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Abstract. Bioluminescence of plankton organisms induced
by water movements has long been observed and is still un-
der investigations because of its great complexity. In particu-
lar, the exact mechanism occurring at the level of the cell has
not been yet fully understood. This work is devoted to the
study of the bioluminescence of the dinoflagellates plankton
species Pyrocystis noctiluca in response to mechanical stim-
uli generated by water flows. Several experiments were per-
formed with different types of flows in a Couette shearing
apparatus. All of them converge to the conclusion that sta-
tionary homogeneous laminar shear does not trigger massive
bioluminescence, but that acceleration and shear are both
necessary to stimulate together an intense bioluminescence
response. The distribution of the experimental biolumines-
cence thresholds is finally calculated from the light emission
response for the Pyrocystis noctiluca species.

1 Introduction

Bioluminescence, which is the emission of light by living
organisms, is very common in the marine environment, but
among phytoplankton, only some species of dinoflagellates
are bioluminescent. In these organisms, the light emission
is triggered by a mechanical stimulation due to water agi-
tation that induces cell deformations which in turn activate
a vacuole membrane action potential. Consequently the en-
try of hydrogen ions into some sub-cellular organelles called
scintillons is possible (Fogel et al., 1972). Then a series of
biochemical reactions involving the catalytic oxidation of a
specific photo-protein (luciferin) releases some energy in the
form of blue light flashes.

In a seminal article (Rohr et al., 1997), the use of biolu-
minescence of phytoplankton as a flow diagnostic was for
the first time evoked. In particular, these authors showed
that there was a relation between the intensity of the emit-
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ted light and the wall shear stress produced by laminar and
turbulent pipe flows. Thus, it could be possible to get quan-
titative measurements of flow fields if the bioluminescent re-
sponse was clearly scaled versus the flow parameters. Visu-
alization of the flow patterns around dolphins, in the wakes
of spheres (Rohr et al., 1998) or more recently in break-
ing waves (Stokes et al., 2004) are certainly today the most
achieved tentative towards a quantitative use of biolumines-
cence as a tool to probe laminar and turbulent flows. Figure 1
presents another example that we obtained in a fully devel-
oped turbulent flow. These images show a turbulent field cre-
ated by the contra-rotation of two facing propellers in a cubic
box. This kind of flow, called the von Karman flow, has al-
ready been used to study different properties of turbulence
(Cadot et al., 1995; Danaila et al., 1999). In this experi-
ment, the fluid is sea water seeded with a culture of dinoflag-
ellates. As seen on these images, the light intensity emitted
by the plankton cells varies in time and in space. Therefore,
it should be in principle possible to get quantitative measure-
ments of the turbulent flow by image analysis of the emitted
light in function of space and time. This technique would
then improve a lot the traditional single point measurements
performed by hot wires (only one or few spatial positions) or
the more recently used particle image velocimetry (extended
measurement in space but limited temporal resolution, except
for the use of fast pulsed Lasers and high resolution cam-
eras).

In a former study, Latz et al. (1994), have showed that
the emitted light intensity follows power laws of the lami-
nar fluid shears associated with simple Couette flows. These
flows are created between two concentric differentially ro-
tating cylinders. Well-defined thresholds between 0.1 and
0.3 N m−2 of the applied shear were determined for different
species of dinoflagellates. Revisiting this Couette flow ex-
periment, Cussatlegras and Le Gal (2004), showed that con-
trary to the observations of Latz et al. (1994), a pure laminar
stationary and homogenous shear flow does not excite the
main bioluminescent response in Pyrocystis noctiluca. The
bulk of bioluminescence emissions primarily occurred under
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between 0.1 and 0.3 N m-2 of the applied shear were determined for different species of 

dinoflagellates. Revisiting this Couette flow experiment, Cussatlegras and Le Gal, (2004) 

showed that contrary to the observations of Latz et al. (1994), a pure laminar stationary and 

homogenous shear flow does not excite the main bioluminescent response in Pyrocystis 

noctiluca. The bulk of bioluminescence emissions primarily occurred under non homogenous 

or non stationary flow conditions, where the cells experience shear changes as they are 

advected by the flow. In particular, the transition to turbulence triggers a strong light 

emission. These findings show the crucial role of shear flow acceleration and agree with the 

results of Blaser et al., 2002.  

