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Abstract. In the frame of the BIOSOPE cruise in 2004,
the spatial distribution and structure of phytoplankton pig-
ments was investigated along a transect crossing the ultra-
oligotrophic South Pacific Subtropical Gyre (SPSG) between
the Marquesas Archipelago (141◦ W–8◦ S) and the Chilean
upwelling (73◦ W–34◦ S). A High Performance Liquid Chro-
matography (HPLC) method was improved in order to be
able to accurately quantify pigments over such a large range
of trophic levels, and especially from strongly oligotrophic
conditions. Seven diagnostic pigments were associated to
three phytoplankton size classes (pico-, nano and microphy-
toplankton). The total chlorophyll-a concentrations [TChla]

in surface waters were the lowest measured in the centre of
the gyre, reaching 0.017 mg m−3. Pigment concentrations at
the Deep Chlorophyll Maximum (DCM) were generally 10
fold the surface values. Results were compared to predictions
from a global parameterisation based on remotely sensed sur-
face [TChla]. The agreement between the in situ and pre-
dicted data for such contrasting phytoplankton assemblages
was generally good: throughout the oligotrophic gyre sys-
tem, picophytoplankton (prochlorophytes and cyanophytes)
and nanophytoplankton were the dominant classes. Rela-
tive bacteriochlorophyll-a concentrations varied around 2%.
The transition zone between the Marquesas and the SPSG
was also well predicted by the model. However, some re-
gional characteristics have been observed where measured
and modelled data differ. Amongst these features is the ex-
treme depth of the DCM (180 m) towards the centre of the
gyre, the presence of a deep nanoflagellate population be-
neath the DCM or the presence of a prochlorophyte-enriched

Correspondence to:J. Ras
(josephine.ras@obs-vlfr.fr)

population in the formation area of the high salinity South
Pacific Tropical Water. A coastal site sampled in the eu-
trophic upwelling zone, characterised by recently upwelled
water, was significantly and unusually enriched in picoeu-
caryotes, in contrast with an offshore upwelling site where a
more typical senescent diatom population prevailed.

1 Introduction

East of Tahiti, the South East Pacific Ocean is charac-
terised by very contrasting trophic environments, covering
a large range of total chlorophyll-a concentrations [TChla].
These environments comprise the “permanently” (Dandon-
neau et al., 2004) “hyper-oligotrophic” centre of the South
Pacific Subtropical Gyre (SPSG; Longhurst, 1998; Claus-
tre and Maritorena, 2003) where SeaWifs imagery presents
average surface TChla concentrations of 0.02 mg m−3 (http:
//oceancolor.gsfc.nasa.gov/SeaWiFS/). This gyre is distin-
guished by its hydrodynamic stability, its unique magnitude,
the transparency of its waters (Morel et al., 2007) and ex-
tremely weak sources of nutrients from deeper layers (Raim-
bault et al., 2007) as well as from the atmospheric flux (Ma-
howald, 2005; Wagener et al., 2008; Claustre et al., 2008).
To the West, the mesotrophic environment of the Marquesas
archipelago prevails in a predominantly HNLC (High Nu-
trient Low Chlorophyll) zone (Claustre et al., 2008 and ref-
erences therein). To the East, the waters become strongly
eutrophic as the Chilean coastline is subjected to an offshore
transport of surface waters, thus inducing strong hydrody-
namics and the upwelling of deep, cold and nutrient-rich wa-
ters at the coast (Longhurst, 1998; Claustre et al., 2008 and
references therein).
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Fig. 1. Map of the BIOSOPE cruise track superimposed on a SeaWiFS ocean colour 
composite, the dark purple indicating the extremely low concentrations (0.017 mg.m-3) of 
TChla. 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Map of the BIOSOPE cruise track superimposed on a SeaWiFS ocean colour composite, the dark purple indicating the extremely low
concentrations (0.017 mg m−3) of TChla.

The BIOSOPE cruise (BIOgeochemistry and Optics South
Pacific Experiment), carried out from October to Decem-
ber 2004, took place between Tahiti (French Polynesia) and
Concepcion (Chile). It can be described as a voyage of ex-
ploration across unique and contrasting environments where
oceanographic data are still scarce to this day (Claustre and
Maritorena, 2003). Besides the aspects of oceanographic in-
vestigation aiming at the assessment of the biogeochemical
and optical properties of the ocean as a function of surface
water [TChla] the wide range of trophic conditions observed
during this cruise was ideal for carrying out calibration and
validation activities for ocean colour remote sensors.

During the past decades, high performance liquid chro-
matography (HPLC) techniques have rapidly evolved, allow-
ing for phytoplankton biomass and composition in the oceans
to be described in detail using algal pigment biomarkers.
Indeed, the [TChla] has been a widely used biomarker for
the phytoplankton biomass in the oceans (Yentch and Men-
zel, 1963; Parsons and Strickland, 1963; O’Reilly et al.,
1998). Accessory pigments have either photosynthetic prop-
erties allowing the phytoplankton cells to increase their light-
harvesting spectrum, or a role of photoprotection in dissipat-
ing the excess of light energy received and reducing the oxi-
dation that takes place due to stress in conditions of strong ir-
radiance. The major accessory pigments have also proven to
be useful chemotaxonomic indicators (Goericke and Repeta,
1992; Wright and Jeffrey, 1987; Moore et al., 1995; Guillard
et al., 1985). Hence, the chlorophyll-a and accessory pig-
ment distributions have become important descriptors of the
spatial and temporal variations of the autotrophic biomass
and taxonomic composition. From the pigment composi-
tion of natural communities, Claustre (1994), Vidussi et
al. (2001), and recently Uitz et al. (2006), have proposed
to derive pigment-based size classes relevant to picophyto-
plankton (less than 2µm), nanophytoplankton (between 2

and 20µm) and microphytoplankton (greater than 20µm).
Based on the statistical analysis of a global HPLC database,
the proposed parameterisation allows these three pigment-
based size classes and their vertical distribution to be re-
trieved from remotely sensed TChla concentrations (Uitz et
al., 2006). Although the database was extensive (∼2400 pro-
files), extremely few profiles were from the South East Pa-
cific so that the “global” parameterisation might be some-
what biased not taking into consideration certain characteris-
tics of this rather unknown and vast area.

Thus, in the context of the BIOSOPE cruise, the objec-
tives related to the analysis of the distribution of phytoplank-
ton pigments are double. The first aim of this study is es-
sentially descriptive and explorative where the spatial (along
transect and vertical) distribution of phytoplankton pigments
is analysed in this “mare incognita” of the South-East Pa-
cific Ocean. The second aim is to investigate whether the in
situ distributions of pigment-based size classes conform with
the predicted distributions derived from the application of the
Uitz model to the remotely sensed (SeaWiFS) TChla con-
centrations. By doing so, it is expected that any difference
between measured and predicted distributions could be scru-
tinized and further interpreted in terms of distinct regional
features of the South-East Pacific relative to the mean (global
ocean) trend.

