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Abstract. Terrestrial ecosystem models commonly represent
vegetation in terms of plant functional types (PFTs) and use
their vegetation attributes in calculations of the energy and
water balance as well as to investigate the terrestrial carbon
cycle. Sub-grid scale variability of PFTs in these models is
represented using different approaches with the “composite”
and “mosaic” approaches being the two end-members. The
impact of these two approaches on the global carbon balance
has been investigated with the Canadian Terrestrial Ecosys-
tem Model (CTEM v 1.2) coupled to the Canadian Land
Surface Scheme (CLASS v 3.6). In the composite (single-
tile) approach, the vegetation attributes of different PFTs
present in a grid cell are aggregated and used in calcula-
tions to determine the resulting physical environmental con-
ditions (soil moisture, soil temperature, etc.) that are com-
mon to all PFTs. In the mosaic (multi-tile) approach, en-
ergy and water balance calculations are performed separately
for each PFT tile and each tile’s physical land surface en-
vironmental conditions evolve independently. Pre-industrial
equilibrium CLASS-CTEM simulations yield global totals of
vegetation biomass, net primary productivity, and soil car-
bon that compare reasonably well with observation-based
estimates and differ by less than 5 % between the mosaic
and composite configurations. However, on a regional scale
the two approaches can differ by> 30 %, especially in ar-
eas with high heterogeneity in land cover. Simulations over
the historical period (1959–2005) show different responses
to evolving climate and carbon dioxide concentrations from
the two approaches. The cumulative global terrestrial carbon
sink estimated over the 1959–2005 period (excluding land
use change (LUC) effects) differs by around 5 % between the
two approaches (96.3 and 101.3 Pg, for the mosaic and com-
posite approaches, respectively) and compares well with the

observation-based estimate of 82.2± 35 PgC over the same
period. Inclusion of LUC causes the estimates of the terres-
trial C sink to differ by 15.2 PgC (16 %) with values of 95.1
and 79.9 PgC for the mosaic and composite approaches, re-
spectively. Spatial differences in simulated vegetation and
soil carbon and the manner in which terrestrial carbon bal-
ance evolves in response to LUC, in the two approaches,
yields a substantially different estimate of the global land
carbon sink. These results demonstrate that the spatial repre-
sentation of vegetation has an important impact on the model
response to changing climate, atmospheric CO2 concentra-
tions, and land cover.

1 Introduction

Terrestrial ecosystem models (TEMs) or dynamic global veg-
etation models (DGVMs), with their associated land surface
schemes (LSSs), are used in Earth system models (ESMs) to
simulate the CO2 flux between the land surface and the atmo-
sphere’s lower boundary. An important application of TEMs
and DGVMs has been to estimate the terrestrial biosphere’s
role in the uptake of anthropogenic carbon (Le Quéré et al.,
2009; Huntzinger et al., 2012) and to quantify carbon emis-
sions due to land use change (LUC) and changing climate
(Arora and Boer, 2010).

Typically, LSSs use specified structural physical attributes
of vegetation in their calculation of surface energy and wa-
ter balance terms. These attributes include leaf area index,
vegetation roughness height, rooting depth, fractional veg-
etation cover and canopy mass. When coupled to TEMs or
DGVMs, vegetation is modelled as an interactive compo-
nent and physical attributes of vegetation are simulated as a
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Fig. 1. Schematic representation of the composite and mosaic ap-
proaches for the coupling of CLASS v 3.6 and CTEM v 1.2 models
in a stand-alone mode.

function of driving climate and atmospheric CO2 concentra-
tion (CO2). Coupled LSSs and TEMs simulate fluxes of wa-
ter, energy and CO2 at the atmosphere–land boundary. Veg-
etation in ESMs is commonly represented in terms of broad
plant functional types (PFTs). Appropriate representation of
these PFTs’ spatial distribution presents a challenge to mod-
ellers, as the area of climate model grid cells is often on
the order of 100 000 km2. On these large scales, the spatial
distribution of terrestrial vegetation can be extremely hetero-
geneous. For example, a grid cell with a land cover that is
20 % treed and 80 % herbaceous may represent a typical sa-
vannah landscape with intermittent trees, or a closed-canopy
forest surrounded by prairie grasslands. In reality, these two
landscapes represent greatly different physical and hydrolog-
ical environments for the plants growing within them. Earth
system models thus need to adopt a strategy that can accu-
rately capture the vegetation dynamics due to sub-grid scale
variability without incurring excessive computational cost.
In response to this requirement, the Earth system modelling
community has adopted three main approaches to represent
sub-grid scale vegetation variability within LSS frameworks,
which are termed: (i) composite, (ii) mosaic, and (iii) mixed
(following Li and Arora, 2012).

The composite approach (left column of Fig.1) assumes
that structural (as mentioned above) and physiological at-

tributes (e.g. stomatal conductance) of the PFTs present can
be averaged across the grid cell (weighted by each PFT’s
fractional coverage) (Verseghy, 1991; Verseghy et al., 1993;
Sitch et al., 2003). These grid-averaged values are then used
in water- and energy balance calculations to obtain a grid-
averaged physical state of the land surface. Thus, each PFT is
exposed to the same environmental variables, such as canopy
temperature, soil moisture, soil temperature, and net radia-
tion.

The mosaic representation of the land surface uses sepa-
rate “tiles” for each PFT (Koster and Suarez, 1992a) (right
column of Fig.1). Each tile simulates the energy and wa-
ter balance based upon the interactions of the structural and
physiological characteristics of its PFT with the driving cli-
mate, without regard to the conditions in the other tiles. As
a result, the land surface state in each tile evolves indepen-
dently with unique environmental variables with correspond-
ing different simulated energy, water and CO2 fluxes. The
tiles fluxes are then grid-averaged prior to interaction with
the lower boundary of the atmosphere.

The composite and mosaic approaches can be considered
as the two extremes of the manner in which spatial variabil-
ity of vegetation is represented. We term other approaches
that lie in between the mosaic and composite as “mixed”.
An example of the mixed approach uses the PFT vegetation
attributes for calculations of the energy and water balance
for each tile, but the soil moisture and temperature are grid-
averaged at the end of each time step (Sellers et al., 1986;
Dickinson et al., 1993; Oleson et al., 2010).

Different landscapes are better represented by one of the
three approaches described above. Landscapes that are be-
lieved to be better suited to a composite representation in-
clude mixed deciduous broadleaf and evergreen needleleaf
forests, as well as savannahs with sparse trees on grassland.
The mosaic approach is suggested to better represent land-
scapes with a clear distinction between PFTs such as non-
overlapping cropland and closed-canopy forest. A mixed ap-
proach is usually chosen to reduce computational cost, not
specifically to better represent the land surface. Commonly,
a model is run with a globally constant application of either
composite or mosaic approaches, without consideration of
the particular observed vegetation structure of an individual
grid cell.

