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Abstract. Imperfect dynamical core is an important source
of model biases that adversely impact on the model simu-
lation and predictability of a coupled system. With a sim-
ple pycnocline prediction model, in this study, we show the
mitigation of model biases through parameter optimization
when the assimilation model consists of a “biased” time-
differencing. Here, the “biased” time-differencing is defined
by a different time-differencing scheme from the “truth”
model that is used to produce “observations”, which gen-
erates different mean values, climatology and variability of
the assimilation model from the “truth” model. A series of
assimilation experiments is performed to explore the impact
of parameter optimization on model bias mitigation and cli-
mate estimation, as well as the role of different media pa-
rameter estimations. While the stochastic “physics” imple-
mented by perturbing parameters can enhance the ensem-
ble spread significantly and improve the representation of
the model ensemble, signal-enhanced parameter estimation
is able to mitigate the model biases on mean values and cli-
matology, thus further improving the accuracy of estimated
climate states, especially for the low-frequency signals. In
addition, in a multiple timescale coupled system, parameters
pertinent to low-frequency components have more impact on
climate signals. Results also suggest that deep ocean obser-
vations may be indispensable for improving the accuracy of
climate estimation, especially for low-frequency signals.

1 Introduction

Imperfect dynamical core, empirical physical schemes and
improper parameter values are several sources of couple
model bias (Zhang et al., 2012). Simulated climate by a cou-
pled model often tends to drift away from the real world due
to the existence of model bias (Collins et al., 2006; Delworth
et al., 2006; Smith et al., 2007). However, it is quite diffi-
cult to improve the model simulation and forecast capability
through using observations to correct the dynamical core and
physics that are “built-in” in the coupled model. One expects
that the parameter optimization can partly compensate for the
deficiencies of both numerics and physics of a coupled model
and improve the model performance to some degree.

To constrain model biases and improve the quality of
climate estimation and prediction, Zhang et al. (2012) de-
signed a coupled data assimilation scheme with what these
authors called “enhancive” parameter correction (DAEPC)
based on an ensemble Kalman filter with the adjustment
idea (Anderson, 2001). With the DAEPC algorithm, Zhang
(2011a) investigated the impact of observation-optimized
model parameters on decadal predictions with a simple pyc-
nocline prediction model. Then in a follow-up study (Zhang,
2011b), the author also investigated the impacts of coupled
model initial shocks and state-parameter optimization on cli-
mate predictions using this simple model. Results show that
model parameter optimization with observations can effec-
tively mitigate the model bias, thus constraining the model
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drift in long timescale predictions. Wu et al. (2012) further
introduced a geographic dependent parameter optimization
(GPO) scheme to increase the signal-to-noise ratio of the
background error covariance in parameter estimation, and ex-
amined the impact of this new scheme on climate estimation
and prediction using an intermediate coupled model within a
perfect model framework (Wu et al., 2013). Recently, Zhang
et al. (2013b) investigated the impact of parameter estimation
on climate estimation and prediction in an intermediate cou-
pled model with biased physics within a biased twin exper-
iment framework, which indicates that the adverse impact
of biased physical schemes in a coupled model on climate
estimation and prediction can be compensated partly by op-
timizing the most sensitive parameters employed in the phys-
ical schemes. The impact of estimated parameters on the be-
havior of model simulation has also been examined (Zhang
et al., 2013a), with results showing that biased climate simu-
lated by “biased” physics in that intermediate coupled model
can be well corrected through parameter estimation.

While coupled model parameter estimation has shown a
great potential to improve the quality of climate estimation
and prediction as well as model simulation, the impact
of imperfect dynamical cores such as imperfect numerical
schemes has not been examined yet. To address the ques-
tion, based on the DAEPC algorithm (Zhang et al., 2012), we
study how to mitigate coupled model bias induced by imper-
fect time-differencing schemes through parameter optimiza-
tion. Here we use the simple pycnocline prediction model de-
scribed by Zhang (2011a) to investigate this issue within a bi-
ased twin experiment framework. Under such circumstances,
one model simulation that uses a leap-frog time-differencing
scheme with a Robert–Asselin time filter (Robert, 1969; As-
selin, 1972) is treated as a “truth” that is sampled to pro-
duce “observations.” Then the “observations” are assimilated
into the assimilation model that uses the fourth-order Runge–
Kutta time-differencing scheme. The degree to which the as-
similation result recovers the truth is an assessment of the
impact of parameter optimization on the climate estimation
with a “biased” time-differencing.

