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Understanding statistical power using noncentral probability
distributions: Chi-squared, G-squared, and ANOVA

Sébastien Hélie
Rensselaer Polytechnic Institute

This paper presents a graphical way of interpreting effect sizes when more than two
groups are involved in a statistical analysis. This method uses noncentral distributions
to specify the alternative hypothesis, and the statistical power can thus be directly
computed. This principle is illustrated using the chi-squared distribution and the F
distribution. Examples of chi-squared and ANOVA statistical tests are provided to
further illustrate the point. It is concluded that power analyses are an essential part of
statistical analysis, and that using noncentral distributions provides an argument in
favour of using a factorial ANOVA over multiple ¢ tests.

Statistics occupy a large portion of psychological papers.
While this increase in the space allowed to describe the
analyses used in psychological experiments allows for a
more thorough understanding of the data, it was not
accompanied by a corresponding boost in the formation of
psychologists (Giguere, Hélie, & Cousineau, 2004). In
particular, a substantial amount of class time is usually
devoted to the explanation of type I error (wrongfully
rejecting the null hypothesis), but type II error is usually not
worth more than a mere mention in undergraduate classes
(failing to reject the null hypothesis when it is false). This
it
complements the notion of statistical power. Statistical

latter type of error is very important, because

power, also referred to as sensitivity, is the probability of
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correctly rejecting the null hypothesis. Figure 1 illustrates
statistical power in the case of a chi-squared distribution. As
in all statistical tests, the aim is to choose which of two
hypotheses (distributions) is correct. When the test statistic
is higher than a predefined threshold f(a), the alternative
hypothesis is chosen (full line); otherwise, the null
hypothesis is chosen (dashed line). Because statistical power
is the probability to correctly choose the alternative
hypothesis, it is illustrated by the portion of the former
distribution to the right of the threshold (gray part).

Statistical power is a function of three parameters: the
probability of committing type I error, the reliability of the
sample, and the effect size (Cohen, 1988). The first
parameter, probability of type I error, is positively related to
statistical power: when the probability of wrongfully
rejecting the null hypothesis is increased, statistical power is
also increased. This can be easily seen in Figure 1: when the
probability of type I error is increased (by moving the
threshold to the left), the area of the grey portion is bigger.
Likewise, the statistical power can be decreased by moving
the threshold to the right (diminishing the probability of
type I error).

Sample reliability is usually controlled in psychology by
randomly selecting participants. Hence, by the law of large
numbers, bigger samples are more reliable than smaller
ones. Operationally, the reliability of a sample is usually


https://core.ac.uk/display/27043597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

o)

b
M
15 20 25 30
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Figure 1.
distributions. The former represents the null hypothesis and
is illustrated using the dashed line (v = 5), while the latter
represents the alternative hypothesis and is illustrated using
the full line (v = 5, A = 5). The grey portion represents
statistical power.

measured using the standard error of the sample mean:
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where s? is the unbiased estimate of the population’s
variance, and n is the sample size. It is easy to see that Eq. 1
diminishes when the sample size is increased. Because test
statistics are wusually scaled wusing standard errors,
decreasing this measure increases the test statistics, and thus
the statistical power of the test.

The last parameter that affects statistical power is effect
size, which directly refers to the proportion of the change in
the dependant variable that can be attributed to the
controlled factor. While this parameter is easy to interpret in
the context of tests that compare two means (e.g., the scaled
difference between the means in a t test), it is more difficult

to understand in cases involving more than two groups (e.g.,
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Figure 2. Noncentral chi-squared distributions (v = 5) with
varying As. The filled distribution represents a null
hypothesis. As A increases, the overlap of the alternative
hypotheses with the null hypothesis (grey region)
diminishes.
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ANOVAs) or entire distributions (e.g., chi-squared, G-
squared). For instance, the null hypothesis when performing
an ANOVA is that the variance of the groups’ mean is zero.
Likewise, the null hypothesis when performing a chi-
squared or G-squared test is that the variance of the
proportions is zero. In both cases, this can only be achieved
if all the means or all the proportions are the same, and the
effect size can be best understood using the noncentral chi-

squared (chi-squared, G-squared) or noncentral F
distributions (ANOVA). These two cases are now
illustrated.