The impact of the mosaic vs. the composite approach has
been investigated with respect to the surface energy and hy-
drological balance (Koster and Suarez, 1992a, b; Molod and
Salmun, 2002; Molod et al., 2003, 2004; Essery et al., 2003),
however the impact on the carbon balance has received lit-
tle attention.Li and Arora(2012) analyzed site-level (single
grid cell) differences in simulated carbon pools and fluxes
between composite and mosaic approaches at four locations
(two boreal, one temperate, and one tropical) with the Cana-
dian Land Surface Scheme (CLASS) version 3.4 (Verseghy,
2009) coupled to the Canadian Terrestrial Ecosystem Model
(CTEM) version 1.0 (Arora, 2003; Arora and Boer, 2005).
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Their analysis was designed to generate the largest possible
difference between the composite and mosaic approaches, as
a form of sensitivity test, thus they used an idealized PFT
fractional coverage of 50 % for each of the two dominant
PFTs present at each location.Li and Arora(2012) reported
that the primary energy fluxes were relatively insensitive to
the vegetation representation, with less than 5 % difference
between the two approaches. However, the carbon fluxes and
pool sizes varied by as much as 46 % on a grid-averaged
basis. Given that their simulations were intended to deter-
mine the largest influence on a site level, it is difficult to pre-
dict how important the vegetation configuration strategy is
at a global scale, with realistic PFT fractional coverage, and
under changing CO2, climate, and land use. Here, we expand
on the work ofLi and Arora(2012) by studying the impact
of the manner in which sub-grid scale variability of vegeta-
tion is represented on the global terrestrial carbon balance.
In addition, we investigate the model’s response to historical
changes in (CO2), climate, and land cover when using the
composite and mosaic approaches.

2 Methods

2.1 Description of the CLASS and CTEM models

The CLASS-CTEM results presented here were generated
from coupling of the CLASS (v. 3.6) (Verseghy, 2012)
and CTEM (v. 1.2) models. Slightly older versions of both
models are currently implemented in the second-generation
Canadian Centre for Climate Modelling and Analysis Earth
System Model (CanESM2) (Arora et al., 2011), but are used
in an offline configuration here, driven with observation-
based climate, to allow for simpler interpretation.

CLASS operates on a half-hourly time step driven with
atmospheric forcing data (downwelling longwave and short-
wave radiation, precipitation, air pressure, specific humidity,
wind speed, and air temperature) and calculates the energy
and water balances of the soil, snow, and vegetation canopy
components. CLASS includes three soil layers of thickness:
0.10, 0.25, and up to 3.75 m (the depth of the third layer is
dependent on the grid-cell soil depth to bedrock fromZobler,
1986). The temperature and liquid and frozen moisture con-
tents are simulated for each soil layer. CLASS also simulates,
when snow is present, the physical characteristics (mass,
density, albedo, liquid water content, and temperature) of
one snow layer of a prognostically determined depth. Within
a single tile, surface flux calculations are performed on tile
sub-regions of (as required): (i) bare soil, (ii) vegetation cov-
ered ground, (iii) bare soil with snow cover, and (iv) veg-
etation over snow. CLASS performs energy and water bal-
ance calculations for four PFTs: needleleaf trees, broadleaf
trees, crops, and grasses (short vegetation). Each PFT has
prescribed structural attributes associated with it, such as leaf
area index (LAI), plant height (roughness length), and root-

ing depth. However, when coupled to CTEM, these variables
are dynamically modelled by CTEM and passed to CLASS.

CTEM simulates terrestrial ecosystem processes for nine
PFTs that are directly related to the four CLASS PFTs.
Needleleaf trees are separated into evergreen and decid-
uous; broadleaf trees into evergreen, cold deciduous, and
drought/dry deciduous; and crops and grasses are separated
into C3 and C4. In the version used here, CTEM simulates the
processes of photosynthesis, autotrophic and heterotrophic
respiration, carbon allocation, phenology, turnover, and land
use change.

CTEM operates on a daily time step (excluding the pho-
tosynthesis, leaf respiration, and canopy conductance cal-
culations which are performed on the CLASS time step).
The photosynthesis and respiration (autotrophic and het-
erotrophic) schemes of CTEM are described inArora(2003).
Positive net primary productivity (NPP) is allocated into
three live carbon pools (roots, stems, and leaves). The pro-
portional allocation to each of these pools is influenced by
the leaf phenological, light and root water status of the plant
(Arora and Boer, 2005). Turnover and mortality reduces the
live carbon stock and contributes to two dead carbon pools
(litter and soil organic matter). The disturbance (fire) module
was not used in the simulations presented here.

The version of CTEM used here (v 1.2) differs from the
previously published version of CTEM (v. 1.0Arora, 2003;
Arora and Boer, 2005) in: (i) its capability to perform both
mosaic and composite simulations of the land surface under
LUC; (ii) adjustments to photosynthesis parameters includ-
ing maximum photosynthetic rate,Vc,max, (Rogers, 2013);
and (iii) adjustments to leaf maintenance and respiration rate
parameters (see Table A1).

2.2 Carbon budget equations

The vertically integrated globally averaged carbon budget
equation for the atmosphere can be represented as

dHA

dt
= EF − FO − FL = (EF + ELUC) − FO − FLn, (1)

whereHA is the global atmospheric carbon burden (Pg C),
FO andFL are the atmosphere–ocean and atmosphere–land
CO2 fluxes (PgCyr−1), respectively, andEF is the an-
thropogenic fossil fuel emissions (PgCyr−1). The global
net atmosphere–land CO2 flux (FL = FLn −ELUC), assumed
positive into the land, in CLASS-CTEM is the result of nat-
ural CO2 flux (FLn) and LUC emissions (ELUC) associated
with changes in land cover (with the convention of positive
into the atmosphere). The curly braces around the LUC term
symbolize the LUC term to be made up of many different
LUC processes. The globally averaged land carbon budget is
represented as

FL =
dHL

dt
=

dHV

dt
+

dHS

dt

= (GPP− RA) − RH − ELUC = NPP− RH − ELUC, (2)
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where HL = HV + HS, represents the global land carbon
mass, which includes the live vegetation biomass,HV , and
the dead carbon in the soil and litter pools,HS. GPP is gross
primary productivity, which yields NPP after autotrophic res-
piration (RA) is accounted for.RH is heterotrophic respi-
ration. When land cover is not changing, the termELUC
is zero andFL = FLn represents net ecosystem productivity
(NEP). In the presence of LUC and other disturbances (if
any), the termFL represents net biome productivity (NBP);
for more discussion on the difference between NEP and NBP
see (Chapin et al., 2006). Integrating Eq. (2) gives the change
in total land carbon with respect to the cumulative land–
atmosphere CO2 flux (F̃L):

F̃L =
∫ t

to
FL dt = 1HL = 1HV + 1HS

=
∫ t

to
NPPdt −

∫ t

to
RH dt −

∫ t

to
ELUC dt F̃L = F̃Ln − ẼLUC,

(3)

where the terms̃FLn and ẼLUC represent cumulative NEP
and cumulative LUC emissions, respectively.

