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Abstract. Continuous measurements of net ecosystem CO2
exchange (NEE) using the eddy-covariance method were
made over an agricultural ecosystem in the southeastern US.
During optimum environmental conditions, photosyntheti-
cally active radiation (PAR) was the primary driver control-
ling daytime NEE, accounting for as much as 67 to 89% of
the variation in NEE. However, soil water content became the
dominant factor limiting the NEE-PAR response during the
peak growth stage. NEE was significantly depressed when
high PAR values coincided with very low soil water con-
tent. The presence of a counter-clockwise hysteresis of day-
time NEE with PAR was observed during periods of water
stress. This is a result of the stomatal closure control of pho-
tosynthesis at high vapor pressure deficit and enhanced res-
piration at high temperature. This result is significant since
this hysteresis effect limits the range of applicability of the
Michaelis-Menten equation and other related expressions in
the determination of daytime NEE as a function of PAR. The
systematic presence of hysteresis in the response of NEE to
PAR suggests that the gap-filling technique based on a non-
linear regression approach should take into account the pres-
ence of water-limited field conditions. Including this step is
therefore likely to improve current evaluation of ecosystem
response to increased precipitation variability arising from
climatic changes.

Correspondence to:M. Y. Leclerc
(mleclerc@uga.edu)

1 Introduction

Concerns over global climate change have generated an ef-
fort to understand how environmental changes, such as those
seen in temperature and precipitation, influence net carbon
exchange between terrestrial ecosystems and the atmosphere.
In addition to changes in average temperature and pre-
cipitation, the Intergovernmental Panel on Climate Change
(IPCC) expects the occurrence of extreme weather events
(i.e. drought and flood) to become more frequent and/or in-
tense (IPCC, 2007). The anticipated increase in both climate
variability and extreme events is presumed to adversely af-
fect plant growth and water availability. Everything else be-
ing constant, an increase in the number of hot days increases
potential evapotranspiration leading to drought. Hence, a
mechanistic understanding of how drought influences carbon
exchange between ecosystems and the atmosphere is asine
qua noncondition to anticipate possible impact of climate
change scenarios. Such results can also provide the model-
ing community with a better basis to improve and validate
their models.

The net ecosystem exchange of CO2 (hereafter referred to
as NEE) relies on the balance between CO2 uptake through
plant photosynthesis and CO2 emission through plant and
soil respiration generally referred to as ecosystem respiration
(Chapin et al., 2006). The NEE can be measured directly us-
ing the eddy-covariance method (hereafter referred to as EC),
which provides a spatially integrated net carbon exchange on
a continuous basis with minimal disturbance to the surround-
ing vegetation (Aubinet et al., 2000; Baldocchi et al., 2001).
With these continuous measurements, the derivation of an-
nual sums of NEE then becomes possible. However, due to
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a combination of inherent limitations in the applicability of
the measurement method and related data robustness, both
data rejection and missing data are unavoidable. This data
loss can be as much as 65–75% of a dataset spanning all
seasons (Baldocchi et al., 2001; Falge et al., 2001; Law et
al., 2002). Large resulting gaps in the dataset must be re-
constructed using several methods based on varying degrees
of empiricism to obtain a seasonal carbon balance. For in-
stance, gap-filling techniques are based on a wide range of
standard procedures, including linear interpolation (Falge et
al., 2001), look-up tables (Falge et al., 2001), moving aver-
ages (Falge et al., 2001; Reichstein et al., 2005), non-linear
regressions (Goulden, 1996; Falge et al., 2001; Suyker and
Verma, 2001), artificial neural networks (Papale and Valen-
tini, 2003; Papale et al., 2006), mechanistic models (Braswell
et al., 2005; Ooba et al., 2006), and the multiple imputation
method (Hui et al., 2004).

However, one of the conventional methods to replace miss-
ing data in NEE data in daytime conditions has been to re-
sort to the use of non-linear regressions (Falge et al., 2001;
Ooba et al., 2006). This approach is based on parameter-
ized non-linear equations (e.g. Michaelis-Menten equation)
to quantify the relationship between NEE and radiation (e.g.
photosynthetically active radiation; hereafter referred to as
PAR). While the failure using a non-linear equation to de-
scribe daytime NEE only as a function of radiation has been
previously observed in various ecosystems (Li et al., 2005;
Serrano-Ortiz et al., 2007; Holst et al., 2008; Wang et al.,
2008), to date a mechanistic explanation is still missing.