The paper is organized as follows. After describing the
simple pycnocline prediction model and the method of en-
semble coupled data assimilation for parameter estimation,
two different time-differencing schemes are introduced and
the setting of the biased twin experiment framework is dis-
cussed in Sect. 2. Sections 3 and 4 investigate the impact of
parameter optimization on climate estimation and the impact
of parameter estimation in different media on model bias mit-
igation, respectively. Summary and discussions are given in
Sect. 5.

2 Methodology

2.1 The model

To address the fundamental issues raised in Sect. 1 clearly,
we employ a simple decadal prediction model developed
by Zhang (2011a). The model consists of a conceptual
atmosphere–ocean coupled model that couples three Lorenz
chaotic atmosphere variables,x1, x2, andx3 (Lorenz, 1963),
to a slab-ocean variablew and a simple pycnocline predictive
model (Gnanadesikan, 1999). The governing equations with
all quantities being given in non-dimensional units are

ẋ1 = −σx1 + σx2

ẋ2 = −x1x3 + (1+ c1w)κx1 − x2

ẋ3 = x1x2 − bx3

Omẇ = c2x2 + c3η + c4wη − Odw + Sm + Sscos
(
2πt/Spd

)
0η̇ = c5w + c6wη − Odη , (1)

where the five model variables represent the atmosphere (x1,
x2, andx3) and the ocean (w for the slab ocean,η for the
deep ocean pycnocline). A dot above the variable denotes
time tendency. For the equation ofw, Om is the heat capac-
ity of the ocean, andOd denotes the damping coefficient of
the slab ocean variablew. An important feature ofw is that
it must have a much slower timescale than the atmosphere,
which needs a much larger heat capacity than the damping
rate, that isOm � Od. For example, the values of (10, 1)
for (Om, Od) define the oceanic timescale as∼ O(10), 10
times the atmospheric timescale∼ O(1). The parametersSm
andSs define the magnitudes of the annual mean and sea-
sonal cycle of the external forcings.Spd is chosen as 10 so
that the period of the forcing is comparable with the oceanic
timescale, defining the timescale of the model seasonal cy-
cle. The coupling between the fast atmosphere and the slow
ocean is realized by choosing the values of the coupling co-
efficientsc1 andc2, with c1 representing the upper oceanic
forcing on the atmosphere, andc2 representing the atmo-
spheric forcing on the upper ocean. In addition,c3 and c4
denote the linear forcing of the deep ocean and the nonlinear
interaction of the upper and deep oceans. In the pycnocline
model,η represents the anomaly of ocean pycnocline depth,
and its tendency equation is derived from the two-term bal-
ance model of the zonal-time mean pycnocline (Gnanade-
sikan, 1999).0 is a constant of proportionality. The ratio of
0 andOd determines the timescale of variations ofη, for ex-
ample, a value of 100 for0 defining 10 “seasonal” cycles of
w (a model decade) as the typical timescale ofη variability.
To simulate the effects of the nonlinear advection in the up-
per and deep oceans, the nonlinear terms are introduced into
w andη equations.c5 andc6 represent the linear forcing of
the upper ocean and the nonlinear interaction of the upper
and deep oceans. Following Zhang (2011a), the values of 15
model parameters (σ , κ, b, c1, c2, Om, Od, Sm, Ss, Spd, 0, c3,
c4, c5, c6) are set as (9.95, 28, 8/3, 10−1, 1, 1, 10, 10, 1, 10,
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100, 10−2, 10−2, 1, 10−3), in which the parameters ofσ , κ,
andb in the Lorenz atmosphere keep their standard values to
sustain the chaotic nature of the “atmosphere.”

Zhang (2011b) illustrated that, given the model parame-
ters prescribed above, the built simple coupled model can
effectively simulate a fundamental feature of the real world
climate system in which different timescales interact with
each other to develop climate signals. For example, the tran-
sient atmospheric attractor, the slow upper ocean and the
even-slower deep ocean interact to produce synoptic decadal
timescale signals.

