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ON NONLOCAL PROBLEMS
FOR FRACTIONAL DIFFERENTIAL EQUATIONS

IN BANACH SPACES

XiWang Dong, JinRong Wang, Yong Zhou

Abstract. In this paper, we study the existence and uniqueness of solutions to the nonlocal
problems for the fractional differential equation in Banach spaces. New sufficient conditions
for the existence and uniqueness of solutions are established by means of fractional calculus
and fixed point method under some suitable conditions. Two examples are given to illustrate
the results.
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1. INTRODUCTION

During the past two decades, fractional differential equations have been proved to be
valuable tools in the modelling of many phenomena in various fields of engineering,
physics and economics. For more details, one can see the monographs of Kilbas et
al. [6], Lakshmikantham et al. [7], Miller and Ross [8], Podlubny [12]. Very recently,
fractional differential equations and optimal controls in Banach spaces are studied by
Balachandran et al. [3, 4], N’Guérékata [9, 10], Mophou and N’Guérékata [11], Wang
et al. [13–20], Zhou et al. [22–24] and etc.

Throughout this paper, (X, ‖ · ‖) will be a Banach spaces, and J = [0, T ], T > 0.
Let C(J,X) be the Banach space of all continuous functions from J into X with the
norm ‖u‖C := sup{‖u(t)‖ : t ∈ J} for u ∈ C(J,X).

We consider the following nonlocal problems of fractional differential equation{
cDqu(t) = f(t, u(t)), t ∈ J,
u(0) + g(u) = u0,

(1.1)
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where cDq is the Caputo fractional derivative of order q ∈ (0, 1), f : J ×X → X is
strongly measurable with respect to t and is continuous with respect to u. The nonlocal
term g : C(J,X) → X is a given function satisfying some assumptions that will be
specified later. The nonlocal condition can be applied in physics with better effect than
the classical initial value problem. Nonlocal conditions were initiated by Byszewski
[1] when he proved the existence and uniqueness of mild and classical solutions of
nonlocal Cauchy problems. As remarked by Byszewski [2] and Deng [5], the nonlocal
condition can be more useful than the standard initial condition to describe some
physical phenomena.

A pioneering work on the existence results of solutions for system (1.1) has been
reported by N’Guérékata [9]. Also, N’Guérékata [10] reported that the results in [9]
hold only in finite dimensional spaces. In the present paper, we revisit this interesting
problem and establish some new existence principles of solutions to the system (1.1) by
virtue of fractional calculus and fixed point theorems under some suitable conditions,
which extend the results in [9] to infinite dimensional spaces.

The rest of this paper is organized as follows. In Section 2, we give some notations
and recall some concepts and preparation results. In Section 3, we give an important
priori estimation of solutions and obtain two main results (Theorems 3.4–3.5), the
first result based on Banach contraction principle, the second result based on Kras-
noselskii’s fixed point theorem. At last, two examples are given to demonstrate the
application of our main results.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.

Let us recall the following known definitions. For more details see [6].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a
function f is defined as

Iγf(t) =
1

Γ(γ)

t∫
0

f(s)
(t− s)1−γ ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order γ with the lower limit
zero for a function f : [0,∞)→ R can be written as

LDγf(t) =
1

Γ(n− γ)
dn

dtn

t∫
0

f(s)
(t− s)γ+1−n ds, t > 0, n− 1 < γ < n.
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Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞)→ R can
be written as

cDγf(t) = LDγ

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n.

Remark 2.4. (i) If f(t) ∈ Cn[0,∞), then

cDγf(t) =
1

Γ(n− γ)

t∫
0

f (n)(s)
(t− s)γ+1−n ds = In−γf (n)(t), t > 0, n− 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then integrals which appear in

Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Lemma 2.5 (Bochner theorem). A measurable function f : J → X is Bochner integral
if ‖f‖ is Lebesbuge integrable.

Lemma 2.6 (Mazur lemma). If K is a compact subset of X, then its convex closure
convK is compact.

