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Abstract. Using a statistical approach based on artificial biogenic or BVOC, are key species in atmospheric chemistry
neural networks, an emission algorithm (ISO-LF) account-processes. Indeed, global biogenic volatile organic com-
ing for high to low frequency variations was developed for pound fluxes are believed to exceed their anthropogenic in-
isoprene emission rates. ISO-LF was optimised using a datputs by a factor of 10 (Nller, 1992; Guenther et al., 1995)
base (ISO-DB) specifically designed for this work, which and, due to their high reactivity, they were shown, on regional
consists of 1321 emission rates collected in the literature ando global scale, to significantly influence atmospheric chem-
34 environmental variables, measured or assessed using Nestry and climate (Fehsenfeld et al., 1992; Simpson, 1995;
tional Climatic Data Center or National Centers for Environ- Poisson et al., 2000; Steinbrecher et al., 2000; Sanderson et
mental Predictions meteorological databases. 1SO-DB coval., 2003). Therefore, the assessment of accurate and highly
ers a large variety of emitters (25 species) and environmentalesolved BVOC emission fluxes represents a major goal for
conditions (10 S to 60 N). When only instantaneous envi- environmental issues and in particular of isoprengHg)
ronmental regressors (instantaneous air temperdtQrand  fluxes, the major BVOC (Guenther et al., 1995; Simpson et
photosynthetic photon flux densi#0) were used, a maxi- al., 1999).

mum of 60% of the overall isoprene variability was assessed However, due, in part, to a variability which ranging over

with the highest emissions being strongly underestimatedseyeral orders of emission magnitude, isoprene emission as-
ISO-LF includes a total of 9 high (instantaneous) to low (Up sessments remain critical and uncertain. Those variations are
to 3 weeks) frequency regressors and accounts for up to 91%sulting from a complex set of biophysical regulations to
of the isoprene emission variability, whatever the emissiongmbient condition changes. Indeed, isoprene emission vari-
range, species or climate investigated. 1SO-LF was foundypility is closely triggered by leaf developmental stage and
to be mainly sensitive to air temperature cumulated over 3emjssions occur only when leaves are grown or are growing.
weeks ("21) and toL0 and70 variations.721,70 andLO  For deciduous trees, induction of isoprene emissions was ob-
only accounts for 76% of the overall variability. served to happen 200, 300, and 400 cumulated degree day
(d.d., °C) after bud break foQuercus macrocarp@Petron
et al., 2001), Quercus albgGeron et al., 2000) andPopu-
1 Introduction lus tremuloidegMonson et al., 1994) respectively. Highest
emissions are generally observed for fully developed leaves.
Chemistry-Transport models are commonly used to asses§0r Quercus albaand Quercus Macrocarpamaximal iso-
at local or global scales, the distribution of tropospheric Prene emissions were observed 600 and 700 d.d. respectively
species, such as ozone. Appropriate and accurate emissigiter bud break. Depending on local environmental condi-
data are needed to initialise their chemical modules. Emistions, such d.d. values were reached within a period of time
sions of gaseous compounds in the atmosphere can be relatédnging from few days to 3 weeks. With leaf senescence,
to human activities and natural processes. Volatile organidsoprene emissions decrease down to non detectable levels.

compounds emitted from vegetation, usually referred to agioreover, when a leaf is emitting, the rapid enzymatic activ-
ity adaptations can lead to an additional type of fast (seconds

to minutes) variations of isoprene emissions. Such “instanta-
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Fig. 1. Structure and principle of a Multi Layer Perceptron. Output valyeg. are assessed by a weighted sum of input paramegtetsg

is the connecting weight between the bias (initial random values optimised to obtain the co-ordinate at the origin of the neuronal regression)

andycale, wj,k the connecting weight between the neurdpandycaic, wo, ; the connecting weight between the bias and the nedygn

andw; ; the connecting weight between the inpytand the neurow ;.