2 Material and methods

2.1 Sampling area

Sampling was performed between the 26 October and the 11
December 2004 in the South Pacific along a transect starting
in the vicinity of the Marquesas archipelago (141◦ W, 8◦ S)
and ending in the upwelling of the Chilean coast (73◦ W,
35◦ S) (Fig. 1). Six sites along this transect were studied

Biogeosciences, 5, 353–369, 2008 www.biogeosciences.net/5/353/2008/



J. Ras et al.: Phytoplankton pigment distribution in the South Pacific 355

over 2- to 5-day periods: MAR: Marquesas archipelago
(141.3◦ W; 8.4◦ S); HNL: HNLC area east of the Marque-
sas islands (136.8◦ W; 9◦ S); GYR: centre of the South Pa-
cific gyre (about 300 nautical miles west of the “navel of
the world”, a native name for Easter Island; 114◦ W, 26◦ S);
EGY: eastern border of the gyre (91.4◦ W, 31.8◦ S); UPW:
upwelling site situated above the abyssal plain, about 70 nau-
tical miles from the coast (73.3◦ E; 34◦ S); UPX: upwelling
site situated above the continental shelf, about 18 nautical
miles from the coast (72.4◦ E, 34.5◦ S). In addition, twenty
one short-term (less than 5 h) stations were studied each day
during the transit between the long stations.

2.2 Sample collection and storage

Seawater samples were collected using a CTD-rosette system
equipped with 21 twelve litre Niskin bottles. The samples for
pigment analysis were collected at about 10 depths, twice a
day, from the 09:00 a.m. and noon CTD casts (local time).

The water samples were vacuum filtered through 25 mm
diameterWhatmanGF/F glass fibre filters (0.7µm particle
retention size). Filtered volumes varied between 5.6 L in the
hyper-oligotrophic waters and 1 L in the upwelling zone. The
filters were immediately stored in liquid nitrogen then at –
80◦C until analysis on land.

2.3 Chlorophyll and carotenoid pigment extraction and
analysis

Extraction and analysis of the BIOSOPE samples were com-
pleted between the 7 March and the 27 April 2005. The fil-
ters were extracted at –20◦C in 3 mL methanol (100%), dis-
rupted by sonication and clarified one hour later by vacuum
filtration throughWhatmanGF/F filters. The extracts were
rapidly analysed (within 24 h) by HPLC with a completeAg-
ilent Technologiessystem (comprisingLC Chemstationsoft-
ware, a degasser, a binary pump, a refrigerated autosampler,
a column thermostat and a diode array detector)

The pigments were separated and quantified following an
adaptation of the method described by Van Heukelem and
Thomas (2001). Modifications to this method allowed for
increased sensitivity in the analysis of ultra-oligotrophic wa-
ters. As an example of the sensitivity and resolution of the
method, Figs. 2a and b represent two typical chromatograms
originating from the centre of the gyre (surface and Deep
Chlorophyll Maximum respectively) where at least sixteen
pigment peaks were identified.

The sample extracts (100% methanol), premixed (1:1)
with a buffer solution (tetrabutylammonium acetate or TBAA
28 mM), were injected onto a narrow reversed-phase C8
Zorbax Eclipse XDB column (3×150 mm; 3.5µm parti-
cle size) which was maintained at 60◦C. Separation was
achieved within 28 min with a gradient between a solution
(A) of TBAA 28 mM: methanol (30:70; v:v) and a solution
(B) of 100% methanol according to the following program:

 32

Fig. 2. HPLC chromatograms from (a) the surface and (b) the DCM at 180 m at the hyper-
oligotrophic GYR station. Detection absorption wavelength is 450 nm. 
 
 
 

 
 

Fig. 2. HPLC chromatograms from(a) the surface and(b) the DCM
at 180 m at the hyper-oligotrophic GYR station. Detection absorp-
tion wavelength is 450 nm.

(t(min);%B;%A), (0;10;90), (25;95;5), (28;95;5). A diode
array detector allowed for the absorption of most pigments
to be detected at 450 nm, while chlorophyll-a and its deriva-
tives were detected at 667 nm and bacteriochlorophyll-a at
770 nm. The diode array absorption spectra of each peak
were used for identification purposes.

Pigment concentrations (in mg m−3) were calculated from
the peak areas with an internal standard correction (Vitamin
E acetate, Sigma) and external calibration standards which
were provided by DHI Water and Environment (Denmark).

This method has proven to be satisfactory in terms of
resolution, sensitivity, accuracy and precision (Hooker et
al., 2005), with the detection of about 25 separate phyto-
plankton pigments (listed in Table 1), with a lower limit of
detection (3 times Signal:Noise ratio) for chlorophyll-a of
0.0001 mg m−3 and with an injection precision of 0.4%.

2.4 Phytoplankton pigment-based size classes

While TChla is the universal proxy for phytoplankton or-
ganisms, accessory pigments (chlorophylls-b and c, and
carotenöıds) are specific to phytoplankton groups (Table 1),
and their respective proportion to TChla is a proxy of the
community composition (e.g. Gieskes et al., 1988; Jeffrey
and Vesk, 1997; Mackey et al., 1996; Prézelin et al., 2000).
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Table 1. List of the pigments used in this study, along with their abbreviations, calculation and their taxonomic significance (From Jeffrey
and Vesk, 1997). The main algal groups used here to describe the phytoplankton community composition are indicated in bold.

Chlorophylls Abbreviation Sum Taxonomic or biogeochemical
significance

Chlorophyll-a Chla Chla + allomers + epimers All – except Prochlorophytes
Divinyl Chlorophyll-a DVChla Prochlorophytes
Total Chlorophyll-a TChla Chla + DVChla + Chld a All
Chlorophyll-b Chlb Green algae
Divinyl Chlorophyll-b DVChlb Prochlorophytes
Total Chlorophyll-b TChlb Chlb + DVChlb Green algae, Prochlorophytes
Chlorophyll-c2 Chlc2 Various
Chlorophyll-c3 Chlc3 Prymnesiophytes, Chrysophytes
Bacteriochlorophyll-a BChla Photoheterotrophic bacteria
Peridinin Peri Dinoflagellates
19′-Butanoyloxyfucoxanthin But Pelagophytes,prymnesiophytes
Fucoxanthin Fuco Diatoms, prymnesiophytes,

some Dinoflagellates
19′-Hexanoyloxyfucoxanthin Hex Prymnesiophytes
Zeaxanthin Zea Cyanobacteria, Prochlorophytes
Alloxanthin Allo Cryptophytes
Diatoxanthin Diato Various
Diadinoxanthin Diadino Various
Lutein Lut Chlorophytes
Neoxanthin Neo Green algae
Violaxanthin Viola Green algae
Prasinoxanthin Pras Prasinophytes
Carotenes Car a-Car + b-Car Various
Chlorophyllide-a Chlda Chlda + Chlda-like Senescent diatoms
Phaeophorbidea Phda Phda + Phda-like Grazor faecal pellets
Phaeophytina Phtna Grazor faecal pellets