Lemma 2.7 (Ascoli-Arzela theorem). Let S = {s(t)} is a function family of contin-
uous mappings s : J → X. If S is uniformly bounded and equicontinuous, and for any
t∗ ∈ J , the set {s(t∗)} is relatively compact, then there exists a uniformly convergent
function sequence {sn(t)}(n = 1, 2, · · · , t ∈ J) in S.
Theorem 2.8 (Krasnoselskii). Let B be a closed convex and nonempty subsets of X.
Suppose that L and N are in general nonlinear operators which map B into X such
that:

(1) Lx+N y ∈ B whenever x, y ∈ B;
(2) L is a contraction mapping;
(3) N is compact and continuous.

Then there exists z ∈ B such that z = Lz +N z.
To end this section, we collect an important singular type Gronwall inequality

which is introduce by Ye et al. [21] and can be used in fractional differential equations.

Theorem 2.9 ([21, Theorem 1]). Suppose β > 0, ã(t) is a nonnegative function
locally integrable on J and g̃(t) is a nonnegative, nondecreasing continuous function
defined on g̃(t) ≤M , t ∈ J , and suppose u(t) is nonnegative and locally integrable on
J with

u(t) ≤ ã(t) + g̃(t)

t∫
0

(t− s)β−1u(s)ds, t ∈ J.

Then

u(t) ≤ ã(t) +

t∫
0

[ ∞∑
n=1

(g̃(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1ã(s)

]
ds, t ∈ J.
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Remark 2.10. Under the hypothesis of Theorem 2.9, let ã(t) be a nondecreasing
function on J . Then we have

u(t) ≤ ã(t)Eβ(g̃(t)Γ(β)tβ),

where Eβ is the Mittag-Leffler function defined by

Eβ(z) =
∞∑
k=0

zk

Γ(kβ + 1)
.

3. MAIN RESULTS

We make some following assumptions.

[H1] For any u ∈ X, f(t, u) is strongly measurable with respect to t on J .
[H2] For any t ∈ J , f(t, u) is continuous with respect to u on X.
[H3] For arbitrary u ∈ X, there exists a af > 0, such that

‖f(t, u)‖ ≤ af (1 + ‖u‖),

and for arbitrary u ∈ C(J,X), there exists a ag ∈ (0, 1) such that

‖g(u)‖ ≤ ag(1 + ‖u‖C).

[H4] For arbitrary u, v ∈ X satisfying ‖u‖, ‖v‖ ≤ ρ, there exists a constant Lf (ρ) > 0,
such that

‖f(t, u)− f(t, v)‖ ≤ Lf (ρ)‖u− v‖,

and for arbitrary u, v ∈ C(J,X) there exists a constant Lg ∈ (0, 1), such that

‖g(u)− g(v)‖ ≤ Lg‖u− v‖C .

Now, let us recall the definition of a solution of the system (1.1).

Definition 3.1. A function u ∈ C1(J,X) is said to be a solution of the system
(1.1) if u satisfies the equation cDqu(t) = f(t, u(t)) a.e. on J , and the condition
u(0) + g(u) = u0.

By Definition 2.1–2.3, one can obtain the following lemma.

Lemma 3.2. If the hypothesis [H1]–[H3] hold. A function u ∈ C(J,X) is a solution
of the fractional integral equation

u(t) = u0 − g(u) +
1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds, (3.1)

if and only if u is a solution of the system (1.1).
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Proof. For any r > 0 and u ∈ Br = {u ∈ C(J,X) : ‖u‖C ≤ r}, according to [H1]–[H2],
f(t, u(t)) is measurable function on J . For t ∈ J , we obtain that∫ t

0

(t− s)q−1‖f(s, u(s))‖ds ≤
∫ t

0

(t− s)q−1af (1 + ‖u(s)‖)ds ≤

≤ af

t∫
0

(t− s)q−1ds+ af

t∫
0

(t− s)q−1rds ≤

≤ (1 + r)afT q

q
.

