C3. In sequel, without loss of generality we assume
that the family of requisitions in Ĩ satisfies C1 – C3.

Now let us construct a Turing reduction of problem Ĩ to problem I.
Suppose there exists a subroutine S for solving problem I with a family of
requisitions X̄i, i = 1, . . . , n. Let us describe an algorithm A for solving problem Ĩ
with a family of requisitions Xi, i = 1, . . . , n, which applies the subroutine S
at most four times to supplementary instances of I, obtained from the original
instance by fixing one of the elements in requisitions X1 and Xn. Note that such
a fixing may violate Condition C3. If this happens, the family of requisitions
obtained in algorithm A is transformed into an equivalent one, complying with
conditions C1 – C3. Let us outline the proposed algorithm.

Algorithm A

1. Let f̃ ′ denote the best found solution to the instance of Ĩ and let ρ̃′ be
value of objective function of this solution. Assign initially ρ̃′ := +∞.
2. Perform Steps 2.1-2.2 for each vertex x ∈ X1:
2.1. Assign X̃1 := {x}, X̃i := Xi, i = 2, . . . , n. Now if |X1| = 2, then the family
of requisitions X̃i, i = 1, . . . , n needs to be transformed to satisfy Condition C3.
To this end, an index j 6= 1 is found, such that X̃j = {x, z}, and an assignment

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 177

X̃j = {z} is made. Further perform the similar operations with the vertex z etc.
2.2. For each vertex y ∈ X̃n perform Steps 2.2.1-2.2.2:
2.2.1. Assign X̄n := {y}, X̄i := X̃i, i = 1, . . . , n − 1, and if |X̃n| = 2, then
transform the family of requisitions X̄i, i = 1, . . . , n so that Condition C3 is
satisfied, analogously to Step 2.1.
2.2.2. Solve problem I using Algorithm S. Let f∗ be a solution to this problem.
If ρ(f∗) + ρ(X̄n, X̄1) < ρ̃′, then assign ρ̃′ := ρ(f∗) + ρ(X̄n, X̄1) and f̃ ′ := f∗.

It is clear that the solution f̃ ′ found by algorithm A will be optimal for
problem Ĩ. Now since |X1| 6 2, |Xn| 6 2, and the transformation of a family of
requisitions takes O(n2) time, so the reduction is polynomially computable. The
properties of this reduction imply that problem I is strongly NP-hard. �

Therefore the following theorem holds.

Theorem 2.2 [16] The ORP for problem 1|svu|Cmax is strongly NP-hard.

Although in problem I we are given a digraph G, this problem easily reduces
to its modification where G is an ordinary graph. This is done by a substitution of
each vertex by three vertices (see e.g. [22]) and defining an appropriate family of
requisitions Xi, i = 1, . . . , n. Therefore the modification of problem I on ordinary
graphs is also strongly NP-hard and the next result holds.

Theorem 2.3 [16] The ORP for problem 1|svu = suv|Cmax is strongly NP-hard.

2.2 Solving the Optimal Recombination Problem

Given an ORP instance of 1|svu|Cmax problem with parent solutions π1, π2, one can
define an instance of I as follows.

� Let the number of vertices of digraph G be n = k.

� Let each job vi ∈ V , i = 1, . . . , k, be assigned a vertex xi ∈ X of digraph G.

� Let the arc weights be ρ(xi, xj) = svi,vj for all xi, xj ∈ X, i 6= j.

� Let the family of requisitions Xi, i = 1, . . . , k, be such that Xi = {π1
i , π

2
i } for

those i where π1
i 6= π2

i and Xi = {π1
i } for the rest of the indices i.

In this case, the set of feasible solutions to problem I can be mapped to the set of
feasible solutions to the ORP for 1|svu|Cmax by a bijective mapping so that optimal
solutions to problem I correspond to optimal solutions to the ORP.