2.2 Ensemble coupled data assimilation for parameter
estimation

The coupled data assimilation scheme with “enhancive” pa-
rameter correction (DAEPC) (Zhang et al., 2012) mentioned
above is employed to perform the model state and parameter
optimization, which is a modification of the standard data as-
similation with adaptive parameter estimation (e.g., Kulhavy,
1993; Tao, 2003). Some details of the DAEPC algorithm are
given below to make it easy to follow. Based on a two-step
ensemble adjustment Kalman filter (EAKF; Anderson, 2003;
Zhang and Anderson, 2003), the observational increment for
the ith ensemble member produced by thekth observation,
1yo

i,k, is computed firstly following Zhang et al. (2007) as

1yo
i,k =

ȳk

1+ r2
(
yk,y

o
k

) +
yo
k

1+ r−2
(
yk,y

o
k

)
+

yi,k − ȳk√
1+ r2

(
yk,y

o
k

) − yi,k, (2)

where the first two terms on the right-hand side represent the
shift of ensemble mean and the third term is the adjustment
of ensemble spread.yi,k is theith prior ensemble member of
the kth observation.yk is the model estimate ensemble for
observationyo

k . An overbar represents the ensemble mean.
r(yk,y

o
k ) is the ratio of the model ensemble standard devi-

ation and the observational error standard deviation, that is,
σyk

/σyo
k
.

In the second step of EAKF, the observational increment
is projected onto the corresponding model variables using a
uniform linear regression formula as

1xi,k =
cov(x,yk)

σ 2
yk

1yo
i,k, (3)

where1xi,k is the contribution of thekth observation to the
ith ensemble member of each model variablex. cov(x, yk)

denotes the error covariance between the prior ensemble ofx

and the model-estimated observation ensemble ofyk.
The observational increment is also projected onto the pa-

rameters being optimized using the uniform linear regression
formula as

1βi,k =
cov(β,yk)

σ 2
yk

1yo
i,k, (4)

where 1βi,k is the contribution of thekth observation to
the ith ensemble member of the parameter being optimized,
calledβ. cov(β, yk) denotes the error covariance between the
prior ensemble ofβ and the model-estimated observation en-
semble ofyk, and is calculated as

cov(β,yk) =

N∑
i=1

(
βi − β̄

)(
yi,k − ȳk

)
σβσyk

, (5)

whereN is the number of the ensemble member.βi is theith
ensemble member of each parameter being optimized. An
overbar represents the ensemble mean.σβ is the prior stan-
dard deviation of the parameter being optimized.

Unlike the model state variables, model parameters do not
have any dynamically supported internal variability in gen-
eral. Therefore, the successfulness of parameter estimation
entirely depends on the accuracy of the state-parameter co-
variance in Eq. (4). Parameter estimation is activated after
state estimation reaches quasi-equilibrium where the uncer-
tainty of model states is sufficiently constrained by observa-
tions so that the state-parameter covariance is signal domi-
nant. Otherwise, the parameters being optimized are likely
to be deteriorated by the noised state-parameter covariance
in Eq. (4).

In addition, the inflation scheme for the DAEPC algorithm
follows Zhang et al. (2012), which is formulated as

β̃l = β̄l + max

(
1,

α0σl,0

σlσl,t

)(
βl − β̄l

)
, (6)

whereβl andβ̃l represent the prior and the inflated ensemble
of the lth parameter.σl,t and σl,0 are the prior spreads of
βl at time t and the initial time.α0 is a constant tuned by a
trial-and-error procedure.σl is the sensitivity of the model
state with regard toβl . The overbar represents the ensemble
mean. Equation (6) indicates that if the prior spread ofβl is
less thanα0/σl times the initial spread, it will be enlarged to
this amount.

2.3 Two different time-differencing schemes

Here, we introduce two time-differencing schemes. The first
one is the leap-frog (LF) time-differencing with a Robert–
Asselin time filter, which has the form

ϕn+1
= ϕn−1 + 21tF(ϕn)

ϕn = ϕn
+ γ

(
ϕn−1 − 2ϕn

+ ϕn+1
)

, (7)

where ϕ represents state variables (x1, x2, x3, w, and η)
in Eq. (1). 1t is the time interval.F is the right term of
state variables in Eq. (1). An overbar denotes a time-filtering
value. The time-filtering coefficient is set asγ = 0.25 in this
study, following Zhang (2011b).
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The second one is the fourth-order Runge–Kutta (RK4)
time-differencing scheme, which can be described as

k0 = 1tF(ϕn)

k1 = 1tF(ϕn
+ k0/2)

k2 = 1tF(ϕn
+ k1/2)

k3 = 1tF(ϕn
+ k2)

ϕn+1
= ϕn

+
1

6
(k0 + 2k1 + 2k2 + k3) , (8)

wherek0–k3 represent four time levels.