Thus ‖(t − s)q−1f(s, u(s))‖ is Lebesgue integrable with respect to s ∈ [0, t] for all
t ∈ J and u ∈ Br. Then from Bochner’s theorem (Lemma 2.5) it follows that
(t− s)q−1f(s, u(s)) is Bochner integrable with respect to s ∈ [0, t] for all t ∈ J .

Let G(τ, s) = (t − τ)−q|τ − s|q−1. Since G(τ, s) is a nonnegative, measurable
function on D = [0, t]× [0, t] for t ∈ J , we have

t∫
0

t∫
0

G(τ, s)dsdτ =
∫
D

G(τ, s)dsdτ =

t∫
0

t∫
0

G(τ, s)dτds

and

∫
D

G(τ, s)dsdτ =

t∫
0

t∫
0

G(τ, s)dsdτ =

=

t∫
0

(t− τ)−q
t∫

0

|τ − s|q−1dsdτ =

=

t∫
0

(t− τ)−q

 τ∫
0

(τ − s)q−1ds

 dτ+

+

t∫
0

(t− τ)−q

 t∫
τ

(s− τ)q−1ds

 dτ ≤

≤ 2T
q(1− q)

.
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Let G1(τ, s) = (t − τ)−q(τ − s)q−1. Note that ‖f(s, u(s))‖ ≤ af (1 + r), therefore,
G1(τ, s)f(s, u(s)) is a Lebesbuge integrable function on D, then we have

t∫
0

τ∫
0

G1(τ, s)f(s, u(s))dsdτ =

t∫
0

t∫
s

G1(τ, s)f(s, u(s))dτds.

We now prove that

LDq(Iqf(t, u(t))) = f(t, u(t)), for t ∈ (0, T ].

Indeed, we have

LDq(Iqf(t, u(t))) =
1

Γ(1− q)Γ(q)
d

dt

t∫
0

(t− τ)−q
τ∫

0

(τ − s)q−1f(s, u(s))dsdτ =

=
1

Γ(1− q)Γ(q)
d

dt

t∫
0

τ∫
0

G1(τ, s)f(s, u(s))dsdτ =

=
1

Γ(1− q)Γ(q)
d

dt

t∫
0

t∫
s

G1(τ, s)f(s, u(s))dτds =

=
1

Γ(1− q)Γ(q)
d

dt

t∫
0

f(s, u(s))ds

t∫
s

G1(τ, s)dτ =

=
d

dt

t∫
0

f(s, u(s))ds =

= f(t, u(t)).
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We claim that u(t) is absolutely continuous on J . For that, for any disjoint family
of open intervals {(ai, bi)}ni=1 on J with

∑n
i=1(bi − ai)→ 0, we have

n∑
i=1

1
Γ(q)

∥∥∥∥∥∥
bi∫

0

(bi − s)q−1f(s, u(s))ds−
ai∫

0

(ai − s)q−1f(s, u(s))ds

∥∥∥∥∥∥ ≤
≤

n∑
i=1

1
Γ(q)

∥∥∥∥∥∥
bi∫
ai

(bi − s)q−1f(s, u(s))ds

∥∥∥∥∥∥+

+
n∑
i=1

1
Γ(q)

∥∥∥∥∥∥
ai∫

0

(
(bi − s)q−1 − (ai − s)q−1

)
f(s, u(s))ds

∥∥∥∥∥∥ ≤
≤ af (1 + r)

Γ(q)

n∑
i=1

bi∫
ai

(bi − s)q−1ds+

+
af (1 + r)

Γ(q)

n∑
i=1

ai∫
0

(
(ai − s)q−1 − (bi − s)q−1

)
ds ≤

≤ af (1 + r)
Γ(1 + q)

n∑
i=1

(bi − ai)q+

+
af (1 + r)
Γ(1 + q)

n∑
i=1

(
(ai)q + (bi − ai)q−1 − (bi)q

)
≤

≤ 2af (1 + r)
Γ(1 + q)

n∑
i=1

(bi − ai)q −→ 0.