2.3 Land use change

In CLASS-CTEM, LUC emissions are treated in a fully inter-
active manner, where an increase in crop area occurs through
deforestation/clearing of natural vegetation and a reduction
in the HV of natural woody or herbaceous vegetation (see
Arora and Boer, 2010). When crop area expands into the nat-
ural vegetated areas of the grid cell, as determined by the
HYDE v 3.1 data set (Hurtt et al., 2011), the biomass re-
moved,L (kgcm−2), is divided into three components such
that L = LA + LS+ LD. The first component,LA , is com-
busted during clearing, or used immediately for fuel wood,
and emitted to the atmosphere as CO2; the second compo-
nent,LS, is assigned to pulp and paper products, or left in
place as slash; while the final component,LD, is used for
durable wood products. The fraction ofL for each compo-
nent (LA , LS orLD) depends on whether the PFT is woody or
herbaceous and the aboveground vegetation biomass density
(see Table 1 inArora and Boer, 2010). To approximate the
lifetimes of theLS andLD components, these components
are allocated to the litter and soil carbon pools, respectively.
As a result the carbon that is removed from live vegetation is
emitted to the atmosphere either immediately (LA), or with
some delay depending on the decomposition rate of the litter
or soil C pools. Crop PFT biomass is annually transferred to
the soil litter pool (LS) when the crop has matured (signi-
fied by leaf area index reaching 3.5 m2 m−2 for C3 crops and
4.5 m2 m−2 for C4 crops). This approach allows LUC im-
pacts to influence all aspects of the terrestrial carbon budget
including vegetation, litter and soil carbon pools and fluxes.
The emissions of carbon due to LUC are evident in theELUC
term as direct CO2 emissions but also in increased litter and
soil C pool sizes, and subsequently, fluxes. When crop area
fraction in a grid cell decreases, the fraction under natural
vegetation is increased, which reduces the biomass density,
causing the vegetation to uptake more carbon until it reaches

Fig. 2.Comparison of simulated zonally averaged(a) GPP,(b) veg-
etation biomass, and(c) soil carbon with observation-based esti-
mates. The CLASS-CTEM results from the simulations using com-
posite and mosaic configurations are averaged over the 1996–2005
period and are from the Climate+ CO2 + LUC simulation.

a new equilibrium, creating the land-use-related carbon sink
that is, for example, associated with abandonment of crop-
lands. In practice,ELUC is not straightforward to diagnose
and at least two simulations are required. As inMcGuire
et al.(2001) andArora and Boer(2010), for example, we di-
agnoseELUC as the difference in atmosphere–land CO2 flux
from simulations with and without LUC.

2.4 Model inputs

All CLASS-CTEM simulations were performed at the Gaus-
sian 96× 48 grid cell resolution (approximately 3.75◦

×

3.75◦) and all inputs were interpolated to this resolution. Cli-
mate forcing was obtained by disaggregation of the CRU-
NCEP v. 4 data set (Viovy, 2012) (1901–2010) from its na-
tive 6-hourly values to a half-hourly time step. Shortwave ra-
diation was diurnally interpolated based on day of year and
latitude, with the maximum value occurring at solar noon.
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Table 1. CLASS-CTEM simulations performed for the composite and mosaic configurations. For the transient simulations (last four listed
below), the simulation years of 1861–1900 were forced with climate from 1901 to 1940; simulation years 1901–2005 were forced with
climate years from 1901 to 2005.

Simulation name Climate years Atmospheric Land cover
CO2 years years

Equilibrium 1901–1940 (cycling) 1861 1861
Climate only 1901–1940 then 1901–2005 1861 1861
Climate + CO2 1901–1940 then 1901–2005 1861–2005 1861
Climate + LUC 1901–1940 then 1901–2005 1861 1861–2005
Climate + CO2 + LUC 1901–1940 then 1901–2005 1861–2005 1861–2005

Longwave radiation was uniformly distributed over the 6 h
period. Surface temperature, wind speed, surface pressure,
and specific humidity were linearly interpolated. The total
6 h precipitation amount was used to determine the number
of wet half-hour time steps followingArora(1997). The total
6 h amount was then distributed amongst the wet time steps.

Soil texture information was adapted fromZobler (1986)
with soil texture within each grid cell kept the same for
both composite and mosaic configurations. For the histori-
cal 1850–2005 period, the (CO2) is based on phase 5 of the
Coupled Model Intercomparison Project (CMIP5) data set
(Meinshausen et al., 2011). The changes in fractional cov-
erage of non-crop PFTs are inferred based on the changes in
crop area following the HYDE v 3.1 data set (Hurtt et al.,
2011) using the linear interpolation approach ofArora and
Boer(2010). The resulting transient land cover for the period
1850–2005 has also been used in CanESM2’s simulations for
CMIP5 (Arora et al., 2011).

2.5 Simulations

Results from five simulations are presented for both the mo-
saic and composite approaches (Table 1). The pre-industrial
equilibrium spin-ups, corresponding to the year 1861, form
the starting point for each of the four transient historical
runs (1861–2005), which were driven with different combi-
nations of CO2, climate and LUC forcings. These include:
(i) evolving climate with fixed 1861 land cover and (CO2)
(“Climate only”), (ii) evolving climate and CO2 with fixed
1861 land cover (“Climate+ CO2”), (iii) evolving climate
and land cover with fixed 1861 (CO2) (“Climate+ LUC”),
and (iv) evolving climate, (CO2), and land cover (“Cli-
mate+ CO2 + LUC”). Since the CRU-NCEP climate data
does not extend back past 1901, for the period 1861–1900
we use the climate of 1901–1940. We also do not extend past
2005 as that is the last year in the HYDE v. 3 data set as used
in the CMIP5 simulations. For most of the results presented
here, we limit our analysis to the 1959–2005 period for ease
of comparison with the results of other dynamic vegetation
models and the estimated terrestrial C land sink as summa-
rized inLe Quéré et al.(2013).

The pre-industrial equilibrium run used a constant, glob-
ally uniform (CO2) of 286.37 ppm corresponding to observed
atmospheric concentration in the year 1861 (Meinshausen
et al., 2011) with PFT fractional coverage corresponding
to the year 1861 and climate from 1901 to 1940 cycled
over repeatedly until model pools reached equilibrium (Ta-
ble 1). Equilibrium is assumed to have been attained when
net ecosystem productivity,FLn, varies less than 0.001 % of
NPP averaged across the final 40 yr of the simulation. Com-
posite and mosaic simulations were spun up separately.

3 Results

3.1 Comparison to observationally based data sets

The pre-industrial equilibrium simulations global totals for
primary model outputs are listed in Table 2. Both the com-
posite and mosaic approaches simulate global totals of GPP,
NPP, soil respiration, vegetation biomass, litter mass, and soil
carbon in line with observation-based estimates and previ-
ous modelling studies of the pre-industrial period (Table 2).
For these global sums, the difference between the composite
vs. mosaic approach is minor (maximum 4.6 %). Overall, the
composite approach yields higher productivity and respira-
tory fluxes, and higher vegetation and soil carbon pools, than
the mosaic approach.

