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Abstract. Monitoring evapotranspiration over land is highly
dependent on the surface state and vegetation dynamics. Data
from spaceborn platforms are desirable to complement es-
timations from land surface models. The success of daily
evapotranspiration monitoring at continental scale relies on
the availability, quality and continuity of such data. The bio-
physical variables derived from SEVIRI on board the geosta-
tionary satellite Meteosat Second Generation (MSG) and dis-
tributed by the Satellite Application Facility on Land surface
Analysis (LSA-SAF) are particularly interesting for such ap-
plications, as they aimed at providing continuous and con-
sistent daily time series in near-real time over Africa, Eu-
rope and South America. In this paper, we compare them to
monthly vegetation parameters from a database commonly
used in numerical weather predictions (ECOCLIMAP-I),
showing the benefits of the new daily products in detecting
the spatial and temporal (seasonal and inter-annual) variabil-
ity of the vegetation, especially relevant over Africa. We pro-
pose a method to handle Leaf Area Index (LAI) and Frac-
tional Vegetation Cover (FVC) products for evapotranspira-
tion monitoring with a land surface model at 3–5 km spa-
tial resolution. The method is conceived to be applicable for
near-real time processes at continental scale and relies on the
use of a land cover map. We assess the impact of using LSA-
SAF biophysical variables compared to ECOCLIMAP-I on
evapotranspiration estimated by the land surface model H-
TESSEL. Comparison with in-situ observations in Europe
and Africa shows an improved estimation of the evapotran-
spiration, especially in semi-arid climates. Finally, the impact

on the land surface modelled evapotranspiration is compared
over a north–south transect with a large gradient of vegeta-
tion and climate in Western Africa using LSA-SAF radiation
forcing derived from remote sensing. Differences are high-
lighted. An evaluation against remote sensing derived land
surface temperature shows an improvement of the evapotran-
spiration simulations.

1 Introduction

In the past decades, an increasing number of models were
developed to monitor evapotranspiration (ET) at different
scales using remote sensing measurements. Simple empiri-
cal or statistical methods to fully detailed physical models
have been developed, using a wealth of information provided
by various satellites (e.g.Courault et al., 2005; Kalma et al.,
2008; Li et al., 2009). In all methods, vegetation has been
recognized to be a cornerstone of the evapotranspiration pro-
cess since plants are the main medium for exchange of water
between the soil and the atmosphere. In particular, land sur-
face models are widely used for meteorological and climate
studies. They are based on a conceptual and semi-empirical
description of, respectively, the physical and physiological
processes of heat and water exchanges between soil, plants
and atmosphere media. Information usually needed for land
surface models is 1) the exact coverage of plant functional
types (PFT) (Bonan et al., 2002), information given by a
land cover map, 2) the state of the vegetation development,
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mostly given by the variable Leaf Area Index (LAI). While
most of those models require explicit external information on
the vegetation status (e.g.Balsamo et al., 2009; Noilhan and
Planton, 1989), a new generation of models considers it as
a new model variable (e.g.Jarlan et al., 2008; Gibelin et al.,
2006; Blyth et al., 2006). But, for both model classes, infor-
mation on vegetation status is highly relevant. For the first
class, it is necessary information to provide. For the second
one, it is recommended for updating the model forecasts (e.g.
Jarlan et al., 2008; Albergel et al., 2010), or at least evaluate
their output (e.g.Brut et al., 2009). Past studies have used va-
riety of land surface models or crop growth models and dif-
ferent vegetation products issued from remote sensing (e.g.
Dorigo et al., 2006). In this way, the use of remote sensing
vegetation indices has revealed an improved forecast of sur-
face variables.

Different exploitations have become possible along with
the ever growing length of time series available from re-
mote sensing. Early usage of the vegetation indices in soil-
vegetation-atmosphere transfer (SVAT) models focused on
a mean vegetation status by plant type throughout a year.
New available long time series and reprocessing capabilities
have given rise to vegetation databases, that include a mean
monthly or weekly evolution of vegetation parameters, PFT
and geographically dependent (e.g. ECOCLIMAP). Those
two approaches have been widely used for operational pur-
poses (e.g.van den Hurk et al., 2000, 2003) for practical rea-
sons: easy to handle, not dependent on necessary incoming
information from an external source, and hence on timeli-
ness. However, the direct use of remote sensing time series
is an important step towards a closer monitoring of the land
surface, because it captures better both spatial and temporal
variations including intra-species and inter-annual variabil-
ity. For long-term monitoring of ET, it is necessary to cap-
ture the inter-annual variability of the vegetation state signal,
which can be caused, for example, by a different date of bud-
break for deciduous forests, harvest timing shifts (Cooley et
al., 2005), rain occurence in semi-arid areas where the vege-
tation growth is driven by the hydrological regime, or by land
re-allocation or fires. For the short term monitoring, at a daily
time scale, poor time sampling of the vegetation phenology
can have a negative impact on ET, especially during the rapid
development stage of the canopy (e.g.Sepulcre-Cantó et al.,
2012). Moreover, even if the classification in ecosystems of
ECOCLIMAP-I is quite fine, the assumption of equal prop-
erties across different spatial scales for one ecosystem is an
oversimplification of the problem.

Previous efforts have been carried out mainly using time
series from polar orbiters (e.g.Albergel et al., 2010; Rodell
et al., 2004). However, most of those studies focus on as-
similation in a reanalysis mode, and cannot be used for
a near-real time monitoring of the evapotranspiration. Re-
cently, the EUMETSAT Land Surface Analysis Satellite Ap-
plication Facility (LSA-SAF) developed a coordinated ser-
vice in the area of remote sensing of the land surface and

proposes products based on the geosynchronous MSG satel-
lites (http://landsaf.meteo.pt) (Trigo et al., 2011). Among
these products, remotely sensed biophysical parameter prod-
ucts, i.e. leaf area index, LSA-SAF LAI, and fractional vege-
tation cover (Fveg), LSA-SAF FVC, are delivered daily at
the spatial resolution of the SEVIRI instrument on board
MSG (LSA-SAF PUM VEGA, 2008) 3.1 km sub-satellite,
and have been available since 2007. This study is done in the
framework of land surface modelling for the purpose of ET
monitoring at MSG/SEVIRI spatial resolution. It focuses on
the applicability and gain of using biophysical variables is-
sued from geostationary satellites, compared to monthly vari-
ables provided by databases.

In this paper, we demonstrate the advantages of using
LSA-SAF biophysical variables. We compare them to those
from ECOCLIMAP-I, and describe a method to use them in
a land surface model at the same spatial resolution. A set of
validation results over Europe and Africa and an example of
application over West Africa further evaluated by compari-
son with complementary remote sensing data are presented.

In Sect. 2, we give a short description of the material for
this study, which consists of a land surface model, the vegeta-
tion database used (ECOCLIMAP-I), and the LSA-SAF bio-
physical variables. In Sect. 3, we present a method to use the
LSA-SAF biophysical variables in the land surface model in
view of operational implementation. In Sect. 4, we compare
the new vegetation dataset to ECOCLIMAP-I, highlighting
its advantage. We analyze its characteristics and deduce a
practical estimation mean to obtain robust estimates of bio-
physical variables. Then we evaluate the impact of using the
new vegetation dataset on the modelled evapotranspiration
against in-situ observations in Europe and Africa. Lastly, dif-
ferent aspects of the methodology and its application are dis-
cussed and conclusions from this work are outlined.