2.4 Model bias induced by different time-differencing
schemes

Starting from the initial conditions(x1,x2,x3,w,η) =

(0,1,0,0,0), the model is run for 104 non-dimensional time
units (TUs, 1 TU = 100 time steps given1t = 0.01) with the
LF time-differencing scheme and the RK4 time-differencing
scheme respectively, described in Sect. 2.3. Figure 1a, b,
and c show the time series ofx2 in the first 100 TUs,w in the
first 103 TUs, andη in 104 TUs obtained from the LF time-
differencing scheme (see the red line in Fig. 1) and from the
RK4 time-differencing scheme (see the black line in Fig. 1),
respectively. From Fig. 1a, the two lines ofx2 are almost co-
incident in the first 5 TUs and separate gradually then to fol-
low different paths, which indicates that the difference origi-
nating in these two time-differencing schemes can generate a
dramatic effect due to the strong nonlinear nature of the cli-
mate system. Due to the different time-differencing schemes
and the coupling, the low-frequency signals are also affected
significantly (seew in Fig. 1b andη in Fig. 1c, respectively).
Especially the mean value ofη derived from the RK4 time-
differencing scheme (the black line in Fig. 1c) is larger than
that derived from the LF time-differencing scheme (the red
line in Fig. 1c) after a sufficient spin-up ofη. Therefore,
for the high-frequency signal such as the strong nonlinear
atmosphere, the different time-differencing schemes can re-
sult in a difference in phase, while for a low-frequency sig-
nal such as the deep ocean, the different time-differencing
schemes can result in a difference not only in phase, but
also in amplitude. The plots in Fig. 2 also reveal the same
fact, in which the variation ofx2 in the space ofx3 (Fig. 2a)
and the variation ofη in the space ofw (Fig. 2b) are shown
for those derived from both the LF (red circle) and the RK4
(black circle) time-differencing schemes. We can see from
Fig. 2a that both projections on thex2–x3 plane from the
two schemes lie in the similar equilibrated positions with
two attractor lobs even though they are not coincident with
each other in details. However, projections on theη–w plane
from the two time-differencing schemes have different posi-
tions after reaching equilibrium (Fig. 2b). Figure 3 shows the
power spectra ofw (Fig. 3a) andη (Fig. 3b) based on the
model results between 103 and 104 TUs derived from the LF
time-differencing scheme (red line) and from the RK4 time-

Fig. 1. Time series of(a) x2 in the first 100 TUs,(b) w in the first
103 TUs, and(c) η in 104 TUs derived from both the LF (red line)
and the RK4 (black line) time-differencing schemes.

Fig. 2.Variation of(a) x2 in the space ofx3 and(b) η in the space of
w derived from both the LF (red circle) and the RK4 (black circle)
time-differencing schemes.

differencing scheme (black line), respectively. According to
the governing equation ofw, the seasonal cycle is defined by
10 TUs, and therefore a model year (decade) is 10 (100) TUs.
It can be seen from Fig. 3 that the power spectra from the
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Fig. 3. Power spectra of(a) w and(b) η based on the model data
between 103 and 104 TUs derived from both the LF (red line) and
the RK4 (black line) time-differencing schemes.

two time-differencing schemes seem different distinctly, es-
pecially forη, which indicates that the variability of the upper
and deep oceans is strongly influenced by the type of time-
stepping scheme used to integrate the model equations. How-
ever, in a state-of-the-art coupled general circulation model,
it is unclear yet if different time-differencing schemes can re-
sult in obviously different low-frequency variability (decadal
timescale and longer), which is an interesting topic that needs
to be investigated further.

The above discussions show that both the time mean and
the variability of the model simulation are affected strongly
by the type of time-stepping scheme used. We expect to
constrain the model drift caused by biased time-differencing
through the DAEPC algorithm that tunes model parameters
optimally according to the observational information. Next,
we will design a biased twin experiment to investigate the im-
pact of parameter optimization on the mitigation of coupled
model bias induced by imperfect time-differencing schemes.

