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Abstract. As far as the representation of deep moist con-
vection is concerned, only two kinds of model physics are
used at present: highly parameterized as in the conventional
general circulation models (GCMs) and explicitly simulated
as in the cloud-resolving models (CRMs). Ideally, these two
kinds of model physics should be unified so that a continu-
ous transition of model physics from one kind to the other
takes place as the resolution changes. With such unification,
the GCM can converge to a global CRM (GCRM) as the grid
size is refined. This paper suggests two possible routes to
achieve the unification. ROUTE I continues to follow the pa-
rameterization approach, but uses a unified parameterization
that is applicable to any horizontal resolutions between those
typically used by GCMs and CRMs. It is shown that a key to
construct such a unified parameterization is to eliminate the
assumption of small fractional area covered by convective
clouds, which is commonly used in the conventional cumu-
lus parameterizations either explicitly or implicitly. A pre-
liminary design of the unified parameterization is presented,
which demonstrates that such an assumption can be elimi-
nated through a relatively minor modification of the exist-
ing mass-flux based parameterizations. Partial evaluations of
the unified parameterization are also presented. ROUTE II
follows the “multi-scale modeling framework (MMF)” ap-
proach, which takes advantage of explicit representation of
deep moist convection and associated cloud-scale processes
by CRMs. The Quasi-3-D (Q3-D) MMF is an attempt to
broaden the applicability of MMF without necessarily using
a fully three-dimensional CRM. This is accomplished using a
network of cloud-resolving grids with large gaps. An outline
of the Q3-D algorithm and highlights of preliminary results
are reviewed.
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Fig. 1. Vilhelm Bjerknes (1862–1951).

1 Introduction

In his landmark paper published near the beginning of the
20th century, Vilhelm Bjerknes (Fig. 1) pointed out that nec-
essary and sufficient conditions for the rational solution of
the forecasting problem are the following (Bjerknes, 1904):

1. One has to know with sufficient accuracy the state of the
atmosphere at a given time;

2. One has to know with sufficient accuracy the laws ac-
cording to which one state of the atmosphere develops
from another.

These conditions may sound obvious. In pointing out 2.,
however, he distinguished the laws for changes “from degree
to degree in meridian and from hour to hour in time” from
those for changes “from millimeter to millimeter and from
second to second.” Numerical modeling of the atmosphere
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has been a struggle for finding such laws, and still is. Bjerk-
nes specifically expressed his concern on the representation
of frictional stress, which “depends on very small-scale ve-
locity differences.” We see that similar problems exist for all
microphysical processes. The progress of our ability to rep-
resent cloud microphysical processes in climate models has
been especially slow (Randall et al., 2003).

This paper is based on the Vilhelm Bjerknes Medal Lec-
ture presented by the first author at the 2010 EGU General
Assembly in Vienna. The rationale for the main theme of the
paper is the following assessment of the current status of nu-
merical modeling of the atmosphere: As far as the represen-
tation of deep moist convection is concerned, only two kinds
of model physics are used at present:highly parameter-
izedandexplicitly simulated. Correspondingly, besides those
models that explicitly simulate turbulence such as Direct Nu-
merical Simulation (DNS) and Large Eddy Simulation (LES)
models, we have two discrete families of atmospheric mod-
els as shown in Fig. 2: one is represented by the conven-
tional general circulation models (GCMs) and the other by
the cloud-resolving models (CRMs). In this figure, the ab-
scissa is the horizontal resolution and the ordinate is a mea-
sure for the degree of parameterization, such as the reduction
in the degrees of freedom, increasing downwards. These two
families of models have been developed with applications to
quite different ranges of horizontal resolution in mind.

Naturally, there have been a number of studies examining
a broader applicability of each family as shown by the hori-
zontal arrows in Fig. 2: applicability of CRMs to lower reso-
lutions and that of GCMs to higher resolutions. Weisman et
al. (1997), for example, examined the applicability of a CRM
to squall-line simulations for midlatitude-type environments
with resolutions between 1 and 12 km, and concluded that
with resolutions coarser than 4 km, the evolution is charac-
teristically slower and the resultant mature mesoscale circu-
lation is stronger.

With respect to the applicability of GCMs to higher resolu-
tions, the work of Williamson (1999) is particularly intrigu-
ing. The paper shows that, when the horizontal resolution
of the NCAR CCM2 is increased for both the dynamics and
physical parameterizations, the upward branch of the Hadley
circulations increases in strength and there is no sign of con-
vergence. When the horizontal resolution is increased for the
dynamics but not for the parameterizations, the solution con-
verges. But the converged state is similar to that obtained
with the coarse resolution for both so that the increased res-
olution for the dynamics is wasted. Together with other ev-
idence, he concludes, “the results raise a serious question –
are the parameterizations correctly formulated in the model
? [...] The parameterizations should explicitly take into ac-
count the scale of the grid on which it is based.” A simi-
lar question on parameterization was raised by Skamarock
and Klemp (1993) in the context of adaptive grid refinement.
Also, analyzing the impact of horizontal resolution increases
on the error growth of ECMWF forecasts, Buizza (2010) sug-

Fig. 2. Two families of atmospheric models with different model
physics.

gested that rather than resolution, it is model improvements
that might lead to better predictions and longer predictability
limits.