2 Material

2.1 The land surface model

The land surface model is based on H-TESSEL, the ECMWF
land surface model (Beljaars and Viterbo, 1994; Viterbo and
Beljaars, 1995; van den Hurk et al., 2000; Balsamo et al.,
2009). It follows a bulk resistance formulation for the estima-
tion of the surface turbulent fluxes, with two resistances mod-
ulating the variation of the sensible and latent heat fluxes.
The aerodynamical resistance accounts for the turbulence
generated by air temperature or wind gradient, while the
stomatal resistance includes the influence of vapor pressure
deficit, fraction of absorbed energy and soil water availabil-
ity on the opening of the leaves stomata via a simple param-
eterization (van den Hurk et al., 2000). In addition, vertical
distribution of moisture and temperature in the soil is mod-
eled as a solution to diffusion equations. Direct evaporation
from interception is modelled.
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The needed forcing of this model consists of short
and long-wave radiation reaching the land surface, surface
albedo, wind speed, air temperature, air humidity and pre-
cipitation. In this model, the spatial unit for the energy bal-
ance assessment is divided into different tiles, associated
with PFTs. The estimation of the surface fluxes is performed
for each PFT before averaging over the spatial unit. The for-
mulation uses parameters describing the vegetation state for
each PFT separately: LAI, Fveg, roughness lengths, a mini-
mum stomatal resistance, and the vertical distribution of the
roots in the soil. The PFT classes have been changed from the
original formulation of H-TESSEL to match the classifica-
tion of ECOCLIMAP-I (Ghilain et al., 2011) and the model
parameters have been calibrated.

The land surface model can be used at different spatial
scales from a single point simulation using as input local
measurements up to coarse grids used by global circulation
models. In this paper, the model is applied at meso-scale and
investigates the utility of the LSA-SAF biophysical variables.
We therefore work in the MSG/SEVIRI grid, with a pixel as
the basic model spatial unit.

The radiative terms used here are provided by the LSA-
SAF: the downward surface short-wave (LSA-SAF DSSF)
the long-wave fluxes (LSA-SAF DSLF) (Geiger et al., 2008a;
Ineichen et al., 2009), and the surface albedo (LSA-SAF AL)
(Geiger et al., 2008b; Carrer et al., 2010). LSA-SAF DSSF
and DSLF are available half-hourly, while surface albedo is
produced daily.

Meteorological forcing is provided by the Global Circula-
tion Model re-analyses ERA-Interim (Simmons et al., 2006).
The spatial resolution available is 0.5◦and temporal sampling
is 3 h. Meteorological forcing is linearly interpolated in time
to half-hourly values. Tri-hourly precipitation rates are dis-
tributed equally for each 30 min step. If radiative forcing is
missing, ERA-Interim is used to fill the gaps.

Complementary information on vegetation is needed: a
land cover map and biophysical variables. Since each pixel
can be composed of different PFTs, biophysical parameters
must be known for each PFT inside the pixel, as well as
the exact percentage that the PFTs occupy. The land surface
model outputs an ET estimate each 30 min.

2.2 The ECOCLIMAP-I vegetation database

ECOCLIMAP-I (Masson et al., 2003; Champeaux et al.,
2005) is a land cover map at 1 km resolution. In addi-
tion, it provides a vegetation parameterization for use in
SVAT models in the form of a synthetic global vegeta-
tion database (http://www.cnrm.meteo.fr/gmme/PROJETS/
ECOCLIMAP/pageecoclimap.htm, 2006). It is widely used
by numerical weather prediction models in European coun-
tries (e.g.ALADIN International Team, 1997); furthermore,
it is also used for inter-comparison of land surface models in
Western Africa (Boone et al., 2009; Grippa et al., 2011), and
in specific applications of H-TESSEL (Wipfler et al., 2011).

Mixed ecosystems are decomposed into PFTs (defined in Ta-
ble 1) and each PFT is associated with a 10 day or monthly
varying set of biophysical variables (LAI, Fveg, roughness
lengths) averaged spatially over all the grid cells occupied
by the concerned ecosystem. ECOCLIMAP-I is used as in
Ghilain et al.(2011).

The ecosystems are decomposed into PFTs compatible
with the vegetation parameterization of the model, and the
land cover map obtained at 1 km is projected onto the coarser
model grid. The land cover map obtained gives the 5 dom-
inant PFTs and their contribution to a satellite pixel. But,
since one PFT can result from the combination of several
ecosystems, LAI for each PFT is computed as the weighted
mean contribution of the involved ecosystem’s LAI. Monthly
LAI maps at the satellite resolution are then created.

2.3 The LSA-SAF vegetation products

LSA-SAF LAI and FVC products (Garćıa-Haro et al.,
2005a) are derived from MSG/SEVIRI using a two com-
ponents Spectral Mixture Analysis method (Garćıa-Haro et
al., 2005b; Verger et al., 2009). LSA-SAF operational cen-
ter generates both variables daily, based on the past 5-days
estimations, at the sensor spatial resolution. Retrieval uncer-
tainty as well as a quality flag indicating the quality and rea-
son for possible no production (e.g. snow, traces of snow,
traces of inland water) is also provided (LSA-SAF PUM
VEGA, 2008).

LSA-SAF products represent an interesting alternative to
SPOT-VGT or MODIS for meso-scale applications because
of its relatively high generation frequency, its near-real time
availability and its improved time stability (LSA-SAF PUM
VEGA, 2008). LSA-SAF LAI and FVC have been pro-
duced routinely since August 2005 with successive algorithm
(VEGA) improvements related to methodology (VEGA v2.0,
September 2006), input data quality (December 2006), and
post-processing (VEGA v2.1, May 2008).

3 Methods

3.1 Exploitation of the LSA-SAF biophysical variables

LSA-SAF LAI and FVC are provided daily at the
MSG/SEVIRI spatial scale over the whole field of view. At
that scale, landscapes can be very heterogeneous, especially
over Europe, and one pixel can represent a mixed signal of
different ecosystems or PFTs. This information cannot be
used as such in SVAT-type models because more details on
each PFT is necessary to compute surface fluxes. In addi-
tion, there can be some gaps in the products or pixels in
the images could be unprocessed, because the models re-
quire continuous, stable and consistent LAI time series. It
is therefore needed to implement a procedure able to retrieve
LAI at sub-pixel (or PFT level), and to cope with continuity
and stability issues. A two-steps procedure is implemented
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Table 1. List of PFTs defined in ECOCLIMAP-I and used in the
land surface model.

Code PFT

1 Bare Soil
2 Rocks
3 Snow (Permanent)
4 Deciduous Broad leaf Forest (DBF)
5 Evergreen Needle leaf Forest (ENF)
6 Evergreen Broad leaf Forest (EBF)
7 C3 crops
8 C4 crops
9 Irrigated crops
10 Grassland (G)
11 Swamp areas and bogs

to, first, provide LSA-SAF LAI maps consistent in time, and
then, to compute vegetation parameters for each PFT of the
considered pixel. A schematic view of the process is shown
in Fig. 1.

