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Abstract. Imperfect dynamical core is an important source 1  Introduction
of model biases that adversely impact on the model simu-
lation and predictability of a coupled system. With a sim- Imperfect dynamical core, empirical physical schemes and
ple pycnocline prediction model, in this study, we show theimproper parameter values are several sources of couple
mitigation of model biases through parameter optimizationmodel bias (Zhang et al., 2012). Simulated climate by a cou-
when the assimilation model consists of a “biased” time- pled model often tends to drift away from the real world due
differencing. Here, the “biased” time-differencing is defined to the existence of model bias (Collins et al., 2006; Delworth
by a different time-differencing scheme from the “truth” et al., 2006; Smith et al., 2007). However, it is quite diffi-
model that is used to produce “observations”, which gen-cult to improve the model simulation and forecast capability
erates different mean values, climatology and variability of through using observations to correct the dynamical core and
the assimilation model from the “truth” model. A series of physics that are “built-in” in the coupled model. One expects
assimilation experiments is performed to explore the impacthat the parameter optimization can partly compensate for the
of parameter optimization on model bias mitigation and cli- deficiencies of both numerics and physics of a coupled model
mate estimation, as well as the role of different media pa-and improve the model performance to some degree.
rameter estimations. While the stochastic “physics” imple- To constrain model biases and improve the quality of
mented by perturbing parameters can enhance the ensemlimate estimation and prediction, Zhang et al. (2012) de-
ble spread significantly and improve the representation ofsigned a coupled data assimilation scheme with what these
the model ensemble, signal-enhanced parameter estimaticauthors called “enhancive” parameter correction (DAEPC)
is able to mitigate the model biases on mean values and clibased on an ensemble Kalman filter with the adjustment
matology, thus further improving the accuracy of estimatedidea (Anderson, 2001). With the DAEPC algorithm, Zhang
climate states, especially for the low-frequency signals. In(2011a) investigated the impact of observation-optimized
addition, in a multiple timescale coupled system, parametersnodel parameters on decadal predictions with a simple pyc-
pertinent to low-frequency components have more impact omocline prediction model. Then in a follow-up study (Zhang,
climate signals. Results also suggest that deep ocean obse911b), the author also investigated the impacts of coupled
vations may be indispensable for improving the accuracy ofmodel initial shocks and state-parameter optimization on cli-
climate estimation, especially for low-frequency signals. mate predictions using this simple model. Results show that
model parameter optimization with observations can effec-
tively mitigate the model bias, thus constraining the model
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drift in long timescale predictions. Wu et al. (2012) further 2 Methodology
introduced a geographic dependent parameter optimization
(GPO) scheme to increase the signal-to-noise ratio of the2.1 The model
background error covariance in parameter estimation, and ex-

amined the impact of this new scheme on climate estimation'© address the fundamental issues raised in Sect. 1 clearly,

and prediction using an intermediate coupled model within aV& €mploy a simple decadal prediction model developed
perfect model framework (Wu et al., 2013). Recently, ZhangPy Zhang (2011a). The model consists of a conceptual

etal. (2013b) investigated the impact of parameter estimatiorfitM0Sphere—ocean coupled model that couples three Lorenz
on climate estimation and prediction in an intermediate cou-CNa0tc atmosphere variables, xz, andxs (Lorenz, 1963),