Zonally, CLASS-CTEM reproduces reasonable patterns
of GPP, vegetation biomass and soil carbon as compared
to observation-based data sets for contemporary condi-
tions (Fig. 2). While the CLASS-CTEM results (“Cli-
mate+ CO2 + LUC”) in Sect. 2 include the influence of
LUC, they do not include biomass burning (wildfires) as
a disturbance agent, which would influence the model re-
sults in some fire-prone regions. An observation-based GPP
estimate fromBeer et al.(2010) is used for comparison
with CLASS-CTEM outputs.Beer et al. (2010) analyze
the ground-based carbon flux tower observations from ca.
250 stations using diagnostic models to extrapolate them
to the global scale for the 1998–2005 period. Mean zonal
GPP simulated by CLASS-CTEM displays the same gen-
eral pattern as theBeer et al.(2010) data set (Fig.2a).
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CLASS-CTEM simulates slightly higher values at the equa-
tor and below about 35◦ S thanBeer et al.(2010), but slightly
lower values for latitudes> 45◦ N and around 15◦ N. The
composite and mosaic CLASS-CTEM zonal GPP shows
only small differences around 10–30◦ N and around 20–
40◦ S, with a higher GPP simulated when using the compos-
ite approach.

For zonally averaged vegetation biomass (Fig.2b),
CLASS-CTEM simulates an equatorial peak in vegetation
biomass slightly higher than theRuesch and Holly(2008)
data set for both approaches. This data set is based upon re-
motely sensed vegetation cover (Global Land Cover 2000
Project, GLC2000) and IPCC methods for estimating car-
bon stocks at the national level. For latitudes> 30◦ N and
< 30◦ S, CLASS-CTEM simulates a higher mean vegetation
biomass thanRuesch and Holly(2008) with a prominent
peak around 45◦ S. The mosaic and composite approaches
differ little in zonal mean vegetation biomass except for
small differences around 10–30◦ N where the composite ap-
proach has a noticeably higher value. The methods employed
to create theRuesch and Holly(2008) data set are not di-
rectly linked to ground-based measures of carbon stocks and
have also not been validated with field data. The data set may
underestimate vegetation biomass at high latitudes. For ex-
ample, its vegetation biomass values are less than half that
of inventory based estimates for British Columbia, Canada
(Peng et al., 2013).

The CLASS-CTEM mosaic and composite approaches’
zonally averaged soil carbon is compared to the Harmonized
World Soils Dataset (HWSD) (FAO, 2012) in Fig. 2c. The
HWSD is more reliable for southern and Eastern Africa,
Latin America and the Caribbean, and central and eastern
Europe. It is considered less reliable for North America, Aus-
tralia, areas of West Africa and South Asia (FAO, 2012).
While the zonal distribution of simulated soil carbon is
broadly similar to observation-based HWSD estimates, some
differences remain. Between 45–70◦ N, CLASS-CTEM sim-
ulates appreciably less soil carbon than the HWSD, with val-
ues around 15◦ N, and below 50◦ S also lower (below 50◦ S
has little landmass thus the large value in the HWSD is
likely the result of high values in relatively few grid cells).
Some of the difference between CLASS-CTEM and HWSD
is due to the fact that peatlands, which contain high amounts
of organic carbon, are not presently simulated by CLASS-
CTEM. This is especially noticeable in the region of 45–
70◦ N. CLASS-CTEM simulates appreciably more soil car-
bon around 30–50◦ N and in most of the Southern Hemi-
sphere.

3.2 Spatial differences between the approaches

Figure3a–c shows the spatial distribution of simulated GPP,
vegetation biomass and soil C mass from the pre-industrial
equilibrium simulation when using the mosaic approach. The
corresponding spatial differences between the composite and

mosaic approaches are shown in Fig.3d–f. The major re-
gions of difference for vegetation biomass and GPP, which
can be> 30 %, include Southeast Asia, the Pampas region in
Argentina, the west coast of North America, southeast US,
northern mainland Europe, and Mexico (Fig.3d and e). In
each of those regions, the composite simulation calculates
higher GPP and vegetation biomass. The mosaic approach
yields higher GPP and vegetation biomass for some regions,
such as eastern Canada, China, the central US, and Patag-
onia, however the magnitude of the difference is smaller
than for the regions where the composite approach simu-
lates larger values. The simulated soil carbon mass differ-
ences between the mosaic and composite runs (Fig.3f) fol-
low a similar pattern to the differences in vegetation biomass
with Southeast Asia, the Pampas of Argentina, the west coast
of North America, northwest mainland Europe, and south-
east Australia, simulated to have higher soil carbon mass in
the simulation using the composite approach. Some other re-
gions show contrasting patterns between vegetation biomass
and soil carbon, including the southeast US, the Chilean
coast, the Baltics, and western Russia, although the differ-
ences are relatively small.

3.3 Transient historical simulations

Four simulations were performed to investigate the effect of
using the composite versus mosaic approach on the histor-
ical terrestrial carbon budget. The simulations were driven
with different combinations of CO2, climate and LUC forc-
ings (as described in Sect.2.5 and Table 1): (i) Climate
only, (ii) Climate + CO2, (iii) Climate + LUC, and (iv) Cli-
mate + LUC + CO2.

In Fig. 4a, simulatedF̃L from the Climate+ CO2 simu-
lation (using both the composite and mosaic approaches) is
compared to an observation-based estimate and simulations
from eight other TEMs/DGVMs (as presented inLe Quéré
et al., 2013). The Climate + CO2 simulation does not in-
clude land use change, thus̃FL = F̃Ln, which essentially
represents cumulative NEP.̃FLn is also referred to as the
residual terrestrial C sink, whose value can be determined
as the residual of other observation-based terms in Eq. (1).
The observation-based estimate ofF̃Ln from Le Quéré et al.
(2013) in Fig. 4a is their estimate of the residual terrestrial
C sink after accounting for fossil fuel and LUC emissions,
change in atmospheric C burden and the ocean C sink. This
does not include gross land C sinks directly resulting from
LUC (e.g. regrowth of vegetation), but does include the in-
fluence of CO2 fertilization, nitrogen deposition, and other
climate change effects such as changes to growing season
length. SimulatedF̃Ln, over the 1959–2005 period, does not
differ greatly between the mosaic (96.3 PgC) and compos-
ite (101.3 PgC) approaches, while it compares reasonably
with the observation-based estimate (82.2± 35 PgC) from
Le Quéré et al.(2013) and lies within the range of other
TEMs/DGVMs.
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a) d)

b) e)

c) f)

GPP

Vegetation
biomass

Soil
carbon

Soil carbon
(mosaic - composite)

Vegetation
biomass

(mosaic - composite)

GPP
(mosaic - composite)

gC m-2 year-1

kgC m-2 kgC m-2

kgC m-2 kgC m-2

gC m-2 year-1

Fig. 3. Pre-industrial equilibrium CLASS-CTEM results using the mosaic approach for(a) GPP,(b) vegetation biomass, and(c) soil carbon
mass. The difference between the mosaic and composite approach is shown in the right-hand column for(d) GPP,(e)vegetation biomass, and
(f) soil carbon mass. Positive values indicate that the values from the mosaic approach are larger; negative values indicate that the composite
approach yields larger values.