For every pixel, it is necessary to build continuous and
consistent LAI time series as close as possible to the actual
LSA-SAF LAI product, LAISAF. First, an annual LAI clima-
tology is built pixel-wise using daily LSA-SAF LAI images
from 2007 to 2010. The climatological year is divided in peri-
ods of 10 days. For each 10 days period, a mean LAI, LAIc, is
calculated pixel-wise along with an error bar,σc, correspond-
ing to the standard deviation of the LSA-SAF LAI sample
used.

Even if snow cover is detected, some spurious data, occur-
ring especially during the 2007–2008 winter in northern lat-
itudes and over coniferous forests, still persist. Similar prob-
lems have been encountered byJiang et al.(2010) with the
NOAA satellite. In May 2008, LSA-SAF changed the algo-
rithm to VEGA v2.1 to screen those data by applying a post-
processing on the problematic areas. However, in order to
take advantage of the longest time series available, the spuri-
ous data are filtered out using a threshold. Winter LAI higher
than 85 % of the mean summer value are filtered out. The ex-
tent of the filtering period is based on the collection of the
spurious data: it is longer for Northern European countries
(e.g. Sweden, Finland) and shorter for the European mid-
latitude countries (e.g. Germany, France).

In order to get continuous time series needed by opera-
tional models (Jiang et al., 2010), a linear interpolation is
applied to both LAI values and standard deviations to fill the
gaps in the climatological series.

Finally, for each actual LSA-SAF LAI, an optimal interpo-
lation scheme (Gu et al., 2006) is applied. In our case, LSA-
SAF LAI time series are more stable in time than the MODIS
LAI ( LSA-SAF PUM VEGA, 2008), and the LAI climatol-
ogy is created from 4 yr of data. Appropriate weighting fac-
tors have been tuned and the error on the climatology,σc,
is multiplied by 2.5 and noted̃σc. Consequently, the weight

LAISAF +σSAF LAIc +σc

LAISAF +σSAF

LAIa +σa

Land Cover

LAIPFT

OLS

OI

P1

P2

Fig. 1.Flowchart of the two-steps procedure to obtain LAI for each
PFT in a given MSG/SEVIRI pixel. First, continuous and consistent
LAI series are created at pixel level, LAIa, using a 4-yr climatology
from LSA-SAF LAI, LAI SAF, actual LAISAF, and an optimal in-
terpolation (OI) method. Then, the pixel LAI is decomposed into
LAI PFT for each PFT contributing to the pixel area, using a land
cover map, LAIa and an ordinary least square method (OLS).

of the climatology is decreased to better follow the daily
remote sensing product. The result is a LAI for each pixel
(LAI a); corrected using a background climatological infor-
mation (Eq.1). Therefore, most dubious data are removed,
the time series are smooth and gaps are filled.

LAI a =
σ̃ 2

c

σ 2
SAF+ σ̃ 2

c

· LAI SAF+
σ 2

SAF

σ 2
SAF+ σ̃ 2

c

· LAI c. (1)

As in Gu et al. (2006), when |LAI SAF− LAI c| >

2
√

σ 2
SAF+ σ̃ 2

c , LAI SAF is unusable and LAIa = LAI c.
An ordinary least-square algorithm (OLS) is then applied

to derive LAI for each PFT, using LSA-SAF LAI and PFT
percentages over a neighbourhod of 9 (3×3) or 25 (5×5) pix-
els (see Appendix A). Two assumptions are needed: (1) the
percentage of each PFT in one pixel represents exactly the
real cover of the land surface, (2) the vegetation parameters,
e.g. LAI, in close neighbourhood are assumed to be homo-
geneous. This hypothesis is reasonable if we consider that,
in a close neighbourhood, meteorological and climatic con-
ditions are similar, and one can assume the growth of the nat-
ural vegetation will be the same for one specific plant type.
For human-forced vegetation, like for crops, the assumption
can still hold if we assume that agricultural practices are

Hydrol. Earth Syst. Sci., 16, 2567–2583, 2012 www.hydrol-earth-syst-sci.net/16/2567/2012/



N. Ghilain et al.: Benefits of LSA-SAF biophysical variables for evapotranspiration modelling 2571

homogeneous in the region of interest, which is often the case
for large areas.

Repeating the operation by moving the size-defined neigh-
bourhood by one pixel at a time, we obtain a smoothed spatial
average estimate of LAI for each PFT.

Special attention has been paid to the correct handling of
remote sensing derived vegetation products in the land sur-
face model, avoiding a simultaneous variation of LAI and
Fveg (Oleson and Bonan, 2000; van den Hurk et al., 2003;
Jiang et al., 2010; Miller et al., 2006) and defining the LAI for
the vegetation needed by the model from the remote sensing
derived product (Ge, 2009). Fveg is therefore constant and is
built pixel-wise using the complement to the absolute mini-
mum LSA-SAF FVC over 2007 and 2008. Assuming that the
bare soil fraction has a nul LAI, consistent handling of LAI
for the land surface model is ensured through OLS.

Because of the uncertainty of land cover maps due to
misclassification (e.g.Jung et al., 2006), some erroneous
LAI could be estimated from the least-square algorithm. We
propose to assess the impact of the uncertainty on the re-
trieved LAIPFT at 120 pixels selected randomly over the
Euro window. The uncertainty is evaluated by applying the
LAI decomposition using 3 different land cover maps for
2007. ECOCLIMAP-I, MODIS (MCD12Q1) and GlobCover
(Bicheron et al., 2006, 2008) land cover maps, available at
1000, 500 and 300 m resolution respectively are considered
here. For each PFT in each selected pixel, the PFT percentage
differences (rescaled to Fveg) are computed and the time cor-
relation and root-mean square difference (RMS) between the
LAI PFT series obtained from the 3 land covers are estimated,
by PFT and by pixel. Results are presented in Sect. 4.2.

Since a PFT is aclassof vegetation (Alton, 2011; Williams
et al., 2009), pixel-to-pixel variation of LAIPFT may occur,
and could affect the retrieval. In Sect. 4.2, we analyze those
variations. For a given PFT, only the LAI value of homoge-
neous pixels (PFT covers more than 99 % of the pixel sur-
face), LAIHg, are taken into account. A reference sample of
LAI Hg is selected randomly from the total population. The
difference between the reference sample and the remaining
LAI Hg gives a probability density function of LAIPFT vari-
ability as a function of the distance to the reference, up to 3
pixels, being the maximum size of the neighbourhood win-
dow used in OLS (3×3, 5×5 and 7×7). As the probability
density functions are nearly symmetric and unimodal, very
close to a gaussian, we study the normalized standard de-
viation as a proxy for the uncertainty. Results are given in
Sect. 4.2.

3.2 Evapotranspiration modelling and
validation strategy

The impact of using LSA-SAF LAI instead of
ECOCLIMAP-I database in the land surface model is
evaluated at two different scales: at local scale and over

Table 2. In-situ eddy covariance observations used in this study.