pled model with biased physics within a biased twin exper-© & Slab-ocean variable and a simple pycnocline predictive
iment framework, which indicates that the adverse impactM0del (Gnanadesikan, 1999). The governing equations with
of biased physical schemes in a coupled model on climaté!! quantities being given in non-dimensional units are
estimation and prediction can be compensated partly by op-
timizing the most sensitive parameters employed in the phys-
ical schemes. The impact of estimated parameters on the be-
havior of model simulation has also been examined (Zhang X3 = x1x2 — bx3
etal., 2013a), with results showing that biased climate SImu-Opmi = cax + c3n + cawn — Ogqw + Sm + SsCOS(27t / Spd)
lated by “biased” physics in that intermediate coupled model
can be well corrected through parameter estimation.
While coupled model parameter estimation has shown avhere the five model variables represent the atmosphegre (
great potential to improve the quality of climate estimation x2, andx3) and the oceanu( for the slab oceary for the
and prediction as well as model simulation, the impactdeep ocean pycnocline). A dot above the variable denotes
of imperfect dynamical cores such as imperfect numericaltime tendency. For the equation ©f Oy, is the heat capac-
schemes has not been examined yet. To address the quéty of the ocean, andy denotes the damping coefficient of
tion, based on the DAEPC algorithm (Zhang et al., 2012), wethe slab ocean variable. An important feature ofv is that
study how to mitigate coupled model bias induced by imper-it must have a much slower timescale than the atmosphere,
fect time-differencing schemes through parameter optimizawhich needs a much larger heat capacity than the damping
tion. Here we use the simple pycnocline prediction model derate, that isOy, > O4. For example, the values of (10, 1)
scribed by Zhang (2011a) to investigate this issue within a bi-for (O, Og) define the oceanic timescale as0 (10), 10
ased twin experiment framework. Under such circumstancestimes the atmospheric timescaleO (1). The parameterSy,
one model simulation that uses a leap-frog time-differencingand Ss define the magnitudes of the annual mean and sea-
scheme with a Robert—Asselin time filter (Robert, 1969; As-sonal cycle of the external forcingSpq is chosen as 10 so
selin, 1972) is treated as a “truth” that is sampled to pro-that the period of the forcing is comparable with the oceanic
duce “observations.” Then the “observations” are assimilatedimescale, defining the timescale of the model seasonal cy-
into the assimilation model that uses the fourth-order Runge-€le. The coupling between the fast atmosphere and the slow
Kutta time-differencing scheme. The degree to which the asocean is realized by choosing the values of the coupling co-
similation result recovers the truth is an assessment of thefficientsc1 andcz, with ¢1 representing the upper oceanic
impact of parameter optimization on the climate estimationforcing on the atmosphere, and representing the atmo-
with a “biased” time-differencing. spheric forcing on the upper ocean. In additiog,and c4
The paper is organized as follows. After describing the denote the linear forcing of the deep ocean and the nonlinear
simple pycnocline prediction model and the method of en-interaction of the upper and deep oceans. In the pycnocline
semble coupled data assimilation for parameter estimationmodel,n represents the anomaly of ocean pycnocline depth,
two different time-differencing schemes are introduced andand its tendency equation is derived from the two-term bal-
the setting of the biased twin experiment framework is dis-ance model of the zonal-time mean pycnocline (Gnanade-
cussed in Sect. 2. Sections 3 and 4 investigate the impact afikan, 1999)I" is a constant of proportionality. The ratio of
parameter optimization on climate estimation and the impact” and Oy determines the timescale of variationsyofor ex-
of parameter estimation in different media on model bias mit-ample, a value of 100 fdr defining 10 “seasonal” cycles of
igation, respectively. Summary and discussions are given inw (a model decade) as the typical timescale) efriability.
Sect. 5. To simulate the effects of the nonlinear advection in the up-
per and deep oceans, the nonlinear terms are introduced into
w andn equationscs andcg represent the linear forcing of
the upper ocean and the nonlinear interaction of the upper
and deep oceans. Following Zhang (2011a), the values of 15
model parameters( «, b, c1, ¢2, Om, Od, Sm, Ss: Spd, ', €3,
¢4, 5, cg) are set as (9.95, 28/8, 101, 1, 1, 10, 10, 1, 10,

X1=—0Xx1+0x2

X2 =—x1x3+ (1+crw)kx1 — x2

I'n = csw + cewn — Ogn, 1)
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100, 102, 1072, 1, 10°%), in which the parameters of, x, ~ where Ag; ;. is the contribution of thekth observation to

andb in the Lorenz atmosphere keep their standard values téheith ensemble member of the parameter being optimized,

sustain the chaotic nature of the “atmosphere.” calledg. cov(B, y;) denotes the error covariance between the
Zhang (2011b) illustrated that, given the model parame-prior ensemble of and the model-estimated observation en-

ters prescribed above, the built simple coupled model carsemble ofy,, and is calculated as

effectively simulate a fundamental feature of the real world

climate system in which different timescales interact with N e -

each other to develop climate signals. For example, the tran- El ('Bl N ’8) (y“" B y")

sient atmospheric attractor, the slow upper ocean and th€0V(8, yi) = one ) ®)
even-slower deep ocean interact to produce synoptic decadal o

timescale signals. whereN is the number of the ensemble memiggiis theith

ensemble member of each parameter being optimized. An
overbar represents the ensemble megnis the prior stan-
dard deviation of the parameter being optimized.