Strictly speaking, truncation of a continuous system can be
justified only when the resulting error can be made arbitrarily
small by using a higher resolution. Our problem is, therefore,
more demanding than just a convergence; the GCM should
converge to a physically meaningful high-resolution model
such as a CRM applied to the global atmosphere. This re-
quires that both the dynamics and physics of GCMs formally
converge to those of the CRM as shown schematically by
the dashed curve in Fig. 2. If the GCM and CRM share the
same dynamics core, which must necessarily be nonhydro-
static, we expect that the convergence is not an issue as far as
the model dynamics is concerned. Unfortunately, the same is
not true for the conventional formulations of model physics,
especially when cloud processes are involved.

Figure 3 schematically illustrates the qualitative difference
of model physics between the two families of models. For a
given observed large-scale condition, we can identify theap-
parent heat source,Q1, and theapparent moisture sink,Q2,
from the residuals in large-scale heat and moisture budgets
(e.g., Yanai et al. 1973). Here the heat source and moisture
sink refer to the source of the sensible heat,cpT , and the
sink of the latent heat,Lq, respectively. The left panel of
Fig. 3 schematically shows typical profiles ofQ1, Q2, and
Q1 −Q2 for disturbed tropical conditions. The difference
Q1−Q2 gives theapparent moist static energy source.Here
the moist static energy is defined bycpT +Lq+gz, where
gz is the geopotential energy. As shown in the figure, the
profile ofQ1−Q2 typically has negative values in the lower
troposphere and positive values in the middle to upper tropo-
sphere, suggesting the dominant role of vertical eddy trans-
port of moist static energy. Since GCMs must produce this
type of profiles when deep moist convection is dominant, we
call this type the “GCM-type”.

In contrast, the local cloud microphysical processes pro-
duce practically no moist static energy source/sink except
near the freezing level. This is because moist static energy
is conserved under moist-adiabatic processes and thus there
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Fig. 3. Schematic illustration of typical vertical profiles of moist static energy source under disturbed tropical conditions. Redrawn from
Arakawa (2004).

is no significant source/sink of moist static energy except
where the ice phase is involved. Within updrafts and down-
drafts/precipitation, there are sources immediately above the
freezing level due to freezing and sinks immediately below
that level due to melting, respectively. This is illustrated in
the right panel of Fig. 3. Cloud microphysics in CRMs is
expected to produce this type of profiles, which we call the
“CRM-type”.

As Arakawa (2004) emphasized, it is important to recog-
nize that any space/time/ensemble average of the CRM-type
profiles does not give a GCM-type profile. This means that
the cumulus parameterization problem is more than a statis-
tical theory of cloud microphysics. Also, it is not a purely
physical/dynamical problem because it is needed as a conse-
quence of mathematical truncation. Finally, it is not a purely
mathematical problem since the use of a higher resolution or
an improved numerical method does not automatically im-
prove the result. A complete theory for cumulus parame-
terization must address all of these aspects in a consistent
manner including the transition between the GCM-type and
CRM-type profiles.

To see the resolution dependence of model physics, Jung
and Arakawa (2004) performed budget analyses of data sim-
ulated by a CRM with different space/time resolutions and
with and without the cloud-microphysics component of the
CRM. A highlight of their results is summarized in Fig. 4,
which shows ensemble-averaged profiles of the “required”
moist static energy source. Here, the required source is de-
fined as the source needed for the result of the low-resolution
run without cloud microphysics to agree with that of high-
resolution run with cloud microphysics. The space/time in-
tervals used in the analysis are (32 km, 60 min) for the green
profile, (2 km, 2 min) for the red profile, and in-between for
other profiles. We note that the green and red profiles are of
the GCM- and CRM-type, respectively. The existence of the

in-between profiles strongly suggests that the required model
physics smoothly transitions from one type to the other as the
resolution changes. If the model physics of GCMs is refor-
mulated to produce such transition, GCMs and CRMs are
unified to a single family of models that can cover a wide
range of horizontal resolutions.

We can think of two routes to achieve the unification of the
two families of models. ROUTE I continues to follow the pa-
rameterization approach, but uses a unified parameterization
with which the GCM converges to a global CRM (GCRM)
as the grid size is refined. ROUTE II, on the other hand,
replaces the parameterization of deep moist convection with
a partial simulation of cloud-scale processes by CRMs and
formulates the coupling of GCM and CRMs in such a way
that the coupled system formally converges to a GCRM as
the GCM grid size is refined. Thus ROUTE I and ROUTE
II share the same destination. On the other hand, they have
different kinds of departure points corresponding to the two
kinds of model physics pointed out above, one of which uses
the physics of GCMs and the other that of CRMs. Natu-
rally there can be many variations within each of ROUTE I
and ROUTE II and, therefore, they represent two families of
routes.

The rest of this paper is organized as follows: Sect. 2 dis-
cusses ROUTE I, which follows the unified parameterization
approach, while Sect. 3 discusses ROUTE II, which follows
the coupled GCM/CRM approach. Finally, Sect. 4 presents
summary and further discussions.
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Fig. 4. Ensemble averages of the “required” source of moist static
energy obtained through budget analyses of CRM-simulated data
for various space/time intervals. Redrawn from Jung and Arakawa
(2004).