An optimal mapping f∗ ∈ F for problem I can be found in time O(2k)
by enumeration of all sequences π where πi ∈ Xi, i = 1, . . . , k (feasible as well
as infeasible). An obvious modification of the well-known dynamic programming
algorithm due to M. Held and R.M. Karp [19] has the same time complexity. It
is possible, however, to build a more efficient algorithm for solving problem I,
using the approach of A.I. Serdyukov [27] which was developed for estimation of
cardinality of the set of feasible solutions to problem Ĩ.

178 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

Figure 4: Example of a graph Ḡ = (X7, X, Ū) with two special edges and two
blocks.

Consider a bipartite graph Ḡ = (Xk, X, Ū) defined above. Note that there is
a one-to-one correspondence between the set of feasible solutions F to problem I
and the set of perfect matchings W in graph Ḡ.

An edge (i, x) ∈ Ū will be called special, if (i, x) belongs to all perfect match-
ings in graph Ḡ. Let us also call the vertices of graph Ḡ special, if they are incident
to special edges. A maximal (by inclusion) bi-connected subgraph [7] will be called
a block. Note that in each block j of graph Ḡ the degree of any vertex equals two,
j = 1, . . . , q(Ḡ), where q(Ḡ) denotes the number of blocks in graph Ḡ. Then the
edges (i, x) ∈ Ū , such that |Xi| = 1, are special and belong to none of the blocks,
while the edges (i, x) ∈ Ū , such that |Xi| = 2, belong to some blocks. Besides that,
each block j, j = 1, . . . , q(Ḡ), of graph Ḡ contains exactly two maximal (edge dis-
joint) matchings, so it does not contain the special edges. Hence an edge (i, x) ∈ Ū
is special iff |Xi| = 1, and every perfect matching in Ḡ is defined by a combination
of maximal matchings chosen in each of the blocks and the set of all special edges.

As an example consider an instance of I with n = k = 7 and the family of
requisitions X1 = {x3, x7}, X2 = {x3, x7}, X3 = {x2}, X4 = {x5}, X5 = {x1, x4},
X6 = {x4, x6}, X7 = {x1, x6}. The bipartite graph Ḡ = (X7, X, Ū) corresponding
to this problem is presented in Fig. 4. Here the edges drawn in bold define one
maximal matching of a block, and the rest of the edges in the block define another
one.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 179

The blocks of graph Ḡ may be computed in O(k) time, e. g. by means of
the ”depth first” algorithm [7]. The special edges and maximal matchings in blocks
may be found easily in O(k) time.

Therefore, the problem I is solvable by the following algorithm: Build the
bipartite graph Ḡ, identify the set of special edges and blocks and find all maximal
matchings in blocks. Enumerate all perfect matchings W ∈ W of graph Ḡ by
combining the maximal matchings of blocks and joining them with special edges.
Assign the corresponding solution f ∈ F to each W ∈ W and compute ρ(f). As a
result one can find f∗ ∈ F , such that ρ(f∗) = min

f∈F
ρ(f).

Note that |F | = |W| = 2q(Ḡ), so the time complexity of the above algo-
rithm is O(k2q(Ḡ)), where q(Ḡ) 6 bk2 c and this bound is tight. Below we propose a

modification of this algorithm with time complexity O(q(Ḡ) · 2q(Ḡ)).
Let us carry out some preliminary computations before enumerating all possi-

ble combinations of maximal matchings in blocks in order to speed up the evaluation
of objective function. We will call a contact between block j and block j′ 6= j (or
between block j and a special edge) the pair of vertices (i, i+1) in the left-hand part
of graph Ḡ, such that one of the vertices belongs to the block j and the other one
belongs to block j′ (or the special edge). A contact inside a block will mean a pair
of vertices in the left-hand part of a block, if their indices differ exactly by one.

For each block j, j = 1, . . . , q(Ḡ), let us check the presence of contacts inside
the block j, between the block j and all special edges, and between the block j and
every other block. The time complexity of checking for contacts all vertices in the
left-hand part of a block is O(k).