The coupled data assimilation scheme with “enhancive” pa- Unlike the model state variables, model parameters do not

rameter correction (DAEPC) (Zhang et al., 2012) mentionedh@ve any dynamically supported internal variability in gen-
above is employed to perform the model state and parameteerral- Therefore, the successfulness of parameter estimation
optimization, which is a modification of the standard data as-€tirely depends on the accuracy of the state-parameter co-
similation with adaptive parameter estimation (e.g., Kulhavy, V&riance in Eq.4). Parameter estimation is activated after
1993: Tao, 2003). Some details of the DAEPC algorithm areState estimation reaches quasi-equilibrium where the uncer-
given below to make it easy to follow. Based on a two-steptainty of model states is sufficiently constrained by observa-
ensemble adjustment Kalman filter (EAKF; Anderson, 2003;tions so that the state-parameter covariance is signal domi-

Zhang and Anderson, 2003), the observational increment fof@nt- Otherwise, the parameters being optimized are likely
the ith ensemble member produced by #ik observation, to be deteriorated by the noised state-parameter covariance

2.2 Ensemble coupled data assimilation for parameter
estimation

Ay?,, is computed firstly following Zhang et al. (2007) as in Eq. @). o ,
’ In addition, the inflation scheme for the DAEPC algorithm
o Vk i follows Zhang et al. (2012), which is formulated as
Ayl,k = 2 0 + ) 0
1472 (ye, y9)  14772(k, v9)
5 ~ 2 Q001,0 2
Yik — Yk = max| 1, . - B, 6
P b @) B =B+ X( 1011 ) (B —B) (6)

1+72 (v, y7?)

where the first two terms on the right-hand side represent th&/n€réf andg; represent the prior and the inflated ensemble
shift of ensemble mean and the third term is the adjustmen®’ the (th parametero;,, ando;,0 are the prior spreads of
of ensemble spreag; , is theith prior ensemble member of B at timer and the initial timeag is a constant tuned by a

the kth observationy; is the model estimate ensemble for trial-and-error procedurey; is the sensitivity of the model

observationy?. An overbar represents the ensemble mean St&t€ with regard t@;. The overbar represents the ensemble
mean. Equation€) indicates that if the prior spread @f is

r(yk, y) is the ratio of the model ensemble standard devi- i o P
ation and the observational error standard deviation, that is'€SS tharxo/o; times the initial spread, it will be enlarged to
this amount.
Oy /Uy]?.
In the second step of EAKF, the observational incremen
is projected onto the corresponding model variables using
uniform linear regression formula as

t . . . .
g.S Two different time-differencing schemes

Here, we introduce two time-differencing schemes. The first
cov(x, yi) AyO 3 o is the leap-frog (LF) time-differencing with a Robert—

)?k Yiko Asselin time filter, which has the form

whereAx;  is the contribution of théth observation to the
ith ensemble member of each model variableov(x, yi)
denotes the error covariance between the prior ensemble of 7 = ¢" +y (F —2¢" + <p"+1> . (7)
and the model-estimated observation ensembie .of
The observational increment is also projected onto the Pawhere ¢ represents state variables;( x, x3, w, and n)
rameters being optimized using the uniform linear regressiony, Eq. (). Az is the time interval.F is the right term of
formula as state variables in Eql). An overbar denotes a time-filtering
ABiy = cov(p, yk) AyO 4) value. The time-filtering coefficient is set as= 0.25 in this
Lk 2 Mk study, following Zhang (2011b).

Axip =

@" T = =14 2A1 F (")
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The second one is the fourth-order Runge—Kutta (RK4) : : : : : :

time-differencing scheme, which can be described as 40- -
ko= AtF(¢™) 20
k1= AtF(¢" +ko/2) % 0 -

ko = AtF(¢" +k1/2)
ka= AtF(¢" +k2)