2.5 Biased twin experiment setup

A biased twin experiment is designed, which assumes that
the imperfect time-differencing scheme is the only source of
model biases. Here we define a “truth” model in which the
LF time-differencing scheme is used. Starting from the ini-
tial conditions described in Sect. 2.4, after the truth model
is spun up for 103 TUs, a time series of true states is gener-
ated over a period of 104 TUs. “Observations” are produced
by adding a Gaussian white noise to the true values every

5 time steps forx1,2,3 and every 20 time steps forw, re-
spectively. These observational frequencies simulate the fea-
ture of the real climate observing system in which the atmo-
spheric observations are available more frequently than the
ocean. At the same time, these observational frequencies are
considered as the assimilation frequencies that the observa-
tions are assimilated into the model. To simulate the lack of
deep ocean measurements in the real observing system, no
observation is available forη. According to Zhang (2011a),
the standard deviations of the observational errors are 2 for
x1,2,3 and 0.5 forw, respectively, which are derived from a
long-time model free run.

The assimilation model uses the RK4 time-differencing
scheme. A Gaussian white noise with the same standard de-
viation as the observational error is added to the atmospheric
variable ofx2 at the end of spin-up (with the same integra-
tion period as the truth model) to form the ensemble initial
conditions from which the ensemble filtering data assimila-
tion starts. The total data assimilation period is 104 TUs, and
parameter optimization is started after 103 TUs when state
estimation reaches its quasi-equilibrium.

Starting from the ensemble initial conditions created
above, three assimilation experiments are conducted. First,
the experiment of state estimation only (SEO) that only the
model states are estimated by assimilating observations into
the model. Second, SEO with perturbed parameters, denoted
as SEO_PP, is performed, namely, the 9 parameters (σ , κ, b,
c1, c2, c3, c4, c5, andc6) are perturbed at the same time when
the ensemble initial conditions are formed by adding a Gaus-
sian white noise with the standard deviation being 5 % of the
default values. Third, parameter estimation is performed to
optimize all these 9 parameters using the DAEPC algorithm,
denoted as PP_PO. It should be noted that the other 6 pa-
rameters (Om, Od, Sm, Ss, Spd, and0) act as the part of the
dynamic core that determines the timescale and period of the
outer forcing of this coupled system. Therefore, they will not
alter once they are determined using the default values in this
study. In addition, a control run without any observational
constraint, called CTRL, serves as a reference for the evalu-
ation of the assimilation results.

3 Impact of parameter optimization on climate
estimation

Figure 4 shows the time series of root mean square errors
(RMSEs) ofx2 in the last 100 TUs (Fig. 4a),w in the last
103 TUs (Fig. 4b), andη in 104 TUs (Fig. 4c) obtained from
CTRL (pink line), SEO (black line), SEO_PP (red line), and
PP_PO (blue line). Here, all the RMSE time series are com-
puted from the difference between the ensemble mean of
the model run and the truth at each time integral step over
a 1-TU time window. From the black line in Fig. 4a, we
can see that the estimate ofx2 in SEO does not show ob-
vious improvement compared with that in CTRL (pink line).
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Fig. 4. Time series of RMSEs of(a) x2 in the last 100 TUs,(b) w

in the last 103 TUs, and(c) η in 104 TUs in CTRL (pink line), SEO
(black line), SEO_PP (red line), and PP_PO (blue line). Small pan-
els in(a) and(b) show the detailed evolutions of RMSEs ofx2 and
w in SEO_PP (red line) and PP_PO (blue line) through enlarging
the scale of the vertical coordinate.

Meanwhile, SEO has little contribution to the estimate of the
slow-varying variables such asw or η (black line vs. pink
line in Fig. 4b and c). The time mean RMSEs ofx2, w, and
η during the entire data assimilation period in SEO are ac-
tually reduced, with respect to CTRL, by 2, 9, and 12 %, re-
spectively. The improvements are not much and can hardly
be observed in the time series of RMSEs. This means that
within the framework of the specific dynamical core biased
twin experiment setting with this simple model, the dynam-
ical core misfitting of the assimilation model with respect
to the truth model can function as a significant obstacle for
the traditional SEO. In what follows, we will see the signif-
icant improvement with parameter optimization on assimi-
lation quality, which addresses the potential role of param-
eter optimization in the mitigation of dynamical core model
bias. Compared with SEO, estimates of all three variables
(x2, w, andη) in SEO_PP demonstrate significant improve-

