
Atmos. Chem. Phys., 8, 2089–2101, 2008
www.atmos-chem-phys.net/8/2089/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Assessment of high (diurnal) to low (seasonal) frequency variations
of isoprene emission rates using a neural network approach

C. Boissard, F. Chervier, and A. L. Dutot

Laboratoire Interuniversitaire des Systèmes Atmosph́eriques, Universit́es Paris 12 et Paris 7, CNRS, 61 avenue du Géńeral de
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Abstract. Using a statistical approach based on artificial
neural networks, an emission algorithm (ISO-LF) account-
ing for high to low frequency variations was developed for
isoprene emission rates. ISO-LF was optimised using a data
base (ISO-DB) specifically designed for this work, which
consists of 1321 emission rates collected in the literature and
34 environmental variables, measured or assessed using Na-
tional Climatic Data Center or National Centers for Environ-
mental Predictions meteorological databases. ISO-DB cov-
ers a large variety of emitters (25 species) and environmental
conditions (10◦ S to 60◦ N). When only instantaneous envi-
ronmental regressors (instantaneous air temperatureT 0 and
photosynthetic photon flux densityL0) were used, a maxi-
mum of 60% of the overall isoprene variability was assessed
with the highest emissions being strongly underestimated.
ISO-LF includes a total of 9 high (instantaneous) to low (up
to 3 weeks) frequency regressors and accounts for up to 91%
of the isoprene emission variability, whatever the emission
range, species or climate investigated. ISO-LF was found
to be mainly sensitive to air temperature cumulated over 3
weeks (T 21) and toL0 andT 0 variations.T 21,T 0 andL0
only accounts for 76% of the overall variability.

1 Introduction

Chemistry-Transport models are commonly used to assess,
at local or global scales, the distribution of tropospheric
species, such as ozone. Appropriate and accurate emission
data are needed to initialise their chemical modules. Emis-
sions of gaseous compounds in the atmosphere can be related
to human activities and natural processes. Volatile organic
compounds emitted from vegetation, usually referred to as
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biogenic or BVOC, are key species in atmospheric chemistry
processes. Indeed, global biogenic volatile organic com-
pound fluxes are believed to exceed their anthropogenic in-
puts by a factor of 10 (M̈uller, 1992; Guenther et al., 1995)
and, due to their high reactivity, they were shown, on regional
to global scale, to significantly influence atmospheric chem-
istry and climate (Fehsenfeld et al., 1992; Simpson, 1995;
Poisson et al., 2000; Steinbrecher et al., 2000; Sanderson et
al., 2003). Therefore, the assessment of accurate and highly
resolved BVOC emission fluxes represents a major goal for
environmental issues and in particular of isoprene (C5H8)

fluxes, the major BVOC (Guenther et al., 1995; Simpson et
al., 1999).

However, due, in part, to a variability which ranging over
several orders of emission magnitude, isoprene emission as-
sessments remain critical and uncertain. Those variations are
resulting from a complex set of biophysical regulations to
ambient condition changes. Indeed, isoprene emission vari-
ability is closely triggered by leaf developmental stage and
emissions occur only when leaves are grown or are growing.
For deciduous trees, induction of isoprene emissions was ob-
served to happen 200, 300, and 400 cumulated degree day
(d.d., ◦C) after bud break forQuercus macrocarpa(Petron
et al., 2001), Quercus alba(Geron et al., 2000) andPopu-
lus tremuloides(Monson et al., 1994) respectively. Highest
emissions are generally observed for fully developed leaves.
For Quercus albaand Quercus Macrocarpamaximal iso-
prene emissions were observed 600 and 700 d.d. respectively
after bud break. Depending on local environmental condi-
tions, such d.d. values were reached within a period of time
ranging from few days to 3 weeks. With leaf senescence,
isoprene emissions decrease down to non detectable levels.
Moreover, when a leaf is emitting, the rapid enzymatic activ-
ity adaptations can lead to an additional type of fast (seconds
to minutes) variations of isoprene emissions. Such “instanta-
neous” variations are well described by specific emission al-
gorithms based on instantaneous photosynthetic photon flux
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Fig. 1. Structure and principle of a Multi Layer Perceptron. Output valuesycalc are assessed by a weighted sum of input parametersxi . w0
is the connecting weight between the bias (initial random values optimised to obtain the co-ordinate at the origin of the neuronal regression)
andycalc, wj,k the connecting weight between the neuronNj andycalc, w0,j the connecting weight between the bias and the neuronNj ,
andwi,j the connecting weight between the inputxi and the neuronNj .