Here we used the pigment grouping method proposed by
Claustre (1994) and Vidussi et al. (2001) and recently
improved by Uitz et al. (2006). Seven pigments are
used as biomarkers of several phytoplankton taxa: fucox-
anthin, peridinin, alloxanthin, 19′-butanoyloxyfucoxanthin,
19′-hexanoyloxyfucoxanthin, zeaxanthin, total chlorophyll-b

(for abbreviations see Table 1). These taxa are then gathered
into three size classes (micro-, nano-, and picophytoplank-
ton), according to the average size of the cells. The fraction
of each pigment-based size class with respect to the total phy-
toplankton biomass is calculated as follows:

Greater than 20µm : fmicro=(1.41[Fuco]+1.41[Peri])/wDP (1a)

2 to 20µm : fnano=(0.60[Allo ]+0.35[But]+1.27[Hex])/wDP (1b)

Less than 2µm : fpico=(0.86[Zea]+1.01[TChlb])/wDP (1c)

where wDP is the sum of the concentration of the seven
weighted diagnostic pigments:

wDP=1.41[Fuco]+1.41[Peri]+0.60[Allo ]+0.35[But] (2)

+1.27[Hex]+0.86[Zea]+1.01[TChlb]

Each diagnostic pigment is associated to a coefficient which
represents an estimate of the average ratio of the TChla con-
centration to the diagnostic pigment concentration. These

coefficients have been obtained by multiple regression anal-
ysis, performed on a global pigment database (Uitz et al.,
2006). Eventually the TChla biomass associated with each
class is derived according to:

[TChla]micro=fmicrox[TChla] (3a)

[TChla]nano=fnanox[TChla] (3b)

[TChla]pico=fpicox[TChla] (3c)

2.5 Computation of the in situ derived euphotic depth

The depth of the euphotic zone (Ze), representing the depth
where irradiance is reduced to 1% of its surface value,
was computed using the in situ [TChla] profiles according
to the model developed by Morel and Maritorena (2001).
The water column [TChla] was progressively integrated
with increasing depths and Ze was consequently determined
through an iterative process which is described in Morel and
Berthon (1989).

2.6 Remotely sensed surface chlorophyll-a used to derive
the phytoplankton vertical community composition

The algorithm developed by Uitz et al. (2006) was applied,
and the vertical profiles of [TChla] associated with the three
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Fig. 3. Contour plot of the measured TChla concentrations (mg.m-3) for the Biosope cruise 
transect. Large black dots represent the depth of the euphotic layer, Ze (m). Small black dots 
represent collected water samples at each sampling station. (Ocean Data View (ODV) 
software, version 3.0.1, R.Schlitzer, (http://odv.awi-bremerhaven.de/, 2005). 
 
 
 

 
 
 
 
 
 

Fig. 3. Contour plot of the measured TChla concentrations (mg m−3) for the Biosope cruise transect. Large black dots represent the depth of
the euphotic layer, Ze (m). Small black dots represent collected water samples at each sampling station. (Ocean Data View (ODV) software,
version 3.0.1, R. Schlitzer,http://odv.awi-bremerhaven.de/, 2005).

afore-mentioned pigment-based size classes were derived.
This implies the use of the near-surface TChla concentra-
tions, which can be obtained from remotely sensed ocean
colour.

For each station sampled during the BIOSOPE cruise, the
corresponding near-surface [TChla] was extracted from Sea-
WiFS imagery ([TChla]sat, mg m−3), given the geographic
location and date of sampling. When no [TChla]sat was
available, values were extracted from the SeaWiFS images
corresponding to±1 day,±2 days, or±3 days, with respect
to the date of in situ sampling. For 39% of the stations,
the date of SeaWiFS and in situ measurements coincided,
for 42% they were 1-day shifted, for 10% they were 2-day
shifted, and for 9% they were 3-day shifted. This strategy
was chosen in order to keep all the data. A detail of the
full procedure to derive vertical profiles is given in Uitz et
al. (2006). Only a short summary is given below.

Firstly, the satellite derived euphotic depth was computed
from the [TChla]sat value by using successively the statisti-
cal relationship linking [TChla]satand the column-integrated
content (Eq. 8 of Uitz et al., 2006), and that of Morel et Mar-
itorena (2001) relating the column-integrated content and
Zesat. The euphotic depth was then compared to the mixed
layer depth (Zm) to determine whether the water column was
stratified (i.e. Ze≥Zm) or mixed (i.e. Ze<Zm). For strat-
ified waters, the [TChla]sat value was used to generate di-
mensionless profiles (with respect to depth and to biomass)
of TChla associated with micro-, nano-, and picophytoplank-
ton. Depth profiles were restored to physical units by mul-
tiplying the depths byZesat and the concentrations by the
mean TChla concentration within the euphotic layer. For
mixed waters, the [TChla]sat value was used to determine
the proportion of each pigment-based size class, eventually
multiplied by the [TChla]satvalue, and extended through the
water column to generate uniform vertical profiles.

3 Results

3.1 General hydrographic conditions

General hydrographic conditions, including the distribution
of temperature and salinity, are detailed in the introduction
of this special issue (Claustre et al., 2008).

3.2 Pigment distribution

In terms of algal biomass (Fig. 3), the surface TChla concen-
trations were lowest at the hyper-oligotrophic centre of the
SPSG (0.017 mg m−3 at station 6), while the highest surface
values were found at both ends of the transect in the eutrophic
upwelling area (up to 1.5 mg m−3) and in the mesotrophic
Marquesas area (0.200 to 0.400 mg m−3). Furthermore, a
progressive deepening of the DCM towards the centre of the
gyre could be observed, varying from 50 m depth in the Mar-
quesas area to 180 m in the centre of the gyre (reaching 190 m
at Station 6). Pigment concentrations at the DCM in the
SPSG were generally 10 fold those observed at the surface
(Fig. 4a). Down to 50 m at the Chilean upwelling, the TChla

profile is generally homogenous.
The mean clear sky daily PAR irradiance at the surface

is 51.8 mol quanta m−2 d−1 (Huot et al., 2007). This covers
the whole transect, the variability due to latitude being in-
significant. Figure 3 illustrates how the Ze, which therefore
corresponds to the 0.5 mol quanta m−2 d−1 isolume, closely
follows the position of the DCM except in the centre of the
gyre where the DCM is clearly below the Ze.

In contrast with TChla, the accessory pigments do not
all exhibit the same East-West “symmetrical” distribution.
Figure 5 illustrates the vertical distribution of 6 representa-
tive pigments.

Total chlorophyll-b or TChl-b (Fig. 5a), reflecting
both chlorophytes, prasinophytes (chlorophyll-b) and
prochlorophytes (divinyl chlorophyll-b), showed minimum
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Fig. 4. Average vertical pigment profiles (mg.m-3) at the MAR, HNL, St4B, GYR, EGY, 
UPW and UPX sites: (a) Total chlorophyll a and divinyl chlorophyll a, the horizontal lines 
represent the depth of the euphotic layer (Ze) ; (b) zeaxanthin, 19’-hexanoyloxyfucoxanthin 
and fucoxanthin; (c) degradation products : phaeophorbide a + phaeophytin a  and 
chlorophyllide a. Horizontal bars represent the average value SD. 
 