density (PPFD) and air temperature (G93 algorithm, GuenLehning et al., 2001; Guenther et al., 2006; Arneth et al.,
ther et al., 1993), or on the previous day PPFD and air tem2007) assign an emission factor to an emitter or a group
perature values (Lehning et al., 1999; Zimmer et al., 2000;0f emitters which is then modulated by some relevant en-
Fischbach et al., 2002). Another source of emission variavironmental parameters (air temperature, light intensity and
tions, in some occasions even more critical than leaf devel<CO,) prevailing over a period ranging from few minutes to
opmental stage, originates from the acclimation of a plant tol0 days before the measurement. However, these parameter-
more or less long term environmental changes. For instancdsations mainly describe the most rapid variations of isoprene
the onset of kudzu isoprene emissions were observed to bemissions and do not consider acclimation over more than 10
shortened by one week under elevated temperature growttays (Guenther et al., 2006). Nevertheless, lower frequency
conditions compared to cold growth conditions (Wiberley et (e.g. seasonal) variations of a tree capacity to release isoprene
al., 2005). Light acclimation was found to be more complex were observed to account for a significant, in some cases the
for oak species, with a firstimpact observed within few hoursmajor, part of the overall observed emission fluctuations, and
and a second one after 4-6 days (Hanson and Sharkey, 200Xeach up to 3 orders of standardised emission rates magni-
Similarly, isoprene emissions from mature oak leaves werdude (Monson et al., 1994; Geron et al., 2000; Boissard et
found to be significantly correlated with air temperatures av-al., 2001; Petron et al., 2001). If not correctly assessed this
eraged over the previous first, 2 and 7 dag4,(T2 andT7 low frequency variability can represent a major source of dis-
respectively) and with photosynthetic active radiations aver-crepancies in isoprene emission assessments (Guenther et al.,
aged over the previous 2 days (PPFD2), the strongest corret995).

lation being withT2x PPFD2 (Sharkey et al., 1999).
Artificial neural networks (ANNs) have shown in various

Most of the general parameterisations developed so fabccasions their capacity to account for some complex sets
for isoprene emissions (e.g. Tingey et al., 1979; Guenther ebf environmental interactions. For instance, multiple non-
al., 1991; Guenther et al., 1993; Sharkey and Loreto, 1993linear regression technique based on ANNs was employed
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by Lasseron (2001) to assess variationdJtdx europaeus neuron arrangement learns (or approximates) during a train-
isoprene emission rates using environmental parameters irng phase the information contained in a set of experimental
tegrated over few days to few weeks prior to the measuredata or output datgmes (in our case the isoprene emission
ments. Simon et al. (2005) used a similar technique to coupleates). When the MLP is trained, a setohputs datax; (in
isoprene and monoterpene emissions measured from Amazaur case, the environmental parameters) is processed several
nian tree species with physiological and environmental re-times in order to adjust a weighted sumw; ; wherew; ;
gressors. ANNs were also used to provide kilomer scalerepresents the optimised weights calculated by non-linear re-
emission maps of European forest carbon fluxes (Papale angressions tomes x;-w;, ; is then modified (or transferred) by
Valentini, 2003), and to improve assessments of biogenic soik transfer functiory in order to calculatecg as follows:
NOy emission variations (Delon et al., 2007).

In this study, using an appropriate database specifically J=N 1=n
built for this work (1ISO-DB), ANNs were implemented in Ycalc=wo+ Z [wj,k'f (wO,j“‘Z wi,j*t‘)} 1)
order to develop an isoprene emission rate algorithm (ISO- j=1 i=1
LF) aCCO“r?“r!g for high (!nstantangous) to low (weeks) fre- wherewyg is the connecting weight between the bias (ini-
quency variations of ambient conditions and for a large set of

: .- tial random values optimised to obtain the co-ordinate at the
species. ISO-LF development, performances and senS|t|V|t)6rigin of the neuronal regression) angie, N the number of
are presented and discussed. ¢

neuronsN;, w; ; the connecting weight between the neuron
N; andycaic, wo,j the connecting weight between the bias
and the neurowV; andw; ; the connecting weight between
the inputy; and the neurowv;. The transfer functiorf con-
sists of a parameterised asymptotic “S” shape function such
as sigmoid or hyperbolic tangent. The training process starts
from randomised values of weights which are iteratively ad-