Site Country Years Reference

Skukuza S. Africa 2008–2009 Kutsch et al.(2008)
Vielsalm Belgium 2007–2008 Aubinet et al.(2001)
Tojal Portugal 2007 Pereira et al.(2007)
Púechabon France 2007 Joffre et al.(1996)
Agoufou Mali 2007 Merbold et al.(2009)
Tchizalamou R. Congo 2007 Merbold et al.(2009)
Wetzstein Germany 2007 Rebmann et al.(2010)
Sodankyl̈a Finland 2007 Suni et al.(2003)
Demokeya Sudan 2007–2009Sjöstr̈om et al.(2009)

a larger region covering a sample of different vegetation
dynamics and climate.

Locally, the impact is quantified against measurements at
different local observation sites equipped with eddy covari-
ance devices. Results of point scale simulations are com-
pared to in-situ observations of latent heat flux, LE (list of
stations in Table2), equivalent to ET. Four sites are situated
in Africa and five in Europe, with a good sample of different
climates. The four sites in Africa are installed in a savan-
nah landscape, but with different precipitation regimes rang-
ing from mostly dry (Agoufou) to mostly wet (Tchizalamou).
The European sites are situated in mediterranean (Puéchabon
and Tojal), temperate (Vielsalm and Wetzstein) and boreal
(Sodankyl̈a) regions. Four European stations monitor the ex-
changes between a forest stand and the atmosphere: conif-
erous forest (Wetzstein and Sodankylä), evergreen forest
(Púechabon) and mixed forest (Vielsalm). The station of To-
jal monitors exchanges over a C3/C4 grassland site. Most of
the sites selected have a large homogeneous fetch, that allows
a good representativity of the measurements.

At the selected sites, the model is forced as described in
Sect. 2.1. However, in order to better assess the impact of
LAI on the simulations, in-situ measurements are used for ra-
diation and precipitation input when available. ERA-Interim
precipitation rates are used for Agoufou and Vielsalm sites.
Precipitation is especially important in semi-arid environ-
ments (Merbold et al., 2009), and the more accurate the in-
put is the better is the model output. Soil moisture and soil
temperature for the four soil layers are initialized with ERA-
Interim analysis, and the model is run over one year before
the analyzed run. Model parameters are not tuned for the
selected sites, and the general parameterization for a global
simulation is set.

At large scale, we evaluate the impact on ET by comparing
the daily ET rates over a latitudinal transect crossing a veg-
etation density gradient. As ECOCLIMAP-I gives an over-
simplification of LAI spatial variability over Africa (Kaptúe
Tchuente et al., 2010); we compare the simulations along a
north–south transect in West Africa, 15◦ N to 6◦ N, 0◦ E, for
the year 2007 that samples a full range of vegetation dynam-
ics from an evergreen humid forest to desert. This exercise
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is especially relevant in the context of the growing inter-
est in the land surface monitoring in Western Africa, where
quantitative remote sensing is expected to play an important
role (Stisen et al., 2008; Boone et al., 2009). The land sur-
face model is forced as described in Sect. 2.1 and half-hourly
simulated LE are converted to ET rates and daily cumulated.

As there is no ET observation dataset to validate/verify the
improvements at large scale over West Africa, other remote
sensing products are of interest for output verification. We
can assess the impact of using LSA-SAF LAI in the land sur-
face model by comparing other modeled variables to com-
plementary remote sensing derived data. The modelledskin
temperature from H-TESSEL can be compared to the land
surface temperature derived from infra-red sensors. Even if
the modelskin temperature has not the exact same physical
meaning as the radiative land surface temperature measured
by the satellite (LST), it is often considered to be comparable
(e.g.Ghent et al., 2011) and LST is used for indirect model’s
verification (e.g.Edwards, 2009; Jimenez et al., 2008). A
particular interest of LST for ET verification is its link with
soil moisture. For example, during observation campaigns in
Western Africa, LST was linked to the soil moisture retrieved
with passive microwave sensors (Kergoat et al., 2011). In
addition, LST from MSG has been used to derive evapo-
rative fraction (Stisen et al., 2008), which should likely be
mainly driven by soil moisture in that region. LSA-SAF pro-
vides land surface temperature images (LSA-SAF LST) ev-
ery 15 min, based on MSG/SEVIRI at the sensor resolution
(Trigo et al., 2008). LST product is suitable for comparison
as it is provided with the same spatial resolution.

To avoid the effect of short-term fluctuation of the temper-
ature or cloud contamination, daily surface heating rates, ex-
pressed in K h−1, are calculated from LSA-SAF 15 min LST
data, and from the simulated 30 min skin temperature sepa-
rately. The heating rates are the slope of the linear fit through
the land surface temperature data between sunrise and noon
LT.

4 Results

4.1 Comparison of ECOCLIMAP-I and LSA-SAF LAI

To show the advantages of the new LSA-SAF products, we
illustrate comparison of LAI with ECOCLIMAP-I database.
The mean monthly LAI from ECOCLIMAP-I and LSA-
SAF are compared by PFT (Fig.2) in Europe for March
to November 2007. Each monthly LAI is based on ho-
mogeneous pixels, i.e. pixels occupied by exclusively one
PFT, and six LSA-SAF LAI images per month. In addi-
tion, the monthly spatial and temporal LAI variability is
estimated from LSA-SAF LAI. In Fig.2, it is shown that
ECOCLIMAP-I LAI has a bias of about 1 m2 m−2 compared
to LSA-SAF LAI. It is especially visible for evergreen conif-
erous forests during the summer months and crops for the
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Fig. 2. Comparison of monthly mean and variability of LAI be-
tween ECOCLIMAP-I and LSA-SAF, for March to November 2007
over Europe. March to May (�), June to August (◦), September to
November (O)

beginning of autumn. This bias had also been reported in
comparison with other products and in-situ data (Garrigues
et al., 2008). A larger variability is found in LSA-SAF LAI
for Swamp areas, forests and partly for grasslands. For crops,
the variability is comparable.

For Europe, small differences are observed in average,
probably because the number of defined ecosystems in the
land cover map is sufficiently high. However, over Africa,
LSA-SAF LAI provides more spatial variability compared to
the database. As an example, we compare the LAI variabil-
ity of PFTs from 3 different homogeneous ECOCLIMAP-
I ecosystems (tropical African grassland, semi-arid African
grassland, and Nile Valley and desertic crops). Three LSA-
SAF LAI images are selected for comparison on three dif-
ferent dates (15 April, 15 August and 15 December), and
the LAI distribution is compared to the single value given
by ECOCLIMAP-I monthly estimates (Fig.3). For tropical
African grassland, LAI given by ECOCLIMAP-I ranges be-
tween 2.0 and 3.0, while LSA-SAF LAI gives in one im-
age a distribution ranging between 0 and 4. For the ecosys-
tem Nile Valley and desertic crops, LSA-SAF LAI analysis
shows a double peaked distribution poorly represented by
the LAI database climatology. The difference is especially
striking for April. The database gives a LAI of 0.5, while
the peak reaches its maximum around 2.8. Those differences
will inevitably impact on land surface model applications at
MSG/SEVIRI scale.