       

       

Figure 1. Four different snapshots of the turbulent von Karman flow seeded with 

dinoflagellate cells. The Karman flow is created by two rotating facing propellers. The intense 

shear created by the counter-rotation of these propellers destabilizes the whole flow that 

becomes fully turbulent. 

  

Blaser et al. (2002)  revisited also previous experiments realized with pipe flows (Latz and 

Rohr, 1999;  Rohr et al. 2002).  They note in particular that the bioluminescent threshold they 

measure is higher (0.6 Nm-2) than the threshold obtained from the previous experiments. 

Moreover they show that if bioluminescence is possible in laminar flow, it is observed for 

occasionnal flashes or at the pipe inlet or when an aperture or a curvature affects the flow. 

They also report a large increase of bioluminescence when transition to turbulence occcurs 

Fig. 1. Four different snapshots of the turbulent von Karman flow
seeded with dinoflagellate cells. The Karman flow is created by two
rotating facing propellers. The intense shear created by the counter-
rotation of these propellers destabilizes the whole flow that becomes
fully turbulent.

non homogenous or non stationary flow conditions, where
the cells experience shear changes as they are advected by
the flow. In particular, the transition to turbulence triggers a
strong light emission. These findings show the crucial role of
shear flow acceleration and agree with the results of Blaser
et al. (2002).

Blaser et al. (2002) revisited also previous experiments
realized with pipe flows (Latz and Rohr, 1999; Rohr et
al. 2002). They note in particular that the bioluminescent
threshold they measure is higher (0.6 Nm−2) than the thresh-
old obtained from the previous experiments. Moreover they
show that if bioluminescence is possible in laminar flow, it is
observed for occasionnal flashes or at the pipe inlet or when
an aperture or a curvature affects the flow. They also report
a large increase of bioluminescence when transition to tur-
bulence occcurs (see also Rohr et al., 1990). As we will
see later, these observations agree with our present findings.
Our interpretation of this pipe flow bioluminescence excita-
tion is that the dinoflagellate cells travel through the nozzle
of the pipe and feel changes in flow conditions on a length
corresponding to the entrance length of the pipe. In the La-
grangian frame of reference linked to each cell, this is similar
to temporal flow variations.

In the present study, three types of experimental configu-
rations have been used to improve the understanding of bio-
luminescence in dinoflagellates. Three different and new ex-
periments have been realized and complete a work recently
published (Cussatlegras and Le Gal, 2004). First, using a
Couette apparatus with a smaller gap than in our first ex-
periment (Cussatlegras and Le Gal, 2004), we emphasis the
effect of a strong non homogeneity on the laminar shear flow
that consequently triggers a higher bioluminescent response.
Then, in a second series of experiments, we test the effect
of acceleration by abrupt starts of the flow in the absence

of shear. This was achieved by co-rotation onsets of both
cylinders and the introduction of an inner wall in the gap be-
tween them. Finally, the combination of both acceleration
and shear is investigated through “simple” (no inner cylinder
rotation) or counter-rotation Couette flow experiments. The
accelerated flows that we consider here, are created by the
abrupt start of one or two of the cylinders of the Couette ap-
paratus. Note that the centripetal acceleration of this rotating
Couette flows is always balanced by the radial pressure gradi-
ent and is inefficient to stimulate bioluminescence. Finally,
we present the derivation of the bioluminescence response
that leads to the statistics of light emission under given shear
and acceleration in Pyrocystis noctiluca. To the best of our
knowledge, this result that gives the probability to trigger bi-
oluminescence from a population of Pyrocystis noctiluca un-
der acceleration and shear is a totally new finding and is of
great importance in the attempt to use bioluminescence as a
flow diagnostic.

2 Material and methods

2.1 Cultures

Cultured cells of Pyrocystis noctiluca (Murray and Haeckel)
were obtained from the CCMP in Bigelow, Maine (strain
number 32). Cultures were maintained at 20◦C +/- 2◦C under
a 12 h light: dark cycle using cool-white fluorescent illumi-
nation providing approximately 10 W m2. Semi-continuous
batch cultures were grown in enriched f/2 media (Guillard
and Ryther, 1962). Cultures used for experiments were in
exponential growth phase and the concentration has been es-
timated by counting fixed samples in Nageotte slides under
a dissecting microscope. Cell concentrations used for the
experiments were 200–1000 cell ml−1 with an accuracy of
10%.