2 ROUTE I: a preliminary design of the unified
parameterization

2.1 Identification of the problem

To identify the problem to be addressed in ROUTE I, we use
the Arakawa and Schubert (1974, AS hereafter) parameteri-
zation as an example of the starting point. AS says, “Con-
sider a horizontal area – large enough to contain an ensem-
ble of cumulus clouds but small enough to cover a fraction
of a large-scale disturbance. The existence of such an area
is one of the basic assumptions of this paper.” In reality, the
GCM grid cells are not large enough and, at the same time,
not small enough.

A major part of this problem can be solved if the parame-
terization is modified in such a way that it can be applied to
a wide range of resolution including that of CRMs. AS and
many other mass-flux based parameterizations (e.g., Tiedtke,
1989; Kain and Fritsch, 1990; Emanuel, 1991; Gregory and
Rowntree, 1990; Zhang and McFarlane, 1995) exclude this
possibility by assumingσ�1, either explicitly or implic-
itly, whereσ is the fractional area covered by all convective
clouds in the grid cell. With this assumption, the temper-
ature and water vapor to be predicted are essentially those
for the cloud environment. Then, as illustrated by the red
arrows in Fig. 5a, relevant physical processes are “cumulus-
induced” subsidence in the environment and detrainment of
cloud air into the environment. (Here it is important to note
that the “cumulus-induced subsidence” is only a hypotheti-
cal subsidence. It is a component of thesubgrid-scale eddy,
which has its own mass budget closed within the same grid
cell. This does not mean that the true subsidence is confined
within that cell. The true subsidence is the sum of the blue
and red vertical arrows in Fig. 5a, which normally tend to
compensate each other. In such a case, the true subsidence
occurs in other grid cells, which may well be far away, whose

position is determined by the grid-scale dynamics, not by the
parameterization. This point is often misunderstood in the
literature.)

As the grid size becomes smaller, however, the cloud may
eventually occupy the entire grid cell so that there is no “en-
vironment” within the same cell. As Fig. 5b indicates, the
probability density distribution ofσ becomes bimodal in this
limit, consisting ofσ = 1 andσ = 0 (Krueger, 2002; Krueger
and Luo, 2004). It is then clear that a key to open ROUTE
I is to include a transition to this limit by eliminating the as-
sumption ofσ�1.

To visualize the problem raised above, we have analyzed
datasets simulated by a CRM as Krueger (2002) and Krueger
and Luo (2004) did. The simulations are performed by ap-
plying the 3-D anelastic vorticity equation model of Jung and
Arakawa (2008) to a horizontal domain of 512 km×512 km
with a 2 km grid size. Other experimental settings are simi-
lar to the benchmark simulations used by Jung and Arakawa
(2010). Two 24-h simulations are made, one with and the
other without background shear. Figure 6 shows snapshots
of vertical velocityw at 3km height at the end of these sim-
ulations. As is clear from the figure, the two simulations
represent quite different cloud regimes. For the analysis pre-
sented in the rest of this section, datasets are taken from the
last 2-hour period of each simulation with 20-min intervals.

To analyze the resolution dependency of the statistics of
data, we divide the original 512 km domain into sub-domains
of equal size. The selected side lengths of the sub-domains
aredn = 512 km/2n−1, n= 2,3,4,...,9. The original domain
can then be identified byn= 1. Figure 7 shows the original
and examples of the sub-domains. In the analysis presented
here, grid points that satisfyw>0.5 m/s are considered as
“cloud points”. This simple criterion for “cloud points” is
used only for the diagnosis and the initial evaluations, not in
the formulation of the unified parameterization presented in
Sect. 2.2.

Figure 8 showsσ at 3 km height averaged over allcloud-
containing(i.e., σ 6=0) sub-domains against the sub-domain
sizedn for the shear case (a) and non-shear case (b). The
associated standard deviation is also shown. It is clear that
σ�1 can be a good approximation only when coarse reso-
lutions, say,dn≥32 km, are used. The averageσ tends to
increase asdn decreases and becomes 1 fordn = 2 km, which
is the grid size of the CRM used. The standard deviation is
very large for high resolutions, but it is expected since there
is no reason to believe thatσ is a unique function ofdn. In
spite of the large standard deviation, the tendency toward a
bimodal distribution consisting ofσ = 1 andσ = 0 can be
seen for high resolutions. We see that the averageσ is gen-
erally larger for the shear case than for the non-shear case.
The number of cloud-containing sub-domains is, however,
smaller for the shear case (not shown).
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Fig. 5. Schematic illustration of circulations associated with clouds for (a) coarse and (b) fine resolutions.

Fig. 6. Snapshots of vertical velocityw at 3 km height at the end of
two simulations with and without background shear.

2.2 Expressions for vertical eddy transport

Recall that the vertical eddy transport of moist static energy
is responsible for the difference between the GCM-type and
CRM-type profiles illustrated in Fig. 3. We now attempt to
parameterize the vertical eddy transport of a thermodynamic
variableψ in a way applicable to any value ofσ including
1. For this, we require that the parameterized eddy transport
decrease as the fractional convective cloudinessσ increases
and it eventually vanish atσ = 1. Such decrease of the param-
eterized component gives more room for explicitly simulated
non-eddy transport that can directly interact with the param-
eterized eddy transport and other processes. The objective of
this subsection is to seek a simple but reasonable possibility
for parameterization that satisfies this requirement. If we do
not see such a possibility, Route I may not be worth explor-
ing because we can easily get lost in the middle of the route
due to the complexities involved.