 
 
 
 

 
 
 
 
 

Fig. 4. Average vertical pigment profiles (mg m−3) at the MAR, HNL, St4B, GYR, EGY, UPW and UPX sites:(a) Total chlorophyll-a and
divinyl chlorophyll-a, the horizontal lines represent the depth of the euphotic layer (Ze);(b) zeaxanthin, 19′-hexanoyloxyfucoxanthin and
fucoxanthin;(c) degradation products: phaeophorbidea+phaeophytina and chlorophyllide-a. Horizontal bars represent the average value
±SD.

concentrations at the surface of the gyre (less than
0.001 mg m−3), while the deep maximum (down to 200 m)
could reach more than 0.100 mg m−3. Maximum concen-
trations were encountered at station 20 (0.245 mg m−3) and
station UPX (0.400 mg m−3). Because divinyl chlorophyllb
is totally absent in the upwelling zone, this feature is
likely the signature of green eukaryotes. A remarkable
feature in the gyre system is the high TChl-b concentration
below the DCM which is essentially composed of divinyl
chlorophyll-b (reaching up to 100% of TChlb).

Divinyl chlorophyll-a or DVChl-a, (Figs. 4a and 5b), rep-
resentative of prochlorophytes, was detected over the whole
studied area, except for the upwelling zone, with surface wa-
ter concentrations varying around 0.040 mg m−3 at the MAR
station, increasing to 0.050 at the HNL station then pro-
gressively decreasing to 0.003 mg m−3 in the centre of the
gyre. East of the gyre, surface concentrations did not exceed
0.008 mg m−3. At depth, the distribution of DVChla concen-
trations generally followed that of the DCM (Fig. 4a).

The photoprotecting zeaxanthin or Zea (Figs. 4b and
5c), found in cyanobacteria and prochlorophytes, showed
very low surface values in the centre of the gyre (around
0.010 mg m−3 at the surface) and progressively increas-
ing concentrations with depth, with a maximum (about
0.050 mg m−3) above the DCM, around 150 m. A particular
zone, coinciding with the South Pacific Tropical Water mass
between HNL and station 4, was characterised by high and
constant zeaxanthin concentrations between the surface and
100 m depth. In the upwelling area, zeaxanthin was detected
in very low concentrations, while the photoprotecting diadi-
noxanthin and diatoxanthin, (essentially typical pigments of
diatoms and prymnesiophytes) significantly increased (data
not shown).

19′-Hexanoyloxyfucoxanthin or Hex (Figs. 4b and 5d),
representative of chromophyte nanoflagellates, was detected
throughout the whole studied area, with highest concentra-
tions at the extremities of the transect: in the Marquesas
archipelago (0.060–0.130 mg m−3 and 0.130–0.180 mg m−3

Biogeosciences, 5, 353–369, 2008 www.biogeosciences.net/5/353/2008/
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Fig. 5. Vertical cross sections for pigment concentrations (mg.m-3) across the BIOSOPE 
cruise transect. (a) Total chlorophyll b; (b) divinyl chlorophyll a; (c) zeaxanthin; (d) 19'-
hexanoyloxyfucoxanthin; (e) fucoxanthin; (f) bacteriochlorophyll a. (Ocean Data View 
(ODV) software, version 3.0.1, R.Schlitzer, http://odv.awi-bremerhaven.de/, 2005). 
 
 
 
 

 
 
 
 
 
 

Fig. 5. Vertical cross sections for pigment concentrations (mg m−3) across the BIOSOPE cruise transect.(a) Total chlorophyll-b; (b) divinyl
chlorophyll-a; (c) zeaxanthin;(d) 19′-hexanoyloxyfucoxanthin;(e) fucoxanthin;(f) bacteriochlorophyll-a.

at the surface and 50 m depth respectively), around stations
20 and 21 (0.140 mg m−3and 0.400 mg m−3 at the surface
and 50 m depth respectively) and at station UPW (0.140–
0.230 mg m−3 and 0.320 mg m−3 at the surface and 40 m
depth respectively). The 19′-hexanoyloxyfucoxanthin con-
centrations at the UPX site were lower than 0.067 mg m−3.
Lowest concentrations were found at the centre of the gyre:
0.005 mg m−3 at the surface and 0.050 mg m−3 at the DCM.
Interestingly, throughout the central gyre the Hex concen-
trations were twice higher around 270 m depth than at the
surface (0.011 mg m−3).

Fucoxanthin or Fuco (Figs. 4b and 5e), a tracer of di-
atoms, was found in very low amounts throughout the SPSG.
Significant concentrations were only found in the Marque-
sas waters (0.020 to 0.080 mg m−3 at the surface and up to
0.100 mg m−3 at 50 m depth) and in the upwelling zone, par-
ticularly at station UPW (0.700 and 1.600 mg m−3 at the sur-
face and at 40 m depth respectively). Fucoxanthin concentra-
tions did not exceed 0.200 mg m−3 at station UPX.

At the MAR station, bacteriochlorophyll-a concentrations
(BChl-a, Fig. 5f) in the first 100 m varied around 0.0015 and
0.0035 mg m−3. At the HNL station, they were variable but
lower than at MAR (between 0.0010 and 0.0016 mg m−3),
although a slight deep maximum was observed around 80m

depth (0.0015 to 0.0033 mg m−3). The surface BChla
concentrations within the gyre system remained extremely
low and close to detection limits (0.0005 mg m−3), while
a BChla deep maximum was observed around 100 m
(0.0010 mg m−3). In the upwelling area, the BChla concen-
trations were the highest measured over the whole transect
(between 0.0020 and 0.0090 mg m−3).

Minor pigments such as prasinoxanthin and alloxanthin,
respectively associated to prasinophytes and cryptophytes,
were never detected in the Marquesas area and hardly in
the SPSG (data not shown). However, prasinoxanthin, as-
sociated to chlorophyll-b, as well as neoxanthin, violax-
anthin and lutein (typical indicators of chlorophytes and
prasinophytes), were found in significant concentrations at
the coastal upwelling UPX site, thus suggesting an important
localised contribution of green picophytoplankton in these
waters.

Chlorophyllide-a or Chlida and phaeopigments (Fig. 4c)
were scarce in the gyre, sometimes detectable at the DCM.
Chlida was present in significant and variable amounts at the
MAR and UPW stations. The degradation products derived
from the demetallation of chlorophyll-a associated to grazing
activities (phaeophorbide-a and phaeophytin-a) were found
in high concentrations essentially in the upwelling area, with
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Fig. 6. Biosope cruise cross sections of in situ TChla concentrations in mg.m-3 (a-c) and 
percentages (e-g) associated to the pico-, nano- and microphytoplankton size classes. Black 
dots represent sampling points. (Ocean Data View (ODV) software, version 3.0.1, 
R.Schlitzer, http://odv.awi-bremerhaven.de/, 2005). 
 