2.2 Couette device

The Couette apparatus (Couette, 1890) consists in two co-
axial rotating cylinders (Fig. 2) and is fully described in Cus-
satlegras and Le Gal (2004). It has been designed following
Latz et al. (1994). Its total length is 190 mm. The inner di-
ameter of the outer cylinder is 52.3 mm and the diameter of
the inner cylinder is respectively 47.8 mm in the first exper-
iments (small gap) and 46.3 mm for the second and third set
of experiments. Rotational speed is measured by an optical
encoder mounted directly on the rotation axis of the exter-
nal cylinder of the Couette device. The inner cylinder is of
black polished acetal plastic and the outer one is of trans-
parent glass so the light can be measured by an intensified
video camera (ULL509, Lh́eritier) and a photomultiplier tube
(Hamamatsu H6180-01). Taking into account the distance
between the Couette chamber and the photomultiplier tube, a
correction factor is applied on the light measurement which
is then given in number of photons per second and per cell
(ph s−1 cell−1).
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Figure 2. Schematic diagram of the Couette device that consists in two coaxial cylinders 

differentially rotating. The total length of the cylinders is 190 mm; the inner diameter of the 

outer glass cylinder is 52.3 mm and the gap is 2.25 mm for the experiments of  section 3.1 and 

3 mm for the experiments of sections 3.2 and 3.3. The secondary flows due to the presence of 

Ekman cells have been represented on the left side of the diagram. 

 

3 Results and discussion 

3.1 Bioluminescence response under shear without acceleration  

The experimental protocol for this run is the same as that used in Cussatlegras and Le Gal 

(2004). The Couette apparatus has a 2.25 mm gap this time (and not 3 mm as before) and is 

driven from outside the dark measurement room. The rotation frequency ω of the outer 

cylinder is slowly and continuously increased form 0 to 18 Hz in 150 s.  The inner cylinder is 

kept at rest. This “quasi-static” ramp which is presented in figure 3-A avoids any effective 

acceleration as its value is negligible (0.03 m s-2 at the inner boundary of the outer wall). As 

we will see later, acceleration of shear flows are efficient for bioluminecence only for values 

two orders of magnitude larger. The totality of the experimental run is video-taped while the 

light emission is recorded by the photomultiplier. The main trends of the recorded light 

intensity curve are illustrated by corresponding flow images. Similarly to our previous 

Fig. 2. Schematic diagram of the Couette device that consists in
two coaxial cylinders differentially rotating. The total length of the
cylinders is 190 mm; the inner diameter of the outer glass cylinder
is 52.3 mm and the gap is 2.25 mm for the experiments of Sect. 3.1
and 3 mm for the experiments of Sects. 3.2 and 3.3. The secondary
flows due to the presence of Ekman cells have been represented on
the left side of the diagram.

Before each experiment, fresh samples were transferred in
the dark experimental room. The Couette chamber is filled
with a dinoflagellate culture sample by pouring it directly
in the space between the cylinder. The experimental runs
are started several minutes later in order to let the flow settle
down.

Two different protocols have been used. In the first set of
experiments, the speed rotation is increased progressively in
order to test the effect of shear without acceleration (which
is in fact very weak and thus can be neglected). In the second
set of experiment, we test abrupt starts of both cylinders ro-
tating in the same direction with a wall placed between them
and rotating with them. These runs allow to study the effect
of acceleration without shear. Finally, the last set of exper-
iments presents the bioluminescence response to the combi-
nation of both shear and acceleration.

3 Results and discussion

3.1 Bioluminescence response under shear without accel-
eration

The experimental protocol for this run is the same as that
used in Cussatlegras and Le Gal (2004). The Couette ap-
paratus has a 2.25 mm gap this time (and not 3 mm as be-
fore) and is driven from outside the dark measurement room.
The rotation frequencyω of the outer cylinder is slowly and
continuously increased form 0 to 18 Hz in 150 s. The inner
cylinder is kept at rest. This “quasi-static” ramp which is
presented in Fig. 3A avoids any effective acceleration as its
value is negligible (0.03 m s−2 at the inner boundary of the
outer wall). As we will see later, acceleration of shear flows

are efficient for bioluminecence only for values two orders
of magnitude larger. The totality of the experimental run is
video-taped while the light emission is recorded by the pho-
tomultiplier. The main trends of the recorded light intensity
curve are illustrated by corresponding flow images. Similarly
to our previous observations the bioluminescence emission
presents three main characteristics (Fig. 3B). The first bell
shape pattern is due to the excitation of the plankton cells
near the end caps. We believe that this light emission is trig-
gered by the complex flow induced near the singular bound-
ary condition imposed at the corner between the rotating end
caps and the stationary inner cylinder. Then, as the excited
cells become exhausted, the light emission decreases in cor-
respondence. Note that during this process, several isolated
flashes, that may be due to extremely sensitive cells (that may
hit the wall for instance), are also visible.