ment (red lines in Fig. 4a, b, and c), evidenced by one-order
RMSE magnitude reduction with a small oscillation. This
suggests that the perturbed physical parameters can improve
the quality of state estimation greatly, since the perturba-
tion of parameters can increase the spread of model states
so as to increase the representation of model ensemble for
the model uncertainty. The RMSE ofx2 in PP_PO is reduced
with the same magnitude as in SEO_PP (blue line vs. red
line in the small panel in Fig. 4a). That is to say, the im-
provement in state estimation via parameter optimization is
similar to that via the initial perturbation of parameters for
the high-frequency atmospheric variables. However, this is
not the case for the low-frequency oceanic states. The RMSE
of w in PP_PO (blue line in the small panel in Fig. 4b) is re-
duced by about 66 % compared to that in SEO_PP (red line).
So, the RMSE is further reduced by observation-optimized
model parameters via PP_PO relative to SEO_PP. For the
deep ocean,η in PP_PO is further improved significantly
from SEO_PP. From Fig. 4c, it can be seen that the blue line
and the red line overlap completely before 103 TUs during
the early state estimation only period. When the process of
parameter optimization starts after 103 TUs, the RMSE ofη
in PP_PO decreases from about 0.68 to about 0.2, while the
RMSE in SEO_PP remains at a level of 0.68. This means that
observational information can be effectively extracted by the
process of parameter optimization for both the upper ocean
and the deep ocean.

Figure 5 shows the time series of the ensemble means of
κ (Fig. 5a) andc2 (Fig. 5b) between 900 and 1200 TUs in
PP_PO. We can see that the ensemble means of the param-
eters remain at their default values before 103 TUs in which
parameter optimization is not activated yet, but oscillate af-
ter 103 TUs to compensate for the bias of state estimation
induced by the biased time-differencing through the back-
ground error covariance between parameters and observa-
tions. The oscillation frequency ofκ (see Fig. 5a) in the
atmospheric control equation is higher than that ofc2 (see
Fig. 5b) in the oceanic equation, showing that the oscillation
frequencies of parameters are affected strongly by the fre-
quencies of state variables. As noted above, model parame-
ters do not have any dynamically supported internal variabil-
ity, and their variation depends completely on the variation
of the state-parameter covariance.

Figure 6 shows the power spectra ofw (Fig. 6a) andη
(Fig. 6b) derived from the truth (red line), SEO (black line),
and PP_PO (blue line), respectively. The significant charac-
teristic timescales ofw andη in PP_PO are almost the same
as those in the truth (blue line vs. red line), while the sig-
nificant characteristic timescales ofw andη in SEO are dis-
tinctly different from the truth (black line vs. red line). This
means that the characteristics of climate variability in the up-
per and deep oceans can be reconstructed accurately by en-
semble coupled parameter optimization when biased time-
differencing is the main source of model bias.
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Fig. 5. Time series of ensemble means of(a) κ and(b) c2 between
900 and 1200 TUs in PP_PO.

4 Impact of parameter estimation in different media on
model bias mitigation

In this section, we investigate the impact of different me-
dia parameter estimations on model bias mitigation. A series
of assimilation experiments, named Case1, Case2, Case3 till
Case11, as listed in Table 1, is designed to accomplish this
objective.

Figure 7 presents the time series of RMSEs ofx2 in the last
100 TUs (Fig. 7a),w in the last 100 TUs (Fig. 7b), andη in
104 TUs (Fig. 7c) in Case1 (black line), Case2 (green line),
Case3 (pink line), and Case4 (cyan line), respectively. Forx2
in the transient atmosphere, Case2 is the worst (green line
in Fig. 7a) among all the four cases presented. The reason
is thatc1 andc2 being optimized in Case2 are the coupling
parameters between the atmosphere variablex2 and the up-
per ocean variablew. Compared with the other three cases,
optimizing these two coupling parameters alone cannot effi-
ciently enhance the signal-to-noise ratio of the background
error covariance between the parameter and the model state.
For the upper ocean, it is noticed from Fig. 7b that the RM-
SEs ofw in both Case1 and Case4 remain similarly larger
values than the other two cases. This can be understood as
follows. Case1 optimizes parameters in the atmosphere (σ ,
κ, andb) and Case4 optimizes parameters in the deep ocean
(c5 andc6), respectively. Neither one has a direct effect on
the upper ocean variablew, and therefore neither one is able
to affectw significantly.

