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  In this paper, a multi products single machine economic production quantity model with 
discrete delivery is developed. A unique cycle length is considered for all produced items with 
an assumption that all products are manufactured on a single machine with a limited capacity. 
The proposed model considers different items such as production, setup, holding, and 
transportation costs. The resulted model is formulated as a mixed integer nonlinear 
programming model. Harmony search algorithm, extended cutting plane and particle swarm 
optimization methods are used to solve the proposed model. Two numerical examples are used 
to analyze and to evaluate the performance of the proposed model. 

  

 © 2011 Growing Science Ltd.  All rights reserved 

Keywords: 
Inventory control  
EPQ  
Multi-product multi-constraint 
Multi deliveries  
Meta heuristic 
Extended cutting plane 

 

 

1. Introduction 
 

Economic production quantity plays an important role on managing the inventory. Taft (1918) 
introduced the popular economic production quantity (EPQ) model. Salameh and Jaber (2000) 
introduced an EPQ model with imperfect quality items, and the work was extended by Goyal and 
Cardenas-Barron (2002) who introduced an efficient solution procedure. Teng and Chang (2005) 
developed an EPQ model for deteriorating items with displayed stocks and price dependent demand. 
Huang (2005) developed an EPQ model with service level constraint and random defective rate. Teng 
et al. (2005) studied an EPQ model with time-varying demand and cost. Freimer et al. (2006) studied 
the effects of imperfect yield on an EPQ model with time-varying proportion defective items and 
additional repair cost. An analytical method to solve an EPQ model with varying lead times and 
backorder was proposed by Lai et al. (2006). Leung (2007) developed an EPQ model with flexible 
and reliable production systems. Liao et al. (2007) developed a production inventory model for 
deteriorating items with finite production rate and postponed payment. Islam and Roy (2007) 
considered an EPQ model with cost-dependent demand, space constraint and fuzzy parameters. 
Darwish (2008) developed EPQ models to consider different setup costs with backordering. Ouyang 
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and Rau (2008) developed an EPQ model with linear and exponentially decreasing unit production 
costs. Teng and Chang (2009) derived an optimal cycle length for an EPQ model under two levels of 
trade credit policy. Pal et al. (2009) developed two EPQ models with price discount promotional 
demand in fuzzy and crisp environment. Hu and Lio (2010) developed an EPQ model with shortage, 
postponed payment and finite replenishment rate. 

In recent years, there have been different research works on vendor-buyer inventory models with 
multiple deliveries. Goyal and Nebebe (2000) developed a vendor-buyer inventory model where the 
buyer receives a batch quantity in n shipments. Chung and Wee (2007) developed an integrated 
supplier-buyer inventory model for deteriorating items with multiple deliveries. Su et al. (2007) 
developed an integrated supplier-retailer inventory model with two-level trade credit strategy. In their 
model, the retailer determines the optimal order quantity and the supplier determines the optimal 
number of shipment per production run. Haksever (2008) developed a mixed-integer programming 
model for multi products problem where the buyer orders from supplier who offers incremental 
quantity discounts. Pasandideh and Niaki (2008) introduced an EPQ model with discrete deliveries 
and space constraint. 

In this research, we extend the model originally presented by Pasandideh and Niaki (2008) by 
considering multi products single machine system with capacity and space constraints. Our study is 
organized as follows. In the first section, a comprehensive literature review and background of the 
model are presented. Section 2 demonstrates the model development and the section 3 presents the 
solution method. Section 4 shows two examples to illustrate the model; concluding remarks are 
derived and future research topics are suggested in section 5.                  

2. Model development 
 

In our model, we assume that production and demand rates of each product are known and constant. 
Manufacture sends orders to the customer and bears the transportation cost for each delivery to the 
customer. The customer determines the capacity of each delivery and the quantity of each shipment. 
Shortage is not permitted and the production costs consist of production, setup, holding, and 
transportation costs. Since all products are manufactured by a single machine with a limited capacity, 
a unique cycle length for all items is considered, i.e, 1 2 nT T T T= = = =L (Taleizadeh et al. 2010a, 
2010b, 2010c). The purpose of this paper is to determine the optimal replenishment period, the 
delivery quantity and the number of delivery to minimize the total production inventory cost with 
space and capacity constraints.  