1
<P"+l=<ﬂ"+6(ko+2k1+2k2+k3), (8) " 30 4 70 8

whereko—k3 represent four time levels. .5

2.4 Model bias induced by different time-differencing
schemes 10

Starting from the initial conditions(x1,x2, x3, w,n) =
(0,1,0,0,0), the model is run for 1Pnon-dimensional time
units (TUs, 1 TU =100 time steps givexr = 0.01) with the )
LF time-differencing scheme and the RK4 time-differencing 0 | | |
scheme respectively, described in Sect. 2.3. Figure 1a, b, ° 1<Im 200 3?0 400500 600 700 sf’o 500 1000
and c show the time series ®f in the first 100 TUsw in the 15

first 10 TUs, andy in 10° TUs obtained from the LF time-
differencing scheme (see the red line in Fig. 1) and from the
RK4 time-differencing scheme (see the black line in Fig. 1),
respectively. From Fig. 1a, the two linesxfare almost co-
incident in the first 5 TUs and separate gradually then to fol- 5
low different paths, which indicates that the difference origi- —LF
nating in these two time-differencing schemes can generate a (c) — RKk4
dramatic effect due to the strong nonlinear nature of the cli-
mate system. Due to the different time-differencing schemes
and the coupling, the low-frequency signals are also affected
significantly (seev in Fig. 1b andy in Fig. 1c, respectively). Fig. 1. Time serie; ofa) xo in thei first 100 TUs(b) w in the fir.st
Especially the mean value gfderived from the RK4 time-  10° TUS, and(c)  in 10* TUs derived from both the LF (red line)
differencing scheme (the black line in Fig. 1c) is larger than 2"d the RK4 (black line) time-differencing schemes.

that derived from the LF time-differencing scheme (the red
line in Fig. 1c) after a sufficient spin-up of. Therefore,
for the high-frequency signal such as the strong nonlineal !
atmosphere, the different time-differencing schemes canre 4
sult in a difference in phase, while for a low-frequency sig- 7o
nal such as the deep ocean, the different time-differencing; eo
schemes can result in a difference not only in phase, bu so
also in amplitude. The plots in Fig. 2 also reveal the same 4°
fact, in which the variation of» in the space otz (Fig. 2a)
and the variation ofy in the space ofv (Fig. 2b) are shown o @ - ®) s
for those derived from both the LF (red circle) and the RK4 -3 20 -0 0 10 20 30 0 2 4 6 8 10 12 14 16
(black circle) time-differencing schemes. We can see from ® "

Fig. 2a that both projections on the—xz plane from the  Fig. 2. Variation of(a) x in the space af3 and(b) 7 in the space of
two schemes lie in the similar equilibrated positions with w derived from both the LF (red circle) and the RK4 (black circle)
two attractor lobs even though they are not coincident withtime-differencing schemes.

each other in details. However, projections onihe plane

from the two time-differencing schemes have different posi-

tions after reaching equilibrium (Fig. 2b). Figure 3 shows thedifferencing scheme (black line), respectively. According to
power spectra ofy (Fig. 3a) andn (Fig. 3b) based on the the governing equation a#, the seasonal cycle is defined by
model results between 4@nd 1¢ TUs derived from the LF 10 TUs, and therefore a model year (decade) is 10 (100) TUs.
time-differencing scheme (red line) and from the RK4 time- It can be seen from Fig. 3 that the power spectra from the

10- r
=

G T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Units
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: : 5 time steps forx1 23 and every 20 time steps fov, re-
spectively. These observational frequencies simulate the fea-
ture of the real climate observing system in which the atmo-
spheric observations are available more frequently than the
ocean. At the same time, these observational frequencies are
considered as the assimilation frequencies that the observa-
tions are assimilated into the model. To simulate the lack of
deep ocean measurements in the real observing system, no
observation is available for. According to Zhang (2011a),

the standard deviations of the observational errors are 2 for

Power Spectrum of w

006 (b) ‘ ' X123 fand 0.5 forw, respectively, which are derived from a

= long-time model free run.

E 0.05 The assimilation model uses the RK4 time-differencing
g 0.04 scheme. A Gaussian white noise with the same standard de-
2 0.03 viation as the observational error is added to the atmospheric
‘g 0.02 variable ofx, at the end of spin-up (with the same integra-

g tion period as the truth model) to form the ensemble initial
- 001 conditions from which the ensemble filtering data assimila-