For η, the deep ocean component, compared to SEO_PP
(red line in Fig. 7c), although the RMSEs can be reduced

Fig. 6. Power spectra of(a) w and(b) η derived from the truth (red
line), SEO (black line), and PP_PO (blue line), respectively.

Table 1.Assimilation experiments list in Sect. 4.

Assimilation Optimized Ensemble Observations
experiment parameters size ofη

Case1 σ , κ, b 20 No
Case2 c1, c2 20 No
Case3 c3, c4 20 No
Case4 c5, c6 20 No
Case5 c3, c4, c5, c6 20 No
Case6 All butc5, c6 20 No
Case7 SEO_PP 200 No
Case8 PP_PO 200 No
Case9 c5, c6 200 No
Case10 SEO_PP 20 Yes
Case11 c5, c6 20 Yes

in Case1 (black line in Fig. 7c) and Case2 (green line in
Fig. 7c) to some degrees, both of which remain unstable with
a large oscillation. That is because observational information
is used only to adjust the parameters pertinent to the high-
frequency atmospheric variables instead of adjusting those
pertinent to the low-frequency oceanic variables. In con-
trast, Case3 has the best estimate ofη (pink line in Fig. 7c),
with an RMSE reduction over 75 % compared to the case in
which all parameters are optimized in PP_PO (blue line in
Fig. 7c). This means that some parameters being optimized
introduce noises under given conditions. Case3 optimizesc3
andc4, which represent the linear and the nonlinear interac-
tions between the upper and deep oceans. The observational
information ofw can be retrieved efficiently to improve the
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Fig. 7.Time series of RMSEs of(a) x2 in the last 100 TUs,(b) w in
the last 100 TUs, and(c) η in 104 TUs in Case1 (black line), Case2
(green line), Case3 (pink line), and Case4 (cyan line), respectively.
The setups of the four experiments are described in Table 1. Note
that the time series of RMSEs in SEO_PP (red line; only inc) and
PP_PO (blue line) are also plotted as references.

estimation ofw and η significantly through the parameter
optimization and the coupling between the upper ocean and
pycnocline depth. It is noticed that the performance of Case4
(cyan line in Fig. 7c) is the worst among all four cases, which
has an even larger RMSE than SEO_PP (red line in Fig. 7c).
Parametersc5 and c6 being optimized in Case4 are in the
η equation. Due to the absence of the observation ofη, c5
andc6 are estimated only indirectly through the observation
of w. This suggests that only optimizing parameters perti-
nent to the deep ocean component may lead to the noise-
dominating background error covariance when other param-
eters retain their default values. To explore this issue further,
we performed two additional experiments, Case5 and Case6
(Table 1). Case5 optimizesc5 andc6 together withc3 andc4.
Case6 optimizes all parameters but excludingc5 andc6. It is
already learned from the discussions before that the case with

Fig. 8.Time series of RMSEs ofη in 104 TUs in Case5 (green line)
and Case6 (black line). The setups of the two experiments are de-
scribed in Table 1. Note that the time series of RMSEs ofη in
SEO_PP (red line), PP_PO (blue line), and Case3 (pink line) are
also plotted as references.

only c3 andc4 being optimized (i.e., Case3) has the best per-
formance. However, the additional inclusion ofc5 andc6 in
Case5 deteriorates the results ofη (see green line in Fig. 8),
yielding larger RMSEs than the case in which all parameters
are optimized in PP_PO (blue line in Fig. 8). In contrast, the
RMSEs ofη in Case6 (black line in Fig. 8) have a similar
mitigation to that in Case3, indicating that the exclusion of
c5 andc6 increases the signal-to-noise ratio during parame-
ter optimization.