Thus, u(t) is differentiable for almost all t ∈ J . According to the Remark 2.4, we have

cDqu(t) =c Dq

u0 − g(u) +
1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds

 =

=c Dq

 1
Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds

 =

=c Dq(Iqf(t, u(t))) =

=L Dq(Iqf(t, u(t)))− [Iqf(t, u(t))]t=0
t−q

Γ(1− q)
.

Since (t− s)q−1f(s, u(s)) is Lebesgue integrable with respect to s ∈ [0, t] for all t ∈ J ,
we known that [Iqf(t, u(t))]t=0 = 0 which implies that

cDqu(t) = f(t, u(t)), a.e. t ∈ J.
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Moreover, u(0) + g(u) = u0. Thus, u ∈ C(J,X) is a solution of system (1.1). On the
other hand, if u ∈ C(J,X) is a solution of system (1.1), then u satisfies the integral
equation (3.1).

In order to derive the existence results, we need important a priori estimation.

Lemma 3.3. Suppose system (1.1) has a solution u on the time interval J . If the
hypothesis [H3] holds, then there exists a constant ρ > 0 such that

‖u(t)‖ ≤ ρ for all t ∈ J.

Proof. By Lemma 3.2, the solution of system (1.1) is equivalent to the solution of
integral equation

u(t) = u0 − g(u) +
1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds.

According to the hypothesis [H3],

‖u(t)‖ ≤ ‖u0 − g(u)‖+
1

Γ(q)

t∫
0

(t− s)q−1‖f(s, u(s))‖ds ≤

≤ ‖u0 − g(u)‖+
1

Γ(q)

t∫
0

(t− s)q−1af (1 + ‖u(s)‖)ds ≤

≤ ‖u0‖+ ag + ag‖u‖C +
af

Γ(q)

t∫
0

(t− s)q−1ds+
af

Γ(q)

t∫
0

(t− s)q−1‖u(s)‖ds,

which implies that

(1− ag)‖u‖C ≤ ‖u0‖+ ag +
af

Γ(q)

t∫
0

(t− s)q−1ds+
af

Γ(q)

t∫
0

(t− s)q−1‖u(s)‖ds.

Thus,

‖u(t)‖ ≤ Γ(q + 1)(‖u0‖+ ag) + afT
q

(1− ag)Γ(q + 1)
+

af
(1− ag)Γ(q)

t∫
0

(t− s)q−1‖u(s)‖ds.

Applying the singular type Gronwall inequality (Lemma 2.9),

‖u(t)‖ ≤ Γ(q + 1)(‖u0‖+ ag) + afT
q

(1− ag)Γ(q + 1)

∞∑
n=0

(afT q)n

Γ(nq + 1)(1− ag)n
,



On nonlocal problems for fractional differential equations in Banach spaces 349

where
∑∞
n=0

(afT
q)n

Γ(nq+1)(1−ag)n is just the well known Mittag-Leffler function. Thus, there
exists a constant ρ > 0 such that

‖u(t)‖ ≤ ρ, for t ∈ J.

Our first result is based on Banach contraction principle.

Theorem 3.4. Assume that [H1]–[H4] hold. If the following two conditions:

ag +
afT

q

Γ(q + 1)
< 1 (3.2)

and

ΥT,q,ρ = Lg +
Lf (ρ)T q

Γ(q + 1)
< 1 (3.3)

hold, then system (1.1) has an unique solution.

Proof. Let

ρ ≥
‖u0‖+ ag + afT

q

Γ(q+1)

1− ag − afT q

Γ(q+1)

,

and define

Cρ = {x ∈ C(J,X) : ‖u(t)‖ ≤ ρ, t ∈ J}. (3.4)

Define a operator F : Cρ → Cρ as follows

(Fu)(t) = u0 − g(u) +
1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds. (3.5)

By Lemma 3.2, it is obvious that F is well defined on Cρ in the sense of Bochner
integrable.