Consider a block j. If a contact (i, i + 1) is present inside this block, then
each of the two maximal matchings w0,j and w1,j in this block corresponds to an
arc of graph G. Also, if block j has a contact to a special edge, each of the two
maximal matchings w0,j and w1,j also corresponds to an arc of graph G. For each
of the matchings wk,j , k = 0, 1, let the sum of the weights of arcs corresponding to
the contacts inside block j and the contacts to special edges be denoted by P kj .

If block j contacts to block j′, j′ 6= j, then each combination of the maximal
matchings of these blocks corresponds to an arc of graph G for any contact (i, i+1)
between the blocks. If a maximal matching is chosen in each of the blocks, one can
sum up the weights of the arcs in G that correspond to all contacts between blocks j

and j′. This yields four values which we denote by P
(0,0)
jj′ , P

(0,1)
jj′ , P

(1,0)
jj′ and P

(1,1)
jj′ ,

where the superscripts identify the matchings chosen in each of the blocks j and j′

accordingly.
The above mentioned sums are computed for each block, so the overall time

complexity of this pre-processing procedure is O(k · q(Ḡ)).
Now all possible combinations of the maximal matchings in blocks may be

enumerated using a Grey code (see e.g. [26]) so that the next combination differs
from the previous one by altering a maximal matching only in one of the blocks. Let
the binary vector δ = (δ1, . . . , δq(Ḡ)) define assignments of the maximal matchings

in blocks. Namely, δj = 0, if the matching w0,j is chosen in block j; otherwise (if
the matching w1,j is chosen in block j), we have δj = 1. This way every vector δ is
bijectively mapped into a feasible solution fδ to problem I.

In the process of enumeration, a step from the current vector δ̄ to the next
vector δ changes the maximal matching in one of the blocks j. The new value

180 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

of objective function ρ(fδ) may be computed via the current value ρ(fδ̄) by the

formula ρ(fδ) = ρ(fδ̄)−P
δ̄j
j +P

δj
j −

∑
j′∈A(j)

P
(δ̄j ,δ̄j′)

jj′ +
∑

j′∈A(j)

P
(δj ,δj′)

jj′ , where A(j) is

the set of blocks contacting to block j. Obviously, |A(j)| 6 q(Ḡ), so updating the
objective function value for the next solution requires O(q(Ḡ)) time, and the overall
time complexity of the modified algorithm for solving Problem I is O(q(Ḡ) · 2q(Ḡ)).

Therefore, the ORP for 1|svu|Cmax, as well as Problem I, is solvable in
O(q(Ḡ) · 2q(Ḡ)) time. Below it will be shown that for almost all pairs of parent
solutions q(Ḡ) 6 1.1 · ln(k), i. e. the cardinality of the set of feasible solutions in
almost all instances of the ORP for 1|svu|Cmax is at most k and these instances are
solvable in O(k · ln(k)) time.

Definition 2.4 [27] A graph Ḡ = (Xk, X, Ū) is called ”good” if q(Ḡ) 6 1.1 · ln(k);
otherwise it is called ”bad”.

Definition 2.5 A pair of parent solutions {π1, π2} is called ”good” if the graph Ḡ =
(Xk, X, Ū) corresponding to these parent solutions is ”good”; otherwise the
pair {π1, π2} is called ”bad”.

Note that instead of constant 1.1 in Definition 2.4 one may choose any other
constant equal to 1 + ε, where ε ∈ (0, log2(e)− 1]. Given such a constant, the ORP
has at most k feasible solutions and it is solvable in O(kln(k)) time.

The following notation will be used below:

� Let =̄k be the set of ”good” graphs and let =̃k denote the set of ”bad” graphs.

� Let <̄k be the set of ”good” pairs of parent solutions and let <̃k be the set of
”bad” pairs of parent solutions.

� Denote =k = =̄k ∪ =̃k, <k = <̄k ∪ <̃k.

� Let Sl be the set of permutations of the set {1, . . . , l}, which do not contain
the cycles of length 1.