LSA-SAF LAI product allows a better temporal represen-
tation of the inter-annual LAI evolution. As an example, we
compare the LAI time series from ECOCLIMAP-I and LSA-
SAF over a pixel in Western Africa corresponding to the
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Fig. 3. Distribution of LSA-SAF LAI (continuous lines) against
ECOCLIMAP-I monthly values (dashed vertical lines) for 3 dates
(15 April, 15 August and 15 December 2007) for 3 homogeneous
ecosystems: tropical African Grassland (top), Semi-Arid African
grassland (middle) and Nile Valley and desertic crops (bottom).

ground measurement station Agoufou (15.29◦ N, 1.49◦ W)
for 2007, 2008 and 2009. The variability is mostly driven
by the occurence of rain during the wet season. In the com-
parison LSA-SAF LAI has been rescaled by the comple-
ment to unity of the minimum fraction of vegetation, while
ECOCLIMAP-I LAI has been rescaled to the range of LSA-
SAF LAI, and linearly interpolated. In Fig.4, we observe
the time shifts in the wet season onset, as well as the dif-
ferences in duration of that season and LAI peak. Differ-
ences up to 10 days in the shift are observed for the wet
season onset (Day 200–210). During the onset of the dry
season (DoY 260–270), there is a large difference between
ECOCLIMAP-I LAI and LSA-SAF LAI, with a sharp de-
crease of LSA-SAF LAI. Impact on the ET simulation with
the land surface model is assessed in Sect. 4.3.

4.2 Retrieval of sub-pixel leaf area index

As presented in Sect. 3, LSA-SAF LAI needs to be processed
to obtain continuous and coherent time series. We illustrate
that process on one specific LAI time series over Wetzstein,
a forested site in Europe (Fig.5). The MSG/SEVIRI pixel is
mainly composed of coniferous forest. LSA-SAF LAI (red
points) presents unrealistic high values in the 2007–2008
winter. During the next winters, most of those unrealistic es-
timates have been screened out in the product. The LAI cli-
matology (black points) follows the trend given by LSA-SAF
LAI, with very high values in winter. Using the filter, we re-
move all the spurious data, and a linear interpolation is ap-
plied. After correction, the optimal interpolation procedure is
applied to produce the LAI analysed, LAIa.

With the new pixel estimates LAIa, the method to decom-
pose at sub-pixel scale is applied. However, as mentionned,
the method is subject to two sources of error. The impact of
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Fig. 4. Time series comparison of processed LSA-SAF LAI (Prsd
LSA-SAF) for 2007, 2008 and 2009, and re-scaled and linearly
interpolated ECOCLIMAP-I LAI for a pixel in Western Africa
(15.29◦ N, 1.49◦ W).

the uncertainty of the land cover map and of the pixel-to-
pixel LAI variability of PFTs is assessed here.

The impact of the land cover map uncertainty on the LAI
retrieval is represented in Fig.6, where the relation between
the mean PFT percentage obtained from the three land cover
maps and the RMS of the LAI time series for the 120 pix-
els defined in Sect. 3.1 is shown. The mean correlation de-
creases with a smaller PFT percentage, and RMS increases.
It implies that land cover differences have little impact on the
retrieved LAI for the dominant PFTs, but that it has a big im-
pact on the less dominant PFTs. In addition, we observe less
uncertainty for crops class than for evergreen forests com-
pared to the mean.

As shown in Fig.7, effect of enlarging the neighbourhood
to 5× 5 and 7× 7 pixels for OLS lessens the impact of land
cover uncertainty: the correlation decreases only to 0.5 for
very small PFT percentages. The effect of enlarging to 7× 7
has no big impact compared to 5× 5.

The impact of the pixel-to-pixel LAI variability by PFT
is represented in Fig.8. For each homogeneous PFT repre-
sented in Europe and Africa, the normalized standard devia-
tion increases with the OLS neighbourhood size (Fig.8). For
Europe, the variability inside a 3× 3 neighbourhood ranges
between 13 % and 19 %. Increasing the pixel number to 5×5
degrades the quality of the assumption for all PFTs. The vari-
ability increases gradually from 3× 3 to 7× 7 for C3 crops
and grasslands. For Africa, the uncertainty is much less than
for Europe, ranging between 5 % and 9 % for all classes in
the case of the 3× 3 neighbourhood. In addition, enlarging
the neighbourhood to 5× 5 or 7× 7 has no big impact for
most PFTs in Africa, except for grassland in Northern Africa.
Variability could not be assessed for deciduous broadleaved
forests over Africa because no african ecosystem defined in
ECOCLIMAP-I is homogeneously covered by that PFT.
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Fig. 5.Illustration of the pre-processing of LSA-SAF LAI images on a test case over a forest (Wetzstein) in Germany.(a)A 10-days composite
(black) is derived from LSA-SAF LAI daily data (red).(b) Spurious data are filtered out, and linear interpolation is applied to create the
climatology, LAIc (black).(c) At last, an optimal interpolation scheme (OI) is applied using the climatology and the actual LSA-SAF LAI,
LAI SAF, to provide the analysed LAI, LAIa.
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obtained using ECOCLIMAP-I, GLOBCOVER and MODIS land
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Fig. 8.Normalized PFT intra-variability (standard deviation) of LAI
in function of the neighbourhood size for Europe (Euro) and Africa
(NAfr and SAfr).

The method proposed in Sect. 3 leads to a more robust es-
timate of LAIPFT when applied over a larger neighbourhood
(Fig. 7), since impact of land cover map uncertainty is re-
duced. However, at least for Europe, LAI variability of a
given PFT increases with the size of the neighbourhood
(Fig. 8). Therefore, depending on the application, a com-
promise has to be found between accuracy and robust-
ness. In applications involving spatial resolution equal to
MSG/SEVIRI, the smallest size is obviously preferred since
it implies less uncertainty. However, it has been shown that
the quality of the OLS algorithm is decreasing along with
PFT occupation fraction, due to the land cover uncertainty.
Therefore, in waiting for a better agreement between land
cover maps, a correction has to be applied, to estimate a re-
liable LAIPFT even for the least contributing PFT to the total
pixel ET. A corrected estimate, LAIPFT,PostP, is derived from
a weighted average of LAIPFTand a reference estimate, LAIR
(Eq.2). The weightα (Eq.3) is proportional to the PFT per-
centage, and we choose it to be the linear regression of Fig.6.

LAI PFT,PostP= α · LAI PFT+ (1− α) · LAI R (2)

α = min(0.75· PFT% + 0.32,1) (3)

LAI R could be the LAI pixel value, LAIa, or the LAI value
corresponding to the nearest pixel homogeneous of that PFT,
LAI Hg. Since African ecosystems are mostly a mix of PFTs,
LAI a is adopted. For Europe, clear homogeneous PFTs can
most of the time be identified and isolated, and LAIHg is pre-
ferred. This choice is further discussed in Sect. 5.