Table 2. Results from the pre-industrial equilibrium simulations using the composite and mosaic model configurations. Values are a 40 yr
average at the end of model spin-up. The spin-up cycled over climate years 1901–1940 with year 1861 atmospheric (CO2) and land cover.

Variable Model outputs Preindustrial values from Other modern
Composite Mosaic Difference (%) modelling studies estimate

Gross primary productivity (PgCyr−1) 121.8 117.3 3.8 134.0 (Gerber et al., 2004) ca. 125 (Zhao et al., 2006)a,
123± 8b (Beer et al., 2010)

Net primary productivity (PgCyr−1) 61.0 58.5 4.3 64.0 (Sitch et al., 2003), 50–70
(Friedlingstein et al., 2006)

59.9 (Ajtay et al., 1979),
62.6 (Saugier et al., 2001),
56.6 (Running et al., 2004)

Litter respiration (PgCyr−1) 41.8 40.1 4.2
Soil carbon respiration (PgCyr−1) 19.2 18.4 4.3
Soil respiration (litter+ soil C) (PgCyr−1) 61.0 58.5 4.1 68± 4 (Raich and Schlesinger,

1992),
76.5 (Raich and Potter, 1995)

Vegetation biomass (Pg C) 530 507 4.6 932 (Sitch et al., 2003) 446 (Ruesch and Holly, 2008)c

Litter mass (Pg C) 97 94 2.9 171 (Sitch et al., 2003) 90 (Ajtay et al., 1979)
Soil carbon mass (Pg C) 1409 1404 0.03 1670 (Sitch et al., 2003) 1400–1600 (Schlesinger, 1977),

1395 (Post et al., 1982),
1348 (FAO, 2012)c

a MODIS-derived LAI driven with NCEP reanalysis.b Estimate for modern-day, which includes the effects of elevatedCO2 and anthropogenic land use.c Interpolated
to T47 resolution and using the same land mask as CLASS-CTEM.

Introducing changes in land cover imply that the term
ELUC is not zero and the cumulative atmosphere–land CO2
flux is reduced (̃FL = F̃Ln − ẼLUC) to yield the cumula-
tive NBP. Note that our definition of NBP, in the context
of CLASS-CTEM, does not include the effect of distur-

bance agents such as fire, insects, management-climate in-
teractions, and nitrogen dynamics. Figure4b shows the cu-
mulative deforested biomass in the Climate+ LUC + CO2
simulation (L) when using the composite and mosaic ap-
proaches over the 1959–2005 period. The deforested biomass

www.biogeosciences.net/11/1021/2014/ Biogeosciences, 11, 1021–1036, 2014
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Fig. 4. CLASS-CTEM results from the transient simulations over
the 1959–2005 period using the composite and mosaic approaches.
(a) The simulated cumulative atmosphere–land CO2 flux (F̃Ln)
from the Climate+ CO2 simulation in comparison with other ter-
restrial vegetation model estimates and the estimated residual land
sink from Le Quéré et al.(2013). None of the model results in-
clude LUC and all simulations/estimates account for changing cli-
mate and atmospheric (CO2). (b) Deforested biomass from the Cli-
mate+ CO2 + LUC simulation alongside the bookkeeping-based
estimate of LUC emissions fromHoughton et al.(2012). (c) Results
from the four different transient simulations using different combi-
nations of climate, (CO2), and LUC forcings. The model setup for
each run is described in Sect.2.5and Table 1. Negative and positive
F̃L andF̃Ln values indicate net carbon release from the land surface
to the atmosphere and uptake by the land surface, respectively.

is somewhat higher in the composite approach (22.4 Pg C)
than when using the mosaic approach (17.8 PgC) because of
its higher vegetation biomass. However, these values of de-
forested biomass are much lower than theHoughton et al.
(2012) estimate of LUC emissions (68.8 PgC) over the same
period (calculated from original data available athttp://cdiac.
ornl.gov/trends/landuse/houghton/houghton.html). The LUC
emissions fromHoughton et al.(2012) are based on a “book-

keeping” approach where changes in cropland and pasture
area, wood harvesting and logging, and shifting cultiva-
tion are accounted for via transfer to pools with prescribed
turnover rates. Our LUC parametrization does not take into
account wood harvesting or logging, shifting cultivation and
conversion to pasture.

Figure4c compares cumulative atmosphere–land CO2 flux
F̃L from all four simulations when using both the mo-
saic and composite approaches. Over the 1959–2005 pe-
riod, the Climate only simulation shows no strong net emis-
sion, or uptake, of carbon by the land surface when us-
ing the mosaic approach (0.0 PgC) and a slight carbon
uptake by the land surface when the composite approach
is used (4.1 PgC). The Climate+ LUC simulations give
a net land C source with mosaic and composite cumula-
tive NBP values of 7.6 PgC and 10.2 PgC, respectively. Cli-
mate+ CO2 simulations show a large terrestrial carbon up-
take of 96.3 PgC and 101.3 PgC for mosaic and composite
approaches, respectively, as also seen in Fig.4a. Finally, the
Climate+ LUC + CO2 simulation reduces the estimated ter-
restrial C sink slightly to 95.1 PgC (1 % reduction compared
to the Climate+ CO2 simulation) when using the mosaic ap-
proach, but a much stronger reduction is seen in the compos-
ite approach (79.9 PgC; 21 % reduction compared to the Cli-
mate+ CO2 simulation) at the end of the 1959–2005 period.
Overall, the difference between the composite and mosaic
approaches, for global carbon uptake, is most pronounced for
the Climate+ CO2 + LUC simulation. Diagnosing cumula-
tive LUC emissions,ẼLUC, as the difference between cumu-
lative atmosphere–land CO2 flux between the Climate+ CO2
and Climate+ CO2 + LUC simulations, in a manner similar
to McGuire et al.(2001) andArora and Boer(2010), we ob-
tain ẼLUC as 21.4 Pg C and 1.2 PgC for the composite and
mosaic approaches, respectively.

Geographical distributions of the difference in
atmosphere–land CO2 flux (FL) averaged over the period
1959–2005 between the mosaic and composite approaches
are shown in Fig.5 from the Climate+ CO2 (panel a)
and Climate+ CO2 + LUC (panel b) simulations. For the
Climate+ CO2 simulation (Fig.5a) the difference between
the mosaic and composite approaches is greatest in the
Pampas region of Argentina, Southeast Asia and southern
China, northern India, Tanzania, and parts of Mexico where
the composite approach simulates a larger C sink. Although
there are some regions (including the American Midwest and
parts of Scandinavia and western Russia) where the mosaic
approach yields a larger C sink, in the Climate+ CO2
simulation, for most regions the sink is larger when the
composite approach is used. When LUC is considered
(Fig. 5b) the general pattern shifts to a larger uptake of C in
the mosaic approach rather than in the composite approach
(as in Fig.5a), but the regions with the largest difference
between the composite and mosaic approaches remain the
same (e.g. parts of Argentina, southern China, and Mexico).