A similar methodology than the one employed by . . . X
Lasseron (2001) foulex europaeusvas used for this work usted using a second order Quasi Newton back propagation
technique until the minimum differende betweenynesand

but applied to a wider range of isoprene emitters and en- . ; o

vironrﬂgntal conditions. Br?efly, nonplinear regressions be->cac reaches the point where the first denvatlvgﬂ)équals

tween isoprene emission rates reported in the literature an§®'o: For this studyg was calculated as follows:

a set of environmental parameters were calculated and ex- =

amlneq. PhyS|oIog|caI parameters, such as net as.S|m|Iat|orE _ - Z (Veale — Ymed)? )

transpiration, stomatal conductance were not considered due 2 =

to their difficulty to be assessed afterward when not directly

provided in the literature reference. Moreover, when both,wherez is the number of output values. For our study, a large

environmental and physiological input parameters, were connumber (300) of iterations were selected for every ANN run

sidered, best assessments of isoprene and monoterpene eniizorder to make sure that did not correspond to a local er-

sions were found, in tropical conditions, to be obtained whenror minimum. During a validation phase, or blind validation,

environmental information (instantaneous PPFD and air temANN performances are assessed by the root mean square er-

perature, and averaged temperature of the preceding 48-18 h)r RMSE obtained for these data which were not used dur-

was employed (Simon et al., 2005). ing the training phase. A special set of validation data is thus
Non linear regressions were assessed using ANNsrequired before start.

Among the other available statistical methods, ANNs present The training/validation data splitting represents a key step

the advantage of being the most parsimonious (Dreyfus et alin the neural approach. For this work, the training-validation

2002). Moreover, ANN approach, as the other non-linear re-division was first carried out by considering different cli-

gression methods, is not, or not very, sensitive to regressomates (tropical, temperate with dry summer, temperate with-

2 Method

2.1 The overall strategy

co-linearity (Bishop, 1995; Dreyfus et al., 2002). out dry summer, and cold and humid). For every climate,
data were then classified according to their emission strength
2.2 Neural network description and setting (strong, medium and small as in Guenther et al., 1995).

Each of the 11 sub datasets thus obtained was finally splited
The neural network developed in this study was used adetween training (80%) and validation (20%) data using a
a Multi Layer Perceptron (MLP). Further details concern- Kullback-Leibler distance function (Kullback, 1951) to in-
ing the MLP theory can be found in Aleksender and Mor- sure a statistical homogeneity. The final training1062)
ton (1990) and White (1992). Briefly, a MLP consists in a and validation§=259) databases consist of the union of each
network of processing units (the neurons or artificial neu-training and validation sub-datasets. As shown in Fig. 2,
rons)N;, all connected to each other and arranged in differ-both databases were statistically homogeneous, with train-
ent layers (input, hidden and output layer, Fig. 1). Such aing mean, first, second, and third quartile values of 30.01,
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Fig. 2. Comparison of the statistical characteristics of ISO-DB
isoprene emission rates for the training (n=1065) and validation
(n=259) databases. The lower, medium and upper horizontal bars

correspond to the first, median and 3rd quartile respectively. Mean 3.

values are represented by crosses. Minimum and maximum values
are represented by the vertical bars.

1.87, 14.57 and 38.53gC (g foliar dry weighty* h—1 (here-
after, uge g;u%[ h=1) respectively, close to the validation

values of 30.39, 2.75, 16.08 and 385§ g, h' re-
spectively. The highest (3:3L(? ugc g+, h™1) and small-

est (5.0¢10~* ugc g5, h~1) isoprene emission rates were
forced into the training database, since the neural approach
is only valid within interpolation.