density (PPFD) and air temperature (G93 algorithm, Guen-
ther et al., 1993), or on the previous day PPFD and air tem-
perature values (Lehning et al., 1999; Zimmer et al., 2000;
Fischbach et al., 2002). Another source of emission varia-
tions, in some occasions even more critical than leaf devel-
opmental stage, originates from the acclimation of a plant to
more or less long term environmental changes. For instance,
the onset of kudzu isoprene emissions were observed to be
shortened by one week under elevated temperature growth
conditions compared to cold growth conditions (Wiberley et
al., 2005). Light acclimation was found to be more complex
for oak species, with a first impact observed within few hours
and a second one after 4–6 days (Hanson and Sharkey, 2001).
Similarly, isoprene emissions from mature oak leaves were
found to be significantly correlated with air temperatures av-
eraged over the previous first, 2 and 7 days (T 1, T 2 andT 7
respectively) and with photosynthetic active radiations aver-
aged over the previous 2 days (PPFD2), the strongest corre-
lation being withT 2×PPFD2 (Sharkey et al., 1999).

Most of the general parameterisations developed so far
for isoprene emissions (e.g. Tingey et al., 1979; Guenther et
al., 1991; Guenther et al., 1993; Sharkey and Loreto, 1993;

Lehning et al., 2001; Guenther et al., 2006; Arneth et al.,
2007) assign an emission factor to an emitter or a group
of emitters which is then modulated by some relevant en-
vironmental parameters (air temperature, light intensity and
CO2) prevailing over a period ranging from few minutes to
10 days before the measurement. However, these parameter-
isations mainly describe the most rapid variations of isoprene
emissions and do not consider acclimation over more than 10
days (Guenther et al., 2006). Nevertheless, lower frequency
(e.g. seasonal) variations of a tree capacity to release isoprene
were observed to account for a significant, in some cases the
major, part of the overall observed emission fluctuations, and
reach up to 3 orders of standardised emission rates magni-
tude (Monson et al., 1994; Geron et al., 2000; Boissard et
al., 2001; Petron et al., 2001). If not correctly assessed this
low frequency variability can represent a major source of dis-
crepancies in isoprene emission assessments (Guenther et al.,
1995).

Artificial neural networks (ANNs) have shown in various
occasions their capacity to account for some complex sets
of environmental interactions. For instance, multiple non-
linear regression technique based on ANNs was employed
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by Lasseron (2001) to assess variations ofUlex europaeus
isoprene emission rates using environmental parameters in-
tegrated over few days to few weeks prior to the measure-
ments. Simon et al. (2005) used a similar technique to couple
isoprene and monoterpene emissions measured from Amazo-
nian tree species with physiological and environmental re-
gressors. ANNs were also used to provide kilomer scale
emission maps of European forest carbon fluxes (Papale and
Valentini, 2003), and to improve assessments of biogenic soil
NOx emission variations (Delon et al., 2007).

In this study, using an appropriate database specifically
built for this work (ISO-DB), ANNs were implemented in
order to develop an isoprene emission rate algorithm (ISO-
LF) accounting for high (instantaneous) to low (weeks) fre-
quency variations of ambient conditions and for a large set of
species. ISO-LF development, performances and sensitivity
are presented and discussed.

2 Method

2.1 The overall strategy

A similar methodology than the one employed by
Lasseron (2001) forUlex europaeuswas used for this work
but applied to a wider range of isoprene emitters and en-
vironmental conditions. Briefly, non linear regressions be-
tween isoprene emission rates reported in the literature and
a set of environmental parameters were calculated and ex-
amined. Physiological parameters, such as net assimilation,
transpiration, stomatal conductance were not considered due
to their difficulty to be assessed afterward when not directly
provided in the literature reference. Moreover, when both,
environmental and physiological input parameters, were con-
sidered, best assessments of isoprene and monoterpene emis-
sions were found, in tropical conditions, to be obtained when
environmental information (instantaneous PPFD and air tem-
perature, and averaged temperature of the preceding 48–18 h)
was employed (Simon et al., 2005).