As it was the case in our first study (Cussatlegras and Le
Gal, 2004), the rotating caps generate also Ekman cells that
consist in two re-circulation eddies entrained by centrifugal
effect. This effect is a general feature of experimental Cou-
ette flows and is not an artefact of our own device. But in the
present case, and contrary to our first observations, the effect
of these secondary re-circulation eddies is quite strong be-
cause of the gap reduction (more intense gradients) and we
can clearly measure this time the light emission associated
with the stagnation line created between them in the equato-
rial region. The stimulation of the cells in the region where
the Ekman eddies meet can be explained by the fact that the
cells encounter various shear conditions as they travel in the
flow. In particular, when arriving in this equatorial region,
they abruptly change the direction of their axial velocity.
Then bioluminescence decreases as the dinoflagellates in the
middle region of the container become exhausted.

Contrary to our first experiments (Cussatlegras and Le Gal,
2004), this small gap experiment allows to measure the ax-
ial length of this luminous region (compared to the total
cylinder height) which is plotted as a function of the rota-
tional frequencyω is compatible with a square root behaviour
(Fig. 4). Up to now, we have not been able to relate exactly
this behaviour with models of the Ekman secondary flow ed-
dies. Note however that this square root behavior is sim-
ilar to the evolution of the axial velocity of Ekman eddies
(see Schilichting, 1970). Nevertheless, it is clear on this fig-
ure that non homogeneity leads to bioluminescent excitation
of the plankton cells even in the case of laminar stationary
flows.

Therefore, we think that in this experiment, the Pyrocys-
tis noctiluca cells encounter various shear flow conditions
as they are advected by the main rotating flow plus the sec-
ondary eddies. Thus, it appears that temporal changes in the
cell environment, seen in the cell’s Lagrangian frame of ref-
erence, are necessary to trigger the bioluminescent response.
Indeed, this is also the case when a sharp peak related to
the transition to turbulence of the flow appears after 115 s
(Fig. 3B). At this point, a large amount of the cell population
is excited by the chaotic non stationary turbulent field that
takes the shape of the well known turbulent spiral, which is



340 A. S. Cussatlegras and P. Le Gal: Dinoflagellate bioluminescence in water flows

 7

observations the bioluminescence emission presents three main characteristics (figure 3-B). 

The first bell shape pattern is due to the excitation of the plankton cells near the end caps. We 

believe that this light emission is triggered by the complex flow induced near the singular 

boundary condition imposed at the corner between the rotating end caps and the stationary 

inner cylinder. Then, as the excited cells become exhausted, the light emission decreases in 

correspondence. Note that during this process, several isolated flashes, that may be due to 

extremely sensitive  cells (that may hit the wall for instance), are also visible.   

As it was the case in our first study (Cussatlegras and Le Gal, 2004), the rotating caps 

generate also Ekman cells that consist in two re-circulation eddies entrained by centrifugal 

effect. This effect is a general feature of experimental Couette flows and is not an artefact of 

our own device. But in the present case, and contrary to our first observations, the effect of 

these secondary re-circulation eddies is quite strong because of the gap reduction (more 

intense gradients) and we can clearly measure this time the light emission associated with the 

stagnation line created between them in the equatorial region. The stimulation of the cells in 

the region where the Ekman eddies meet can be explained by the fact that the cells encounter 

various shear conditions as they travel in the flow. In particular, when arriving in this 

equatorial region, they abruptly change the direction of their axial velocity. Then 

bioluminescence decreases as the dinoflagellates in the middle region of the container become 

exhausted.  
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Figure 3. A) Evolution of the rotating velocity ω the Couette device (small gap) versus time 

during the “quasi-static” ramp. B) Light emission during this ramp and corresponding images 

of the flow. Except from rare isolated flashes, no bioluminescence is stimulated in the bulk of 

the laminar shear flow. The three main qualitative characteristics of the bioluminescence 

response are in this case: permanent luminous extremities, light emission in the equatorial 

plane due to Ekman re-circulation eddies (around 100 s) and a sharp peak of light emission 

corresponding to the onset of turbulence (115 s) where the shape of the turbulent spiral can be 

guessed . 