Chi-squared, G-squared,
and the noncentral chi-squared distribution

As argued earlier and shown in Figure 1, hypotheses in
statistical tests are usually represented using distributions:
the test statistics measures how much they differ. When
performing statistical tests wusing the chi-squared
distribution, the alternative hypothesis is not usually
represented; only the null hypothesis is (the usual chi-
squared distribution), and the threshold found in a
statistical table is used to either accept or reject the null
hypothesis. However, when performing a power analysis,
the alternative hypothesis has to be specified. In the case of
the chi-squared and the G-squared statistical tests, the
alternative hypothesis is a noncentral chi-squared
distribution (as shown in Figure 1). This distribution is

described by:
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with v > 0 degrees of freedom, A > 0 is the noncentrality
parameter, and T'(x) :fgo t*Ye~'dt is the Gamma function.
When A =0, Eq. 2 can be simplified to:
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which is the usual chi-squared distribution with v > 0
degrees of freedom. The smaller the value given to A, the
bigger the overlap between the null and alternative
hypotheses. On the other hand, the bigger the value given to
A, the smaller the overlap and, as a result, the higher the
statistical power. Figure 2 illustrates several examples of
noncentral chi-squared distributions.

Because the alternative hypothesis necessarily has the
same number of degrees of freedom as the null hypothesis,



all that is needed to specify the alternative hypothesis is an
estimation of the noncentrality parameter (A). As hinted
earlier, A is a function of the effect size:

A=nxwo’ (4)
where n is the sample size, and w is the effect size. In the
case of a chi-squared or a G-squared statistical test, the effect
size can be estimated by:
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where k is the number of cells, Hoi is the expected proportion
of data in cell i, and Hu is the actual proportion of data in
cell i. It is noteworthy that Eq. 5 is similar to the formula
used to compute the chi-squared test statistic, except that
proportions are used instead of frequencies.

Once the effect size estimated, the statistical power of the
test is easily computed:

power =1—u p(x|v,A) de ©)

f(a)

where the term in parenthesis is the cumulative density
function of the noncentral chi-squared distribution (Eq. 2)
evaluated at the threshold found in a chi-squared table (
fla)). This value can be given by any scientific computation
software (e.g., Mathematica, Matlab). Listing 1 presents the
Mathematica code to compute the power of a chi-squared or
G-squared statistical test.

Example

The owner of a small gift shop wanted to know if people
were buying their Christmas gifts at the last minute or if
they were gradually buying them throughout the entire
month of December. To do that, he calculated the number of
gifts sold each week with the following result: H: = {37, 21,
21, 21}. These results were to be compared with a regular
month, in which the gift sells are uniformly distributed
across the weeks: Ho = {25, 25, 25, 25}. In this particular case,
k =4, and Ho ~ chi-squared(3), while H: ~ noncentral chi-
squared(3, 7.68). If the probability of committing type I error
is set to 0.05, applying the chi-squared statistical test lead to
the rejection of Hi (x*(3) = 2.77, p > .05). Hence, the
consumers’ habits in December do not differ from their
usual. This conclusion can be made with confidence,
because the statistical power of the test is 0.63 (see Listing 1).
Hence, if the consumers’ habits were in fact different in the
month of December, the probability of detecting this
difference would be 0.63, which is sufficient to conclude
with relative confidence.
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The ANOVA and the noncentral F distribution

As in the chi-squared and G-squared statistical tests,
only the null hypothesis is usually represented when
performing an ANOVA (a F distribution). This reluctance to
illustrate the alternative hypothesis follows from a difficulty
to interpret the effect size, which is related to the
noncentrality parameter of a noncentral F distribution. This
latter distribution is described by:
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where u > 0 is the number of degrees of freedom of the
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tested effect (numerator), v > 0 is the number of degrees of

freedom of the error term (denominator), A > 0 is the

noncentrality parameter, B(x,y)=I(x)T'(y)/T(x+y) is the

usual Beta function, and
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is a generalized Laguerre polynomial. Fortunately, when A =
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0, Eq. 7 is simplified to the usual F distribution:
p(x1u,v,0)=p(xlu,v)
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Figure 3 shows noncentral F distributions with different As.
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Like the noncentral chi-squared distribution, an increase in
the value of the noncentrality parameter diminishes the
overlap between the null and alternative hypotheses, which
in turn increases the statistical power.