Non linear regressions were assessed using ANNs.
Among the other available statistical methods, ANNs present
the advantage of being the most parsimonious (Dreyfus et al.,
2002). Moreover, ANN approach, as the other non-linear re-
gression methods, is not, or not very, sensitive to regressor
co-linearity (Bishop, 1995; Dreyfus et al., 2002).

2.2 Neural network description and setting

The neural network developed in this study was used as
a Multi Layer Perceptron (MLP). Further details concern-
ing the MLP theory can be found in Aleksender and Mor-
ton (1990) and White (1992). Briefly, a MLP consists in a
network of processing units (the neurons or artificial neu-
rons)Nj , all connected to each other and arranged in differ-
ent layers (input, hidden and output layer, Fig. 1). Such a

neuron arrangement learns (or approximates) during a train-
ing phase the information contained in a set of experimental
data or output dataymes (in our case the isoprene emission
rates). When the MLP is trained, a set ofn inputs dataxi (in
our case, the environmental parameters) is processed several
times in order to adjust a weighted sumxi ·wi,j wherewi,j

represents the optimised weights calculated by non-linear re-
gressions toymes. xi ·wi,j is then modified (or transferred) by
a transfer functionf in order to calculateycal as follows:

ycalc=w0+

j=N∑
j=1

[
wj,k·f

(
w0,j+

i=n∑
i=1

wi,j ·xi

)]
(1)

wherew0 is the connecting weight between the bias (ini-
tial random values optimised to obtain the co-ordinate at the
origin of the neuronal regression) andycalc, N the number of
neuronsNj , wj,k the connecting weight between the neuron
Nj andycalc, w0,j the connecting weight between the bias
and the neuronNj, andwi,j the connecting weight between
the inputxi and the neuronNj . The transfer functionf con-
sists of a parameterised asymptotic “S” shape function such
as sigmoid or hyperbolic tangent. The training process starts
from randomised values of weights which are iteratively ad-
justed using a second order Quasi Newton back propagation
technique until the minimum differenceE betweenymesand
ycalc reaches the point where the first derivative ofE equals
zero. For this study,E was calculated as follows:

E =
1

2

k=z∑
k=1

(ycalc − ymes)
2 (2)

wherez is the number of output values. For our study, a large
number (300) of iterations were selected for every ANN run
in order to make sure thatE did not correspond to a local er-
ror minimum. During a validation phase, or blind validation,
ANN performances are assessed by the root mean square er-
ror RMSE obtained for these data which were not used dur-
ing the training phase. A special set of validation data is thus
required before start.

The training/validation data splitting represents a key step
in the neural approach. For this work, the training-validation
division was first carried out by considering different cli-
mates (tropical, temperate with dry summer, temperate with-
out dry summer, and cold and humid). For every climate,
data were then classified according to their emission strength
(strong, medium and small as in Guenther et al., 1995).
Each of the 11 sub datasets thus obtained was finally splited
between training (80%) and validation (20%) data using a
Kullback-Leibler distance function (Kullback, 1951) to in-
sure a statistical homogeneity. The final training (n=1062)
and validation (n=259) databases consist of the union of each
training and validation sub-datasets. As shown in Fig. 2,
both databases were statistically homogeneous, with train-
ing mean, first, second, and third quartile values of 30.01,
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Fig. 2. Comparison of the statistical characteristics of ISO-DB
isoprene emission rates for the training (n=1065) and validation
(n=259) databases. The lower, medium and upper horizontal bars
correspond to the first, median and 3rd quartile respectively. Mean
values are represented by crosses. Minimum and maximum values
are represented by the vertical bars.