To model the problem for ni ,...,1= , we use the following parameters. 

n : number of products, 

iq : order quantity for thi product,  

p
ir : production rate of thi product,  

d
ir : demand rate of thi product, 

T : cycle length for all products,  

p
it : production time in each cycle of thi product,  

d
it : down time in each cycle of thi product, 
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its  :machine setup time to produce the thi product, 

it : time between two sequential shipments of each pallet for thi product,  

iv : quantity order for thi product, 

o
in : number of shipments in each cycle of thi product, 

t
ic : transportation cost of a shipment for thi product, 

iA : set-up cost of each cycle for thi product, 

h
ic : holding cost per unit of thi product, 

p
ic :  production cost per unit of thi product,  

CH : total holding costs per year, 

CT : total transportation costs per year, 

CP : total providence costs per year, 

CA : total set-up costs per year, 

TC : total costs per year. 

Fig. 1 shows the inventory level of the EPQ model with discrete delivery order.  In this research, 
manufacture delivers order of product i, to the customer in o

in  times shipments with iv units in each 
delivery. Finally, the model will be extended to multi products problem. From Fig. 1, during p

it , a 

pallet with capacity of ik is delivered to the company with o
in jumps. During p

it and d
it , the delivered 

products are produced at a constant rate (Pasandideh & Niaki 2008): 

o
i i iq n v= . (1)

We develop a single-product model for  ith product. The production cycle length is the summation of 
the production uptimes and the production downtimes, and we have,  

p d
i iT t t= + . (2)

Also we have, 

d
i iq r T= . (3)

Using Eq. (1) to Eq. (3), the total replenishment time can be modeled as follows, 
o

p d i i
i i d

i

n vT t t
r

= + =  . (4)

Since the maximum inventory level is ( 1)
d

o o i
i i i i p

i

rn v n v
r

− − , we have ( 1)
o

d oi i i
i id p

i i

n v vt n
r r

= − − . The 

production up time is as follows,    
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( 1)p o i
i i p

i

vt n
r

= −  .                                                        (5)

2.1. Objective function 

The total cost function consists of the sum of the production, the setup, the holding and the 
transportation costs as follows, 

TC CA CP CT CH= + + + . (6)
The setup cost ( iA ) occurs N times per year. Therefore, the annual setup cost is as follows, 

 

Fig. 1. The inventory level 

1

n

i
i

CA NA
=

=∑ .   
 

(7)

For  joint policy, we have 1N
T

= , thus 

1

n

i
i

A
CA

T
==
∑

. 

 

(8)

The production cost per unit and the production quantity per period of the ith product are p
ic and iq , 

respectively. Hence, the production cost of ith product per period is p
i ic q and the annual production 

quantity is p
i iNc q . Finally, the joint production cost is as follows, 

1 1

1

n n
p o p d
i i i i i n

p di i
i i

i

c n k c r T
CP c r

T T
= =

=

= = =
∑ ∑

∑ .   

 
(9)

Transportation cost depends on the number of shipments and it is equal to t o
i ic n for each cycle and the 

annual transportation cost is t o
i iNc n . Finally the CT in joint policy can be modeled as follows, 

1

n
t o
i i

i
c n

CT
T

==
∑
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According to Fig. 1, each cycle has two sections ( p
it and d

it ) and d
it is built up by a collection of 

trapezes. The number of trapezes for product i is 1im − . If j
iaz represents the area of trapeze j of 

product i, the areas of trapeze 1 and 2 are as follows, 

1 ( ) 2( ) ( )
2 2

d d
i i i i i i i

i i i
v v r t v r taz t t+ − −

= =  ,               (11)

and 

2 ( ) (2 2 ) 4 3( )
2 2

d d d
i i i i i i i i i i

i i i
v r t v v r t v r taz t t

⎛ ⎞− + + − −
= =⎜ ⎟
⎝ ⎠

 ,                    
(12)

respectively. We have, 

2 (2 1)( )
2

d
j i i i

i i
jv j r taz t− −

=    ;   1,...,1 −= imj  
(13)