 

Contrary to our first experiments (Cussatlegras and Le Gal, 2004), this small gap experiment 

allows to measure the axial length of this luminous region (compared to the total cylinder 

height) which is plotted as a function of the rotational frequency ω is compatible with a 

square root behaviour (Figure 4). Up to now, we have not been able to relate exactly this 

behaviour with models of the Ekman secondary flow eddies. Note however that this square 

root behavior is similar to the evolution of the axial velocity of Ekman eddies (see 
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the laminar shear flow. The three main qualitative characteristics of the bioluminescence response are in this case: permanent luminous
extremities, light emission in the equatorial plane due to Ekman re-circulation eddies (around 100 s) and a sharp peak of light emission
corresponding to the onset of turbulence (115 s) where the shape of the turbulent spiral can be guessed.
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Schilichting, 1970). Nevertheless, it is clear on this figure that non homogeneity leads to 

bioluminescent excitation of the plankton cells even in the case of laminar stationary flows.  

Therefore, we think that in this experiment, the Pyrocystis noctiluca cells encounter various 

shear flow conditions as they are advected by the main rotating flow plus the secondary 

eddies. Thus, it appears that temporal changes in the cell environment, seen in the cell’s 

Lagrangian frame of reference, are necessary to trigger the bioluminescent response. Indeed, 

this is also the case when a sharp peak related to the transition to turbulence of the flow 

appears after 115 seconds (Figure 3-B). At this point, a large amount of the cell population is 

excited by the chaotic non stationary turbulent field that takes the shape of the well known 

turbulent spiral, which is clearly visible on the video recordings. Some trends of this spiral 

can be guessed on the two last images of figure 3-B) where strong non homogeneous patterns 

are visible.   

 

 

 

 

 

 

 

 

 

Figure 4. Relative width of the bioluminescent region corresponding to the stagnation zone 

between the Ekman re-circulation eddies. The solid curve represents the experimental data 

points and the dotted curve is a square root fit. 

 

3.2 Bioluminescence response under acceleration without shear  

Temporal changes in flows can also be directly created by accelerations of the flow field. In 

order to test the response of the dinoflagellates to acceleration, we performed two series of 
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Fig. 4. Relative width of the bioluminescent region correspond-
ing to the stagnation zone between the Ekman re-circulation eddies.
The solid curve represents the experimental data points and the dot-
ted curve is a square root fit.

clearly visible on the video recordings. Some trends of this
spiral can be guessed on the two last mages of Fig. 3B, where
strong non homogeneous patterns are visible.

3.2 Bioluminescence response under acceleration without
shear

Temporal changes in flows can also be directly created by
accelerations of the flow field. In order to test the response of
the dinoflagellates to acceleration, we performed two series

of experiments. In the first one, where the shear is maintained
for further comparison with the second run (no shear), the
acceleration is generated by abrupt starts of the outer cylinder
of the Couette apparatus. As the flow is set in rotation with a
constant acceleration equal to 11.5 m s−2 at the outer cylinder
wall, a strong non stationary shear is generated in the gap as
the inner cylinder is kept stationary.

Light emission and flow images are presented in Fig. 5.
These runs correspond to a constant acceleration ramp of the
outer cylinder that rotates from 0 to 9 Hz. The solid curve
indicates the bioluminescence response versus time and is
associated to a global excitation of the dinoflagellate culture
as presented by the flow image. In the second experimen-
tal run, a vertical thin wall is placed in the gap between the
cylinders (3 mm in this case), thus the whole bulk of fluid
will be entrained since both cylinders and the wall are set
into rotation together at the same rate. In this second run, no
shear is created excepted nearby the end caps (we could not
avoid the presence of a small gap between the vertical wall
and the end caps; this region of the flow is subjected to an
Ekman circulation again). As illustrated by the dotted curve
response, the intensity of the light emission is reduced: the
corresponding visualisation of the flow clearly shows that the
cells present in the bulk are not excited. Therefore, we have
demonstrated here that acceleration alone does not trigger the
bioluminescence response in Pyrocystis noctiluca. This is in
fact not very surprising as the density of the plankton cells
is very close to that of water and consequently their effective
mass is nearly zero. This result is in accordance with Latz
et al. (2004), where the effect of shear and acceleration in a
nozzle flow was clearly identified.
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experiments. In the first one, where the shear is maintained for further comparison with the 