Biogeosciences, 11, 1021–1036, 2014 www.biogeosciences.net/11/1021/2014/
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a) b)

Fig. 5. Difference in the simulated atmosphere–land CO2 flux averaged over the 1959–2005 period between the mosaic and composite
approaches for(a) the Climate+ CO2 run and(b) the Climate+ CO2 + LUC run. Negative values indicate the atmosphere–land CO2 flux is
greater when using the composite approach; positive values indicate the atmosphere–land CO2 flux is greater for the mosaic approach.

Fig. 6.Heterogeneity index for 1861 land cover based on the HYDE
v 3.1 crop data set. This index is defined in Sect.4.

Fig. 7. Mean annual relative change in the crop cover,R̄C, due
to historical anthropogenic land use (1959–2005). This measure of
land use change is defined in Sect.4.

4 Discussion

CLASS-CTEM produces estimates of GPP, NPP, soil respi-
ration, vegetation biomass, and litter and soil carbon mass
that compare reasonably well with observational estimates

and previous modelling studies of the pre-industrial period
(Fig. 2 and Table 2) for both mosaic and composite configu-
rations. The importance of the composite or mosaic approach
in an equilibrium simulation on a global scale is minor, with
the difference consistently< 5 % for several model variables.
However, the spatial differences are much greater and appear
to be consistent across different model variables including
GPP, vegetation biomass and soil C mass (Fig.3). The differ-
ences between the mosaic and composite approaches are re-
lated to the representation of sub-grid scale variability of veg-
etation and the consequent manner in which grid-averaged
energy and water balances evolve, leading to differences in
net radiation absorbed by vegetation, soil temperature and
moisture, etc., as illustrated inLi and Arora(2012). To aid
interpretation of the differences between simulations using
the mosaic and composite approaches, we derive a hetero-
geneity (H ) index as follows:

H = 1−

1
N−1

N∑
i=1

(fi − f̄ )2

f̄
, (4)

wherefi , i = 1,N is the fractional coverage of a PFT as
a function of the total vegetated fraction of the grid cell. For
example, if one PFT covers 60 % of a grid cell and a sec-
ond PFT covers 20 % with bare ground for the rest of the
grid cell (20 %) then the values offi are 0.75 and 0.25 for
each PFT, respectively.̄f is the mean PFT fractional cover-
age.N is the number of PFTs (nine in CTEM). Regions of
high PFT heterogeneity (grid cells with many different PFTs)
haveH index values close to 1 while regions of low PFT het-
erogeneity (grid cells with few PFTs present) are close to 0.
Eq. (4) yields anH value of 1 if a grid cell containsN PFTs
and each occupies (1/N)th fraction of the grid cell, indicat-
ing maximum possible heterogeneity, and a value of 0 if an
entire grid cell is occupied with only a single PFT. It is ex-
pected that the simulations using the composite and mosaic
approaches will differ more in regions of high heterogene-
ity and less in areas ofH index closer to 0. However, the

www.biogeosciences.net/11/1021/2014/ Biogeosciences, 11, 1021–1036, 2014
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Fig. 8.CLASS-CTEM results for the mosaic and composite approaches for a grid cell at 50.10◦ N and 46.88◦ E (near Volgograd, Russia) from
the Climate+ CO2 + LUC simulation.(a) Specified changes in PFT fractional cover,(b) vegetation biomass,(c) net primary productivity
(NPP),(d) total deforested biomass as a result of LUC,(e) soil C pool, and(f) total cumulative NBP (̃FL ). The model outputs have a 10 yr
running mean (thick lines) applied to the annual values (thin lines)

H index is not a prescriptive measure as it does not include
information about a grid cell’s climate and soil conditions.
It is intended to highlight areas that could be expected to
have greater differences between the composite and mosaic
configurations due to PFT spatial representation. The global
distribution of theH index (based on 1861 land cover, used
here with crop fraction based on the HYDE v 3.1 data set) is
shown in Fig.6. Areas of highH index include parts of Mex-
ico, Europe, China, India, eastern Australia, and the eastern
US. Areas of lowH index include arid regions, such as cen-
tral Australia; tropical regions, such as the Amazon; and the
high north. Areas of lowH index are thus regions with veg-
etation biomass spread across very few PFTs.

Comparing theH index (Fig.6) to spatial differences be-
tween composite and mosaic simulations for the equilibrium
simulation (Fig.3) demonstrates a reasonable linkage. Ar-
eas of highH index generally have higher GPP, vegeta-
tion biomass and soil carbon mass when the composite ap-
proach is used. Regions with moderateH index values are

not strongly biased towards either approach. Areas of lowH

are generally similar in simulations using the composite and
mosaic approaches, as expected. The differences between the
model configurations evident in Fig.3 are related to differ-
ences in the energy and water balances calculations in the
two approaches, as noted byLi and Arora (2012). Li and
Arora (2012) observed differences in net radiation flux (due
to albedo differences); latent and sensible heat flux; and soil
moisture and temperature between the composite and mo-
saic configurations, at their selected sites, when driven with
identical climate. Net radiation and soil moisture directly in-
fluence photosynthesis and simulated canopy and soil tem-
peratures influence respiratory fluxes.

Across the historical period (1959–2005) in the Cli-
mate+ CO2 simulation, CLASS-CTEM simulates a global
terrestrial C sink in-line with other model estimates and the
land sink estimated byLe Quéré et al.(2013) (Fig. 5a). The
difference between the global total mosaic and composite ap-
proaches estimated land C sink is small (ca. 5 %) (Fig.4a),

Biogeosciences, 11, 1021–1036, 2014 www.biogeosciences.net/11/1021/2014/
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Fig. 9. Global response to LUC for the composite and mosaic ap-
proaches over the 1959–2005 period. The difference between the
simulations with LUC (Climate + LUC + CO2) and without LUC
(Climate + CO2) for the cumulative change in the soil and litter
(1HS) (left panel) and vegetation pools (1HS) (centre panel) are
defined following Eq. (9). The cumulative LUC emissions (ẼLUC)
for the composite and mosaic approaches is shown in the right panel
as the additive result of the left and centre panel.

but can be large for different regions. The areas of largest dis-
agreement for the estimated terrestrial C sink (without LUC
effects) between the composite and mosaic simulations are
generally regions of highH index, with a few notable excep-
tions such as areas in the US Prairies (compare Figs.5a and
6).

Incorporation of LUC has a marked impact on the differ-
ence in the estimated global terrestrial C sink (cumulative
NBP; Fig.4c) between the simulations using the mosaic and
composite configurations. Our simulated deforested biomass
across both configurations is lower than the bookkeeping es-
timate ofHoughton et al.(2012) since we take into account
only the changes in crop area, i.e. the effect of increasing
pasture area over the historical period is not considered, and
we do not account for wood harvesting and logging, shift-
ing cultivation, and urbanization which is also not consid-
ered byHoughton et al.(2012). Land use change emissions
are extremely difficult to quantify, with at least a±50 %
uncertainty (Houghton, 2003), and LUC is represented in
TEMs and DGVMs using a range of parametrizations (e.g.
seeBrovkin et al., 2013).