Because the alternative hypothesis has the same number
of degrees of freedom as the null hypothesis, only the
noncentrality parameter (1) remains to be specified. The
latter is expressed as:

u+1) &
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where w is the effect size, ni is the number of participants in

group i, and k is the number of groups. It is noteworthy that
this Equation is the same as Eq. 4 in the case of one-way

ANOV As. The effect size can be estimated using:
o

(10)

where 1? is the amount of explained variance, o is the
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Figure 3. Noncentral F distributions (u = 4, v = 45) with
varying As. The filled distribution represents a null
hypothesis. As A increases, the overlap of the alternative
with (grey region)

hypotheses the null hypothesis

diminishes.

common standard deviation of the sample (without
considering group membership):

(11)

where xij is data j in group i, and m is the common mean of
the sample (without considering group membership):

M=
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= (12)
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where mi is mean of group i. In Eq. 10, the numerator (o) is
the standard deviation of the k means. It can be computed

as:

(13)

Of course, if the ANOVA was performed using a statistical
software (e.g., SPSS), the amount of explained variance is
directly provided, and the effect size is quickly computed
(Eq. 10). However, when computed by hand, all the
preceding steps must be done to accurately estimate the
effect size (Eq. 10 — Eq. 13).

Once the effect size is estimated, the alternative
hypothesis is fully specified and the power can be
computed:

power =1— ﬁp(x lu,v,4) de (14)
0

f(@)
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Table 1. Intellectual Quotients used in the example

High school Undergraduate Graduate
91 95 85
85 113 119
95 80 102
75 93 124

111 102 97
88 97 87
87 99 87

111 91 87

114 82 922
84 88 111

where the term in parenthesis is the cumulative density
function of the noncentral F distribution (Eq. 7) evaluated at
the threshold found in a F table ( fla)). This value can be
given by any scientific computation software (e.g.,
Mathematica, Matlab). Listing 2 presents the Mathematica

code to compute the power of an ANOVA.

Example

A psychologist wanted to find out if the Intelligence
Quotient (IQ) was related to education. Hence, he measured
the IQ of thirty 35 years-old workers, ten of which had a
high-school diploma, another ten had undergraduate college
degrees, and the remaining had graduate university
degrees. The obtained measures are shown in Table 1. A
one-way ANOVA was performed on the scores, and no
group effect was found (F(2, 27) = 0.53, p > .05). However,
the researcher should be careful before making strong
conclusions about the absence of link between IQ and
education. Because the effect size is small (~ 0.20) and the
chosen probability of committing type I error was set to 0.05,
the power of this statistical test is only 0.13. Hence, if there is
a difference between the groups, the probability of detecting
it is only 0.13. These results should thus be interpreted as
inconclusive. The experiment should be redone with a
bigger sample.

Discussion

This short paper presented a simple way to interpret the
effect size in statistical tests involving more than two
groups: it specifies the noncentrality parameter of the
distribution used to represent the alternative hypothesis.
With a complete specification of the alternative hypothesis,
the notion of statistical power can be intuitively grasped by
plotting the distributions representing the hypotheses. This
was shown using the noncentral chi-squared distribution
and noncentral F distribution. The former is used to analyze
categorical data using the chi-squared or G-squared



statistical test. While the example provided in Listing 1
shows a simple association between two measures, the same
method applies to multi-way contingency tables involving
(Milligan, 1980):
computation of the number of degrees of freedom changes

the G-squared statistics only the
(for a detailed presentation of multi-way table analyses, see
Agresti, 1996). Moreover, this rationale also applies to other
linear models, such as the ANOVA (which uses the latter
distribution). While the example in Listing 2 shows a one-
way ANOVA, the power of factorial ANOVAs can be
computed in the exact same way: all that changes is the
number of degrees of freedom and the grouping. For
instance, in a 2 x 3 factorial design, the power of the first
main effect is computed using two groups (without
considering the second factor). Likewise, the power of the
second main effect is computed using three groups (without
considering the first factor), and the power of the interaction
is computed using six groups (all factors are now
considered). The degrees of freedom used to compute the
power of each effect follows the standard decomposition
presented in any introductory statistical text (e.g., Hays,
1981).