We divide our proof into two steps.
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Step 1. Fu ∈ Cρ for every u ∈ Cρ.
For every u ∈ Cρ,

‖(Fu)(t+ δ)− (Fu)(t)‖ ≤ 1
Γ(q)

t∫
0

((t− s)q−1 − (t+ δ − s)q−1)‖f(s, u(s))‖ds+

+
1

Γ(q)

t+δ∫
t

(t+ δ − s)q−1‖f(s, u(s))‖ds ≤

≤ af
Γ(q)

t∫
0

((t− s)q−1 − (t+ δ − s)q−1)(1 + ‖u(s)‖)ds+

+
af

Γ(q)

t+δ∫
t

(t+ δ − s)q−1(1 + ‖u(s)‖)ds ≤

≤ af (1 + ρ)
Γ(q)

(
tq

q
− (t+ δ)q

q
+
δq

q

)
+
af (1 + ρ)

Γ(q)
δq

q
≤

≤ 2af (1 + ρ)
Γ(q + 1)

δq.

It is easy to see that the right-hand side of the above inequality tends to zero as
δ → 0. Therefore Fu ∈ C(J,X).

Moreover, for all t ∈ J , u ∈ Cρ, due to the condition (3.2),

‖Fu(t)‖ ≤ ‖u0‖+ ‖g(u)‖+
1

Γ(q)

t∫
0

(t− s)q−1‖f(s, u(s))‖ds ≤

≤ ‖u0‖+ ag(1 + ‖u‖C) +
1

Γ(q)

t∫
0

(t− s)q−1af (1 + ‖u(s)‖)ds ≤

≤ ‖u0‖+ ag(1 + ρ) +
af (1 + ρ)

Γ(q)

t∫
0

(t− s)q−1ds ≤

≤ ‖u0‖+ ag(1 + ρ) +
af (1 + ρ)T q

Γ(q + 1)
≤ ρ,

which implies that Fu ∈ Cρ.
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Step 2. F is a contraction mapping on Cρ.In fact, for any u, v ∈ Cρ, we get

‖(Fu)(t)− (Fv)(t)‖ ≤ ‖g(u)− g(v)‖+

t∫
0

(t− s)q−1‖f(s, u(s))− f(s, v(s))‖ds ≤

≤ Lg‖u− v‖C +
Lf (ρ)
Γ(q)

t∫
0

(t− s)q−1‖u(s)− v(s)‖ds ≤

≤
[
Lg +

Lf (ρ)T q

Γ(q + 1)

]
‖u− v‖C ,

which implies that

‖Fu− Fv‖C ≤ ΥT,q,ρ‖u− v‖C .

Thus, F is a contraction mapping on Cρ due to our condition (3.3). By applying
Banach’s contraction mapping principle we know that the operator F has a unique
fixed point on Cρ. Therefore, system (1.1) has an unique solution.

Our second result uses the well known Krasnoselskii’s fixed point theorem. For
that, we make the following assumption.

[H5]: For every t ∈ J , the set K = {(t− s)q−1f(s, u(s)) : u ∈ C(J,X), s ∈ [0, t]} is
relatively compact.

Theorem 3.5. Assume that [H1]–[H3] and [H5] hold. If the condition (3.2) holds,
then system (1.1) has at least one solution.

Proof. We subdivide the operator F defined by (3.5) into two operators P and Q on
Cρ as follows

(Pu)(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds, t ∈ J,

(Qv)(t) = u0 − g(v), t ∈ J,

where Cρ is given by (3.4).
Therefore, the existence of a solution of system (1.1) is equivalent to that the

operator P +Q has a fixed point on Cρ.
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The proof is divided into several steps.
Step 1. Pu+Qv ∈ Cρ for every pair u, v ∈ Cρ.