As is commonly done in the conventional cumulus param-
eterizations, we first assume that the cloud and environment
values ofψ , denoted byψc andψ̃ , respectively, are horizon-
tally uniform individually. The existence of convective-scale
downdrafts is ignored at this stage.

Let an overbar denote the mean over the entire area of a
grid cell. Then, using the assumption stated above,

ψ = σψc+(1−σ)ψ̃. (1)

Further letwc and w̃ be the averages ofw over the clouds
and the environment, respectively. Then,

w= σwc+(1−σ)w̃ (2)

and

wψ = σwcψc+(1−σ)w̃ψ̃. (3)

From Eq. (3) with Eqs. (1) and (2), we find

wψ−w ψ = σ (1−σ)(wc− w̃)
(
ψc− ψ̃

)
. (4)

The left hand side of Eq. (4) is the vertical eddy transport of
ψ per unit horizontal area and density, which we simply call
the “eddy transport” ofψ . As expected, the eddy transport
vanishes forσ = 0 andσ = 1. Equation (4) is, however, not
convenient to use due to the appearance of the environmental
values,̃w andψ̃ , which are not well defined whenσ∼1. We
thus eliminate these variables using Eqs. (1) and (2). After
some manipulations, we find

wψ−w ψ =
σ

1−σ
(wc−w)

(
ψc−ψ

)
. (5)

If we assumeσ�1, |w̃|�wc and ψ̃≈ψ in Eq. (4), we
obtain

ρ
(
wψ−w ψ

)
≈Mc

(
ψc−ψ

)
, (6)

whereMc≡ρσwc is the cloud mass flux. Equation (6) can
also be derived from Eq. (5) assumingσ�1 and|w|�wc.
Most conventional mass-flux based parameterizations effec-
tively use this expression [see, for example, Eqs. (35) and
(36) of AS], which indicates that the cloud vertical veloc-
ity wc matters only throughMc as far as the eddy transport
is concerned. This is not the case if the assumptionσ�1
is eliminated. The unified parameterization must determine
bothσ andwc.
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Fig. 7. The original domain and examples of the sub-domains used for analysis.

Fig. 8. Dependence of the mean fractional cloud cover at 3 km
height on the sub-domain size and its standard deviation.

We now introduce the requirement that the parameteriza-
tion converge to an explicit simulation of cloud processes as
σ → 1. This means that

lim
σ→1

wc =w and lim
σ→1

ψc =ψ. (7)

It follows that bothwc−w andψc−ψ are the order of
1− σ (or higher) so that(wc−w)

(
ψc−ψ

)
is the order of

(1−σ)2 (or higher) near this limit. The simplest choice to
satisfy this requirement is

(wc−w)
(
ψc−ψ

)
= (1−σ)2

[
(wc−w)

(
ψc−ψ

)]∗
, (8)

where an asterisk denotes a limiting form expected when
σ�1, typically obtained by a non-interacting plume model.
It is important to keep in mind that

[
(wc−w)

(
ψc−ψ

)]∗
does not depend onσ though it generally depends on the res-

olution, which can be anywhere between the GCM and CRM
resolutions. Substituting Eq. (8) into Eq. (5), we obtain

wψ−w ψ = σ (1−σ)
[
(wc−w)

(
ψc−ψ

)]∗
. (9)

This represents the basic structure of the unified parameter-
ization. Since

[
(wc−w)

(
ψc−ψ

)]∗
does not depend onσ ,

Eq. (9) shows that the dependence ofwψ −w ψ on σ is
through the factorσ(1− σ), whose maximum is 0.25 for
σ = 0.5. To close the unified parameterization, we must de-
termineσ and

[
(wc−w)

(
ψc−ψ

)]∗
.

It should be noted that what we have parameterized in this
subsection is the dependency of the eddy transport onσ , not
on the resolution. As pointed out in Sect. 2.1, there is no
reason to believe thatσ is a unique function of the resolu-
tion. For the dataset we used, a coarse resolution indicates
a small value ofσ as Fig. 8 shows. But a small value of
σ does not necessarily indicate a coarse resolution. Judging
from the large error bars in Fig. 8 for the range of resolutions
8∼32 km, we expect that a small value ofσ may appear for
these resolutions also. Besides, the number of sub-domains
with σ = 0 tends to increase as the resolution increases. Fur-
thermore, a large value ofσ including σ = 1 may well ap-
pear with low resolutions (not in this dataset) when stratiform
clouds are dominant.

2.3 Partial evaluations of the unified parameterization

Before proceeding to the closure problem, we present in this
subsection partial evaluations of the unified parameteriza-
tion, again using the dataset mentioned in Sect. 2.1. The
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Table 1. Correlation coefficients betweenwq−w q andσ (1−σ) for various combinations of sub-domain size and averaging size.