0 ‘ ‘ . tion starts. The total data assimilation period i§ TO's, and

0 10 20 30 40 50 60 70 80

Peri parameter optimization is started afte?T@s when state
eriod (model years)

estimation reaches its quasi-equilibrium.
Fig. 3. Power spectra ofa) w and(b) n based on the model data Starting from the ensemble initial conditions created
between 18 and 1 TUs derived from both the LF (red line) and above, three assimilation experiments are conducted. First,
the RK4 (black line) time-differencing schemes. the experiment of state estimation only (SEO) that only the
model states are estimated by assimilating observations into
the model. Second, SEO with perturbed parameters, denoted

two time-differencing schemes seem different distinctly, es-25 SEO_PP, is performed, namely, the 9 parametess, ¢,

pecially fory, which indicates that the variability of the upper €1» €2 €3, ¢4, ¢, @ndce) are perturbed at the same time when

and deep oceans is strongly influenced by the type of timethe ensemble initial conditions are formed by adding a Gaus-

stepping scheme used to integrate the model equations. Howslan white noise with the standard deviation being 5 % of the

ever, in a state-of-the-art coupled general circulation mode|gefault values. Third, parameter estimation is performed to

itis unclear yet if different time-differencing schemes can re- OPtimize all these 9 parameters using the DAEPC algorithm,
sult in obviously different low-frequency variability (decadal 9€noted as PP_PO. It should be noted that the other 6 pa-

timescale and longer), which is an interesting topic that need52Meters Om, Od, Sm, Ss, Spa, andT’) act as the part of the
to be investigated further. dynamic core that determines the timescale and period of the

The above discussions show that both the time mean anguter forcing of this coupled system. Therefore, they will not
the variability of the model simulation are affected strongly alter once the_y_are determined usin_g the default values_in this
by the type of time-stepping scheme used. We expect totudy. I_n addition, a control run without any observational
constrain the model drift caused by biased time-differencingc®nstraint, called CTRL, serves as a reference for the evalu-
through the DAEPC algorithm that tunes model parametergtion of the assimilation resuits.
optimally according to the observational information. Next,
we will design a biased twin experiment to investigate the im- o .
pact of parameter optimization on the mitigation of coupled3  Impact of parameter optimization on climate
model bias induced by imperfect time-differencing schemes. ~ €stimation

2.5 Biased twin experiment setup Figure 4 shows the time series of root mean square errors
(RMSES) ofxz in the last 100 TUs (Fig. 4a) in the last

A biased twin experiment is designed, which assumes thal0® TUs (Fig. 4b), and; in 10* TUs (Fig. 4c) obtained from
the imperfect time-differencing scheme is the only source of CTRL (pink line), SEO (black line), SEO_PP (red line), and
model biases. Here we define a “truth” model in which the PP_PO (blue line). Here, all the RMSE time series are com-
LF time-differencing scheme is used. Starting from the ini- puted from the difference between the ensemble mean of
tial conditions described in Sect. 2.4, after the truth modelthe model run and the truth at each time integral step over
is spun up for 18TUs, a time series of true states is gener-a 1-TU time window. From the black line in Fig. 4a, we
ated over a period of FO'Us. “Observations” are produced can see that the estimate .of in SEO does not show ob-

by adding a Gaussian white noise to the true values everyious improvement compared with that in CTRL (pink line).

www.nonlin-processes-geophys.net/21/357/2014/ Nonlin. Processes Geophys., 2138672014
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: ' — ment (red lines in Fig. 4a, b, and c), evidenced by one-order

s0- (a) 4 — RMSE magnitude reduction with a small oscillation. This
2 S— ggoﬁgl’ suggests that the perturbed physical parameters can improve
60 —— PP_