Peanut (Arachis hypogaeaL.) is a major crop grown under
both rainfed and irrigated conditions in the southeastern US.
Typically, peanut plants have to cope with unfavorable envi-
ronmental factors such as high temperature, low soil mois-
ture, and high vapor pressure deficit (hereafter referred to
as VPD) often resulting in drought stress. Drought affects
nearly all aspects of plant growth and most physiological
processes; however, the stress response depends on inten-
sity, rate, duration, and the stage of plant growth. Incon-
sistent effects of these environmental stresses on physiolog-
ical depression have been reported in previous studies (e.g.
Bhagsari et al., 1976; Nautiyal et al., 1995; review by Reddy
et al., 2003; Lauriano et al., 2004). Drought stress also alters
the development of leaf area and changes the plant physiol-
ogy. As the cumulative deficit in soil water grows, plants
close their stomates to prevent further water loss through
transpiration (Reddy et al., 2003). As a consequence, the
CO2 assimilation is also reduced. The long-term effect of
soil water deficit on canopy assimilation is a reduction in leaf
area. Drought reduces leaf area by folding, wilting, slow-
ing leaf expansion, and shutting off the supply of carbohy-
drates (Clifford et al., 1993; Collino et al., 2001; Reddy et
al., 2003). The consequent reduction in leaf area reduces
plant’s ability to capture light resources (Chapman et al.,
1993a; Collino et al., 2001), resulting in a negative influence
on biomass.

Measurements made in most of the above studies were
conducted at the leaf scale, e.g. clamp-on leaf chambers,
(Nautiyal et al., 1995; Bhagsari et al., 1976; Lauriano et al.,
2004). There is still a lack of information on a continuous
basis on the effect of drought stress on carbon exchange at
the canopy scale. To this end, EC flux measurements were
carried out in a rainfed peanut field. The objectives of the
present study are to 1. examine the influence of drought
stress on daytime NEE and 2. to explain the inadequacy of
the Michaelis-Menten equation in describing the NEE-PAR
relationship.

2 Materials and methods

2.1 Site description

The experiment was conducted in a non-irrigated peanut
field located in Unadilla, Georgia, USA (32◦10′39.72′′ N,
83◦38′24.48′′ W) in 2007. The area is flat with a slope less
than 2% and large enough to provide at least 210 m fetch in
all directions. The top 10 cm of soil is classified as sandy
loam, composed of 74% of sand, 16% of silt, and 10% of
clay with a bulk density of 1.19 g cm−3. The field capac-
ity was 0.118 m3 m−3 and the permanent wilting point was
0.042 m3 m−3. Total carbon and nitrogen content of soil were
0.43 and 0.03%, respectively.

Fertilizer (N:P:K) was applied on day of year (hereafter
referred to as DOY) 93 at a rate of 336 kg ha−1. Peanut
was planted with 6.6 kg ha−1 of phorate on DOY 125. Tra-
ditional herbicides including Gramoxone (1, 1-dimethyl-4, 4
bipyridinium) at 1.75 L ha−1, Storm (bentazon and acifluor-
fen) at 1.17 L ha−1, and 2, 4-DB (4-(2, 4-dichlorophenoxy)
butyric acid) at 0.44 L ha−1 were applied on DOY 157 based
on the typical peanut weed control program the Southeast.
Leaf spot and white mold were controlled using Bravo Ul-
trex (on DOY 197, DOY 232, and DOY 253) and Headline
2.09EC (on DOY 1176 and DOY 211). Peanut was harvested
on DOY 283 with a yield of 4783 kg ha−1.

2.2 Field measurements and data processing

Fluxes of carbon dioxide, water vapor, heat and momen-
tum were continuously measured using EC method from
DOY 172 to DOY 271. The flux system was mounted at
1.5 m above the ground and consisted of a fast response 3-
dimensional sonic anemometer (CSAT3, Campbell Scien-
tific, Logan, UT) and a fast response open-path CO2/H2O
infrared gas analyzer (IRGA, Li 7500, Li-Cor Inc., Lincoln,
NE). The IRGA was placed with a 30◦ tilt angle to mini-
mize accumulation of dust and water droplets on the win-
dows. Calibration of the IRGA was done prior to the ex-
periment campaign using nitrogen gas and 600 ppm CO2 gas
to calibrate the CO2 and water vapor zeros and the span of
CO2, respectively. The span of water vapor was calibrated
with dew point generator (Li 610, Li-Cor Inc., Lincoln, NE).
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The three wind components, sonic virtual temperature, wa-
ter vapor, and CO2 density were sampled at rate of 10 Hz.
Half-hourly fluxes were calculated on-line and collected by
CR1000 dataloggers (Campbell Scientific, Logan, UT). All
raw 10 Hz data were saved to a compact flash card (Sandisk,
Sunnyvale, CA) for later reprocessing. The eddy-covariance
flux system was powered by two 12 VDC deep cycle batter-
ies that were charged using 120 W solar panels.