 

 
 
 Fig. 6. Biosope cruise cross sections of in situ TChla concentrations in mg m−3 (a–c)and percentages(e–g)associated to the pico-, nano-

and microphytoplankton size classes. Black dots represent sampling points.

the phaeopigment to TChla ratio increasing constantly with
depth up to values of 1.500. Degradation pigment concentra-
tions generally showed a good correlation with the fucoxan-
thin concentrations (data not shown).

3.3 Distribution of the phytoplankton pigment based size
classes

Picophytoplankton, represented by cyanobacteria and
prochlorophytes in this study, present similar variations
to TChla (Fig. 6a), with a deep maximum coinciding
with the DCM (around 180 m in the centre of the gyre).
Picophytoplankton is unusually high at the UPX station.
In terms of percentages of TChla, the highest values for
picophytoplankton (>70%) are found associated with
South Pacific Tropical Water (SPTW) between stations 2
and 5 (Fig. 6d). Elsewhere in the gyre, the proportion of
picophytoplankton varies between 40 and 60% down to
250 m. Nanophytoplankton in the gyre system varies in
concentrations and proportions that are comparable to the
picophytoplankton (Figs. 6b and 6e), although below 250 m,
it is found in proportions greater than 60% (essentially
due to the quasi dominance of Hex). At the MAR station,
nanophytoplankton is the predominant class. Surface waters
at stations 17 and 18 also present relatively high proportions

of nanophytoplakton (>60%), while minimal proportions
are found in the SPTW area (<30%) and in the upwelling
zone. Microphytoplankton, as for fucoxanthin, points to
the scarcity in diatom populations across the gyre system
(Fig. 6c). Interestingly, a slight increase in the proportion
of essentially fuco-containing phytoplankton is observed
in the surface waters of the central gyre (>10%, Fig. 6f)
while proportions are less than 10% in the rest of the
gyre system. The Marquesas waters are also enriched in
fucoxanthin-containing microphytoplankton (>20%). In the
upwelling zone, microphytoplankton represents more than
60% of the TChla biomass. The contribution of peridinin
to the microphytoplankton pool is generally low, but there
are some exceptions: for example the Peri to Fuco ratio is
particularly high (>2) in the SPTW area and at sites 15 and
20.

3.4 TChla biomass and pigment-based size classes: mod-
elled versus in situ data

3.4.1 Global trends in Tchla

The vertical sections of the TChla concentrations obtained
from in situ measurements and from the model are presented
in Figs. 3 and 7, respectively. The comparison between these
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Fig. 7. Contour plot of the predicted TChla concentrations (mg.m-3) for the BIOSOPE cruise 
transect. (Ocean Data View (ODV) software, version 3.0.1, R. Schlitzer, (http://odv.awi-
bremerhaven.de/, 2005). 
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Fig. 9. Composition of the phytoplankton population as a function of surface TChla 
concentrations for in situ and model data. (a) integrated percentages of pico-, nano- and 
microphytoplankton between 0 and 1.5 Ze and (b) surface percentages of pico-, nano- and 
microphytoplankton. 
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Fig. 8. Composition of the phytoplankton population as a function of surface TChla concentrations for in situ and model data.(a) integrated
percentages of pico-, nano- and microphytoplankton between 0 and 1.5 Ze and(b) surface percentages of pico-, nano- and microphytoplank-
ton.

two figures illustrates the capacity of the model to reproduce
the general trends in the horizontal and vertical distribution
of the TChla. Notably, the model simulates the gradient
observed in the surface concentrations with extremely low
values in the core of the gyre (≈0.030 mg m−3) and higher
values at the extremities of the transect, i.e. in the vicin-
ity of the Marquesas Islands and of the upwelling of Chile
(≈1.500 mg m−3). It also reproduces the surface maximum
at each end of the transect as well as the deepening of the
maximum in the centre of the gyre. Besides these similarities
however, the depth of the TChla maximum is significantly
underestimated in the core of the gyre (≈120 m according to
the model vs. 180 m following in situ measurements).

3.4.2 Global trends in pigment-based size classes

In a first approach we considered the contribution of the
three pigment-based size classes to the total phytoplankton
biomass as a function of the surface [TChla]. To do so,
the same procedure as described in Uitz et al. (2006) was
used. Namely, the average contribution of each phytoplank-
ton size class was calculated for the surface layer on the
one hand, and for the 0–1.5 Ze layer on the other hand, for
nine trophic categories defined by successive intervals of sur-
face [TChla]. The resulting contributions are compared to
those obtained from the global dataset from which the model
has been derived (Fig. 6 in Uitz et al., 2006). The changes
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Fig. 10. Cross sections of the predicted TChla concentrations along the BIOSOPE transect for 
pico-, nano- and microphytoplankton, expressed in mg.m-3 (a-c) and percentages (d-f). (Ocean 
Data View (ODV) software, version 3.0.1, R.Schlitzer, http://odv.awi-bremerhaven.de/, 
2005). 
 
 
 
 

 
 
 
 
 

Fig. 9. Cross sections of the predicted TChla concentrations along the BIOSOPE transect for pico-, nano- and microphytoplankton, expressed
in mg m−3 (a–c)and percentages(d–f).

in the contribution of the three pigment-based size classes
as a function of the surface [TChla] display the same gen-
eral trend for both datasets (Fig. 8). Indeed, the contribu-
tion of microphytoplankton tends to increase with the sur-
face TChla concentration, and reaches up to 50–60% for a
surface [TChla] of 1.000 mg m−3. In contrast, picophyto-
plankton dominate in oligotrophic conditions (≈50% for a
surface [TChla] of 0.030 mg m−3) and nanophytoplankton
in mesotrophic conditions (≈50% for a surface [TChla] of
0.500 mg m−3).

3.4.3 Deviations with respect to the global trends

The comparison between in situ data and predictions shows
that, at a first order, the model performs well for the wide
range of trophic situations encountered along the BIOSOPE
transect (Fig. 8). The sections of the absolute and relative
TChla concentrations of micro-, nano- and picophytoplank-
ton obtained from the model are presented in Fig. 9, to be
compared to Fig. 6 (in situ data). In terms of absolute con-
centrations, the model displays similar values to those mea-
sured in situ. The global trends are also well represented in
terms of relative values, as expected from Fig. 8. This ex-
ercise thus represents an a posteriori validation of the model
considering that the BIOSOPE dataset was not included in

the database from which the model has been derived. In ad-
dition, this comparison exercise allows the identification of
several features where the phytoplankton composition is not
typical of the model-based composition associated to a given
surface [TChla]. These particularities may be related to the
very unique spatial and temporal features (large- or small-
scale) that occurred within the study region. Within the fol-
lowing discussion, several areas, characterized by atypical
pigment distributions and associations, will be depicted.