(a) SHEAR CASE Sub-domain size

256 km 128 km 64 km 32 km 16 km 8 km 4 km

Averaging size 4 km 0.46
8 km 0.62 0.60
16 km 0.76 0.77 0.65
32 km 0.88 0.87 0.81 0.70
64 km 0.94 0.94 0.90 0.84 0.75
128 km 0.93 0.93 0.94 0.91 0.87 0.80
256 km 0.94 0.95 0.92 0.93 0.92 0.89 0.83

(b) NON-SHEAR CASE Sub-domain size

256 km 128 km 64 km 32 km 16 km 8 km 4 km

Averaging size 4 km 0.64
8 km 0.80 0.78
16 km 0.88 0.88 0.82
32 km 0.91 0.91 0.89 0.84
64 km 0.91 0.90 0.91 0.90 0.86
128 km 0.87 0.85 0.89 0.90 0.90 0.87
256 km 0.91 0.85 0.82 0.86 0.89 0.90 0.88

evaluation is designed to check the formal structure of Eq. (9)
using water vapor mixing ratioq as an example ofψ . This
equation withψ = q becomes

wq−w q = σ (1−σ)[(wc−w)(qc−q)]
∗ . (10)

Since the solution of the unified parameterization can con-
verge to only one of many realizations that can be simu-
lated by the CRM, the dependence of the eddy transport onσ

must inevitably be statistical especially with high resolutions.
Even when high resolution is used, our primary interest may
still be in the effects of cloud processes on larger scales. We
thus include evaluations of Eq. (10) applied to the fields of
wq−w q andσ (1−σ) averaged over large horizontal areas.

Table 1 shows the correlation coefficients betweenwq−

w q andσ (1−σ) for various combinations of sub-domain
and averaging sizes for the shear case (a) and the non-shear
case (b). The sub-domain size is necessarily less than or
equal to the averaging size. We see that, except when sub-
domain and averaging sizes are both small, the correlations
are almost uniformly high for both cases, suggesting that the
σ -dependence of the eddy transport shown in Eq. (10) is basi-
cally valid. For the example marked in bold font in Table 1a,
the dots in Fig. 9 show theσ -dependence of the diagnosed
wq−w q averaged over all sub-domains that shareσ in the
same sub-range. (Here datasets are taken from the last 12-h
period of the simulation to increase the sample size.) The
dashed curve in Fig. 9, on the other hand, shows the right
hand side of Eq. (10) when[(wc−w)(qc−q)]∗ is chosen for
the best fit to the dots for small and medium values ofσ . The
excellent fit of the two lines again indicates that the simple

choice we have made for theσ -dependence of the eddy trans-
port is basically valid. For high values ofσ , however, the
diagnosed values are significantly larger than the expected
values shown by the dashed curve. Also, as one may expect
from the relatively low correlation coefficient 0.62 presented
in Table 1a, the standard deviations associated with these av-
eraged values are very large with a magnitude roughly equal
to the mean value itself. These two aspects of the results sug-
gest interesting physical/statistical problems to be considered
in future, which are pointed out in Sect. 2.5.

While theσ -dependence in Eq. (10) seems justifiable ex-
cept for large values ofσ , it remains to be seen whether this
equation can correctly produce the dependence of the eddy
transport on the resolution. Theσ -dependency in Eq. (10) is
explicit, but the resolution-dependence is not. We can test the
resolution-dependence by independently diagnosing the left
and right hand sides from the dataset, for each sub-domain
size, and then comparing the results to see if the resolution-
dependence of the right hand side agrees with that of the left
hand side. Following this approach, another test is performed
focusing on the situations with large values ofσ . To allow
a compact presentation of the results, we define aweighted
ensemble average〈X〉 by the weighted average ofX over all
sub-domains of the same size with the weightσ , whereX is a
variable defined for each sub-domain. We use the weightσ to
emphasize the contributions from the sub-domains with large
values ofσ . The weighted ensemble average of Eq. (10) is
given by

〈wq−w q〉 = 〈σ (1−σ)〉[(wc−w)(qc−q)]
∗ . (11)

www.atmos-chem-phys.net/11/3731/2011/ Atmos. Chem. Phys., 11, 3731–3742, 2011
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Fig. 9. The σ -dependence of the diagnosed(wq−w q) averaged
over all sub-domains that shareσ in the same sub-range for the
case in bold face in Table 1a. The dashed curve showsσ (1−σ )
multiplied by a constant chosen for the best fit to the dots for small
and medium values ofσ .

In deriving this result, we have ignored the difference of
[(wc−w)(qc−q)]∗ between the sub-domains of the same
size because it is independent ofσ . This quantity depends
on the cloud model that we choose for the idealized case
σ�1 and, therefore, it cannot be directly diagnosed from
the dataset. We thus eliminate this quantity by using the
weighted ensemble average of Eq. (8) withψ = q given by

〈(wc−w)(qc−q)〉 =

〈
(1−σ)2

〉
[(wc−w)(qc−q)]

∗ . (12)

From Eqs. (11) and (12), we obtain

〈wq−w q〉 =
〈σ (1−σ)〉〈
(1−σ)2

〉 〈(wc−w)(qc−q)〉. (13)