4.3 Impact on modelled evapotranspiration

Statistical results for the 30 min model estimates of LE are
presented in Table3. Statistical scores show an improvement
in the modelling of the surface latent heat flux, or equiva-
lently ET, especially for semi-arid regions where the signal

Table 3. Comparison of simulations with ECOCLIMAP-I (ECO)
or LSA-SAF LAI (LSA) against 30 min observed LE (W m−2): sta-
tistical scores: correlation coefficient (ρ), root mean square error
(RMSE), bias and NS (Nash and Suttcliffe, 1970). Improved NS
with LSA compared to ECO are in bold.

Station Mode ρ RMSE Bias NS

Skukuza ECO 0.754 85.07 −37.86 0.46
LSA 0.787 73.25 −6.25 0.60

Demokeya ECO 0.768 53.41 −18.55 0.53
LSA 0.795 48.39 −5.26 0.62

Tchizalamou ECO 0.760 60.14 3.16 0.51
LSA 0.775 58.68 9.11 0.53

Agoufou ECO 0.612 83.56 −32.40 0.26
LSA 0.695 72.42 −18.37 0.45

Púechabon ECO 0.817 44.42 −9.29 0.61
LSA 0.85 40.83 2.71 0.67

Tojal ECO 0.849 41.98 −5.94 0.66
LSA 0.828 45.37 −6.95 0.61

Vielsalm ECO 0.747 46.89 10.88 0.47
LSA 0.712 47.75 8.73 0.46

Wetzstein ECO 0.832 53.14 −26.78 0.57
LSA 0.850 48.83 −22.94 0.64

Sodankyla ECO 0.711 29.59 −8.68 0.39
LSA 0.735 28.16 −11.08 0.44

shows an interannual variability in amplitude and phase. The
largest improvements are observed for Skukuza and Agoufou
sites, with a significant decrease of the global bias com-
pared to data (−37 to −6 W m−2 for Skukuza, and−32
to −18 W m−2 for Agoufou) as well as an improved Nash-
Sutcliffe (NS) index (0.46 to 0.60, and 0.26 to 0.45, respec-
tively) (Nash and Suttcliffe, 1970). Even if the scores are
largely improved in the Agoufou comparison, most of the
remaining bias is due to non ideal precipitation forcing, i.e.
ERA-Interim in that simulation. The other simulations over
African sites, i.e. Demokeya and Tchizalamou, also show an
improvement of the statistical scores when compared to data
(NS: 0.53 to 0.62, and 0.51 to 0.53, respectively). Those re-
sults confirm the findings ofKahan et al.(2006) over the Sa-
hel region in Western Africa.

As an example, we present in Fig.9, the time series of the
simulated and observed LE in Demokeya for the year 2007
to 2009. The simulation is clearly improved with the use of
LSA-SAF LAI, with a better match during the wet season.
Also, the simulations of LE during the dry season is closer to
the observations.

Results over Europe show an improvement for 3 sites over
the 5. In Púechabon, the scores are well improved, with a
global bias reduction, from−9 to 3 W m−2, and a better
NS, from 0.61 to 0.67. As well, the results are improved
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Fig. 9. Comparison of LE for Demokeya for 2007, 2008 and 2009;
observed in (Obs: black), simulation using ECOCLIMAP-I (ECO:
green), simulation using LSA-SAF LAI (LSA: red).

for 2 forested sites in different climates, i.e. Wetzstein and
Sodankyl̈a. For Tojal and Vielsalm, the model performs well
with ECOCLIMAP-I and the statistics are either slightly de-
graded or equal.

The evolution of the LAI on the latitude gradient is shown
in Fig. 10 for monthly ECOCLIMAP-I and daily LSA-SAF.
The northern bound of the transect is completely arid with no
vegetation. Southwards, vegetation is seasonal, with longer
periods of vegetation cover, and higher amplitudes. The
global pattern for ECOCLIMAP-I and LSA-SAF is similar,
however, the most striking difference is seen on the length
of the vegetation period that is noticeably shorter for LSA-
SAF at highest latitudes. Between 6◦ N and 8◦ N, the transect
meets lakes, resulting in zero LAI as observed from the dark
blue stripes in the figures.

The evolution for 2007 along the transect is shown in
Fig. 11, when using ECOCLIMAP-I and LSA-SAF LAI,
respectively. The global pattern is mostly the same, as ET
is driven by precipitation. However, large differences are
found between September and December (also in April),
with higher ET produced using ECOCLIMAP-I database.

An indirect evaluation of the changes is based on the
comparison of the daily surface heating rates modelled and
derived from the satellite. The heating rates are shown in
Fig. 12. Vegetated areas are characterized by lower mean
surface heating rates than bare soil. As well, surface heat-
ing rates are said to be increased with decreasing soil mois-
ture (Stisen et al., 2008). The global pattern with the con-
trast low/high heating rate is seen in the three images. Good
correspondence is found in the patterns of both simulations.
That is probably due to the same precipitation forcing for
the model. The absolute differences between simulated heat-
ing rates and those derived from LSA-SAF LST are rep-
resented in Fig.13. A closer agreement, especially with a
global lower bias, is found with the skin temperature simu-
lated using LSA-SAF LAI than with ECOCLIMAP-I when
compared to LSA-SAF derived heating rates, suggesting than
simulation is improved using LSA-SAF LAI.
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Fig. 10.LAI evolution (March to December 2007) along the north–
south transect in West Africa from 15◦ N to 6◦ N: ECOCLIMAP-I
(left) and LSA-SAF LAI (right)
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Fig. 11.Simulations along the north–south transect in West Africa
from 15◦ N to 6◦ N: daily ET [mm] simulated using ECOCLIMAP-
I (left) and LSA-SAF LAI (right).

5 Discussion

Different aspects of the method to use LSA-SAF biophysical
variables in H-TESSEL and its application for ET monitor-
ing are discussed, especially in the perspective of continuous
operational monitoring.

5.1 Retrieval stability of the biophysical variables

With one observation every 15 min over the same location,
a higher level of stability of biophysical variables is reached
when derived from MSG/SEVIRI comparatively to polar or-
biters. Indeed, it has been shown that LSA-SAF LAI was
more reliable than SPOT-VGT over central Africa where
cloud cover is most frequent (Pekel et al., 2010). However,
stability problems, that have been addressed by the method-
olody proposed in Sect. 3, are found in the original LSA-SAF
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Fig. 12.Daily morning surface heating rates [K h−1] for a transect
in West Africa from 15◦ N to 6◦ N: simulation using ECOCLIMAP-
I (left) or LSA-SAF LAI (middle), obtained from LSA-SAF LST
(right).

time series for Northern European regions covered by conif-
erous forests for 2007 and 2008, while further production by
LSA-SAF made used of a filter to screen out those spurious
data. Similar problems are encountered for the generation of
other biophysical products. GLOBCARBON LAI products
show unexpected variations for boreal forests, with possi-
ble overestimated LAI (Garrigues et al., 2008). The MODIS
Collection 4 and 5 LAI products present a spurious seasonal
variability over boreal forests due to the low data availability
with weak illumination, extreme solar zenith angles condi-
tions, snow and cloud contamination (Yang et al., 2006a,b;
Tian et al., 2006; Garrigues et al., 2008) and low spatial con-
tinuity due to regular failures from the main retrieval algo-
rithm (Garrigues et al., 2008). Retrieval problems are also
encountered during peak seasons over deciduous broadleaf
forests (Garrigues et al., 2008). Corrections and smoothings
are therefore needed for an optimal use in land surface mod-
els (Gu et al., 2006).