� Let S̄l denote the set of permutations from Sl, where the number of cycles is
at most 1.1 · ln(l).

� Denote S̃l = Sl\S̄l.

The results of A.I. Serdyukov from [27] imply

Proposition 2.6 |S̃l|/|S̄l| −→ 0 as l→∞.

The next theorem is proved by the means of Proposition 2.6.

Theorem 2.7 [16] |<̄k|/|<k| −→ 1 as k →∞.

Proof. The proof consists of two stages: first we estimate the numbers of
”good” and ”bad” graphs, and after that we estimate the numbers of ”good” and
”bad” pairs of parent solutions.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 181

Figure 5: Examples of graphs from class =7(σ), where σ =
(

1 2 3 4 5
2 3 1 5 4

)
∈ S5.

The values |=̄k| and |=̃k| may be bounded using the approach from [27]. To
this end assign any permutation σ ∈ Sl, l 6 k, a set of bi-partite graphs =k(σ) ⊂ =k
as follows. First of all let us assign an arbitrary set of k− l edges to be special. The
non-special vertices {i1, i2, . . . , il} ⊂ Xk of the left-hand part, where ij < ij+1, j =
1, . . . , l−1, are now partitioned into ξ(σ) blocks, where ξ(σ) is the number of cycles
in permutation σ. Every cycle (t1, t2, . . . , tr) in permutation σ corresponds to some
sequence of vertices with indices {it1 , it2 , . . . , itr} belonging to the block associated
with this cycle. Finally, it is ensured that for each pair of vertices {itj , itj+1},
j = 1, . . . , r − 1, as well as for the pair {itr , it1}, there exists a vertex in the
right-hand part X adjacent to both vertices of the pair.

Consider a permutation σ =
(

1 2 3 4 5
2 3 1 5 4

)
∈ S5 with cycles c1 = (1, 2, 3) and

c2 = (4, 5). Two examples of graphs from class =7(σ) are given in Fig. 5. Here
block j corresponds to cycle cj , j = 1, 2.

There are k! ways to associate vertices of the left-hand pert to vertices of the
right-hand part, therefore the number of different graphs from class =k(σ), σ ∈ Sl,
l 6 k, is |=k(σ)| = Clk

k!
2ξ1(σ) , where ξ1(σ) is the number of cycles of length two in

permutation σ. Division by 2ξ1(σ) here is due to the fact that for each block that
corresponds to a cycle of length two in σ, there are two equivalent ways to number
the vertices in its right-hand part.

Let σ = c1c2 . . . cξ(σ) be a permutation from set Sl, represented by cycles ci,
i = 1, . . . , ξ(σ), and let cj be an arbitrary cycle of permutation σ of length at least
three, 1 6 j 6 ξ(σ). Permutation σ may be transformed into permutation σ1,

σ1 = c1c2 . . . cj−1c
−1
j cj+1 . . . cξ(σ), (3)

182 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

by reversing the cycle cj . Clearly, permutation σ1 induces the same subset of
graphs in class =k as the permutation σ does. Thus any two permutations σ1 and
σ2 from set Sl, l 6 k, induce the same subset of graphs in =k, if one of these
permutations may be obtained from the other one by several transformations of the
form (3). Otherwise the two induced subsets of graphs do not intersect. Besides
that =k(σ1) ∩ =k(σ2) = ∅ if σ1 ∈ Sl1 , σ2 ∈ Sl2 , l1 6= l2.

On one hand, if σ ∈ S̄l, l 6 k, then =k(σ) ⊆ =̄k. On the other hand, if
σ ∈ S̃l, l < k, then either =k(σ) ⊆ =̄k or, alternatively, =k(σ) ⊆ =̃k may hold.
Therefore,

|=̄k| >
k∑
l=2

∑
σ∈S̄l

Clk
k!

2ξ1(σ)2ξ(σ)−ξ1(σ)
=

k∑
l=2

∑
σ∈S̄l

Clk
k!