4 Discussion

4.1 General trends

4.1.1 Dominance of picophytoplankton in the South Pacific
Subtropical Gyre

Between stations 1 and 16 (from 13.5◦ S; 132.1◦ W to
31.4◦ S; 93◦ W), picophytoplankton is generally the most
abundant size class (50–60% of the phytoplankton biomass
down to 250 m). This observation is consistent with other
studies in tropical and subtropical areas of the world ocean
(Claustre and Marty, 1995; Bidigare and Ondrusek, 1996;
Mackey et al., 1996; Dandonneau et al., 2006). In these
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strongly illuminated waters, cyanobacteria essentially dom-
inate the phytoplankton populations. Synechococcus are
more abundant at the surface and Prochlorococcus at depth
(Fig. 11b and Fig. 11c). When DVChla concentrations
from the BIOSOPE cruise were compared with data from
the Atlantic subtropical gyre systems (Uitz et al., 2006),
it resulted that such low surface concentrations had never
yet been measured and that, as for TChla, the deep maxi-
mum concentration was significantly deeper than observed
elsewhere (data not shown). The effect of photoacclima-
tion (Falkowski and LaRoche, 1991; Partensky et al., 1996;
Claustre and Marty, 1995) may explain this observation. It
can also lead to an eventual increase of the accessory pig-
ments to TChla ratios with depth (MacIntyre et al., 2002).
However this is not a rule, since the pigments do not all
react similarly with changing irradiance. Prochlorophytes
are known to reach maximal relative abundances in highly
stratified and extremely nutrient-depleted waters (Partensky
et al., 1999; Johnson and Howd, 2000). Either variations
in community structure or photoadaptive processes within
the cells (phenotypic versus genotypic modifications), may
explain the observed vertical structure of the prochloro-
phyte population with divinyl chlorophyll-a prevailing in
the upper 180 m (DCM included) while a layer of divinyl
chlorophyll-b-rich water sits at the base of the DCM (DVChl-
b/DVChl-a<0.1 above 150 m and≈2 at 300 m depth, see
also Fig. 11a). Goericke and Repeta (1993) and Parten-
sky et al. (1996) made similar observations in the North At-
lantic. Moore and Chisholm (1999), Partensky et al. (1999),
Johnson et al. (2006), Bouman et al. (2006) and Garczarek
et al. (2006) support the hypothesis that several genetically
different prochlorophyte populations coexist over a vertical
light gradient. These ecotypes would be characterised by
varying DVChlb to DVChla ratios indicating their adapta-
tion to low-light (below the thermocline) or high-light (in the
upper mixed layer) environments. The extent of the depth
reached by prochlorophyte populations may not only depend
on light and on nutrients, but may also be limited by temper-
ature. Indeed, in the SPSG, the divinyl chlorophyll-a and
divinyl chlorophyll-b concentrations were always detected
above the 11◦C isotherm, as has been previously observed
by Dandonneau et al. (2006) and Partensky et al. (1999).

4.1.2 Ubiquity of nanophytoplankton in the South Pacific

Throughout most of the SPSG, nanophytoplankton, essen-
tially represented by Hex, corresponded to 40–50% of the
TChla biomass down to 200 m depth (Fig. 11d). The ubiq-
uity of the nanophytoplankton class, even in conditions of
hyper-oligotrophy and high irradiance, reflects a strong ca-
pacity for adapting to the extreme conditions encountered
along the transect and as well as at great depths where nu-
trients become available. Caution must be taken with the
definition of nanophytoplankton as it is essentially based on
the presence of Hex and But. In the study area, especially at

Table 2. Average values± SD of the 0–1.5 Ze integrated TChla

contents (mg m−2) associated to the total phytoplankton biomass
and to the three pigment-based size classes: pico-, nano- and mi-
crophytoplankton between stations 1 and 16 for the gyre system
and for stations MAR, EGY, UPW and UPX.

Stations TChla [TChla]-pico [TChla]-nano [TChla]-micro

St1–St16 20.3±2.1 11.6±1.7 7.4±0.8 1.3±0.3
MAR 30.2±2.8 7.1±0.1 15.7±1.6 7.4±1.4
EGY 23.0±0.5 11.6±0.5 9.7±0.4 1.7±0.1
UPW 79.2±22.7 3.8±1.6 8.7±3.4 66.7±18.3
UPX 37.4±6.9 17.8±2.1 3.0±0.2 16.5±4.5

the surface, these pigments which are typical for flagellates
could however belong to smaller cells which may be part of
the picophytoplankton pool. Further information would be
needed to assess the real definition of size classes relative to
the pigment composition in such oligotrophic waters.

4.1.3 Importance of photoheterotrophic bacteria in olig-
otrophic waters

BChla-containing photosynthetic bacteria were most repre-
sentative in the centre of the SPSG, with average surface
BChla/TChla ratios of 2% progressively decreasing down
to 0% at 170 m depth (Fig. 11f). These values are much
lower than the range of 5 to 10% mentioned by Kolber et
al. (2001). The results from the BIOSOPE cruise agree bet-
ter with Cottrell et al. (2006) who measured ratios between
0.3% and 2.6% in the Mid-Atlantic Bight and are higher than
those measured by Goericke (2002) in the oligotrophic Cali-
fornia Current System (0.7%). This is consistent with paral-
lel measurements done by Lami et al. (2007) who found high
standing stocks of aerobic anoxygenic phototrophic (AAP)
bacteria above the DCM in the SPSG.

4.1.4 The Marquesas Archipelago – HNLC transition zone

Comparison with the model data essentially focuses on the
transition between the MAR and HNL sites, as the pigment
distribution differs from one site to another. At the MAR site,
the average integrated TChla biomass between the surface
and 1.5 Ze varied around 30.2±2.8 g m−2 (Table 2). Bidi-
gare and Ondrusek (1996) measured values (between 0 and
150 m) ranging from 24 to 30 mg TChla m−2 in the same
area. Nanophytoplankton was the predominant size class
(50–60%) between 0 and 175 m as equally predicted by the
model. This is well represented by the Hex distribution.
Above 80 m depth, the microphytoplankton pool had similar
proportions to picophytoplankton (20–25% each), while be-
low 80 m it decreased to less than 10% (Figs. 6d and f). The
MAR site was also the only site of the transect (apart from
the upwelling), where signs of diatom senescence could be
found. Microscopic observations showed significant counts
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Fig. 8. Contour plot of the Photoprotection Index (PI) across the BIOSOPE transect. The large 
black dots represent the depth of the euphotic layer (Ze). The small black dots represent the 
collected water samples at each station. (Ocean Data View (ODV) software, version 3.0.1, 
R.Schlitzer, http://odv.awi-bremerhaven.de/, 2005). 
 
 
 
 
 

 
 
 
 
 

Fig. 10.Contour plot of the Photoprotection Index (PI) across the BIOSOPE transect. The large black dots represent the depth of the euphotic
layer (Ze). The small black dots represent the collected water samples at each station. (Ocean Data View (ODV) software, version 3.0.1,
R. Schlitzer,http://odv.awi-bremerhaven.de/, 2005).

of diatoms and a low number of dinoflagellate populations
(Gomez, personal communication, 2006). The proportion of
peridinin also remained low, confirming the weak contribu-
tion of the dinoflagellate population. This is in agreement
with previous observations in the Equatorial Pacific Ocean
(Bidigare and Ondrusek, 1996). However precautions may
need to be taken with the interpretation of the peridinin con-
centrations, as dinoflagellates that do not contain peridinin,
like certainGymnodiniumsp., have already been observed in
these waters (Chavez et al., 1990; Landry et al., 2000).