5.2 Towards an operational use of LSA-SAF
biophysical products

In Sect. 4.2, it has been shown that the land cover map un-
certainty has an effect on the LAI retrieval at sub-pixel scale,
and that a correction need to be applied to obtain reliable esti-
mates using a reference. It has been proposed, for Europe, to
use as reference the LAI of the nearest homogeneous pixel,
LAI Hg. However, the success of it depends on the relative
invariability of LAI for one PFT in a neighbourhood, and
therefore on finding a LAIHg within a close area. The analy-
sis of (1) its variability within an increasing area (Fig.14) and
(2) the distribution of distance to the nearest LAIHg (Fig. 15)
leads to PFT specific conclusions in using it as a correction
for the retrieved LAIPFT. As expected, the relative variabil-
ity increases with distance for every PFT, with the sharpest
difference within the first five pixels. In addition, the total
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Fig. 13. Differences in the daily morning surface heating rates
[K h−1] (same transect Fig.12): simulated heating rates using
ECOCLIMAP-I vs. LSA-SAF LST (left), simulated heating rates
using LSA-SAF LAI vs. LSA-SAF LST (right).

increase is most important for grasslands (up to 55 % vari-
ability 30 pixels away) and crops (45 %), while it is less for
forests (32 % and 37 %).

Figure 15 represents the distribution, based on
ECOCLIMAP-I land cover map, of the distance from
each pixel to the closest homogeneous pixel for the same
PFTs in Europe. For every PFT, the number of occurence
decreases with the distance. The decrease is sharp for crops,
with more than 70 % of homogeneous pixels no further
than six distance units. For the other types, there are less
homogeneous pixels and the decrease is quasi linear. In
90 % of the cases, the nearest homogeneous pixel is found
at a distance of 16 pixels (Crops), 30 (ENF), 31 (G), and
33 (DBF).

From Figs.14 and 15, we conclude that (1) the farther
the homogeneous pixel used for correcting the OLS solu-
tion comes from, the larger is the introduced error, especially
for crops and grasslands; (2) the most uncertain correction in
the post-processing will be for grasslands in Europe. LAIa is
used as reference in that case, as well as for PFTs not repre-
sented by an homogeneous pixel in the neighbourhood.

We therefore propose a post-processing scheme, summa-
rized by a flowchart in Fig.16, integrating the results dis-
cussed here. If the area to process is Europe, C3 crops, and
forests (DBF and ENF), LAIs are corrected with LAIHg (op-
tion 2). For grassland, if the distance is higher than 10 pixels,
the pixel LAI is used as surrogate (option 1). For other PFT
classes, i.e. C4 crops, irrigated crops and swamp areas, and
for other areas, correction follows option 1.

5.3 A decreased uncertainty associated to LAI

While a thorough analysis of the uncertainty is out of the
scope of the present paper, we compare estimates of LAI un-
certainty for ECOCLIMAP-I (σLAI ECO), and retrieved from
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Fig. 15.Distance (# pixels) to nearest homogeneous pixel by PFT,
i.e. C3 crops (black), DBF (red), ENF (blue), G (green), in Europe.
Vertical dashed lines denote the 90 % of the cumulative distribution
for each PFT (based on ECOCLIMAP-I).

LSA-SAF (σLAI SAF). σLAI ECO can be evaluated with the spa-
tial and temporal variability of LSA-SAF LAI.σLAI SAF is the
combination of the error on OLS,σOLS, and the error on as-
sumptions,σdist (Fig. 8).

For Europe, LAI variability for a given PFT increases with
the distance from a reference pixel (previous section). But,
while for forests the variability remains almost steady with
the distance, crops and grasslands are the most affected PFTs,
giving a clear methodological advantage in using LSA-SAF
LAI and a lower uncertainty. However, since ECOCLIMAP-
I proposes a very fine classification into 92 ecosystems, e.g.
27 different types of crops and 21 types of grasslands, the
difference betweenσLAI SAF andσLAI ECO is not expected to be
large.

For Africa, Fig. 3 shows examples representative of
wide areas in theNAfr region for a given year (2007).

P3

LAIHg

Option 1Option 2

Euro ?

LAIa

yes no

LAIPFT, PostP

yes

yes

yesno

no

no

PFT = {DBF, ENF, C3} ?

PFT = G ?

Dist Hg > 10 ?

LAIPFT

Fig. 16.Flowchart with post-processing steps of PFT derived LSA-
SAF LAI, LAI PFT, to obtain a consistent LAI, LAIPFT,PostP. Op-
tion 1 refer to the correction of the retrieved LAI with the pixel
estimate, while option 2 points to the nearest homogeneous pixel as
the reference LAI.

Consequently, the deducedσLAI ECO can be very large. Con-
trarily, σLAI SAF is expected to be much less, becauseσdist is
less than 10 %, andσOLS is very small due to the relative
homogeneity of the landscape over the OLS neighbourhood.
In particular,σLAI SAF is expected to be much smaller than
σLAI ECO in semi-arid to arid environments in Africa, giving a
more reliable LAI estimate for Sahel. That difference should
obviously be exacerbated if we take into account the inter-
annual variability not represented in ECOCLIMAP-I, as in
Fig. 4.

5.4 Towards a continuous ET monitoring

The scheme presented in this paper and assessed with the
land surface model has been developed to comply with re-
quirements for near-real time applications. Applied to LSA-
SAF LAI and FVC, it is convenient for ET monitoring
through land surface modelling at spatial scales equal or
coarser than MSG/SEVIRI. However, for a correct evalua-
tion of LAI at PFT level, it is necessary to use a land cover
map that proposes a sufficient accuracy in locating, classi-
fying and decomposing into PFTs accepted by the land sur-
face models. The gain in spatial resolution (ECOCLIMAP-
I: 1 km; GlobCover: 300 m) and satellite overpass frequency
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are clear advantages to obtain more accurate LAI at PFT
level, reducingσOLS, and therefore providing an optimal in-
put for land surface models.

In line with the monitoring concept, it would be necessary
to have a clear assessment of the land cover changes, as it
can affect our method. Regular updates of land cover would
therefore be appreciated, to address land conversion issues
like deforestation or fires.

6 Conclusions

In the present contribution, we show the benefits of using
the daily biophysical variables derived from SEVIRI sensor
aboard the geostationary satellite MSG for the evapotranspi-
ration modelling and monitoring using the model H-TESSEL
over Europe and Africa, compared to the use of the semi-
static database ECOCLIMAP-I.

LAI maps from LSA-SAF and ECOCLIMAP-I are com-
pared at different time and spatial scales, showing that
ECOCLIMAP-I LAI presents less variability than LSA-SAF
LAI, with respect to spatial coverage and temporal frequency.
A rough analysis of the uncertainty on ECOCLIMAP-I LAI
and LSA-SAF LAI over Africa suggests that LSA-SAF LAI
is beneficial for land surface models intended for short time
scales, e.g. half-hourly and daily, at MSG/SEVIRI resolution.