1.87, 14.57 and 38.53µgC (g foliar dry weight)−1 h−1 (here-
after, µgC g−1

dwt h−1) respectively, close to the validation
values of 30.39, 2.75, 16.08 and 38.50µgC g−1

dwt h−1 re-
spectively. The highest (3.3×102 µgC g−1

dwt h−1) and small-
est (5.0×10−4 µgC g−1

dwt h−1) isoprene emission rates were
forced into the training database, since the neural approach
is only valid within interpolation.

The neural network developed in this study was based on a
commercial version of the Netral NeuroOne software (v. 6.0–
http://www.netral.com, France)

2.3 ISO-DB description

The isoprene database ISO-DB designed for this study con-
sists of:

1. isoprene emission rate values (n=1321) extracted in the
literature and obtained from previous in-situ studies.
Most of the data collected were available under fig-
ures which were digitally numerised. All emission rates
were expressed in ISO-DB inµgC g−1

dwt h−1. Leaf
based emission rates were considered and converted
into mass based emission rates only when a specific leaf
mass conversion factor was provided together with the
data. Isoprene emissions being negligible at night, only
daytime data were used. All emission rates represent
branch level measurements carried out at the top of the
canopy, except forLiquidambarwhom emission rates
were additionally measured 12 m under the top of the
22 m canopy. Most (93%) of the measurements were

obtained using branch enclosure technique, the other
7% from leaf cuvette system. A total of 25 broadleaved
and coniferous trees species, grown under environmen-
tal conditions ranging from tropical (10◦ S) to boreal
(60◦ N) climates were considered (Table 1). Most of
these species are representative of moderate to high iso-
prene emitters (i.e. standardised emissions rates higher
than 35 and 70µgC g−1

dwt h−1 respectively, as in Guen-
ther et al., 1995). Emission rate values were shown to
vary over more than 4 orders of magnitude, from, ap-
proximately, 5×10−4 to 3×102 µgC g−1

dwt h−1 (Fig. 3),
with a mean and median value of 30.1 and 14.8µgC

g−1
dwt h−1 respectively.

2. the temperature (T 0) and PPFD (L0) values, hereafter
referred to as “instantaneous”, recorded during the sam-
pling time;T 0 andL0 values were found to range from
2 to 42◦C (0 to 2400µmol m−2 s−1 respectively), with
a mean and median value of 25.1 and 25.5◦C (680 and
590µmol m−2 s−1 respectively).

3. 32 other environmental regressors which were exam-
ined for their ability to account for environmental
changes during and before the emission measurements
(Table 2). They were integrated over 1 to 21 days pre-
ceding the measurements using daily mean values ex-
tracted from NCDC meteorological data for air tem-
peratures and rainfall or NCEP reanalysis data for soil
variables and solar radiations. All the selected meteoro-
logical stations were within a 30 km distance of each
measurement site, except for the Kuhn et al. (2002,
2004) data obtained in Brazil for which data from a me-
teorological station located within 200 km were used.
Similarly, environmental data were missing in 1984
at the Nagoya station for Ohta (1986)Quercus ser-
rata measurements. Meteorological data available in
1984 at the nearest station Shionomisaki located ap-
proximately at 200 km was corrected by the differ-
ences obtained between both stations over the 1994–
2004 decade. Canopy effects on light and temperature
were accounted forLiquidambarshaded leaves accord-
ing to the Lamb et al. (1993) model. The daylight length
D1, considered for its capacity in discriminating the
seasonal period of measurement, was calculated as:

Atmos. Chem. Phys., 8, 2089–2101, 2008 www.atmos-chem-phys.net/8/2089/2008/
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Fig. 3. Measured isoprene emission rates (µgC g−1
dwt

h−1) compiled in ISO-DB vs the day of year of their measurement, according to the tree
type (coniferous evergreen, CEV; broadleaved deciduous, BLD; and broadleaved evergreen, BLEG) and to the climate (cold, C; temperate,
T; temperate with dry summer, Td, and tropical,TR).
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D1=
24

π
arcos(−tanλtan(arcsin(sinδ· cos[

2π

n
(r−172)]))) (3)

whereλ is the latitude,δ=23.45◦ the Earth inclination,r the
day of the year, andn the annual number of days.