9%00 9930 9960 9990

the quality of state estimation greatly, since the perturba-
tion of parameters can increase the spread of model states
SO as to increase the representation of model ensemble for
the model uncertainty. The RMSE of in PP_PO is reduced
with the same magnitude as in SEO_PP (blue line vs. red
line in the small panel in Fig. 4a). That is to say, the im-
provement in state estimation via parameter optimization is
similar to that via the initial perturbation of parameters for
the high-frequency atmospheric variables. However, this is
not the case for the low-frequency oceanic states. The RMSE
of w in PP_PO (blue line in the small panel in Fig. 4b) is re-
duced by about 66 % compared to that in SEO_PP (red line).
So, the RMSE is further reduced by observation-optimized
model parameters via PP_PO relative to SEO_PP. For the
deep oceany in PP_PO is further improved significantly
from SEO_PP. From Fig. 4c, it can be seen that the blue line
and the red line overlap completely before* TWs during
the early state estimation only period. When the process of
parameter optimization starts after’IUs, the RMSE ofy
in PP_PO decreases from about 0.68 to about 0.2, while the
RMSE in SEO_PP remains at a level of 0.68. This means that
observational information can be effectively extracted by the
process of parameter optimization for both the upper ocean
and the deep ocean.
Figure 5 shows the time series of the ensemble means of
%0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 « (Fig. 5&) andc, (Fig. 5b) between 900 and 1200 TUs in
Time Units PP_PO. We can see that the ensemble means of the param-
_ _ ) ) eters remain at their default values beforé TOs in which
Fig. 4. Time series of RMSEs df) x2 in the last 100 TUs(b) w parameter optimization is not activated yet, but oscillate af-
in the last 16 TUs, and(c) 5 in 10 TUs in CTRL (pink line), SEO 1013 T()s 10 compensate for the bias of state estimation
(black line), SEO_PP (red line), and PP_PO (blue line). Small pan-
els in(a) and(b) show the detailed evolutions of RMSEs.af and induced by the biased time-differencing through the back-
w in SEO_PP (red line) and PP_PO (blue line) through enl(,jlrgmgground error covariance between parameters and observa-
the scale of the vertical coordinate. tions. The oscillation frequency of (see Fig. 5a) in the
atmospheric control equation is higher than thatp{see
Fig. 5b) in the oceanic equation, showing that the oscillation
Meanwhile, SEO has little contribution to the estimate of the frequencies of parameters are affected strongly by the fre-
slow-varying variables such as or n (black line vs. pink  quencies of state variables. As noted above, model parame-
line in Fig. 4b and c). The time mean RMSEsxf w, and  ters do not have any dynamically supported internal variabil-
n during the entire data assimilation period in SEO are ac-ty, and their variation depends completely on the variation
tually reduced, with respect to CTRL, by 2, 9, and 12 %, re- of the state-parameter covariance.
spectively. The improvements are not much and can hardly Figure 6 shows the power spectra of(Fig. 6a) andy
be observed in the time series of RMSEs. This means thatFig. 6b) derived from the truth (red line), SEO (black line),
within the framework of the specific dynamical core biasedand PP_PO (blue line), respectively. The significant charac-
twin experiment setting with this simple model, the dynam- teristic timescales ofy andn in PP_PO are almost the same
ical core misfitting of the assimilation model with respect as those in the truth (blue line vs. red line), while the sig-
to the truth model can function as a significant obstacle fornificant characteristic timescales wfandn in SEO are dis-
the traditional SEO. In what follows, we will see the signif- tinctly different from the truth (black line vs. red line). This
icant improvement with parameter optimization on assimi- means that the characteristics of climate variability in the up-
lation quality, which addresses the potential role of param-per and deep oceans can be reconstructed accurately by en-
eter optimization in the mitigation of dynamical core model semble coupled parameter optimization when biased time-
bias. Compared with SEO, estimates of all three variabledifferencing is the main source of model bias.
(x2, w, andn) in SEO_PP demonstrate significant improve-

RMSE of x,

RMSE of w

RMSE of N
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0.06
32- (a) L = (a) truth
« 0.05- —— SEO b
; —— PP_PO
30- 3 5 0.04 b
y 3
28 g 0.03- -
3 0.02
26- 3
2 0.01

24

T T T
900 950 1000 1050 1100 1150 1200 6 1 2 3 4 S5 6 7 8 9 10
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Fig. 6. Power spectra dfa) w and(b) » derived from the truth (red

Fig. 5. Ti i f bl d(b) ¢2 betw
'9 ime series of ensemble means(aj « and(b) ¢z between line), SEO (black line), and PP_PO (blue line), respectively.

900 and 1200 TUs in PP_PO.

Table 1. Assimilation experiments list in Sect. 4.

4 Impact of parameter estimation in different media on

model bias mitigation Assimilation  Optimized Ensemble  Observations
experiment parameters size 1pf

In this section, we investigate the impact of different me-

. . . . .. . . Casel o,k,b 20 No
dia parameter estimations on model bias mitigation. A series Case? c1. 2 20 No
of assimilation experiments, named Casel, Case2, Case3 till ~,qe3 6,3: ca 20 No
Casell, as listed in Table 1, is designed to accomplish this cg5e4 ¢s, C6 20 No
objective. Case5 c3,¢4,¢5,¢c6 20 No

Figure 7 presents the time series of RMSEs.0h the last Case6 Allbutcs, cg 20 No
100 TUs (Fig. 7a)w in the last 100 TUs (Fig. 7b), angin Case7 SEO_PP 200 No
10* TUs (Fig. 7¢) in Casel (black line), Case2 (green line), Case8 PP_PO 200 No
Case3 (pink line), and Case4 (cyan line), respectivelyxgor Case9 €5, C6 200 No
in the transient atmosphere, Case2 is the worst (green line €asel0 SEO_PP 20 Yes