The neural network developed in this study was based on a
commercial version of the Netral NeuroOne software (v. 6.0—
http://www.netral.comFrance)

2.3

ISO-DB description

The isoprene database 1SO-DB designed for this study con-
sists of:

1.

isoprene emission rate values=(L321) extracted in the
literature and obtained from previous in-situ studies.
Most of the data collected were available under fig-
ures which were digitally numerised. All emission rates
were expressed in 1ISO-DB ipgc g;jt h=l. Leaf
based emission rates were considered and converted
into mass based emission rates only when a specific leaf
mass conversion factor was provided together with the
data. Isoprene emissions being negligible at night, only
daytime data were used. All emission rates represent
branch level measurements carried out at the top of the
canopy, except fotiquidambarwhom emission rates
were additionally measured 12 m under the top of the
22m canopy. Most (93%) of the measurements were
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obtained using branch enclosure technique, the other
7% from leaf cuvette system. A total of 25 broadleaved
and coniferous trees species, grown under environmen-
tal conditions ranging from tropical (26) to boreal

(60° N) climates were considered (Table 1). Most of
these species are representative of moderate to high iso-
prene emitters (i.e. standardised emissions rates higher
than 35 and 7@.gc g;ul)t h~1 respectively, as in Guen-
ther et al., 1995). Emission rate values were shown to
vary over more than 4 orders of magnitude, from, ap-
proximately, 5¢10~* to 3x1(? ugc g, h~* (Fig. 3),

with a mean and median value of 30.1 and 1498

g2 h~! respectively.

. the temperatureT(0) and PPFD L0) values, hereafter

referred to as “instantaneous”, recorded during the sam-
pling time; 70 andLO0 values were found to range from

2 to 42C (0 to 240Qumol m~2 s~1 respectively), with

a mean and median value of 25.1 and 26.%680 and
590umol m—2 s~1 respectively).

32 other environmental regressors which were exam-
ined for their ability to account for environmental
changes during and before the emission measurements
(Table 2). They were integrated over 1 to 21 days pre-
ceding the measurements using daily mean values ex-
tracted from NCDC meteorological data for air tem-
peratures and rainfall or NCEP reanalysis data for soil
variables and solar radiations. All the selected meteoro-
logical stations were within a 30 km distance of each
measurement site, except for the Kuhn et al. (2002,
2004) data obtained in Brazil for which data from a me-
teorological station located within 200 km were used.
Similarly, environmental data were missing in 1984
at the Nagoya station for Ohta (1986uercus ser-
rata measurements. Meteorological data available in
1984 at the nearest station Shionomisaki located ap-
proximately at 200 km was corrected by the differ-
ences obtained between both stations over the 1994—
2004 decade. Canopy effects on light and temperature
were accounted fdriqguidambarshaded leaves accord-
ing to the Lamb et al. (1993) model. The daylight length
D1, considered for its capacity in discriminating the
seasonal period of measurement, was calculated as:

www.atmos-chem-phys.net/8/2089/2008/
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Fig. 3. Measured isoprene emission rategf g;wlt h~—1) compiled in ISO-DB vs the day of year of their measurement, according to the tree
type (coniferous evergreen, CEV, broadleaved deciduous, BLD; and broadleaved evergreen, BLEG) and to the climate (cold, C; temperate,
T, temperate with dry summer, Td, and tropical, TR).
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Dl1= Elarco$—tanktan(arcsir(sin<3- cos{z—n(r—172)]))) 3) 3
T n ISO-LF: y=0.90x +0.08 - ’=0.90 (n=259)
wherea is the latitude3=23.45% the Earth inclinationy the g 21
day of the year, and the annual number of days. E N
2.4 Data pre-processing E %
2 ] :
Values of each input were compiled in ISO-DB using a same & ° T
unit (Table 2). Because each input is expressed in a differ- = -1 1 -
ent unit, absolute values are highly variable from one input é; ¢
to another. To prevent any input regresspto get an artifi- 229 .« o
cially stronger weight in the neural regressions, every input 3, o¥e e
was centrally-normalised as follows: S 3 —3
- G93: y=0.49x + 0.53 - 1"=0.55 (n=259)
n _ Xj — )Ei (4) 4 | | | | | |
HEN) » 4 3 2 1 0 1 2 3
Log (measured isoprene emission rates)
where x;is thex; mean and g its associated standard de- 3 ~
viation, both calculated over the entire database. Isoprene ISO-LF: y=0.90x +0.07 - *=0.90 (n=1062) ”111

emission rates were similarly treated. In addition, due their
large range of variation (5 orders of emission magnitude), log
values were used in the ANNs.