We propose a practical methodology to use the biophysi-
cal products LSA-SAF LAI and FVC in land surface models,
correcting spurious data, filling gaps, and deriving sub-pixel
LAI estimates needed by the models using a land cover map.
Effects of the spatial scale and land cover map uncertainty
on the method have been investigated, and results show that
land cover uncertainty has an increasing impact on the less
represented PFTs. The proposed method is shown to be more
robust as the spatial scale considered is coarser. While wait-
ing for land cover maps with reduced uncertainty, corrections
of the errors on LAI by PFT are proposed for monitoring at
the finest possible scale.

Given the respective features of both LAI sources investi-
gated here, we have assessed the impact of using LSA-SAF
LAI instead of ECOCLIMAP-I in H-TESSEL evapotranspi-
ration simulations at MSG/SEVIRI resolution, both at local
scale and at large scale.

Statistical scores of the comparison of simulated latent
heat flux against local observations from ground measure-
ment sites are improved in most cases, and especially in
semi-arid climates. Amplitudes of anual cycles, as well as
phase shifts are more correctly taken into account in the
model compared to the use of the ECOCLIMAP-I database.

A 9-months simulation over a north–south transect in
Western Africa using LSA-SAF radiation products and
ERA-Interim meteorological variables, illustrates the im-
pact of using LSA-SAF vegetation parameters compared to
ECOCLIMAP-I database. An evaluation of the improvement
is based on the similarity of the simulated skin temperature

daily heating rates and the observed land surface temperature
heating rates from MSG/SEVIRI, showing a better global
agreement by using LSA-SAF biophysical variables.

Use of LSA-SAF LAI and FVC is therefore recommended
for near-real time applications of land surface models work-
ing at the MSG/SEVIRI scale or coarser and intending at
closely monitoring evapotranspiration. Moreover, it will im-
prove the land surface model applications over Africa, cap-
turing the full spatial, seasonal and inter-annual variability.

Appendix A

Least Square Algorithm application

LetM be the linear model matrix, representing the proportion
fi,j for each pixeli of determined PFTj .

M =

 f1,1 · · · f1,N

...
. . .

...

fM,1 · · · fM,N

 (A1)

Y is the observation vector, which contains the LSASAF
LAI i estimates for theM considered pixels.

Y =

 LSA − SAFLAI1
...

LSA − SAFLAIM

 (A2)

Now, letX be the solution vector containing the averaged
valuesVi over the domain for each involved ecosystem.

X =

 V1
...

VN

 (A3)

Therefore, the problem has the following simple linear form
(Eq.A4).

M · X = Y (A4)

Taking into account the retrieval uncertainty of the LSA-
SAF LAI and assuming it corresponds to the standard devia-
tion of a normal error distribution, we scale the matrixM and
the observation vectorY by weighting factors,σ−1

SAF,i . A ma-
trix W containing the weights is formed (Eq.A5), and new
matrix Mw (Eq. A6) and vectorsYw (Eq. A7) are defined.
We get to solve EqA8.

W =


1/σSAF,1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1/σSAF,M

 (A5)

Mw = W · M (A6)
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Yw = W · Y (A7)

Mw · X = Yw (A8)

Solving the linear set of equation using a least square
method, we obtain the LAI for each PFT. The solution in the
least square sense using the L2-norm,X, is given by Eq.A9,
wherebyMT

w is the transpose ofMw.

X = (MT
w · Mw)−1

· MT
w · Yw (A9)

To fasten the numerical computation of the solution, as
well as to avoid frequent difficulties in inverting large sparse
matrices, we reduce the matrixMw to its irreducible dimen-
sions, corresponding to the number of pixels times the num-
ber of PFTs occupying the size-defined neighbourhood. If
the matrix is non-invertible a singular value decomposition
algorithm is applied.
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typing of Land-SAF leaf area index algorithm with VEGETA-
TION and MODIS data over Europe, Remote Sens. Environ.,
113, 2285–2297,doi:10.1016/j.rse.2009.06.009, 2009.

Viterbo, P. and Beljaars, A. C. M.: An improved land surface pa-
rameterization scheme in the ECMWF model and its validation,
J. Climate, 8, 2716–2748, 1995.

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin,
P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y.,
Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M.,
and Wang, Y.-P.: Improving land surface models with FLUXNET
data, Biogeosciences, 6, 1341–1359,doi:10.5194/bg-6-1341-
2009, 2009.

Wipfler, E. L., Metselaar, K., van Dam, J. C., Feddes, R. A., van
Meijgaard, E., van Ulft, L. H., van den Hurk, B., Zwart, S. J., and

Hydrol. Earth Syst. Sci., 16, 2567–2583, 2012 www.hydrol-earth-syst-sci.net/16/2567/2012/

http://dx.doi.org/10.3390/s90503801
http://dx.doi.org/10.5194/bg-6-1027-2009
http://dx.doi.org/10.1029/2006GL026636
http://landsaf.meteo.pt
http://dx.doi.org/10.5194/bg-4-791-2007
http://dx.doi.org/10.5194/bg-6-129-2009
http://dx.doi.org/10.1016/j.rse.2007.08.013
http://dx.doi.org/10.1046/j.1365-2486.2003.00597.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00597.x
http://dx.doi.org/10.1029/2003JD003777
http://dx.doi.org/10.1029/2008JD010035
http://dx.doi.org/10.1080/01431161003743199
http://dx.doi.org/10.1029/2002JD002846
http://dx.doi.org/10.1016/j.rse.2009.06.009
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.5194/bg-6-1341-2009


N. Ghilain et al.: Benefits of LSA-SAF biophysical variables for evapotranspiration modelling 2583

Bastiaanssen, W. G. M.: Seasonal evaluation of the land surface
scheme HTESSEL against remote sensing derived energy fluxes
of the Transdanubian region in Hungary, Hydrol. Earth Syst. Sci.,
15, 1257–1271,doi:10.5194/hess-15-1257-2011, 2011.

Yang, W., Huang, D., Tan, B., Stroeve, J. C., Shabanov,
N. V., Knyazikhin, Y., Nemani, R. R., and Myneni, R.
B.: Analysis of leaf area index and fraction of PAR ab-
sorbed by vegetation products from the Terra MODIS
sensor: 2000–2005, IEEE Trans. Geosci., 44, 1829–1842,
doi:10.1109/TGRS.2006.871214, 2006a.

Yang, W., Shabanov, N. V., Huang, D., Wang, W., Dickinson, R.
E., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B.: Anal-
ysis of leaf area index products from combination of MODIS
Terra and Aqua data, Remote Sens. Environ., 104, 297–312,
doi:10.1016/j.rse.2006.04.016, 2006b.

www.hydrol-earth-syst-sci.net/16/2567/2012/ Hydrol. Earth Syst. Sci., 16, 2567–2583, 2012

http://dx.doi.org/10.5194/hess-15-1257-2011
http://dx.doi.org/10.1109/TGRS.2006.871214
http://dx.doi.org/10.1016/j.rse.2006.04.016