As expected, the HNL site, being “upstream” of the South
Equatorial Current, was more typical of the stratified olig-
otrophic gyre waters, with a two fold increase in the pro-
portion of picophytoplankton (Fig. 6d). A strong proportion
of picophytoplankton, essentially prochlorophytes, prevailed
around 130 m. An unusually high contribution of DVChlb

was also observed at this depth. Nanophytoplankton repre-
sented about 30% of the total TChla biomass (Fig. 6e). The
proportion of microphytoplankton showed a discrete maxi-
mum around 60 m but remained below 12% (Fig. 6f), with a
higher contribution of peridinin (dinoflagellates). It appears
that the algal population at the HNL site is influenced by the
proximity of the more hydrodynamically stable South Pacific
Tropical Water formation area rather than the turbulent wa-
ters of the Marquesas Islands (Signorini et al., 1999).

4.2 Geographical particularities in the pigment distribution
and associations

4.2.1 Extreme depth of the DCM in the Central South Pa-
cific subtropical gyre

The chlorophyll maximum has rarely been observed to reach
such remarkable depths in the global ocean as those encoun-
tered here. Although comprehensive, the dataset on which
the model is based does not include data collected in such
extreme oligotrophic conditions as those encountered during

the BIOSOPE cruise. Unsurprisingly, this made it difficult to
predict the extent of the chlorophyll maximum in the centre
of the gyre. Although some small nuances exist in the pig-
ment distribution, the main and more important particular-
ity of the SPG remains its exceptional transparency (Morel
et al., 2007). This is likely the result of exceptional weak
diffusive nutrient fluxes from the deep nutricline. Through-
out the gyre, the integrated TChla concentrations between
0 and 1.5Ze varied around 20.3±2.1 mg m−2 (Table 2) and
fall within the range of those measured between 0 and 250 m
by Claustre and Marty (1995) in the North Tropical At-
lantic Ocean. This implies that although the phytoplank-
ton biomass can develop at larger depths than in other parts
of the world ocean, the biomass integrated down to 1.5 Ze
seemingly remains comparable to other subtropical gyre sys-
tems. The phytoplankton community therefore follows the
same general trends as observed for other gyres with the no-
ticeable difference that the distribution is more extended (di-
luted) over the geometric depth. Actually with respect to eu-
photic depth (the ratio Z/Ze) the DCM in the SPG is located
deeper than in other gyres. The DCM is generally associated
to the depth of the euphotic zone in other subtropical gyres
(Letelier et al., 2004; Uitz et al., 2006), while for the most
oligotrophic stations of the SPG, it was located at∼1.2 Ze
(i.e. at 190 m for Ze=160 m). Consequently, phytoplankton
at the level of the DCM and below has developed the most
extreme adaptation characteristics with respect to light.

The adaptation to these extreme optical conditions can also
be investigated through light intensity, characterised by the
photoprotection index PI:

PI=(Diadinoxanthin+ Diatoxanthin+ Zeaxanthin)/[TChla] , (4)

As expected, the values of the PI increase towards the sur-
face, but more interestingly, the depths of the euphotic layer
along the cruise track appear to closely follow the vertical
variations in the PI (Fig. 10).
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Fig. 11. Cross sections for pigment concentrations normalised to Total chlorophyll a across 
the BIOSOPE cruise transect. (a) Total chlorophyll b/TChla; (b) Divinyl Chlorophyll 
a/TChla; (c) Zeaxanthin/TChla; (d) 19'-Hexanoyloxyfucoxanthin/TChla; (e) 
Fucoxanthin/TChla; (f) Bacteriochlorophyll a/TChla. (Ocean Data View (ODV) software, 
version 3.0.1, R.Schlitzer, http://odv.awi-bremerhaven.de/, 2005). 
 
 

 
 
 
 

Fig. 11. Cross sections for pigment concentrations normalised to Total chlorophyll-a across the BIOSOPE cruise transect.(a)
Total chlorophyll-b/TChl-a; (b) Divinyl Chlorophyll-a/TChl-a; (c) Zeaxanthin/TChla; (d) 19′-Hexanoyloxyfucoxanthin/TChla; (e)
Fucoxanthin/TChla; (f) Bacteriochlorophyll-a/TChl-a.

4.2.2 A deep nanoflagellate population

A sudden increase in the proportion of nanophytoplankton
was observed at the base of the DCM (Fig. 11d). This feature
has been observed in other subtropical gyre systems (Claus-
tre and Marty, 1995; Monger et al., 1999), but the reasons
for its existence are still unclear. Claustre and Marty (1995)
suggest that this deep nanoflagellate population can develop
close to the nutricline, which is the case here. Other types of
measurements from the cruise indicated that this deep layer
was particularly rich in coccoliths (Beaufort et al., 2007).
Twardowski et al. (2007) observed a high backscattering ra-
tio in this layer and suggest that this population may corre-
spond to the coccolithophoridFlorispharea profunda.

4.2.3 Slight increase in microphytoplankton in the centre
of the SPSG

The microphytoplankton group was extremely sparse in the
SPSG. Nevertheless, in the 0–80 m surface layer, a slight in-
crease in the proportion of microphytoplankton, essentially
represented by fucoxanthin (Fig. 11e), was observed at the
centre of the gyre (particularly station 11). In contrast,

Gomez (2007), in accordance with the model results, de-
scribes a distinct decrease of the diatom population towards
the centre of the gyre and towards the surface. Therefore
according to microscopic observations this small increase of
fucoxanthin should not originate from a diatom population
(Gomez, personal communication), unless the diatom cells
are smaller than 15µm (lower limit of detection for the mi-
croscopic method).

Certain endosymbiont cyanobacteria, attached to particu-
lar diatom genera, directly fix dinitrogen and can supply all
the nitrogen required to their host (Carpenter, 2002). Ven-
rick (1974) and Scharek et al. (1999) have reported that sev-
eral diatom species of the generaHemiaulusor Rhizosole-
nia in association with the diazotroph cyanobacteriaRiche-
lia intracellularis are able to survive in oligotrophic sur-
face waters. Indeed, although in low abundance,Hemiaulus
hauckiiwere observed by microscopy to be the only diatom
species at the surface at station 12 (Gomez, personal com-
munication, 2006). Nevertheless, very little is yet known
about these symbioses. Other large species of diatoms (Eth-
modiscus, Rhizosoleniamats) or dinoflagellates (Pyrocystis)
can migrate between the nutricline and surface waters in
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nutrient-poor conditions (Villareal et al., 1999; Singler and
Villareal, 2005), but apart from the presence ofNitzschia
andDactyliosolenbetween 200 and 300 m depth in the gyre,
no significant microscopic observations are available. An
alternative explanation may be the presence of other Fuco-
containing phytoplankton groups, such as haptophytes or
pelagophytes, but no other associated pigments behave like
Fuco in this area, except for Peri which shows higher propor-
tions in the surface waters of the SPSG. Hardy et al. (1996)
and Gomez (personal communication, 2006) have observed
small dinoflagellates to occur in the surface waters of the
central gyre. Certain species of dinoflagellates are known
to contain Fuco, especially when Peri is absent (Morden and
Sherwood, 2002). So even though Fuco and Peri do not cor-
relate well, one can hypothesise that the Fuco contribution in
these waters may partly originate from dinoflagellate popu-
lations.