2ξ(σ)
, (4)

|=̃k| 6
k∑

l=b1.1·ln(k)c

∑
σ∈S̃l

Clk
k!

2ξ1(σ)2ξ(σ)−ξ1(σ)
=

k∑
l=b1.1·ln(k)c

∑
σ∈S̃l

Clk
k!

2ξ(σ)
. (5)

Now let us estimate the cardinality of sets <̄k and <̃k to complete the
proof. Recall that every graph Ḡ ∈ =k(σ), σ ∈ Sl, l 6 k has ξ(σ) blocks.
The set of edges of any block j, j = 1, . . . , ξ(σ), is partitioned into the max-
imal matchings denoted by wj = {(i1, xi1), (i2, x

i2), . . . , (imj , x
imj)} and w̄j =

{(i1, x̄i1), (i2, x̄
i2), . . . , (imj , x̄

imj)}. Then in any instance of the ORP for prob-
lem 1|svu|Cmax, that induces the graph Ḡ, either π1

im
= xim , π2

im
= x̄im ,

m = 1, . . . ,mj , or π1
im

= x̄im , π2
im

= xim , m = 1, . . . ,mj , for all j = 1, . . . , ξ(σ).

Consequently every bipartite graph from class =k(σ) corresponds to 2ξ(σ) pairs of
parent solutions (where pairs π1 = a, π2 = b and π1 = b, π2 = a are assumed to be
different), then in view of (4) and (5) we have:

|<̄k| >
k∑
l=2

∑
σ∈S̄l

Clk
k!

2ξ(σ)
2ξ(σ) >

k∑
l=b1.1·ln(k)c

|S̄l|Clkk!, (6)

|<̃k| 6
k∑

l=b1.1·ln(k)c

∑
σ∈S̃l

Clk
k!

2ξ(σ)
2ξ(σ) =

k∑
l=b1.1·ln(k)c

|S̃l|Clkk!. (7)

Now assuming ψ(k) = max
l=b1.1·ln(k)c,...,k

|S̃l|/|S̄l| and taking into account (6), (7)

and Proposition 2.6, we obtain

|<̃k|/|<̄k| 6 ψ(k)→ 0 as k →∞. (8)

Finally, the statement of the theorem follows from (8). �

Note that the algorithm proposed for solving the ORP for 1|svu|Cmax may be
generalized to solve the ORPs for other problems with similar solutions encoding
(examples of such problems may be found in [18, 28, 30]). The time complexity
of the algorithm in these cases would depend on the time required to evaluate an
objective function.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 183

Theorems 2.2 and 2.3 imply NP-hardness of the ORPs for a family of more
general scheduling problems, where the number of machines may be greater than 1
and each job may be performed in several modes, using one or more machines, see
e.g. [15].

3 FURTHER RESEARCH

In this paper, we did not discuss the population management strategies for
the GAs with optimal recombination. It is likely that the general schemes of the
GAs and the procedures of parameter adaptation require some revision when the
optimal recombination is used. Due to fast localization of the search process in
such GAs, it is important to provide a sufficiently large initial population and
employ some mechanism for adaptation of the mutation strength (see e.g. [11]).
Alternatively, the population management strategy with elitist recombination may
be used to avoid the fast localization [30]. Interesting techniques that maintain the
diversity of population by constructing the second offspring, as different from the
optimal offspring as possible, can be found in [1] and [4].

The overall efficiency of a genetic algorithm depends on finding the trade-off
between the time complexity of optimal recombination procedure and the average
number of iterations until an optimal solution is found for the first time (the GA
runtime). This is another topic for further research. Some results in this area were
obtained by means of the experimental analysis [4, 23, 30]. The theoretical methods
proposed in [10] and [14] are also applicable in runtime analysis of the GAs with
optimal recombination.

One of the ways to control the time complexity of recombination procedure
consists in solving the optimal recombination problem approximately. Another
way is to apply exact optimal recombination algorithms but not in all occasions.
Examples of using these approaches in crossover operators for NP-hard ORPs may
be found in [11, 15, 30].