2.4 Data pre-processing

Values of each input were compiled in ISO-DB using a same
unit (Table 2). Because each input is expressed in a differ-
ent unit, absolute values are highly variable from one input
to another. To prevent any input regressorxi to get an artifi-
cially stronger weight in the neural regressions, every input
was centrally-normalised as follows:

xi(CN) =
xi − x̄i

sxi

(4)

wherexi is thexi mean and sxi its associated standard de-
viation, both calculated over the entire database. Isoprene
emission rates were similarly treated. In addition, due their
large range of variation (5 orders of emission magnitude), log
values were used in the ANNs.

3 Results and discussion

When not mentioned, results hereafter presented were ob-
tained for validation data.

3.1 Are L0, T 0, L1 andT 1 sufficient to account for the
overall BVOC emission variability?

In order to make sure that the variability of ISO-DB emis-
sions is not only triggered by high frequency environmental
changes, the impacts ofL0, T 0, L1 andT 1, recognised for
their role in describing short term acclimation of isoprene
emissions (Guenther et al., 1993; Geron et al., 2000; Lehn-
ing et al., 2001) were evaluated. Two series of ANN tests
were conducted: withL0 andT 0 only (ANN0 case) and with
T 0, T 1, L0 andL1 (ANN01 case). ANN0 accounted for a
maximum of 60% of the isoprene emission variability (Ta-
ble 3). WhenL1 andT 1 were additionally considered in
the ANNs, 10% of the isoprene variability could additionally
be accounted for, which represents, at the 95% confidence
level, a significant improvement compared to ANN0 case.
Most of the remaining 30% of the variability not described
was associated with the highest isoprene emissions which
were underestimated by up to two orders of magnitude (re-
sults not shown), whatever the species or the environmental
conditions.

3.2 ISO-LF development

The development of ISO-LF was carried out by training
the ANNs until the best combination between a relevant
set of environmental regressorsxi and a network structure
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Fig. 4. Comparison between the log of isoprene emission rates cal-
culated using ISO-LF (black circles) and G93 (open squares, Guen-
ther et al., 1993, withIs=5µgC g−1

dwt
h−1) vs. the measured iso-

prene emission rates for (a) validation data and (b) training data.
The 1:1 line is shown (dotted line).

(i.e. number of neurons and of neuron layers, transfer func-
tion, number of iterations) was obtained. Further details of
the neural training can be found in Dutot et al. (2007).

In term of neuronal structure, the number of iterations
was fixed at 300 and a second order Quasi-Newton back-
propagation employed. Among the different transfer func-
tions available, the hyperbolic tangent tanh was used. A
number of 1 to 7 neurones were tested. RMSEvalidation was
shown to decrease for a higher number of neurons until a
minimum value of 0.293 was reached forN=4. When more
than 4 neurons were used, RMSEvalidation was showed to in-
crease again indicating an overtraining phenomenon (data
not shown).
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Table 2. Tested ISO-DB environmental input regressors assessed using daily mean values, except for T0 and L0 (instantaneous). Daylight
lengthD1 is in h, air and soil temperatures in◦C, L0 in µmol m−2 s−1, solar fluxes L1-L21 in W m-2, precipitations in mm and soil water
contents in fraction of volume (0–1). * are regressors rejected using the variable probe technique and the covariance analysis.◦ are regressors
showing a weak influence on the overall isoprene variability. In bold, the regressors eventually considered in ISO-LF.

1 Table 2 

2 6 13 20

D1 °

mean T0 T1 T7 ° T14* T21

maximum T1M*

minimum T1m

L0 L1 L7° L14° L21*

P1* P3* P7* P14 P21

ST1u ST7u° ST14u* ST21u°

W1u* W7u* W14u° W21u°

ST1d* ST7d* ST14d* ST21d*

W1d* W7d* W14d° W21d°
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Environmental information

Daylight duration

Temperature

(0
-1

0 
cm

)

U
pp

er
 la

ye
r

A
ir Te

m
pe

ra
tu

re

Light intensity

Precipitations

D
ee

p 
la

ye
r

(1
0-

20
0 

cm
)So

il

Water content

Temperature

Water content
 2 

29 

Table 3. Comparison of the performances (slope s, correlation coef-
ficientr2, root mean square error RMSE and mean bias error MBE)
obtained using (L0, T 0) – ANN0 case, (L0, T 0, L1, T 1) - ANN01
case, (L0, T 0, T 21) – ANN021 case, (L0, T 0, L1, T 1, T 21) –
ANN0121 case, and ISO-LF.