3 Results and discussion

When not mentioned, results hereafter presented were ob-
tained for validation data.

3.1 ArelLO, T0, L1 andT1 sufficient to account for the
overall BVOC emission variability?

Log (calculated isoprene emission rates)

T e 9 G93:y=0.54x +0.42 - r"=0.55 (n=1062)

In order to make sure that the variability of ISO-DB emis- ) 4 3 > r 0 | ) 3

sions is not only triggered by high frequency environmental
changes, the impacts @0, 70, L1 andT1, recognised for

their role in describing short term acclimation of isoprene Fig. 4. Comparison between the log of isoprene emission rates cal-

famissions (Guenther et al., 1993; Geron et al., 2000; Lehngjated using ISO-LF (black circles) and G93 (open squares, Guen-
ing et al., 2001) were evaluated. Two series of ANN testSy, o et al., 1993, with;=5 ugc %l)t h~1) vs. the measured iso-

were conducted: with0 and7'0 only (ANNO case) and with  prene emission rates for (a) validation data and (b) training data.
T0,T1, L0 andL1 (ANNO1 case). ANNO accounted for a The 1:1 line is shown (dotted line).

maximum of 60% of the isoprene emission variability (Ta-
ble 3). WhenL1 and7T1 were additionally considered in
the ANNSs, 10% of the isoprene variability could additionally
be accounted for, which represents, at the 95% confidenc
level, a significant improvement compared to ANNO case.
Most of the remaining 30% of the variability not described
was associated with the highest isoprene emissions which In term of neuronal structure, the number of iterations
were underestimated by up to two orders of magnitude (rewas fixed at 300 and a second order Quasi-Newton back-
sults not shown), whatever the species or the environmentd?ropagation employed. Among the different transfer func-

Log (measured isoprene emission rates)

g.e. number of neurons and of neuron layers, transfer func-
ion, number of iterations) was obtained. Further details of
the neural training can be found in Dutot et al. (2007).

conditions. tions available, the hyperbolic tangent tanh was used. A
number of 1 to 7 neurones were tested. RNiztion Was
3.2 ISO-LF development shown to decrease for a higher number of neurons until a

minimum value of 0.293 was reached f§=4. When more
The development of ISO-LF was carried out by training than 4 neurons were used, RMgfgation Was showed to in-
the ANNSs until the best combination between a relevantcrease again indicating an overtraining phenomenon (data
set of environmental regressors and a network structure not shown).
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Table 2. Tested ISO-DB environmental input regressors assessed using daily mean values, except for TO and LO (instantaneous). Daylight
length D1 is in h, air and soil temperaturesqig, LO in wmol m—2 s™1, solar fluxes L1-L21 in W m-2, precipitations in mm and soil water
contents in fraction of volume (0-1). * are regressors rejected using the variable probe technique and the covariance aratggisessors

showing a weak influence on the overall isoprene variability. In bold, the regressors eventually considered in ISO-LF.

x; not cumulated x; cumulated over p days preceeding the d-day (included)
Environmental information P
Instantaneous  (d-1) day mean (d-1) day mean
6 13 20
Daylight duration DI°
o Mean TO T1 T7° T14%* T21
g
< maximum TIM*
1S
N 2
P minimum Tim
Light intensity L0 L1 L7° Li14° L21*
Precipitations PI* P3* P7* P14 P21
2 ’g Temperature ST1u ST7u® ST14u* ST21u°®
g S
_ % é Water content Wilu* W7u* Wi4u® W21u®
s =
% 5 Temperature STI1d* ST7d* ST14d* ST21d*
s §
8 g" Water content wid* w7d* Wi4d° w21d°