second run (no shear), the acceleration is generated by abrupt starts of the outer cylinder of 

the Couette apparatus. As the flow is set in rotation with a constant acceleration equal to 11.5 

m s-2 at the outer cylinder wall, a strong non stationary shear is generated in the gap as the 

inner cylinder is kept stationary. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Bioluminescence response versus time following an abrupt start of the Couette 

chamber. The final rotation frequency is set to 9 Hz and the acceleration of the outer cylinder 

surface to 11.5 m s-2. A strong light emission is recorded at the onset. In standard condition, 

where the cells experience acceleration and shear (___), a massive response in the whole 

illuminated cylinder is recorded. When only acceleration is applied when both cylinders rotate 

together and a thin wall is inserted between them (---), the bioluminescence response is 

weaker and is only stimulated at both end caps. In the bulk, no bioluminescence is stimulated 

by acceleration alone. 

 

Light emission and flow images are presented in Figure 5. These runs correspond to a 

constant acceleration ramp of the outer cylinder that rotates from 0 to 9 Hz. The solid curve 

indicates the bioluminescence response versus time and is associated to a global excitation of 

the dinoflagellate culture as presented by the flow image. In the second experimental run, a 

vertical thin wall is placed in the gap between the cylinders (3 mm in this case), thus the 
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Fig. 5. Bioluminescence response versus time following an abrupt start of the Couette chamber. The final rotation frequency is set to 9 Hz
and the acceleration of the outer cylinder surface to 11.5 m s−2. A strong light emission is recorded at the onset. In standard condition, where
the cells experience acceleration and shear (), a massive response in the whole illuminated cylinder is recorded. When only acceleration
is applied when both cylinders rotate together and a thin wall is inserted between them (—), the bioluminescence response is weaker and is
only stimulated at both end caps. In the bulk, no bioluminescence is stimulated by acceleration alone.

3.3 Bioluminescence response under shear and accelera-
tion

As seen in the previous section, acceleration alone is ineffec-
tive to get the main response of Pyrocystis noctiluca when
stimulated by mechanical constraints. However a combi-
nation of acceleration and shear (first run of Sect. 3.2) ex-
cites bioluminescence. It corresponds in fact to the existence
of a shearing velocity whose role has already been studied
in various experiments such as the growth of muscle cells
(Burkholder, 2003) or the re-orientation of endothelial cells
when subjected to cycling forcing (Wang et al., 2001). Phys-
ically, this means that the double derivative in time and in
space of the velocity field (the shearing velocity) must not
be zero to get bioluminescence. This final section is then
devoted to the study of bioluminescence during abrupt start
of the Couette apparatus with a given acceleration and with
shear. Two sets of experiments were realised in which the
inner cylinder is respectively at rest or in exact counter-
rotation. In this last case, it can be easily demonstrated that
the mean (in space) shear produced during the transients is
always twice that produced when only the outer cylinder ro-
tates (see later). These experiments are labelled “simple”
in the case of the simple Couette flow (with no rotation of
the inner cylinder) and “counter” when both cylinders are in
counter-rotation (Fig. 6). In both cases, the Couette flow is
entirely luminous as seen in Fig. 5 (solid line) for relatively
short periods of time (typicaly 10 s or less) when the flow
is still accelerating. For smallω jumps, the flow stays sta-
tionnary but this is not the case for the largestωg increments

where turbulence can be observed. In fact, the first peak in
the bioluminescence response is higher than the following
flashes and its intensity is the only quantity that will be kept
to plot Fig. 6. This was explained and illustrated in Cussatle-
gras and Le Gal (2004). It is worth noting that no biolumi-
nescence is triggered after these short periods of time, that is
when the shear has reached a constant value.