Casell c5, Cg 20 Yes

in Fig. 7a) among all the four cases presented. The reason
is thatcy andc; being optimized in Case2 are the coupling
parameters between the atmosphere varigplend the up-
per ocean variables. Compared with the other three cases, in Casel (black line in Fig. 7c) and Case2 (green line in
optimizing these two coupling parameters alone cannot effiFig. 7c) to some degrees, both of which remain unstable with
ciently enhance the signal-to-noise ratio of the backgrounda large oscillation. That is because observational information
error covariance between the parameter and the model states used only to adjust the parameters pertinent to the high-
For the upper ocean, it is noticed from Fig. 7b that the RM-frequency atmospheric variables instead of adjusting those
SEs ofw in both Casel and Case4 remain similarly larger pertinent to the low-frequency oceanic variables. In con-
values than the other two cases. This can be understood dsast, Case3 has the best estimate @bink line in Fig. 7c¢),
follows. Casel optimizes parameters in the atmosphere ( with an RMSE reduction over 75 % compared to the case in
k, andb) and Case4 optimizes parameters in the deep oceawhich all parameters are optimized in PP_PO (blue line in
(c5 andcg), respectively. Neither one has a direct effect on Fig. 7¢). This means that some parameters being optimized
the upper ocean variable, and therefore neither one is able introduce noises under given conditions. Case3 optimizes
to affectw significantly. andcs, which represent the linear and the nonlinear interac-
For n, the deep ocean component, compared to SEO_PRons between the upper and deep oceans. The observational
(red line in Fig. 7c), although the RMSEs can be reducedinformation ofw can be retrieved efficiently to improve the
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Fig. 8. Time series of RMSEs of in 10* TUs in Case5 (green line)
04 and Case6 (black line). The setups of the two experiments are de-
"E, 0.3 L scribed in Table 1. Note that the time series of RMSES; dh
® SEO_PP (red line), PP_PO (blue line), and Case3 (pink line) are
2 02 also plotted as references.
0.1 ‘ J
9900 9910 9920 9930 9940 9950 9960 9970 9980 9990 10000 only c3 ande, being optimized (i.e., Case3) has the best per-
1 | formance. However, the additional inclusion@fandcg in
(c)‘ Gasel Gased L Ao Caseb deteriorates the resultsifsee green line in Fig. 8),
0.8 I yielding larger RMSESs than the case in which all parameters
= o6 are optimized in PP_PO (blue line in Fig. 8). In contrast, the
o RMSEs ofn in Caseb6 (black line in Fig. 8) have a similar
S 04 mitigation to that in Case3, indicating that the exclusion of
“ ¢s andcg increases the signal-to-noise ratio during parame-
0.2 ter optimization.
0 : The poor performance of additional optimizationcgfand
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 cg may be associated with the insufficient ensemble represen-
Time Units tation and the lack of the observation. To verify the first rea-

Fig. 7. Time series of RMSEs df) x5 in the last 100 TUS(b) w in son, we increase the ensemble size of SEO_PP, PP_PO, and
the last 100 TUs, ant) 5 in 10° TUs in Casel (black line), Case2 Case4 to 200, and denote them as Case7, Case8, and Case9
(green line), Case3 (pink line), and Case4 (cyan line), respectively(See Table 1). The time-averaged RMSEoh Case7 is re-
The setups of the four experiments are described in Table 1. Notéluced by more than 30 % from SEO_PP, which can be seen
that the time series of RMSEs in SEO_PP (red line; onlg)iand from the green and red lines in Fig. 9. This means that the ca-
PP_PO (blue line) are also plotted as references. pability of ensemble spread is enhanced with a large ensem-
ble size. However, the RMSEs gfin Case8 are not smaller
than ones in PP_PO (black line vs. blue line in Fig. 9), which
indicates that increasing the ensemble size does not improve
estimation ofw and »n significantly through the parameter then estimate due to the existence of noises during signal-
optimization and the coupling between the upper ocean ané&nhanced parameter optimization, even if the ensemble rep-
pycnocline depth. It is noticed that the performance of Case4esentation can be improved by increasing the ensemble size.
(cyan line in Fig. 7c) is the worst among all four cases, whichThe RMSEs ofy in Case9 are slightly larger than those in
has an even larger RMSE than SEO_PP (red line in Fig. 7c)Case7 (cyan line vs. green line in Fig. 9). Thus, the noises
Parametergs and cg being optimized in Case4 are in the induced by optimizinges and cg cannot be removed suc-
n equation. Due to the absence of the observation, ag cessfully through increasing the ensemble size. However, it
andcg are estimated only indirectly through the observationis clear that the performance of Case4 is indeed improved
of w. This suggests that only optimizing parameters perti-greatly when the ensemble representation is enhanced in
nent to the deep ocean component may lead to the noisgZase9 (comparing both cyan lines in Figs. 7c and 9).
dominating background error covariance when other param- Regarding the second reason, to demonstrate the effect of
eters retain their default values. To explore this issue furtherthe assimilation of; observations, we performed two addi-
we performed two additional experiments, Case5 and Casetional experiments, Casel0 and Casell (see Table 1). Casel0
(Table 1). Caseb optimizes andcg together withez andcs. and Casell are the counterpart of SEO_PP and Case4 but
Caseb6 optimizes all parameters but excludig@ndcs. It is with the assimilation ofy observations that have the same
already learned from the discussions before that the case witeampling frequency as. Compared to SEO_PP, the RMSEs
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\ : ‘ this framework, the assimilation model includes a “biased”