LUC causes the estimated terrestrial C sink to drop by
21.4 PgC when using the composite approach, as would be
generally expected since LUC releases carbon from burning
and decomposition of the deforested biomass. In the mosaic
configuration, however, LUC causes the terrestrial sink to
drop by only 1.2 PgC (Fig.4c; compare Climate+ CO2 vs.
Climate+ CO2 + LUC), yielding a 16 % difference in the es-
timated global terrestrial sink, over the 1959–2005 period,
between the two approaches. The larger effect of LUC on the
composite configuration’s cumulative NBP, over the mosaic,
appears to be widespread globally (Fig.5b vs.5a).

The LUC scheme in CLASS-CTEM removes natural veg-
etation when crop area increases. When LUC occurs, the
amount of C that is burned or transferred to the litter and soil
C pools depends on the vegetation biomass of the PFT that
occupies that fraction of grid cell that is encroached upon at
the time of LUC. In CLASS-CTEM, crops generally have a
higher maximum photosynthetic rate than the natural vege-
tation they replace. However, crop productivity also depends
on whether the mosaic or composite configuration is used. To
interpret the differences between the mosaic and composite
approaches, in the simulation with LUC, we define an ad-
ditional measure that quantifies changes in crop fraction in
a grid cell. The mean annual relative change in crop fraction,
R̄C, is calculated as

R̄C =

T∑
t=2

| fc(t) − fc(t − 1) |

T − 1
× 100%, (5)

wherefc(t) is the fractional crop area for a grid cell at time
t and T is 47 yr, i.e. the period 1959–2005. ThēRC over
the 1959–2005 period is shown in Fig.7. The major ar-
eas of LUC include the US Midwest and prairie region of
Canada, eastern Europe, western Russia, and parts of north-
ern India, China, southeast Australia and Argentina. While
theH index is arguably sufficient for interpreting the differ-
ences in the simulations with mosaic and composite configu-
rations evident in Fig.5a (Climate+ CO2), i.e. in simulations
without LUC, the contribution of both heterogeneity (Fig.6)
and LUC (Fig.7) cause the differences iñFL between the
composite and mosaic configurations visible in Fig.5b (Cli-
mate+ CO2 + LUC). In general, areas of highH index have
greater visible differences between the mosaic and compos-
ite approaches, and these are then exaggerated by LUC pro-
cesses, since the effect of LUC is influenced by the manner
in which vegetation is represented.

To illustrate how the effect of LUC depends on represen-
tation of vegetation (using the composite or the mosaic ap-
proach) we show results from a grid cell that is representa-
tive of regions with highH index and high LUC (Fig.8) over
the simulated historical period (1861–2005). Grid cells with
a highH index demonstrate larger differences between mo-
saic and composite treatments, as already discussed, and ar-
eas of high LUC accentuates differences between the model
approaches. In the grid cell chosen for this purpose (50.10◦ N
and 46.88◦ E, near Volgograd, Russia), there is a large LUC,
as evident in a doubling of C3 crop fraction and a resulting re-
duction in the tree fraction, between 1861 and 2005 as seen in
Fig. 8a. For this grid cell, the composite approach simulates
a larger vegetation biomass in 1860 in the pre-industrial equi-
librium simulation (Fig.8b) due to a higher grid-averaged
NPP (Fig.8c). As the C3 crop fraction expands, the frac-
tion of other PFTs is reduced and the grid-averaged vege-
tation biomass for both mosaic and composite simulations
decreases (Fig.8b). The amount of carbon deforested from
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the live vegetation pools differs between the composite and
mosaic simulations (Fig.8d), since the amount of biomass
removed depends on the amount that is present, but over-
all with the same pattern. That is, despite the same changes
in fractional coverage of PFTs between the approaches, the
amount of natural vegetation deforested differs. Since the
deforested biomass is larger in the composite approach, over
the historical period, it simulates a steeper decline in grid-
averaged vegetation biomass (Fig.8b). The soil C pools are
initially smaller for the composite configuration (Fig.8e) due
to higher soil temperatures (not shown) despite higher litter
inputs associated with higher initial productivity (Fig.8c) in
the composite compared to the mosaic approach. As carbon
is transferred to the soil C pool by LUC, the two configu-
rations diverge further. Soil C mass decreases in the com-
posite approach and increases in the mosaic approach. The
decline in soil C mass in the composite approach is due
to the faster rate of shrinking vegetation biomass (Fig.8b)
and diminishing amounts of biomass transferred, as well as
warmer soils in the composite approach promoting faster de-
composition. As crop area expands, the grid-averaged NPP
in the mosaic configuration approaches that of the composite
(Fig. 8c) due to a faster rate of increase of crop productivity
(not shown). Recall that in the mosaic configuration crops
are grown in their individual tile, while in the composite ap-
proach they share the same physical land surface climate, in-
cluding soil moisture, as other PFTs. The net result is that
the trajectory of the cumulative atmosphere–land CO2 flux
(F̃L) differs greatly between composite and mosaic for this
grid cell (Fig.8f). Over the 1861–2005 period, the compos-
ite approach yields a net source of C, while the mosaic ap-
proach simulates the grid cell to be a C sink. The differences
in simulated energy and water balances between the two ap-
proaches act in a manner such that in the mosaic approach,
the increasing productivity associated with increasing crop
area overcomes the resulting emissions from burning and de-
composition of deforested biomass. The different responses
of grid-averaged carbon balance in this grid cell illustrate
how the net effect of global LUC can be quite different for
the two approaches.

On a global scale, similar behaviour is observed
across the 1959–2005 period as has been described for
the example above. Cumulative LUC emissions (ẼLUC)
can be represented by rearranging Eqs.3 and 2 in
terms of changes in the vegetation biomass (1HV) and
dead carbon (soil and litter,1HS) pools for the sim-
ulations with LUC (CO2 + Climate+ LUC) and without
(CO2 + Climate). The cumulative atmosphere–land CO2 flux
for the CO2 + Climate simulation, i.e. the NEP, is written as

F̃Ln = 1HVCO2+Climate + 1HSCO2+Climate. (6)

The cumulative atmosphere–land CO2 flux for the
CO2 + Climate+ LUC simulation, i.e. the NBP, is written as

F̃L = 1HVCO2+Climate+LUC + 1HSCO2+Climate+LUC , (7)

with ẼLUC = F̃Ln − F̃L and rearranging Eqs.6 and7 we can
solve forẼLUC as

ẼLUC = (1HVCO2+Climate − 1HVCO2+Climate+LUC) (8)

+(1HSCO2+Climate − 1HSCO2+Climate+LUC),

which shows that thẽELUC term consists of differences in
live vegetation and dead litter and soil carbon pools from
simulations with and without LUC. Figure9 showsẼLUC
and its two components from the simulations using com-
posite and mosaic approaches as a function of time for
the period 1959–2005. The difference in the dead C pools
for simulations with and without LUC (1HSCO2+Climate −