The poor performance of additional optimization ofc5 and
c6 may be associated with the insufficient ensemble represen-
tation and the lack of theη observation. To verify the first rea-
son, we increase the ensemble size of SEO_PP, PP_PO, and
Case4 to 200, and denote them as Case7, Case8, and Case9
(see Table 1). The time-averaged RMSE ofη in Case7 is re-
duced by more than 30 % from SEO_PP, which can be seen
from the green and red lines in Fig. 9. This means that the ca-
pability of ensemble spread is enhanced with a large ensem-
ble size. However, the RMSEs ofη in Case8 are not smaller
than ones in PP_PO (black line vs. blue line in Fig. 9), which
indicates that increasing the ensemble size does not improve
the η estimate due to the existence of noises during signal-
enhanced parameter optimization, even if the ensemble rep-
resentation can be improved by increasing the ensemble size.
The RMSEs ofη in Case9 are slightly larger than those in
Case7 (cyan line vs. green line in Fig. 9). Thus, the noises
induced by optimizingc5 and c6 cannot be removed suc-
cessfully through increasing the ensemble size. However, it
is clear that the performance of Case4 is indeed improved
greatly when the ensemble representation is enhanced in
Case9 (comparing both cyan lines in Figs. 7c and 9).

Regarding the second reason, to demonstrate the effect of
the assimilation ofη observations, we performed two addi-
tional experiments, Case10 and Case11 (see Table 1). Case10
and Case11 are the counterpart of SEO_PP and Case4 but
with the assimilation ofη observations that have the same
sampling frequency asw. Compared to SEO_PP, the RMSEs
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Fig. 9.Time series of RMSEs ofη in 104 TUs in Case7 (green line),
Case8 (black line), and Case9 (cyan line). The setups of the three
experiments are described in Table 1. Note that the time series of
RMSEs ofη in SEO_PP (red line) and PP_PO (blue line) are also
plotted as references.

Fig. 10. Time series of RMSEs ofη in 104 TUs in Case10 (green
line) and Case11 (black line). The setups of the two experiments
are described in Table 1. Note that the time series of RMSEs ofη

in SEO_PP (red line), PP_PO (blue line), and Case3 (pink line) are
also plotted as references.

of η in Case10 (green line in Fig. 10) are reduced signifi-
cantly, but still a little larger than those in PP_PO (blue line
in Fig. 10). This suggests that the signal-enhanced param-
eter optimization can improve theη estimation even in the
absence of observations of the deep ocean. The benefit of
assimilating deep ocean observations is significant whenc5
andc6 are optimized (Case11). The RMSEs ofη in Case11
(black line in Fig. 10) remain well consistent with those in
Case3, indicating that the deep ocean observations may be
indispensable when parameters pertinent to low-frequency
components are optimized through signal-enhanced param-
eter estimation. Otherwise, noises of the background error
covariance will be enlarged to deteriorate the quality of cli-
mate estimation, especially for the low-frequency signals.

5 Summary and discussions

A biased twin experiment framework is designed to study
the mitigation of coupled model bias induced by imper-
fect time-differencing through parameter optimization. In

this framework, the assimilation model includes a “biased”
time-differencing scheme from the truth model that is used
to produce “observations”. The leap-frog time-differencing
scheme with a Robert–Asselin time filter serves as the truth
run from which “observations” are drawn. The fourth-order
Runge–Kutta time-differencing scheme is used for the as-
similation runs. A series of assimilation experiments is per-
formed to examine the impact of parameter optimization on
climate estimation and model bias mitigation, as well as the
role of different media parameter estimations. Results show
that the initial perturbations of parameters can enhance the
ensemble spread greatly and improve the representation of
the model ensemble to the model error that consists of bi-
ases arising from different differencing schemes. Further-
more, parameter estimation enhances the accuracy of climate
estimation, especially for low-frequency signals. In addition,
in a multiple timescale coupled system, parameters pertinent
to low-frequency components have more impact on climate
signals.

Although the parameter optimization shows promise with
the simple coupled model to mitigate the model bias arising
from dynamical core misfitting, further research is required
to understand the impact of such model biases in coupled
general circulation models (CGCMs) on climate estimation
and prediction. It should be kept in mind that the concept
model used in this study contains a rather large set of pa-
rameters compared to the dimension of the model attractor.
This will not be the case for the state-of-the-art CGCMs
in general. There might also not be enough data to con-
strain both the model states and additional parameters un-
der the modern atmospheric and oceanic observing networks.
Thus potential benefits of parameter estimation vs stochastic
physics, achieved in this study, need to be investigated fur-
ther in the realistic scenario. Nevertheless, imperfect nume-
rical schemes are usually used in CGCMs. Therefore, besides
the development of more robust numerical schemes, how to
optimize model parameters needs to be examined further to
compensate for the deficiencies of the currently used nume-
rical schemes.
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