4.2.4 Very strong signature of prochlorophytes in the South
Tropical Surface Water

The North-western border of the South Pacific Subtropical
Gyre is under the influence of the South Equatorial Cur-
rent (SEC) and represents typical HNLC (High Nutrient Low
Chlorophyll) conditions. Between stations 2 and 5, the rea-
sons for the particularly high proportion of picophytoplank-
ton (Fig. 6d), and more preciselyProchlorococcus, down
to 150 m, seem unclear. Their development is nevertheless
associated to the remarkably high-salinity waters (36.5) of
the South Tropical Surface Water (STSW), where a stronger
evaporation rate relative to precipitation occurs (Johnson and
McPhaden, 1999) and surface nutrient levels remain, as in the
rest of the gyre system, below detection limits (Raimbault,
2007). This water mass can be characterised by a very spe-
cific prochlorophyte-dominated picophytoplanktonic popu-
lation. A a consequence, the Zea/TChla ratios are also ex-
ceptionally high (greater than 1) above 65 m depth (Fig. 11c).
It is also the only part of the transect where the relative
Fuco concentration represents less than 2.5% of the TChla

biomass (Fig. 11e). As the surface TChla biomass in this
zone is not exceptional in comparison to the rest of the gyre,
the model does not predict such an unusual distribution in
the phytoplankton population. The prevailing conditions and
the exceptional phytoplankton population in this area would
definately deserve further investigation.

4.2.5 High variability in community structure in the up-
welling area

Only the upwelling region was characterised by a proportion
of microphytoplankton above 30% (Fig. 6f). This was also
reflected by the model data (Fig. 9f). However both sites
seem to have been very different in a taxonomical point of
view, a difference which could not be predicted by the model.
Table 2 summarizes, for the 0 to 1.5 Ze layer, the differences

observed between these 2 sites, with a higher and more vari-
able integrated TChla biomass at UPW than at UPX, the for-
mer being dominated by the microphytoplankton and the lat-
ter by equivalent proportions of pico- and microphytoplank-
ton. The offshore UPW station was characteristic of a typ-
ically mature spring bloom with higher biomass concentra-
tions essentially represented by diatoms which had probably
been advected offshore from the upwelling zone. This is con-
firmed by the nutrient concentrations (Raimbault et al., 2007)
that showed near-depletion in the surface waters of the UPW
site and which may attribute the decrease of phytoplankton
biomass towards the surface as a beginning of nutrient star-
vation. Furthermore, signs of pigment degradation related to
senescence and grazing were highest for this site (Fig. 5c).
Stuart et al. (2004) had similar results along the Chilean
coast, i.e. typical upwelling features with high phytoplank-
ton biomass (above 10 mg m−3) and microphytoplankton-
predominant populations, especially above the shelf break,
and lower concentrations over the continental shelf and off-
shore regions. Only one site in their study presented unusu-
ally high relative concentrations of Chlb and Zea.

The surface waters of the coastal UPX site were domi-
nated by a picoeukaryotic community (49 to 70% of pico-
phytoplankton between the surface and 30 m depth), while
it represented less than 10% of the TChla biomass at the
diatom-dominated UPW site. The pigments associated to
the picoeukaryotic chlorophytes, prasinophytes and crypto-
phytes were essentially found in the upwelling zone only,
with absolute and relative concentrations several fold higher
at the UPX site than at UPW. The flow cytometry data also
indicated a maximum in concentrations of picoeukaryotes at
this site (Grob, 2007). According to the temperature pro-
files, UPX was seemingly the site of recent upwelling of
cold deep waters and the observed phytoplankton community
was probably at an early stage of development. Experimental
tests by Duarte et al. (2000a and b) on a Mediterranean com-
munity showed how increasing nutrient inputs lead to an ini-
tial autotrophic response of picophytoplankton (particularly
Synechoccocus) which is later rapidly replaced by a stronger
and more robust population of microphytoplankton. Further-
more, Larsen et al. (2004) and Bratbak et al. (1990) also
witnessed an increase in autotrophic picoeukaryotes and/or
cyanobacteria preceding a diatom spring bloom. Claustre et
al. (1994) observed a similar event along a geostrophic front,
where a ubiquitous flagellate biomass, associated to recently
upwelled water, was observed to develop rapidly before be-
ing dominated by a slower developing diatom population.
The picophytoplankton population at UPX was dominated by
picoeukaryotes and not cyanobacteria (very low zeaxanthin
concentrations) nor flagellates (the nanophytoplankton class
varied at background levels at less than 10%, values which
are largely overestimated by the model), but the observations
of Claustre et al. (1994), Duarte et al. (2000a, b) and Larson
et al. (2004) could corroborate the idea that this young pico-
phytoplankton community had quickly responded to a recent
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input of nutrients at the surface before being taken over by a
diatom-dominated population. These transient communities
are not usually observed in eutrophic zones as they probably
occur at small time-scales. They are thus difficult to measure
and even more to forecast with global models like the one
used in this study.

5 Conclusions

As expected, the surface waters of the South Pacific Sub-
tropical Gyre are the site of extremely low concentrations
of phytoplankton biomass, requiring highly sensitive ana-
lytical techniques. The HPLC analytical method applied in
this study was especially modified in order to adapt to such
low concentrations and due to the low limits of detection
obtained, an accurate and precise coverage of the different
phytoplankton pigments with taxonomical significance has
been achieved.

A phytoplankton pigment parameterisation, based on re-
motely sensed surface TChla concentrations was applied to
the BIOSOPE transect and the predicted values were com-
pared to the in situ data. In a first approach, the general pat-
terns produced by the model were relatively well validated by
the in situ data across such contrasting environments. How-
ever, in detail, this has revealed certain areas where the phy-
toplankton populations deviate from their typical composi-
tion that would be expected from the surface TChla concen-
trations. These are specific temporal or spatial features that
cannot be depicted by a global parameterisation. The pig-
ment signatures observed during the BIOSOPE cruise thus
point to new issues and questions which could be the ob-
ject of upcoming studies regarding the development of phyto-
plankton populations in the extreme conditions encountered
in the ultra-oligotrophic center of the gyre, in the high salin-
ity SPTW formation area or in eutrophic upwelling zones in
general.

The outcome of such a comparison is a very promising
new methodology for identifying atypical structures: indeed
the model used here could be applied to data from other parts
of the global ocean and could thus become a useful tool for
rapidly pinpointing pigment associations and distributions
that deserve special interest.
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