ANN0 ANN01 ANN021 ANN0121 ISO-LF

s 0.567 0.683 0.739 0.82 0.898
r2 0.564 0.695 0.763 0.846 0.901
RMSE 0.775 0.649 0.486 0.383 0.293
MBE –0.014 –0.035 –0.011 –0.004 –0.002

Using the statistical probe technique (Chen et al., 1989)
and a covariance analysis, 15 of the 34 inputsxi were re-
jected since they were found to have no statistical influence
on isoprene emissions (Table 2). For every of the 19 remain-
ing xi , the slope ofycalc=f [(xi) x

j
] (wherex

j
is the mean for

every inputxj , j=i–1 andj 6=i) was examined. For 10 of
them, a slope close to zero was obtained, indicating their
weak influence on the overall isoprene variability. They were
no longer considered in the ANN trainings, and, as shown in
Table 2, a total of 9xi were eventually considered in ISO-
LF: the instantaneous air temperatureT 0 and light intensity
L0, the (d-1) day mean (T 1) and minimum (T 1m) air tem-

peratures, solar radiation (L1) and soil temperatures (ST1u),
the precipitation cumulated over 14 and 21 days (P14 and
P21 respectively), and the air temperature cumulated over
21 daysT 21. When a single one of these 9 inputs was ex-
cluded from the statistical analysis, isoprene emission assess-
ment error was, at the 95% confidence level, significantly in-
creased. One third of ISO-LF inputs represents adaptations
on a time scale of at least one week, and more than half of
them (T 0, L0, L1, T 1m andT 21) was previously reported
as positively influencing isoprene emissions under in in-situ
conditions.

The general equation obtained for ISO-LF is given in ap-
pendix A.

3.3 ISO-LF performances

As shown Fig. 4a and b, ISO-LF was found to account
for 90% of the overall isoprene emission variability, a re-
sult which is, at the 95% confidence level, significantly bet-
ter than for the G93 algorithm (55%, Fig. 4a,b), and the
ANN0 (56%) or ANN01 cases (70%) (Table 3). Moreover,
this good performance was obtained over the whole emis-
sion range, including the highest emission values, and what
ever the climate or the species type. The few outliers corre-
spond to statistically poorly represented situations (e.g., for
some of theUlex europaeusmeasurements, sudden cloud

Atmos. Chem. Phys., 8, 2089–2101, 2008 www.atmos-chem-phys.net/8/2089/2008/
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Fig. 5. ISO-LF sensitivity (sxi) to the inputsxi , for (a) all ISO-DB data,(b) tropical climate date (wet and dry season),(c) cold climate data
(summer only),(d) temperate climate with dry summer (all seasons), and(e) temperate climate (all seasons).sxi was calculated by varying
xi , while all the other inputsxj (j=i-1 andj 6=i) were fixed to their mean values.

occurrences during sampling or summer late afternoon sam-
plings with low light intensity but still elevated temperature).
As shown in Table 3, the air temperature cumulated over sev-
eral weeks (T 21), previously observed to account for some
of the seasonal variations of isoprene emissions (Monson et
al., 1994; Geron et al., 2000), was found, at the 95% con-
fidence level, to significantly improve the results obtained
for ANN0 and ANN01 cases: 76 and 85% of isoprene vari-
ability was accounted for in the ANN021(T 0, L0, T 21) and
ANN0121(T 0, L0, T 1, L1, T 21) case respectively. How-
ever, ISO-LF performances were, at the 95% confidence
level, found to remain better (r2=0.90) and, in particular, for
the highest and lowest emission rates which were poorly as-
sessed in the ANN021 and ANN0121 (data not shown).