Table 3. Comparison of the performances (slope s, correlation Coef_perature:'s,.so.lar radiation. 1) and soil temperatures{1y,
ficientr2, root mean square error RMSE and mean bias error MBE)th€ Precipitation cumulated over 14 and 21 dayd4 and
obtained usingX0, T0) — ANNO case, [0, T0, L1, T1) - ANNO1 P21 respectively), and the air temperature cumulated over

case, L0, TO, T21) — ANNO21 case, L0, TO, L1, T1, T21) — 21 daysT21. When a single one of these 9 inputs was ex-
ANNO121 case, and ISO-LF. cluded from the statistical analysis, isoprene emission assess-
ment error was, at the 95% confidence level, significantly in-
ANNO ANNO1 ANNO0O21 ANNO121 ISO-LF creased. One third of ISO-LF inputs represents adaptations
S 0567 0683 0739 0.82 0.898 on a time scale of at least one week, and. more than half of
ro 0564 0695  0.763 0.846 0.901 them (70, LO, L1, T1m andT21) was previously reported
RMSE 0.775 0.649 0.486 0.383 0.293 as positively influencing isoprene emissions under in in-situ
MBE -0.014 -0.035 -0.011 -0.004 -0.002  conditions.
The general equation obtained for ISO-LF is given in ap-
pendix A.

Using the statistical probe technique (Chen et al., 1989)3_3
and a covariance analysis, 15 of the 34 inpytsvere re-
jected since they were found to have no statistical influenceAS shown Fig. 4a and b, ISO-LF was found to account
on isoprene emissions (Table 2). For every of the 19 remain; '

) e sl C 3 H (wherex is th ¢ for 90% of the overall isoprene emission variability, a re-
g i, the slope ofyca|c—f[(x,))]g] (w ere); IS e meanfor it which is, at the 95% confidence level, significantly bet-

every inputx;, j=i—1 andj#i) was examined. For 10 of ter than for the G93 algorithm (55%, Fig. 4a,b), and the
them, a slope close to zero was obtained, indicating theilANNO (56%) or ANNO1 cases (70%) (Table 3). Moreover,
weak influence on the overall isoprene variability. They werethis good performance was obtained over the whole emis-
no longer considered in the ANN trainings, and, as shown insion range, including the highest emission values, and what
Table 2, a total of &%; were eventually considered in ISO- ever the climate or the species type. The few outliers corre-
LF: the instantaneous air temperatdi@ and light intensity ~ spond to statistically poorly represented situations (e.g., for
L0, the (d-1) day mearf(l) and minimum { 1m) air tem- some of theUlex europaeusneasurements, sudden cloud

ISO-LF performances
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Fig. 5. ISO-LF sensitivity §,;) to the inputsy;, for (a) all ISO-DB data(b) tropical climate date (wet and dry seasdp),cold climate data
(summer only)(d) temperate climate with dry summer (all seasons),@)temperate climate (all seasons); was calculated by varying
x;, while all the other inputs ; (j=i-1 andj#i) were fixed to their mean values.

occurrences during sampling or summer late afternoon sam3.4 I1SO-LF sensitivity
plings with low light intensity but still elevated temperature).
As shown in Table 3, the air temperature cumulated OVer SeViyw o non linear regressions are used, the weight of each
eral weeks 121, previously observed to account for some

o . e individual f r in the global varian here, th nsitivi
of the seasonal variations of isoprene emissions (Monson epd dual factor in the global variance, (here, the sensitivity

al., 1994: Geron et al., 2000), was found, at the 95% con-.Of isoprene emission rates variability to every of the @sed

fidence level. to sianificantly improve the results obta'nedm ISO-LF) is rather complex to assess and the interpretation
! Vel Igni y improv U N ot the results not straightforward. However, in order to help
for ANNO and ANNO1 cases: 76 and 85% of isoprene vari- . , : . . .
o . in having an idea to which environmental variakldSO-LF
ability was accounted for in the ANNO21LQ, L0, T21) and is more sensitives,; was calculated as follows:
ANNO0121(T0, LO, T1, L1, T21) case respectively. How- ! '
ever, ISO-LF performances were, at the 95% confidence
level, found to remain better{=0.90) and, in particular, for
the highest and lowest emission rates which were poorly as; = _ (A log ycalc>
Xt —
X

5
sessed in the ANNO21 and ANN0121 (data not shown). Ax; ©)