Finally, the area of all trapezes on the left of each cycle for ith product can be formulated as follows, 

( ) ( ) ( )

( )

1 1 1 12 2 2 2

1 1 1 1

1 1 12 2
2 2

1 1 1

2

2 2 2 2
2 2 2 2

1 1
1 1

2 2 2 2

1
2

i i i i

i i i

m m m md d d d
j i i i i i i i i i i i i

i
j j j j

o o o om m md d
i i i id d oi i i i

i i i i i i i i i
j j j

o o o
i i d i

i i i i

jv t jr t r t jv t jr t r taz

n n n nr t r tv t j r t j v t r t n

n n nv t r t

− − − −

= = = =

− − −

= = =

− +
= = − +

− −
= − + = − + −

−
= −

∑ ∑ ∑ ∑

∑ ∑ ∑

( )
2 2

2 1
2 2 2

o d
d oi i i

i i i
n r tr t n+ + −

                      (14) 

For p
i i ik r t= one has, 

2 2 2 2
2 2 22 2

p d d p d
j o oi i i i i

i i i i i ip p p
i i i

r r r r raz n v n v v
r r r

⎛ ⎞ ⎛ ⎞− −
= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                             (15) 

The area of a triangle on the right side of each cycle of product i, ( iat ) can be modeled as follows: 

( ) ( )

( )

2 2
2 2

2 2 2
2

2

2 2

1 ( ( 1) )( ( 1) )
2

1 12 ( 1) ( 1) 2( 1) ( 1)
2 2

1 1 1
2 2

o
o o d oi i

i i i i i i i id
i

o o
i i i io o o d o o o di i

i i i i i i i i i i id d p p
i i i i

d d
oi i
i id p p p

i i i i

n vat n v n r t n t
r

n v n v v vn v n t n r t n n n r
r r r r

r rn v
r r r r

= − − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − + − = − − + −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − + + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

2 2
22

d
o i
i i ip

i

rn v v
r

+⎟
⎠

            (16) 

The total areas of each cycle of product i, ( is ) is as follows, 

 ( )

( )

2 2 2 2
2 2 2

2 2 2
2 2 2

22 2
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2 2

1 1 1
2 2 2

2

p d d p d
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d d d
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i i i i id p p p p

i i i i i

p d p p
o oi i i i
i i i ip d p

i i i

r r r r rs az at n v n v v
r r r

r r rn v n v v
r r r r r

r r r rn v n v
r r r

⎛ ⎞ ⎛ ⎞− −
= + = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (17) 
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Using p
i i ik r t=  and Eq. (16), and assuming N  periods per year yields the total annual holding cost as

( )
22 2

22

p d p p
h o oi i i i
i i i i ip d p

i i i

r r r rNc n v n v
r r r

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. Finally, the holding cost for joint production system is: 

2 2 2 2

2
1 12

p d o p p on n
h hi i i i i i i i
i ip d p

i ii i i

r r n v r r n vCH c c
r r T r T= =

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (17)

Based on Eq. (4), Eq. (8), Eq. (9), Eq. (10), and Eq. (17), and implementing some simplifications, the 
total annual cost of production system can be modeled as follows, 

2 2 2 2
1

2
1 1 1 12

n

o p d o p p oi n n n n
t h h p di i i i i i i i i i
i i i i ip d p

i i i ii i i

A
n r r n v r r n vTC c c c c r

T T r r T r T
=

= = = =

⎛ ⎞ ⎛ ⎞− −
= + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑
∑ ∑ ∑ ∑  

 

(18)

2.2. Constraints   

For joint production systems, the total production and setup times must be smaller than the cycle 

length. In our model, 
1

( )
n

p
i i

i
t ts

=

+∑ must be smaller or equal to T . Therefore, the capacity limitation 

can be modeled as follows, 

1
( )

n
p

i i
i

t ts T
=

+ ≤∑  (19)