The open circles in Fig. 10 show the values of〈wq−w q〉

at a height of 3 km as estimated from the dataset using the
right hand side of Eq. (13) for each sub-domain sizedn.
These values have peaks in the mesoscale range because they
are small for coarse resolutions withσ�1 and for high reso-
lutions withσ∼1. For comparison, the values of〈wq−w q〉

directly diagnosed from the dataset are shown by the solid
circles. Amazingly, the resolution dependence of the esti-
mated values is very similar to that of the directly diagnosed
values. The magnitudes of the former are, however, system-
atically smaller than those of the latter. This is not surprising
in view of the various idealizations used in the derivation of
Eqs. (8) and (9), such as neglecting convective downdrafts
and possible coexistence of different types of clouds and dif-
ferent phases of cloud development. Moreover, the criterion
w>0.5 m/s we have adopted for cloud points influences the
estimated values but not the directly diagnosed values. In
any case, the results presented in this subsection provide ev-
idence that the formal structure of the unified parameteriza-
tion is basically valid even from the resolution-dependence
point of view.

Fig. 10. Weighted ensemble average of the eddy transport of water
vapor at 3 km height. Open circles: estimated with the right hand
side of Eq. (13). Closed circles: directly diagnosed with the left
hand side of Eq. (13).

2.4 Determination ofσ and relaxed adjustment

The closure of conventional cumulus parameterizations de-
termines the apparent source of thermodynamic prognostic
variables. Forψ , it is given bySψ − ∂ρ

(
wψ−w ψ

)
/ρ∂z,

whereSψ is the true source ofψ per unit mass due to sub-
grid cloud processes andρ is the density. From this to-
gether withSψ , also determined by the parameterization,
we can calculate the eddy transport

(
wψ−w ψ

)
. Let the

value of
(
wψ−w ψ

)
calculated in this way for a full ad-

justment to a quasi-equilibrium state be
(
wψ−w ψ

)
adj. For(

wψ−w ψ
)
adj to be consistent with

[
(wc−w)

(
ψc−ψ

)]∗
in view of Eq. (5),(
wψ−w ψ

)
adj=

σ

1−σ

[
(wc−w)

(
ψc−ψ

)]∗
. (14)

Then, for given
(
wψ−w ψ

)
adj and

[
(wc−w)

(
ψc−ψ

)]∗
, σ

must be such that

σ =

(
wψ−w ψ

)
adj(

wψ−w ψ
)
adj+

[
(wc−w)

(
ψc−ψ

)]∗ . (15)

We see that the condition 0≤σ≤1 is automatically sat-
isfied by Eq. (15), as long as

(
wψ−w ψ

)
adj and[

(wc−w)
(
ψc−ψ

)]∗
have the same sign, withσ → 0 as(

wψ−w ψ
)
adj → 0 and σ → 1 as

(
wψ−w ψ

)
adj → ∞.

The unified parameterization usesσ determined in this way
with a selected thermodynamical variable forψ . Since our
objective is to determineσ for use in formulating the eddy
transport, it is good to select a quasi-conservative variable
for ψ , for whichSψ is small, such as the moist static energy
used in Figs. 3 and 4.

As far as the basic reasoning is concerned, this approach of
determiningσ is in parallel to Emanuel (1991) in the sense
that the following two informations are combined: vertical
profiles of cloud properties determined by a cloud model and
the total vertical transport necessary for the adjustment to a
quasi-equilibrium.
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Finally, elimination of
[
(wc−w)

(
ψc−ψ

)]∗
between

Eqs. (9) and (14) gives

wψ−w ψ = (1−σ)2
(
wψ−w ψ

)
adj. (16)

This is the equation we use in practical applications.
As expected, the right hand side of Eq. (16) becomes(
wψ−w ψ

)
adj when σ�1. When σ is finite, however,

Eq. (16) shows that the actual eddy transport is less than(
wψ−w ψ

)
adj due to the factor(1−σ)2, indicating that

the adjustment should be applied only partially whenσ is
large. This is true regardless of the resolution. The situation
is then similar to the relaxed Arakawa-Schubert parameter-
ization (Moorthi and Suarez, 1992) though in our case the
degree of relaxation depends onσ .

2.5 Anticipated impact of the unified parameterization
and remaining problems

In this section, we have presented a new framework for cu-
mulus parameterization in which the result of parameteriza-
tion converges to an explicit simulation of cloud processes
as the resolution increases. Thus the new parameterization
unifies parameterizations in GCMs and those in CRMs as
far as the representation of deep moist convection is con-
cerned. With the unified parameterization, the error of the
GCM in satisfying the CRM equations can be made arbitrar-
ily small by using a higher resolution. In this way, multi-
scale numerical methods such as multiply-nested grids and
adaptive mesh refinement (AMR) methods, for example, can
be used with no problem in model physics. We empha-
size that this drastic broadening of the applicability of cu-
mulus parameterization can be achieved by a relatively mi-
nor modification of the conventional mass-flux based param-
eterizations. However, a good cloud model to determine[
(wc−w)

(
ψc−ψ

)]∗
and a reasonable closure to determine

the magnitude of
(
wψ−w ψ

)
adj are prerequisites to the suc-

cess of determiningσ and, therefore, the success of the en-
tire unified parameterization. We can start with the methods
used in conventional cumulus parameterizations to determine
these quantities. But it is very much likely that these meth-
ods need to be revised as we accumulate experience with the
unified parameterization. Also, the dynamics and formula-
tions of cloud microphysics, turbulence and radiation in the
model for use in explicit simulations must be such that they
are applicable to a wide range of resolutions.