All of the polynomially solvable optimal recombination problems considered
above rely upon efficient deterministic algorithms for the Max-Flow / Min-Cut
Problem (or the Maximum Matching Problem in the unweighted case). It is an
open question, however, whether the fast heuristic methods (see e.g. [3]) may be
useful for the polynomially solvable ORPs as well.

Finding approximate solutions to ORP is analogous to finding ”first im-
proving” moves in local search algorithms. A formal setting for this approach in
the general case of multi-parent recombination is proposed by P. Moscato in [24].
A number of open questions on complexity of recombination problems is posed
in [9, 24].

4 CONCLUSION

The results presented in Parts I and II indicate that optimal recombination
problem for many NP-hard optimization problems is polynomially solvable, but in
many other cases it is NP-hard.

184 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

In Part I we have shown that well-known reductions between the NP opti-
mization problems may be useful in development of polynomial-time optimal recom-
bination procedures. Besides that we observed that the choice of solutions encoding
has a significant influence upon the complexity of optimal recombination problems.
In particular, introduction of additional variables can sometimes simplify the task.

It is natural to expect that average dimensions of the ORP instances might
decrease in process of GA execution, as the individuals gain more common genes,
so the ORP instances would often have much smaller dimensions, compared to
the original problem. In such situations even an NP-hard ORP may turn out
to be solvable in practice by the exact methods sufficiently fast. Besides that,
the results presented in Part II give evidence that for many NP-hard problems on
permutations there might exist faster optimal recombination algorithms, compared
to the algorithms known for the original problem.

5 ACKNOWLEDGEMENTS

Partially supported by Russian Foundation for Basic Research grants 12-01-00122
and 13-01-00862 and by Presidium SB RAS (project 7B).

REFERENCES

[1] Aggarwal, C.C., Orlin, J.B. and Tai, R.P., “An optimized crossover for maxi-
mum independent set”, Operations Research, 45 (1997) 225-234.

[2] Ausiello, G., Crescenzi, P., Gambosi, G. et al., Complexity and approxima-
tion: Combinatorial optimization problems and their approximability proper-
ties, Berlin, Springer-Verlag, 1999.

[3] Avis, D., “A survey of heuristics for the weighted matching problem”, Net-
works, 13 (1983) 475-493.

[4] Balas, E. and Niehaus, W., “Optimized crossover-based genetic algorithms for
the maximum cardinality and maximum weight clique problems”, Journal of
Heuristics, 4 (2) (1998) 107-122.

[5] Berge, C. The theory of graphs and its applications, New York, NY, John Wiley
& Sons Inc., 1962.

[6] Cook, W. and Seymour, P., “Tour merging via branch-decomposition”, IN-
FORMS Journal on Computing, 15 (2) (2003) 233-248.

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., Introduction to
Algorithms, 2nd edition, MIT Press, 2001.

[8] Cotta, C., Alba, E. and Troya J. M., “Utilizing dynastically optimal forma
recombination in hybrid genetic algorithms”, Proc. of 5-th Int. Conf. on Par-
allel Problem Solving from Nature, LNCS, Berlin, Springer-Verlag, (1498)1998,
305-314.

[9] Cotta, C., Moscato, P., “The parameterized complexity of multiparent recom-
bination”, Proc. of The 6-th Metaheuristics International Conference, Vienna,
Universität Wien, 2003, 237-241.

[10] Doerr, B., Happ, E. and Klein, C., “Crossover can provably be useful in evo-
lutionary computation” Theoretical Computer Science 425 (2012) 17-33.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 185

[11] Dolgui, A., Eremeev, A. and Guschinskaya, O., “MIP-based GRASP and ge-
netic algorithm for balancing transfer lines”, Matheuristics. Hybridizing Meta-
heuristics and Mathematical Programming, Ed. by V. Maniezzo, T. Stutzle,
and S. Voss, Berlin, Springer-Verlag, 2010, 189-208.