In fact, for every pair u, v ∈ Cρ,

‖(Pu)(t) + (Qv)(t)‖ ≤ ‖u0‖+ ‖g(v)‖+
1

Γ(q)

t∫
0

(t− s)q−1‖f(s, u(s))‖ds ≤

≤ ‖u0‖+ ag(1 + ‖v‖C) +
1

Γ(q)

t∫
0

(t− s)q−1af (1 + ‖u(s)‖)ds ≤

≤ ‖u0‖+ ag(1 + ρ) +
af (1 + ρ)

Γ(q)

t∫
0

(t− s)q−1ds ≤

≤ ‖u0‖+ ag(1 + ρ) +
af (1 + ρ)T q

Γ(q + 1)
≤ ρ,

which implies that Pu+Qv ∈ Cρ.
Step 2. Q is a contraction mapping on Cρ.

In fact, for every v1, v2 ∈ Cρ,

‖Qv1 −Qv2‖C = ‖g(v1)− g(v2)‖ ≤ Lg‖v1 − v2‖C .

Thus Q is a contraction mapping due to Lg ∈ (0, 1).

Step 3. P is a continuous operator.
For that, let {un} be a sequence of Cρ such that un → u in Cρ. Then, f(s, un(s))→

f(s, u(s)) as n→∞ due to the hypotheses [H2].
Now, for all t ∈ J , we have

‖(Pun)(t)− (Pu)(t)‖ ≤ 1
Γ(q)

t∫
0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ds.

On the one other hand using [H3], we get for each t ∈ J ,

‖f(s, un(s))− f(s, u(s))‖ ≤ Lf (ρ)‖un(s)− u(s)‖ ≤ 2ρLf (ρ).

On the other hand, using the fact that the functions s→ 2ρLf (ρ)(t−s)q−1 is integrable
on J , by means of the Lebesgue Dominated Convergence Theorem yields

t∫
0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ds→ 0.

Thus, Pun → Pu as n→∞ which implies that P is continuous.
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Step 4. P is a compact operator.
Let {un} be a sequence on Cρ, then

‖(Pun)(t)‖ ≤ 1
Γ(q)

t∫
0

(t− s)q−1‖f(s, un(s))‖ds ≤

≤ 1
Γ(q)

t∫
0

(t− s)q−1af (1 + ‖un(s)‖)ds ≤ (1 + ρ)T qaf
Γ(q + 1)

.

Thus, {un} is uniform boundedness.
Now we prove that {Pun} is is equicontinuous. For 0 ≤ t1 < t2 ≤ T , we get

‖(Pun)(t1)− (Pun)(t2)‖ ≤ 1
Γ(q)

t1∫
0

((t1 − s)q−1 − (t2 − s)q−1)‖f(s, un(s))‖ds+

+
1

Γ(q)

t2∫
t1

(t2 − s)q−1‖f(s, un(s))‖ds ≤

≤ af
Γ(q)

t1∫
0

((t1 − s)q−1 − (t2 − s)q−1)(1 + ‖un(s)‖)ds+

+
af

Γ(q)

t2∫
t1

(t2 − s)q−1(1 + ‖un(s)‖)ds ≤

≤ af (1 + ρ)
Γ(q)

(
tq1
q
− tq2
q

+
(t2 − t1)q

q

)
+

+
af (1 + ρ)

Γ(q)
(t2 − t1)q

q
≤

≤ 2af (1 + ρ)
Γ(q + 1)

(t2 − t1)q.

As t2 → t1, the right-hand side of the above inequality tends to zero. Therefore {Pun}
is equicontinuous.

In view of the condition [H5] and the Lemma 2.6, we know that convK is compact.
For any t∗ ∈ J ,

(Pun)(t∗) =
1

Γ(q)

t∗∫
0

(t∗ − s)q−1f(s, un(s))ds =

=
1

Γ(q)
lim
k→∞

k∑
i=1

t∗

k

(
t∗ − it∗

k

)q−1

f
( it∗
k
, un

( it∗
k

))
=

=
t∗

Γ(q)
ζn,
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where

ζn = lim
k→∞

k∑
i=1

1
k

(
t∗ − it∗

k

)q−1

f
( it∗
k
, un

( it∗
k

))
.