3.4 ISO-LF sensitivity

When non linear regressions are used, the weight of each
individual factor in the global variance, (here, the sensitivity
of isoprene emission rates variability to every of the 9xi used
in ISO-LF) is rather complex to assess and the interpretation
of the results not straightforward. However, in order to help
in having an idea to which environmental variablexi ISO-LF
is more sensitive,sxi was calculated as follows:

sxi =

∣∣∣∣∣∣
(

1 logycalc

1xi

)
x
j

∣∣∣∣∣∣ (5)
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where1ycalc is the variation of the predicted isoprene emis-
sion rate obtained for a given variation1xi of the inputxi ,
while the other inputs were set to their meanx

j
, wherej=i-1

andj 6=i. sxi was calculated (i) for the entire dataset and (ii)
for data related to 4 different climates (temperate with and
without dry summer, tropical, and cold and humid) and for
every season (only summer for cold climate).

As shown in Fig. 5a, ISO-LF is, on the overall, mainly
sensitive toT 21 (sT 21=0.46), and toT 0 (sT 0=0.32) andL0
(sL0=0.25), whatever the climate or the season.T 1,T 1m and
P21 were found to have a smaller weight on the predicted
isoprene emission variability (sxi< 0.2) and the lowest sen-
sibility of ISO-LF was observed forST1uandL1 (sxi of 0.02
and 0.04 respectively).

sxi values appeared to be correlated with the magnitude
of the environmental condition fluctuations (Fig. 5b–e): the
lowestsxi were generally associated with data measured un-
der tropical climate (sxi< 0.15, Fig. 5b), when highersxi val-
ues were obtained for more contrasted climates. The overall
sxi pattern of every climate remains, however, similar to the
one obtained with all data, except forP14 in autumn for tem-
perate climate with dry summer data (Fig. 5d), and forST1u
(the upper layer soil temperature of the preceding day) which
represents the second most important contributor in winter
under temperate climate (Fig. 5e). Soil nutrient uptake, such
as nitrogen, is known to be strongly dependent on the micro-
organism activity, which is itself directly controlled by soil
temperature (e.g. Bassirirad, 2000). However, direct impacts
of soil temperature on isoprene emissions having not been
reported so far, the observedST1upredominance remains
unclear. Moreover, this result cannot be generalised due to
the poor statistical representation of winter conditions un-
der temperate climate which relies only onUlex europaeus
measurements. Under temperate climate with dry summer,
isoprene emission regulation was found to be critically de-
pendent on autumnal conditions, with most of the highestsxi

obtained for this season (Fig. 5d). Unexpected high monoter-
pene emissions have been previously measured in several oc-
casions in the Mediterranean area in October (Bertin et al.,
1997; Owen et al., 1998). This observation and our find-
ing suggest that BVOC emissions from plant growing within
Mediterranean climates may be quite sensitive to autumnal
conditions, in particular to low frequency variations of air
temperature (ST 21>2). For temperate climate data,T 21 re-
mains the dominant ISO-LF input (Fig. 5e), in particular dur-
ing winter and spring (ST 21 of 0.76 and 0.59 respectively).

4 Conclusions

Multiple non-linear regressions based on ANNs were imple-
mented to develop an isoprene emission algorithm (ISO-LF)
accounting for high (instantaneous) to low (weeks) frequency
variations. 1321 isoprene emissions rates extracted from the
literature were specifically compiled in a database (ISO-DB),

which covers a large variety of isoprene emitters (25 decid-
uous and coniferous species) grown under latitudes ranging
from 10◦ S to 60◦ N, and describes a set of 34 environmen-
tal high to low frequency environmental regressors. The in-
stantaneous air temperatureT 0 and light intensityL0 alone
were found to account for a maximum of 60% of ISO-DB
isoprene emission variability. When the preceding day infor-
mation was additionally considered, this figure increases up
to 70%, the remaining 30% being mostly associated with the
highest emission rates.