[12] Eppstein, D., “The travelling salesman problem for cubic graphs”, Journal of
Graph Algorithms and Applications, 11 (1) (2007) 61-81.

[13] Eremeev, A.V., “On complexity of optimal recombination for the travelling
salesman problem” Proc. of Evolutionary Computation in Combinatorial Opti-
mization (EvoCOP 2011), LNCS, Berlin, Springer Verlag, (6622)2011, 215-225.

[14] Eremeev, A.V., “Non-elitist genetic algorithm as a local search method”
Preprint (arXiv:1307.3463v2 [cs.NE]), Cornell, Cornell University, 2013, 9 p.
URL: http://arxiv.org/abs/1307.3463.

[15] Eremeev, A.V. and Kovalenko, J.V., “On scheduling with technology based
machines grouping”, Diskretnyi analys i issledovanie operacii, 18 (5) (2011)
54-79. (In Russian)

[16] Eremeev, A.V. and Kovalenko, J.V., “On complexity of optimal recombination
for one scheduling problem with setup times”, Diskretnyi analys i issledovanie
operacii, 19 (3) (2012) 13-26. (In Russian)

[17] Garey, M. and Johnson, D., Computers and intractability. A guide to the theory
of NP-completeness. W.H. Freeman and Company, San Francisco, CA, 1979.

[18] Hazir, Ö., Günalay, Y., Erel, E., “Customer order scheduling problem: A
comparative metaheuristics study”, International Journal of Advanced Manu-
facturing Technology, 37 (2008) 589-598.

[19] Held, M. and Karp, R.M., “A dynamic programming approach to sequencing
problems”, SIAM Journal on Applied Mathematics, 10 (1962) 196-210.

[20] Holland, J., Adaptation in natural and artificial systems, Ann Arbor, University
of Michigan Press, 1975.

[21] Itai, A., Papadimitriou, C.H. and Szwarcfiter, J.L., “Hamilton paths in grid
graphs” SIAM Journal on Computing, 11 (4) (1982) 676-686.

[22] Karp, R.M., “Reducibility among combinatorial problems”, Proc. of a Symp.
on the Complexity of Computer Computations, Ed by R.E. Miller and
J.W. Thatcher, The IBM Research Symposia Series, New York, NY, Plenum
Press, 1972, 85-103.

[23] Kovalenko, J.V., Complexity of some scheduling problems and evolutionary al-
gorithms of their solution, Dissertation of Cand. of Sci., Novosibirsk, Sobolev
Institute of Mathematics SB RAS, 2013. (In Russian)

[24] Moscato, P. NP Optimization Problems, approximability and evolutionary com-
putation: from practice to theory, Ph.D. dissertation, Campinas, University of
Campinas, 2001.

[25] Reeves, C.R., “Genetic algorithms for the operations researcher”, INFORMS
Journal on Computing, 9 (3) (1997) 231-250.

[26] Reingold, E.M., Nievergelt, J. and Deo, N. Combinatorial algorithms: Theory
and practice, Englewood Cliffs, Prentice-Hall, 1977.

[27] Serdyukov, A.I., “On travelling salesman problem with prohibitions”, Up-
ravlaemye systemi, 17 (1978) 80-86. (In Russian)

186 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

[28] Tanaev, V.S., Kovalyov, M.Y. and Shafransky, Y.M. Scheduling Theory. Group
Technologies, Minsk, Institute of Technical Cybernetics NAN of Belarus, 1998.
(In Russian)

[29] Whitley, D., Hains, D. and Howe, A., “A hybrid genetic algorithm for the
travelling salesman problem using generalized partition crossover”, Proc. of 11-
th Int. Conf. on Parallel Problem Solving from Nature, LNCS, Berlin, Springer,
(6238) 2010, 566-575.

[30] Yagiura, M., Ibaraki, T., “The use of dynamic programming in genetic algo-
rithms for permutation problems”, European Journal of Operational Research,
92 (1996) 387-401.