Based on Eq. (4), Eq. (5) and Eq. (19), one has: 

1 1
( 1)

n n
o i
i ip

i ii

vn ts T
r= =

− + ≤∑ ∑ . (20)

The number of shipments must be smaller than the upper bound and, at least, one shipment needs to 
be performed. One has: 

niUn ii ,,1Integer;;1 0 L=≤≤  (21)

Finally, the complete model can be derived as follows, 
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niUn ii ,,1Integer;;1 0 L=≤≤   

, 0 ; 1,2,...,iT v i n≥ =   

3. Solution method 
 

The final model in Eq. (22) is a mixed integer nonlinear programming (MINLP) problem. Westerlund 
and Pettersson (1995) extended cutting plane method to solve MINLP and we use their method to 
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solve the proposed model of this paper. In addition, in order to evaluate the performance of the 
proposed solution method, we use two meta-heuristic algorithms described in section 3.1 and 3.2. 

3.1. Particle swarm optimization 

Kennedy and Eberhart (1995) proposed particle swarm optimization (PSO) in the mid 1990s. PSO is 
inspired by flocks of birds (Kennedy & Eberhart, 2001). The proposed PSO algorithm consists of 
three main steps; at first, the positions of particle are generated. Secondly, exploration velocity is 
updated, and finally each position is updated. These parts are described in the following section. In an 
optimization problem, each particle refers to a point in the solution space that changes its position 
from one move (iteration) to another, based on exploration velocity updates. The type of particles is 
associated with the number of variables involved in a problem (Taleizadeh et al., 2010d). In this 
research, there are three decision variables (T , iv , and o

in ) for each product.  

The swarm size is denoted by N . The positions and exploration velocities are given in a vector 
format where the superscript and subscript denote 

thi particle in the population at thk iteration 
(generation). "Rand" is a uniformly distributed random variable that can take any value between 0 
and 1. This initialization process allows the swarm particles to be generated randomly across the 
design space. In order to initial the particles, we use Eq. (23) and Eq. (24), in which tΔ is a constant 
time increment. minX  and maxX are the upper and the lower bounds on the design variables' values. i

kX  
are the positions and i

kV are the exploration velocities (Taleizadeh et al., 2010d). 

( )0 min max min
iX X Rand X X= + −  (23)

time
Position)(Rand minmaxmin

0 =
Δ

−+
=

t
XXXV i

 
(24)

In order to update the exploration velocity, the formula in Eq. (25) is used where Rand, represents a 
random variable distributed, uniformly. The updated velocity depends on three weight factors, 
namely, inertia factor, w , self confidence factor, 1C  , and swarm confidence factor, 2C . The updated 
velocity can be modeled as follows, 

{

}

{

} }[0.4,1.4] [1.5,2] [2,2.5]

1 1 2

1

( ) ( )i i g i
i i k k k

k k

Velocity of Particle Current
i at time k Motion Particle Memory Influence Swarm Influence

P X P XV w V C Rand C Rand
t t+

+

− −
= + +

Δ Δ1442443 1442443  

 

(25)

In this research, we use 1 2 2C C= = and 100 .N = In order to update the positions, we used Eq. (26) 
which is a function over the iteration number. 

1 1
i i i
K K KX X V t+ += + Δ  (26)

 3.2 Harmony search algorithm 

The harmony search (HS) algorithm is inspired from the act of musician groups (Geem et al., 2001). 
This algorithm seeks the optimum solution by generating random vector solutions in a harmony 
memory (HM) which are improved with some pitch adjusting and updating methods. In summary 
fantastic harmony is considered as global optimum, aesthetic standard is determined by the objective 
function, and pitches of instruments are desired values of the variables. The proposed HS algorithm 
from Taleizadeh et al. (2008) consists of three main steps; 1) parameter and harmony memory 
initialization, 2) new  harmony generation, 3) harmony memory updates.  The constant parameters of 
the HS algorithm include harmony memory size ( HMS ), harmony memory considering rate ( HMCR
), pitch adjusting rate ( PAR ), number of decision variables ( N ), and the maximum number of 
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improvisations ( NI ). The HM is initialized with randomly generated solutions in a specific range 
limited by upper and lower bounds determined by the problem.  