J
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whereAycaic is the variation of the predicted isoprene emis- which covers a large variety of isoprene emitters (25 decid-
sion rate obtained for a given variatiaxy; of the inputx;, uous and coniferous species) grown under latitudes ranging
while the other inputs were set to their mearwherej=i-1  from 10° S to 60 N, and describes a set of 34 environmen-

, : . .
. ; ; .y tal high to low frequency environmental regressors. The in-
andj#i. sy; was calculated (i) for the entire dataset and (ii . A .
J7L S ® (i) stantaneous air temperatuf® and light intensityL.0 alone

f I 4 diff li ith .
or data related to 4 different climates (temperate wit andWere found to account for a maximum of 60% of 1SO-DB

without dry summer, tropical, and cold and humid) and for . o iability. When th dina dav inf
every season (only summer for cold climate). isoprene emission variability. When the preceding day infor-

As shown in Fig. 5a, ISO-LF is, on the overall, mainly [na7t60051 V,\[/r?s addnpmllg(;:;ns@ered, ﬂ;:s flgure'lrlc:jeagﬁ]sﬂl].lp
sensitive toT' 21 (s721=0.46), and tar'0 (s70=0.32) andLO 0 0, the remaining 0 being mostly associated wi €

(s2.0=0.25), whatever the climate or the seasbf, 71m and highest emission rates.
P21 were found to have a smaller weight on the predicted SO-LF algorithm, obtained from a best combination
isoprene emission variability; < 0.2) and the lowest sen- made of the (d-1) day minimum air and soil temperatures,
sibility of ISO-LF was observed f@T1uandL1 (s,; of 0.02 the precipitations cumulated over 2 and 3 weeks, and the cu-
and 0.04 respectively). mulated air temperature over 21 day®(@), accounts for up

sy values appeared to be correlated with the magnitudd® 90% of the overall isoprene variability. None of these in-
of the environmental condition fluctuations (Fig. Sb—e): the PUts were artificially selected in any of the ANN optimisation
lowests,; were generally associated with data measured unProcesses. ISO-LF was found to be mainly sensitivé @o
der tropical climates; < 0.15, Fig. 5b), when highes; val- L0 andT21. More precisely721 was found to be particu-
ues were obtained for more contrasted climates. The overalfrly critical during spring for temperate climates, and during
sy pattern of every climate remains, however, similar to the@utumn for temperate climates with dry summers.
one obtained with all data, except fBid4 in autumn for tem- These findings are in agreement with previous experimen-
perate climate with dry summer data (Fig. 5d), andS®@du tal findings and prove the ability of ANNSs to help in account-
(the upper layer soil temperature of the preceding day) whiching for the complex regulations of BVOC emissions. This
represents the second most important contributor in wintemwork also confirms that some parameters other tharand
under temperate climate (Fig. 5e). Soil nutrient uptake, sucH’'O can be successively considered to significantly reduce
as nitrogen, is known to be strongly dependent on the microthe uncertainties on isoprene emission assessments and that,
organism activity, which is itself directly controlled by soil among the different parameters, environmental ones repre-
temperature (e.g. Bassirirad, 2000). However, direct impactsent a relatively straightforward solution.

of soil temperature on isoprene emissions having not been |SO-LF can be routinely updated and improved by adding
reported so far, the observeil'lupredominance remains new emission data in ISO-DB. In particular, factors not avail-
unclear. Moreover, this result cannot be generalised due t@ple for this study (e.g. the nitrogen content or the soil char-
the poor statistical representation of winter conditions un-acteristics known to affect the plant water and nutriment
der temperate climate which relies only bitex europaeus  yptake) or broadly assessed with meteorological datasets
measurements. Under temperate climate with dry summefshould be tested and better assessed during ad-hoc seasonal
isoprene emission regulation was found to be critically de-campaigns (measurement of isoprene emissions and environ-
pendent on autumnal conditions, with most of the highgst  mental information before and between samplings).