There are two other problems to be considered. First, as
Fig. 9 indicates, the eddy transport can be larger than the
value expected from the parameterization. We interpret this
error of the parameterization as a consequence of the as-
sumption that the cloud and environment values of thermody-
namic variables are horizontally uniform individually. With
this assumption, the parameterization ignores the eddy trans-
port due to the coexistence of different types of clouds and
different phases of cloud development and that due to the in-
ternal structures of clouds and the environment. Since the

error appears in the range of largeσ , it is likely that the ne-
glect of internal structure of huge cumuliform or stratiform
clouds is responsible for that error. Second, as indicated by
the large standard deviations associated with the averaged
eddy transports in Fig. 9, the results of the parameteriza-
tion have significant uncertainties. There can be two main
sources for this: one is the non-deterministic nature of the
closure, as discussed by Xu and Arakawa (1992), and the
other is estimating cloud properties with huge dimensions by
a simple cloud model. This may suggest the necessity of in-
cluding a stochastic component in the parameterization. We
note, however, both of these problems may not be so serious
in the unified parameterization because explicit simulations
produce the dominant part of transport for large values of
σ which automatically generate non-eddy transport and ran-
dom processes.

When it is successfully implemented, the practical merits
of the unified parameterization will be great. But we should
remember that it has a limit as a “parameterization”, which
requires a number of idealizations to reduce the degrees of
freedom. When sufficient computer resources are available,
therefore, we should pursue the other approach, ROUTE II,
for more realistic numerical weather prediction and climate
simulations as discussed in the next section.

3 Route II: quasi-3-D multiscale modeling framework

We have developed Quasi-3-D Multi-scale Modeling Frame-
work (Q3-D MMF) following ROUTE II for unification of
GCMs and CRMs. It is a complement of ROUTE I, simulat-
ing the details of cloud processes at least partially. The Q3-D
MMF is described in detail by Jung and Arakawa (2010) so
that this paper gives only a brief outline of the framework
and some highlights of its preliminary results.

MMF recognizes that we currently have two kinds of
model physics, the GCM type and the CRM type. Corre-
spondingly, MMF uses two grid systems, one for the GCM
and the other for the CRM. Model physics is almost en-
tirely determined by the statistics of CRM solutions, replac-
ing the conventional parameterizations in GCMs. In con-
trast to many other multi-scale numerical methods, MMF
gains computing efficiency by sacrificing full representation
of cloud-scale 3-D processes. This is motivated by the fact
that 2-D CRMs are reasonably successful in simulating ther-
modynamical effects of deep moist convection. The proto-
type MMF is called “Cloud Resolving Convective Parame-
terization” (Grabowski and Smolarkiewicz 1999; Grabowski
2001) or “Super Parameterization” (Khairoutdinov and Ran-
dall 2001; Randall et al. 2003). It replaces the cloud parame-
terization by a 2-D CRM embedded in each GCM grid cell as
shown in Fig. 11a for a portion of the horizontal domain. The
MMF is still called “parameterization” because it inherits the
structure of conventional GCM; i.e., the CRM is forced by
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Fig. 11. Examples of grid-point arrays used in the Prototype and
Q3-D MMFs.

the GCM and the GCM recognizes only the domain-averaged
values of the CRM results.

The Quasi-3-D (Q3-D) MMF we have developed is an
attempt to broaden the applicability of the prototype MMF
without necessarily using a fully three-dimensional CRM.
The horizontal domain of the Q3-D MMF consists of a net-
work of perpendicular sets of channels, each of which con-
tains grid-point arrays as shown in Fig. 11b. The grey areas
in the figure represent the gaps of the network. For com-
puting efficiency, the gaps are chosen to be large by using a
narrow width for the channels, barely enough to cover a typ-
ical cloud size in the lateral direction. Thus, a channel may
contain only a few grid-point arrays, whose minimum num-
ber required for resolving local 3-D processes is two as in
Fig. 11b.

Because the channels are so narrow, it is crucial to select a
proper lateral boundary condition to realistically simulate the
statistics of cloud and cloud-associated processes. Among
the various possibilities, a periodic lateral boundary condi-
tion is chosen for the deviation from a background field ob-
tained through interpolation from GCM grid points. We de-
sign the coupling of the two grid systems in such a way that
the deviation vanishes as the GCM grid size approaches that
of the CRM. Thus the whole system of the Q3-D MMF can
formally converge to a fully 3-D global CRM as schemati-
cally shown in Fig. 12. Consequently, the horizontal reso-
lution of the GCM can be freely chosen depending on the
objective of application without changing the formulation of
model physics. For more details of the Q3-D algorithm, see
Jung and Arakawa (2010).