Both response curves (Fig. 6A) have a sigmoid shape but
as it is expected, the plateau where all the cells are excited
is reached at a lower rotation frequency for the “counter” ex-
periments because the shear is higher. Both curves represent
the same physical response of the dinoflagellate population
to the same mechanical stimulation. Thus, these responses
should be a unique function of a unique variable. It appears
that if we define the mean shear by an integration over the
gap of the shear reached at the end of the acceleration ramps
(that is simply the difference in cylinder velocities divided
by the gap thickness), the shear met in the “counter” experi-
ments is double the shear of the “simple” experiments. Note
that this property is always true, even during the transitory
flow. When representing the response curves as functions of
this maximum mean shear (reached here at the end of the ac-
celeration ramp), it is then clearly visible that experimental
data points collapse on a unique curve (Fig. 6B). This means
also that the local properties of the flow near the walls dur-
ing the transients are not determinant for the bioluminescent
response. If the contrary was true, twice the volume of cells
would be excited in the “counter” experiments during the first
instants of the ramps and Fig. 6A clearly shows that this is
not the case since twice the quantity of light is not emitted.
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Fig. 6. Bioluminescent response for different abrupt starts at dif-
ferent values of final rotation frequencies. In the “simple” experi-
ments, only the outer cylinder rotates while in the “counter” exper-
iments, both cylinders rotate in opposite directions. The responses
versus rotation frequency(A) follow “S” shape curves that collapse
when represented as functions of the mean shear(B). The dotted
line is an error function fit of the experimental data points.

The response curve can be fitted by an error function (erf)
whose parameters have been adjusted to the measurement
points. Therefore, this curve represents the bioluminescence
response of the Pyrocystis noctiluca cells when stimulated by
an accelerated shear flow.

4 Histogram of bioluminescent thresholds

As seen in Fig. 6B, only a certain amount of the cells emits
light when stimulated by the accelerated shear flow; the
thresholds of the other cells being higher than the applied
constraint. The bioluminescence response can therefore be
interpreted as the cumulated histogram of thresholds under
a given mechanical constraint (shear and acceleration). The
distribution of these thresholds can then be calculated by the
derivation of the response curve. This derivative is given in
Fig. 7 together with the Gaussian probability density function
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Figure 7.  Distribution of the experimental bioluminescence thresholds calculated as the 

derivative of the light emission response. The dotted Gaussian curve is the derivative of the 

error function fit while the bars represent the experimental data.  
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is consistent with the results of Latz et al. (2004). Finally the response of Pyrocystis noctiluca 

to accelerated shear flows is described and fitted to an erf function. The mean threshold value 

(0.7 N m-2) is in agreement with recently obtained determination  (0.6 N m-2) by Blaser et al. 

Fig. 7. Distribution of the experimental bioluminescence thresholds
calculated as the derivative of the light emission response. The dot-
ted Gaussian curve is the derivative of the error function fit while
the bars represent the experimental data.

that is the derivative of the erf fitting function. The mean
bioluminescent threshold is equal to 0.7 N m−2 and the stan-
dard deviation of its distribution is 0.27 N m−2. We specu-
late that these values are species dependent. The fact that a
unique threshold is not obtained expresses the diversity of
the bioluminescence response for each organism and also
among the dinoflagellate population. The mean threshold
value that we obtain is very closed to the one measured by
Blaser et al. (2004) in different flow configurations, however
it is higher than the one measured by Latz et al. (1994) in
their Couette flow apparatus with Pyrocystis noctiluca and
in their pipe flow experiments on Pyrocystis fusiformis (Latz
et al., 2004). Note however that these apparent contradic-
tions in the different determinations of thresholds may come
from the fact that the lowest values obtained for the thresh-
olds (around 0.1–0.3 N m−2 in Latz et al., 1994) may corre-
spond to values on the left wing of the Gaussian distribution.
The corresponding cells are indeed very sensitive to shear
and any temporal changes in their environnement (inlet of a
pipe, aperture, Ekman eddies, wall proximity ...) might trig-
ger the bioluminescent reaction. In this case the disagree-
ment between the different bioluminescence threshold deter-
minations would only be apparent.

5 Conclusion

We have shown in this study the crucial role played by flow
acceleration in the bioluminescence of Pyrocystis noctiluca.
First of all, we have confirmed that a simple uniform and
constant shear cannot trigger the main bioluminescent
response in this species (the only emitted light coming
from spurious finite size effects, or isolated flashes that are
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believed to come from very sensitive cells hitting the wall).
In the same way, we prove in a second set of experiments
that acceleration alone without shear is also inefficient. This
result is consistent with the results of Latz et al. (2004).
Finally the response of Pyrocystis noctiluca to accelerated
shear flows is described and fitted to an erf function. The
mean threshold value (0.7 N m−2) is in agreement with
recently obtained determination (0.6 N m−2) by Blaser et
al. (2004). The large distribution of thresholds traduces the
diversity among the organism population but will unfortu-
nately complicate a lot the use of bioluminescence as a flow
diagnostic.

Edited by: F. G. Schmitt
Reviewed by: two referees
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