Since convK is convex and compact, we know that ζn ∈ convK. Hence, for any t∗ ∈ J ,
the set {Pun} (n = 1, 2, · · · ) is relatively compact. From Ascoli-Arzela theorem every
{Pun(t)} contains a uniformly convergent subsequence {Punk

(t)} (k = 1, 2, · · · ) on
J . Thus, the set {Pu : u ∈ Cρ} is relatively compact.

Therefore, the continuity of P and relatively compactness of the set {Pu : u ∈ Cρ}
imply that P is a completely continuous operator. By Krasnoselskii’s fixed point
theorem, we get that P + Q has a fixed point on Cρ. Hence system (1.1) has a
solution, and this completes the proof.

4. EXAMPLES

In this section we give two examples to illustrate the usefulness of our main results.

Example 4.1. Let us consider the following nonlocal problem of fractional differential
equation {

cDqu(t) = e−tρ|u(t)|
(1+Let)(1+|u(t)|) , q ∈ (0, 1), t ∈ J = [0, T ],

u(0) +
∑m
j=1 λju(tj) = 0, 0 < t1 < t2 < · · · < tm < T,

(4.1)

where ρ, L, λj > 0, j = 1, 2, · · · ,m.
Set

f(t, u) =
e−tρu

(1 + Let)(1 + u)
, (t, u) ∈ J × [0, ρ],

and

g(u) =
m∑
j=1

λju(tj).

Let u1, u2 ∈ X and t ∈ J . Then we have

|f(t, u1)− f(t, u2)| ≤ e−tρ

1 + Let
|u1 − u2| ≤

≤ ρ

1 + L
|u1 − u2|,

and

|g(u1)− g(u2)| ≤
m∑
j=1

λj |u1(tj)− u2(tj)| ≤

≤
m∑
j=1

λj max
tj∈J
{|u1(tj)− u2(tj)|} .
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Obviously, for all u ∈ X and each t ∈ J ,

|f(t, u)| ≤ ρ

1 + L
‖u‖,

and

|g(u)| ≤
m∑
j=1

λj |u(tj)| ≤

≤
m∑
j=1

λj max
tj∈J
{|u(tj)|}.

It is obviously that our assumptions in Theorem 3.4 can be satisfied by choosing a
sufficient large L > 0 and small enough T and λj such that

∑m
j=1 λj+ ρT q

(1+L)Γ(q+1) < 1
for some q ∈ (0, 1). Therefore, the problem (4.1) has an unique solution.

Example 4.2. Let us consider another nonlocal problem of fractional differential
equation {

cDqu(t) = e−vt|u(t)|
(1+9et)(1+|u(t)|) , v > 0, q ∈ (0, 1), t ∈ J = [0, T ],

u(0) +
∑m
j=1 λju(tj) = 0, 0 < t1 < t2 < · · · < tm < T.

(4.2)

Set

f1(t, u) =
e−vtu

(1 + 9et)(1 + u)
, (t, u) ∈ J × [0,+∞),

and

g(u) =
m∑
j=1

λju(tj), where
m∑
j=1

λj < 1.

Let v = 1
t2 , t ∈ (0, T ], it is obvious that limt→0+

tq−1

e
1
t

= 0. As a result, the set

K1 =
{

(t− s)q−1 e−vs|u(s)|
(1+9es)(1+|u(s)|) : u ∈ C(J), s ∈ [0, t]

}
is bounded and closed which

implies that K1 is compact. Thus, all the assumptions in Theorem 3.5 are satisfied by
choosing a small enough T and λj such that 1−

∑m
j=1 λj −

T q

10Γ(q+1) > 0, our results
can be applied to the problem (4.2).
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