1HSCO2+Climate+LUC) shows a divergent response between the
composite and mosaic approaches. The composite approach
loses soil and litter carbon under LUC, while the mosaic
approach gains carbon (left panel of Fig.9). This response
is similar to that seen in the Russian grid cell discussed
above. As the usual configuration of CLASS-CTEM uses
the composite approach, this behaviour was not apparent un-
til comparison was possible between the two approaches.
The response of vegetation biomass to LUC (1HVCO2+Climate

– 1HVCO2+Climate+LUC) is more similar between the two ap-
proaches with the expected loss of vegetation biomass due
to LUC. The composite configuration loses more vegetation
carbon than the mosaic configuration due to its higher pre-
industrial vegetation biomass (middle panel of Fig.9). Taken
together for an estimate of the cumulative LUC emissions
over the 1959–2005 period (ẼLUC), following Eq. (9), the
gains in soil carbon in the mosaic approach negate much of
the losses in vegetation biomass to give a smallẼLUC while
the composite approach shows higherẼLUC due to source
contributions from both the dead and live carbon pools (right
panel of Fig.9).

The strong influence of the model vegetation spatial con-
figuration has implications for model estimates of carbon
emissions due to LUC. Estimates of the total LUC emis-
sions range from 72 PgC to 115.2 Pg C across the 1920–
1999 period (Houghton et al., 2012). The CLASS-CTEM
LUC parametrization gives a global LUC emissions esti-
mate that is on the low end of other models.Arora and
Boer (2010) estimate 73.6 PgC across the same time pe-
riod from Table 1 inHoughton et al.(2012) using CLASS
v. 2.7 with CTEM v. 1.0 in a composite configuration imple-
mented in the first-generation Canadian Earth System Model
(CanESM1) (Arora et al., 2009).

Our results suggest that the use of the mosaic configura-
tion will yield an even lower estimate of LUC emissions. The
sensitivity of modelled LUC emissions to spatial representa-
tion of vegetation makes the task of modelling LUC emis-
sions in TEMs and DGVMs somewhat more difficult, given
the already uncertain LUC emissions and the wide variety of
parametrizations from which LUC emissions are modelled.
It is difficult to definitively conclude which approach is bet-
ter, mosaic or composite, as our results only illustrate that
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Table A1. CTEM parameter values updated in v 1.2 over v 1.0 (Arora and Boer, 2005) of maximum rate of carboxylation by the enzyme
Rubisco,Vc, max(Rogers, 2013), leaf maintenance respiration, and litter and soil carbon respiration rate.

PFT Vc, max Leaf maintenance Litter respiration Soil carbon
(10−6 mol CO2) respiration rate at 15◦C respiration rate

m−2s−1 coefficient (kgCkg−1 C yr−1) at 15◦C
(unitless) (kgCkg−1 C yr−1)

Needle-leaved evergreen 35 0.015 0.4453 0.0260
Needle-leaved deciduous 40 0.017 0.5986 0.0260
Broadleaf evergreen 51 0.020 0.6339 0.0208
Broadleaf cold deciduous 67 0.015 0.7576 0.0208
Broadleaf drought/dry deciduous 40 0.015 0.6957 0.0208
C3 crop 55 0.015 0.6000 0.0350
C4 crop 40 0.025 0.6000 0.0350
C3 grass 75 0.013 0.5260 0.0125
C4 grass 15 0.025 0.5260 0.0125

model architecture can have a significant influence on mod-
elled LUC emissions.

5 Conclusions

Dynamic vegetation models must represent the sub-grid het-
erogeneity of terrestrial vegetation in a manner that is com-
putationally efficient and best captures vegetation dynamics.
The two possible extremes of the manner in which vegetation
sub-grid spatial variability may be represented are the com-
posite and mosaic approaches (Fig.1). The impact of which
model approach to use to best represent PFT spatial het-
erogeneity has not been adequately investigated previously.
Here, we have used global simulations of the terrestrial car-
bon budget over the historical period to illustrate the effect
of using the composite versus the mosaic approach.

In our equilibrium spin-up simulations using CLASS-
CTEM, in either the composite or mosaic configurations, we
see no large differences in the global sums of model variables
like vegetation biomass, GPP, NPP, soil C and litter mass be-
tween the two approaches (< 5 %). However, spatially, the
differences between the two approaches can be large for
these model variables (> 30 %). These differences are most
apparent in regions with high heterogeneity of land cover
(with regard to the number of PFTs) where the mosaic and
composite representations are less comparable. In transient
simulations, the mosaic and composite approaches respond
differently to changing climate and CO2. The difference in
cumulative atmosphere–land CO2 flux is 5 PgC, or around
5 %, over the 1959–2005 period in Climate+ CO2 simula-
tions. When LUC is accounted for, the difference between
the cumulative atmosphere–land CO2 flux in the simulations
using the composite and mosaic configuration increases to
15.2 Pg C (or around 16 %) and spatial differences increase
further. The diagnosed LUC emissions, calculated as the
difference between cumulative atmosphere–land CO2 flux

from simulations with and without LUC, are 21.4 PgC and
1.2 PgC for the composite and mosaic approaches, respec-
tively. These estimates are much lower thanHoughton et al.
(2012) since we do not account for changes in pasture area,
wood harvesting, or shifting cultivation. CLASS-CTEM also
treats crop PFTs explicitly, rather than using grass PFTs in
place of crops as is common among most ESMs (Brovkin
et al., 2013). In CLASS-CTEM, the high maximum photo-
synthesis rate of crops contributes to the higher rate of NPP
increase as croplands expand and as CO2 increases and this
acts to lower estimated LUC emissions in the mosaic ap-
proach. Irrespective of comparison with theHoughton et al.
(2012) estimate, our results show that the difference between
the two approaches of representing sub-grid heterogeneity of
vegetation is largest when LUC is accounted for in conjunc-
tion with increasing CO2 and changing climate. The CLASS-
CTEM LUC scheme is sensitive to the vegetation productiv-
ity and biomass in a grid cell. Since the energy and water
balances evolve differently in composite vs. mosaic config-
uration (as noted inLi and Arora, 2012), the same location
can have a completely different evolution of its vegetation
depending on the model configuration. This divergent evolu-
tion between model configurations leads to the large spatial
differences in vegetation biomass and, if LUC is accounted
for, in the amount of natural vegetation mass that is defor-
ested.

An important application of dynamic vegetation models
has been to estimate the size of the terrestrial land sink
(Huntzinger et al., 2012; Le Quéré et al., 2013) and to esti-
mate the contribution of LUC emissions to the global C bud-
get (McGuire et al., 2001). Our results indicate that any esti-
mates of LUC emissions obtained from dynamic vegetation
models can be potentially influenced by the choice of sub-
grid scale spatial representation of the land surface. Since it
is not readily apparent which representation (mosaic or com-
posite) is more appropriate, care should be taken in interpret-
ing model estimates of LUC emissions.
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