obtained for this season (Fig. 5d). Unexpected high monoter- Such an approach could also be extended for other BVOC

pene emissions have been previously measured in several Oimissions such as monoterpenes or sesquiterpenes. BVOC

caS|o'ns in the Me|d|terranean r?reat;n Octc_)ber (Bdertm it ‘Zl'canopy fluxes, rather than emission rates, would also be good
1997; Owen et al., 1998). This observation and our fin “candidates for such a neuronal approach.

ing suggest that BVOC emissions from plant growing within

Mediterranean climates may be quite sensitive to autumnal

conditions, in particular to low frequency variations of air

temperature{r21>2). For temperate climate datd21 re-  Appendix A

mains the dominant ISO-LF input (Fig. 5e), in particular dur-

ing winter and spring{r21 of 0.76 and 0.59 respectively). ~  Calculation of isoprene emission rates Efo F]
(1gc g+, h~1) using the ISO-LF algorithm

4 Conclusions

E[1s0-Lr]=10°9EISO-LFI \yhere logE(ISO-LF)=logE[ISO-
Multiple non-linear regressions based on ANNs were imple-LFcy)]*s + m and s is the standard deviation of
mented to develop an isoprene emission algorithm (ISO-LF)Jog(ISO-DB) isoprene emission rates (1.2122), is the
accounting for high (instantaneous) to low (weeks) frequencymean of log(ISO-DB) isoprene emission rates (0.7553),
variations. 1321 isoprene emissions rates extracted from thingE[ISO-LF ] the central-normalised lag of isoprene
literature were specifically compiled in a database (ISO-DB),emission rates calculated as log{& Lrcn)]=wo+w1 k-

Atmos. Chem. Phys., 8, 2082101, 2008 www.atmos-chem-phys.net/8/2089/2008/



C. Boissard et al.: Biogenic isoprene emission rates modelling 2099

Table Al. w: the optimised weights as follows:

w0 -3.08618

w0,1 -0,89846 w0,2 9.06389 w0,3 4.87766 w0,4 3.07818
wl 1 -0.27948 wl,2 0.02752 wl, 3 -0.01802 wl,4 -0.04267
w2,1 -0.20780 w2,2 0.15894 w2,3 2.73633 w2,4 0.03061
w3,1 -0.11346 w3,2 4.78860 w3,3 -0.19168 w3,4 1.24757
w4,1 0.04658 w4,2 -8.04591 w4, 3 -0.88332 w4,4 -2.03039
w5,1 -0.28604 w5,2 1491701 w5,3 0.50996 w5,4 5.49218
w6,1 -0.01218 w6,2 2.27811 w6,3 0.32972 w6,4 0.90825
w7,1 0.08509 w7,2 -0.13261 w7,3 0.09713 w7,4 -0.67121
w8, 1 0.15142 w8,2 -2.52531 w8,3 0.03432 w8,4 -0.77617
w9,1 -0.00431 w9,2 0.11231 w9,3 0.11136 w9,4 0.24809
wl k -2.35616 w2,k -2.66701 w3,k 1.71583 w4,k 2.71897

isoprene interaction, Atmospheric Chemistry and Physics, 7, 31—
53, http://www.atmos-chem-phys.net/7/31/2002807.

Bassirirad, H.: Kinetics of nutrient uptake by roots: responses to
global change, New Phytol., 147, 155-169, 2000.

Bertin, N., Staudt, M., Hanse, U., Seufert, G., Ciccioli, P., Fos-

T0 LO Tlm T1lmin T21 P14 P21 STlu L1 ter, P., Fugit, J.-L., and Torres, L.: Diurnal and seasonal course
of monoterpene emissions froQuercus ilex(L.) under natural
conditions -Applications of light and temperature algorithms, At-
mos. Environ., 31, 135-144, 1997.

Bishop, C. M.: Neural networks for pattern recognition, 504 pp.,

Table A2. x;: the selected input regressors as follows:

X1 X2 X3 X4 X5 X6 X7 xg X9

tanh(Va)+wz ¢ tanh(v) ,tgw?"k' tanh(Vs) + wa- tanh(Va) Oxford University Press, 1995.
where:N; = wo 1 + lig /i wi1x; Boissard, C., Cao, X-L., Juan, C.-Y., Hewitt, C. N., and Gallager,
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