08| - A Cased | time-differencing scheme from the truth model that is used

' to produce “observations”. The leap-frog time-differencing
; 0.6 ‘ scheme with a Robert—Asselin time filter serves as the truth
Y s | run from which “observations” are drawn. The fourth-order
H Runge—Kutta time-differencing scheme is used for the as-
0.2 \WW similation runs. A series of assimilation experiments is per-
formed to examine the impact of parameter optimization on

climate estimation and model bias mitigation, as well as the

T T
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

role of different media parameter estimations. Results show
Time Units

that the initial perturbations of parameters can enhance the
Fig. 9. Time series of RMSEs of in 10 TUs in Case7 (green line), ensemble spread greatly and improve the representation of
Case8 (black line), and Case9 (cyan line). The setups of the threthe model ensemble to the model error that consists of bi-
experiments are described in Table 1. Note that the time series ohses arising from different differencing schemes. Further-
RMSEs ofy in SEO_PP (red line) and PP_PO (blue line) are also more, parameter estimation enhances the accuracy of climate
plotted as references. estimation, especially for low-frequency signals. In addition,
in a multiple timescale coupled system, parameters pertinent
‘ ' ' to low-frequency components have more impact on climate
Case10 —— SEO_PP ——— Case3 .
Casell —— PP_PO signals.

Although the parameter optimization shows promise with
the simple coupled model to mitigate the model bias arising
from dynamical core misfitting, further research is required
to understand the impact of such model biases in coupled
general circulation models (CGCMSs) on climate estimation
and prediction. It should be kept in mind that the concept
model used in this study contains a rather large set of pa-
rameters compared to the dimension of the model attractor.
This will not be the case for the state-of-the-art CGCMs
Fig. 10. Time series of RMSEs of in 10 TUs in Case10 (green in general. There might also not be enough data to con-
line) and Casell (black line). The setups of the two experimentsstrain both the model states and additional parameters un-
are described in Table 1. Note that the time series of RMSEs of der the modern atmospheric and oceanic observing networks.
in SEO_PP (red line), PP_PO (blue line), and Case3 (pink line) arerhys potential benefits of parameter estimation vs stochastic
also plotted as references. physics, achieved in this study, need to be investigated fur-
ther in the realistic scenario. Nevertheless, imperfect nume-
of 5 in Casel0 (green line in Fig. 10) are reduced signifi rical schemes are usually used in CGCMS.Therefore, besides

the development of more robust numerical schemes, how to

cantly, but still a little larger than those in PP_PO (blue line ontimize model parameters needs to be examined further to
in Fig. 10). This suggests that the signal-enhanced param-p P

SO ) e . compensate for the deficiencies of the currently used nume-
eter optimization can improve the estimation even in the

absence of observations of the deep ocean. The benefit 3 al schemes.

assimilating deep ocean observations is significant wigen

andcg are optimized (Casell). The RMSEsipin Casell

(black line in Fig. 10) remain well consistent with those in AcknowledgementsThis research is co-sponsored by the grants
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5 Summary and discussions

A biased twin experiment framework is designed to study
the mitigation of coupled model bias induced by imper-
fect time-differencing through parameter optimization. In
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