ISO-LF algorithm, obtained from a best combination
made of the (d-1) day minimum air and soil temperatures,
the precipitations cumulated over 2 and 3 weeks, and the cu-
mulated air temperature over 21 days (T 21), accounts for up
to 90% of the overall isoprene variability. None of these in-
puts were artificially selected in any of the ANN optimisation
processes. ISO-LF was found to be mainly sensitive toT 0,
L0 andT 21. More precisely,T 21 was found to be particu-
larly critical during spring for temperate climates, and during
autumn for temperate climates with dry summers.

These findings are in agreement with previous experimen-
tal findings and prove the ability of ANNs to help in account-
ing for the complex regulations of BVOC emissions. This
work also confirms that some parameters other thanL0 and
T 0 can be successively considered to significantly reduce
the uncertainties on isoprene emission assessments and that,
among the different parameters, environmental ones repre-
sent a relatively straightforward solution.

ISO-LF can be routinely updated and improved by adding
new emission data in ISO-DB. In particular, factors not avail-
able for this study (e.g. the nitrogen content or the soil char-
acteristics known to affect the plant water and nutriment
uptake) or broadly assessed with meteorological datasets
should be tested and better assessed during ad-hoc seasonal
campaigns (measurement of isoprene emissions and environ-
mental information before and between samplings).

Such an approach could also be extended for other BVOC
emissions such as monoterpenes or sesquiterpenes. BVOC
canopy fluxes, rather than emission rates, would also be good
candidates for such a neuronal approach.

Appendix A

Calculation of isoprene emission rates E[ISO−LF]
(µgC g−1

dwt h−1) using the ISO-LF algorithm

E[ISO−LF]=10logE[ISO−LF] where logE(ISO-LF)=logE[ISO-
LF(CN)]* s + m and s is the standard deviation of
log(ISO-DB) isoprene emission rates (1.2122),m is the
mean of log(ISO-DB) isoprene emission rates (0.7553),
logE[ISO-LF(CN)] the central-normalised log10 of isoprene
emission rates calculated as log[EISO−LF(CN)]=w0+w1,k·
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Table A1. w: the optimised weights as follows:

w0 –3.08618

w0, 1 –0,89846 w0, 2 9.06389 w0, 3 4.87766 w0, 4 3.07818
w1, 1 –0.27948 w1, 2 0.02752 w1, 3 -0.01802 w1, 4 –0.04267
w2, 1 –0.20780 w2, 2 0.15894 w2, 3 2.73633 w2, 4 0.03061
w3, 1 –0.11346 w3, 2 4.78860 w3, 3 –0.19168 w3, 4 1.24757
w4, 1 0.04658 w4, 2 –8.04591 w4, 3 –0.88332 w4, 4 –2.03039
w5, 1 –0.28604 w5, 2 14.91701 w5, 3 0.50996 w5, 4 5.49218
w6, 1 –0.01218 w6, 2 2.27811 w6, 3 0.32972 w6, 4 0.90825
w7, 1 0.08509 w7, 2 –0.13261 w7, 3 0.09713 w7, 4 –0.67121
w8, 1 0.15142 w8, 2 –2.52531 w8, 3 0.03432 w8, 4 –0.77617
w9, 1 –0.00431 w9, 2 0.11231 w9, 3 0.11136 w9, 4 0.24809
w1, k –2.35616 w2, k –2.66701 w3, k 1.71583 w4, k 2.71897

Table A2. xi : the selected input regressors as follows:

x1 x2 x3 x4 x5 x6 x7 x8 X9

T 0 L0 T 1m T 1min T 21 P14 P21 ST1u L1

tanh(N1)+w2,k· tanh(N2) + w3,k· tanh(N3) + w4,k· tanh(N4)

where:N1 = w0,1 +

i=9∑
i=1

j=9∑
j=1

wi,1
.xj

N2 = w0,2 +

i=19∑
i=11

j=9∑
j=1

wi,2
.xj

N3 = w0,3 +

i=29∑
i=21

j=9∑
j=1

wi,3
.xj

N4 = w0,4 +

i=39∑
i=31

j=9∑
j=1

wi,4
.xj
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D.E.A. report, pp. 30, Paris 7 University, 2001.
Lehning, A., Zimmer, I., Steinbrecher, R., Brüggeman, N., and
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