New harmony improvisation is based on three rules: (i) random selection (ii) HM consideration, and 
(iii) pitch adjustment. In random selection rule, the new value of each decision variable is randomly 
chosen within the allowable range of the vector solution. In HM algorithm, the random is chosen 
from HM with probability HMCR  and the random selection is performed with probability (
1 HMCR− ) (Taleizadeh et al., 2008). In pitch adjustment, every component obtained by the memory 
consideration is examined to determine whether it should be pitch adjusted or not. The value of the 
decision variable is changed by Eq. (27) with probability of PAR , and it is kept without any changes 
with probability1 PAR− . In Eq. (23) the BW stands for band width and denotes the amount of change 
for pitch adjustment. Also, rand is a uniform random number between 0 and 1. For each component 
of the vector, the selection for increasing or decreasing are carried out with the same probability 
(Taleizadeh et al., 2008).  

[ ]( )( ) ; ~ 0,1rand BW rand U= ±' 'X X  (27)

The constraint handling part of the algorithm is performed before the HM update. The constraint 
handling part checks whether these constraints are satisfied or not. If they are satisfied, then the HM 
is updated. In this stage, if the new fitness value is better than the worst case in the HM, the worst 
harmony vector is replaced by the new solution vector. The last step in a HS method is to check if the 
algorithm has found a solution that is good enough to meet user’s expectations.  In this research, we 
use 10,HMS = 0.95,HMCR = 0.7,PAR = 1000.NI =  

4. Numerical Examples  
 

We consider two multi-products EPQ problems with discrete deliveries and capacity constraint with 
fifteen products. In the examples, the demand rate, the production rate, and the setup time of each 
product are assumed to be constant for each cycle. There are no scraped and defective items during 
the process.  

Table 1 
General data for the example 1 
Product d

ir  p
ir  its  iA  t

ic h
ic  p

ic  iU  
1 300 5000 0.0010 500 5 2 34 10
2 350 5500 0.0015 600 7 4 32 10 
3 400 6000 0.0020 700 9 6 30 10 
4 450 6500 0.0025 800 11 8 28 10 
5 500 7000 0.0030 900 13 10 26 10 
6 550 7500 0.0035 1000 15 12 24 10 
7 600 8000 0.0040 1100 17 14 22 10 
8 650 8500 0.0045 1200 19 16 20 10 
9 700 9000 0.0050 1300 21 18 18 10 
10 750 9500 0.0055 1400 23 20 16 10 
11 800 10000 0.0060 1500 25 22 14 10 
12 850 10500 0.0065 1600 27 24 12 10 
13 900 11000 0.0070 1700 29 26 10 10 
14 950 11500 0.0075 1800 31 28 8 10 
15 1000 12000 0.0080 1900 33 30 6 10 
 

 



A. A. Taleizadeh et al. / International Journal of Industrial Engineering Computations 2 (2011) 
 

221

Table 2  
General data for the example 2 
Product d

ir  p
ir  its  iA  t

ic h
ic  p

ic  iU  
1 500 5000 0.0010 500 200 34 480 10
2 550 5500 0.0015 600 200 32 460 10 
3 600 6000 0.0020 700 200 30 440 10 
4 650 6500 0.0025 800 200 28 420 10 
5 700 7000 0.0030 900 200 26 400 10 
6 750 7500 0.0035 1000 150 24 380 10 
7 800 8000 0.0040 1100 150 22 360 10 
8 850 8500 0.0045 1200 150 20 340 10 
9 900 9000 0.0050 1300 150 18 320 10 
10 950 9500 0.0055 1400 150 16 300 10 
11 1000 10000 0.0060 1500 100 14 280 10 
12 1050 10500 0.0065 1600 100 12 260 10 
13 1100 11000 0.0070 1700 100 10 240 10 
14 1150 11500 0.0075 1800 100 8 220 10 
15 1200 12000 0.0080 1900 100 6 200 10 
 

The general data of the examples are given in Tables 1 and 2. The minimum shipment is assumed to 
be 1 and the maximum shipment is equal to 10. Table 3 shows the best results for the first example 
using the extended cutting plane method, PSO and HS algorithms, respectively. Table 4 shows the 
best results for the second example. 