The computation of the statistical power of an interaction
brings forward the importance of correctly performing a
factorial ANOVA when several factors are involved (instead
of using multiple ¢ tests). By examining Eq. 9, it is easy to see
that the noncentrality parameter (and thus the power)
diminishes as the number of groups increases. This explains
why it is more difficult to obtain a statistically significant
interaction than several statistically significant t tests.
However, the loss of power when analyzing a factorial
design is statistically sound and should not be avoided.
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To summarize, statistical power is a very important
notion that relies for a large part on the notion of effect size.
While this notion is easy to visualize when only two groups
are included in the analysis, it is more difficult to interpret
when several groups are involved. This paper presented an
intuitive way to interpret effect sizes by estimating a
noncentrality parameter to fully define the alternative
hypothesis. It is our hope that a better understanding of
these issues will result in more power analyses.
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Computing the power of a chi-squared or G-squared statistical test

In[12]:= << Statistics’ ContinucusDistributions”
Off[General::"spell"]
0ff [General::"spelll"]
Off[Solve: :"ifun"]

Computing the effect size (w)

In[i6]:= k=4; (» number of cells )

x . -
w[HO_, HL ] =_\J (LY - 0L

HO[4]

Finding the threshold without using a table [f(a)]

In[i7]:= v =3; (* number of degrees of freedom &)
a=.05; (» probability of committing type I error =)
threshold = NSolve [CDF[ChiSquareDistribution[v], x] = (1-a), x][1, 1, 2]

out{18]= 7.81473

Computing the noncentrality parameter (1)

In[19]:= n=100; (* sample size %)
HO = {.25, .25, .25, .25};
(* expected proportion for each cell: the list must sum to unity x)
H1= (.37, .21, .21, .21};
(* observed proportion for each cell: the list must sum to unity «)
A= (nw[HO, H1]?)

out({21j= 7.68

Computing the power of the statistical test

In[22]:= power = 1 - CDF[NoncentralChiSquareDistribution[v, A], threshold]

out{22]= 0.634259
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Computing the power of an ANOVA

infl]:= << Statistics ContinuocusDistributions’
Off [Solve::"ifun"]
Off [General::"spelll”]

Computing the effect size (w) using the explained variance (?)

Inf4]:= n2 = .038; (* the effect size was estimated with SPSS =)

Computing the effect size () without using the explained variance (7?%)

inf5]:= data= {{91, 85, 95, 75, 111, 88, 87, 111, 114, 84},
{95, 113, 80, 93, 102, 97, 99, 91, B2, 88}, {85, 119, 102, 124, 97, 87, 87, 87, 92, 111}};
(* sach sublist is a different group #*)
k = Length[data] ;
m = Mean[Flatten[data]];
mi = Table [Mean[data[il], {i, 1, k}];
ni = Table[Length[data[ill. {i., 1., k)}]1:

- Efiniil (migil -m)?
Plus @@ ni
¢ = Standardpeviation[Flatten[data]]s

w=n[3]

om

Out{llj= 0.191351

Finding the threshold without using a table [f(«)]

Infi2}:= u=k-1; (+ number of degrees of freedom )
v = (Plus@@ni) - k;
@ = .05; (+ probability of committing type I error )
threshold = Last [Solve [CDF [FRatioDistribution[u, v]. x] == {1 -a), x]]1[1. 21

oucfi3l= 3.35413

Computing the noncentrality parameter (1)

e _ o2 Plus @@ ni
Infidj:= A= oF — {a+1)

Ooue[Tdl= 1.0%9846

Computing the power of the statistical test

In({is):= power = N[l - CDF[NoncentralFRatioDistribution[u, v, A]., threshold]]

ouefIs)= 0.131313
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