To evaluate the Q3-D CRM in an efficient way, ideal-
ized experiments are performed using a small horizontal do-
main. First, benchmark simulations are made using a fully
3-D CRM. Then a Q3-D simulation is made for the situation
corresponding to each of the benchmark simulations. The
grid used in these tests is similar to that shown in the cen-
tral GCM grid cell of Fig. 11b, consisting of only one pair of
perpendicular channels with only two grid points across each
channel. Since the horizontal domain is so small, the GCM
component is made inactive in these tests. Thus the GCM
grid point values are taken from the benchmark simulations
after horizontal smoothing. These values are then interpo-

Fig. 12. Schematic illustration of the convergence of the Q3-D
MMF grid to a 3-D CRM grid.

Fig. 13. Time series of domain-averaged precipitation, evaporation
and sensible heat flux at the surface simulated by the Q3-D CRM
(red lines) and by the BM (black lines).

lated to provide the background field. With the domain size
and the CRM grid size used, the ratio of the number of grid
points of the Q3-D and 3-D CRMs is only 3%. In the fig-
ures shown below, red and black lines represent the results of
the Q3-D and corresponding benchmark (BM) simulations,
respectively, averaged over the respective horizontal domain.

Figure 13 shows time series of precipitation, evaporation
and sensible heat flux at the surface. The Q3-D results fluc-
tuate more than those of the BM because the sample size
of the former is much smaller than that of the latter. The
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Fig. 14. Vertical profiles of the time- and domain-averaged vertical
transports of potential temperature, water vapor mixing ratio, and
the horizontal components of vorticity by the Q3-D CRM (red lines)
and by the BM (black lines).

time averages of the Q3-D results are, however, quite close
to those of the BM.

The upper panels of Fig. 14 show vertical profiles of the
time- and domain-averaged vertical transports of potential
temperature and water vapor mixing ratio. The vertical trans-
port of potential temperature, which is a measure of the buoy-
ancy generation of kinetic energy, is slightly under-predicted
by the Q3-D. On the other hand, the vertical transport of wa-
ter vapor shows an almost perfect agreement with the BM.
The lower panels of Fig. 14 show vertical profiles of the
time- and domain-averaged transports of the horizontal com-
ponents of vorticity. The positive sign in the figure is cho-
sen to represent the acceleration of mean flow. These figures
show that the transports of vorticity components are also well
simulated in the Q3-D runs. This is especially encouraging
because it indicates that the Q3-D CRM simulates the cloud-
scale 3-D processes reasonably well in spite of the use of the
highly limited number of grid points across the channels.

More details of these tests are shown in Jung and Arakawa
(2010) including comparisons with 2-D and coarse 3-D runs.
Overall, Route II with the Q3-D CRM is extremely promis-
ing since its results are close to those of a 3-D CRM while
computationally it is more efficient by almost two orders of
magnitude.

4 Summary and conclusion

As far as the representation of deep moist convection is con-
cerned, conventional GCMs and CRMs have quite different
formulations of model physics, each of which is applicable
to only a limited range of horizontal resolution. These two
kinds of model physics should be unified so that a continuous
transition from one kind to the other takes place as the res-
olution changes. Then a resolution between those typically
used by GCMs and CRMs can be freely chosen depending
on the objective of the application.

This paper suggests two possible routes to achieve the uni-
fication. ROUTE I uses a new framework for cumulus pa-
rameterization in which the result of parameterization con-
verges to an explicit simulation of cloud processes as the
resolution increases. In this way the framework unifies pa-
rameterizations in GCMs and CRMs as far as the represen-
tation of deep moist convection is concerned. With the uni-
fied parameterization, the error of the GCM solution mea-
sured by the difference from a CRM solution can be made
arbitrarily small by using a higher resolution. It is shown
that a key to construct a unified parameterization is to elimi-
nate the assumption of small fractional area covered by con-
vective clouds, which is commonly assumed in the conven-
tional cumulus parameterizations either explicitly or implic-
itly. A preliminary design of the unified parameterization is
presented, which demonstrates that such an assumption can
be eliminated through a relatively minor modification of the
existing mass-flux based parameterizations. Partial evalua-
tions of the unified parameterization are also presented.

It is pointed out that the unified parameterization has a
limit as a “parameterization” even when it is successful.
Route II, which follows the MMF approach, complements
Route I through the use of CRM physics throughout. The
Quasi-3-D (Q3-D) MMF is an attempt to broaden the ap-
plicability of the prototype MMF without necessarily using a
fully three-dimensional CRM. A great advantage of the Q3-D
MMF is that it converges to a 3-D CRM as the GCM’s resolu-
tion is refined while maintaining the same CRM physics. An
outline of the Q3-D algorithm and highlights of preliminary
results are presented. Comparing the simulation results with
the corresponding benchmark simulation performed with a
3-D CRM, it is concluded that the Q3-D CRM can reproduce
most of the important statistics of the 3-D solutions, includ-
ing precipitation rate and heat fluxes at the surface and ver-
tical profiles of vertical transports of major prognostic vari-
ables.

The Q3-D MMF and GCMs with the unified parameteriza-
tion still represent different families of models. As shown in
Fig. 15, however, the both can converge to the same model,
a GCRM, as the GCM resolution approaches the CRM reso-
lution. Comparisons of simulated results from these models
with those from a GCRM will greatly enhance our under-
standing of the multiscale role of cumulus convection in the
global atmosphere.
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Fig. 15. Two routes to unify coarse- and fine-resolution models.
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