Table 3  
Best results for the example 1 by extended cutting plane, PSO and HS 
Method   Cutting Plane            PSO         HS 

Product o
in  iv  

o
in iv o

in iv

1 10 20.693 10 21.3 9 22.1
2 10 17.776 9 19.7 10 21.6 
3 10 15.580 10 17.4 8 20.8 
4 10 13.867 9 16.3 9 19.6 
5 10 12.493 10 14.3 10 17.9 
6 10 11.367 10 12.7 9 16.4 
7 10 10.427 9 11.4 10 13.2 
8 10 9.631 10 10.5 9 12.6 
9 10 8.948 9 9.6 9 11.5 
10 10 8.355 8 8.9 10 10.8 
11 10 7.836 10 8.1 7 9.1 
12 10 7.377 10 7.6 9 8.2 
13 10 6.969 10 6.8 9 7.4 
14 10 6.604 10 6.5 10 6.4 
15 10 6.276 8 6.1 10 6.1 
 T=3.308 TC=179,607 T=3.018 TC=181,640 T=2.921 TC=184,210 
 
According to Table 3 and Table 4, the cutting plane method obtains lower total cost compared with 
other methods. Furthermore, in terms of the CPU time, the computation time of the extended cutting 
plane method is less than the other two methods. The CPU time of the cutting plane method for the 
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first example is 4 seconds and for the second example is 5 seconds. For the first example, the average 
CPU times are 24 and 31 seconds for PSO and HS, respectively. In the second example, the average 
CPU times are 25 and 30 seconds. Each method is performed 20 times, while the corresponding 
standard deviations of the CPU time are 1.414 and 2 seconds for PSO and HS, respectively. For the 
second example, the numbers of the runs are 20 and the CPU standard deviations are 1.414 and 1.732 
seconds.  

Table 4  
Best results for the example 2 by extended cutting plane, PSO and HS 
Method   Cutting Plane            PSO         HS 

Product o
in  iv  

o
in iv  

o
in iv  

1 1 56.069 2 60.1 1 64.8
2 1 50.975 1 55.8 1  60.1 
3 1 46.730 2 49.0 1 56.6 
4 1 43.137 1 45.4 1 52.3 
5 1 40.058 1 41.6 1  50.1 
6 1 37.388 1 38.6 1 47.2 
7 1 35.053 1 36.2 1  44.7 
8 1 32.992 1 34.1 1 41.9 
9 1 31.159 2 32.0 1 39.6 
10 1 29.520 2 29.9 1  37.7 
11 1 28.045 3 28.6 1 35.2 
12 1 26.710 1 25.3 1 32.9 
13 1 25.496 1 23.1 1 30.2 
14 1 24.388 1 22.3 1  29.1 
15 1 23.372 1 21.9 1  28.2 
 T=0.772 TC=4,111,100 T=0.685 TC=4,131,700 T=0.651 TC=4,168,500
 
 
 
5. Conclusion and future research 
 

This paper has presented an EPQ model with multiple discrete deliveries, capacity and space 
constraints. The primary purpose of this research is to determine the optimal period length, the 
optimal number of shipments and the optimal order quantities. In order to solve the problem, we 
applied the extended cutting plane method, the particle swarm optimization and harmony search 
algorithms. Two numerical examples with fifteen products are used to illustrate the proposed model. 
Through the numerical examples, we have demonstrated that the extended cutting plane method 
performs better in terms of the objective function and the computation time. The examples also show 
that high holding cost and production cost result in less number of shipments in each cycle.  

This research can be extended to consider shortage or multi-products and multi-constraints problems 
in an uncertain environment. 
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