Along with the EC tower, standard meteorological and
soil parameters were measured continuously with an array
of sensors. Net radiation (Rn) was measured using a net
radiometer (Model NR-LITE, Kipp and Zonen USA Inc.,
Bohemia, NY) mounted on the EC tower, 1.8 m above the
ground surface. The canopy temperature was measured at
canopy height using a precision infrared thermocouple sen-
sor with an accuracy of±0.4◦C (IRTS-P5, Apogee Instru-
ment Inc., Logan, UT). Belowground measurements were
made at the base of tower; include soil temperature and volu-
metric soil water content profiles. Soil temperature at depths
of 0.02, 0.05, 0.08, and 0.30 m was measured using a custom-
built chromel-constantan thermocouple. Soil volumetric wa-
ter content was measured using time domain reflectometry
sensors (CS615, Campbell Scientific, Logan, UT) at depths
of 0.02 and 0.02 to 0.05 m. The soil heat flux (G) was deter-
mined using the averaging of two soil heat plates measure-
ments (HFT-3, Campbell Scientific, Logan, UT). The plates
were buried at a depth of 0.08 m in two distinct locations;
one was between peanut rows and the other was within a row.
The average temperature of the soil layer above the plate was
measured using 4 parallel thermocouples (TCAV, Campbell
Scientific, Logan, UT). The thermocouples were placed at
the depths of 0.02 and 0.06 m to obtain the average temper-
ature of the soil layer above each heat flux plate. The total
heat flux at the soil surface is then calculated by adding the
heat flux measured by the plate to the energy stored in the soil
layer. Storage of heat in the soil above the soil heat flux plate
was calculated by multiplying the change in soil temperature
over the averaging period by the soil heat capacity. The value
used for the heat capacity of dry soil was 0.84×10−3 J kg−1

K−1.
An automatic weather station (ET106, Campbell Scien-

tific, Logan, UT) with 30-min average data output was in-
stalled at 2 m above the ground surface at the study site to
measure air temperature, relative humidity, wind speed and
wind direction, solar radiation, and precipitation. The station
was powered by a 7 Ahr sealed-rechargeable battery that was
charged with a 1000 W solar panel. All meteorological and
belowground measurements were averaged over 30-min peri-
ods and stored to a datalogger (CR10X, Campbell Scientific,
Logan, UT). In addition, the leaf area index (hereafter re-
ferred to as LAI) was determined at intervals of 7 to 10 days
with an electronic leaf area meter (LAI-2000, Li-Cor Inc.,
Lincoln, NE) throughout the season. The canopy tempera-
ture sensor was replaced on DOY 180. Gaps in solar radia-
tion, temperature, and precipitation data were filled with data

from a nearby meteorological station located approximately
8 km. Incident PAR was estimated from solar radiation.

2.3 Data analysis

The raw 10 Hz data from the sonic anemometer and the in-
frared gas analyzer were checked for spikes before calculat-
ing eddy-covariance fluxes. This was done following Vickers
and Mahrt (1997). Each individual data point of the three-
velocity components from the sonic anemometer was also
rotated according to a planar fit rotation to virtually align
the sonic anemometer axis along the long-term streamlines
(Wilczak et al., 2001). Before half-hourly fluxes of CO2
(NEE), latent heat (λE), and sensible heat (H) were calcu-
lated, the time series were linearly detrended. Finally, the
flux data were corrected for variations in air density due to
fluctuations in water vapor and heat fluxes, i.e. using the
Webb, Pearman and Leuning correction (Webb et al., 1980).
Data collected during periods with rain or dew was rejected.
The analyses were conducted using a C++ program written
in-house.

It has been recognized for some time by the flux monitor-
ing community that the EC technique is likely to underesti-
mate eddy fluxes in calm conditions at night, but there is no
consensus on how to correct the problem. Most researchers
screen nighttime data using a friction velocity (u∗) threshold
(Goulden et al., 1997; Aubinet et al., 2000; Reichstein et al.,
2005; Papale et al., 2006). Estimation ofu∗ threshold values
followed Reichstein et al. (2005) using the online calcula-
tion software found athttp://gaia.agraria.unitus.it/database/
eddyproc. In calm nights, 78.68% of the carbon flux data
was rejected so nighttime flux data are not presented in this
study.

In this study, daytime is defined as the period with so-
lar radiation>20 W m−2. Half-hourly data were fitted us-
ing a Michaelis-Menten equation (Michaelis and Menten,
1913) to test the ability of the following model to describe
the dependence of NEE (µmol CO2 m−2 s−1) on solar PAR
(µmol photons m−2 s−1):

NEE=
α ·PAR·NEEsat

α ·PAR+NEEsat
+Re, (1)

whereα is the apparent quantum yield or the initial slope of
the light response curve (µmol CO2 µmol−1 photons), NEEsat
is the saturation value of NEE at an infinite light level, and
Re is the ecosystem respiration in daytime conditions.

The canopy conductance was used to assess stomatal con-
trol on CO2 gas exchange and evapotranspiration. With no
independent measurements of transpiration or soil evapora-
tion available in this study, a clean separation of the two
components is not possible with EC measurements. There-
fore, half-hourly surface conductance (hereafter referred to
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asgs) was calculated by rearranging the Penman-Monteith
equation (Monteith and Unsworth, 1990):

1

gs
=

[(
1

γ

)
β −1

](
1

ga

)
+

ρ ·Cp ·VPD

γ ·λ ·E
, (2)

where 1 is the rate of change of saturation vapor pres-
sure with temperature,γ the psychometric constant,β the
Bowen ratio which isH /λE, ρ andCp the density and spe-
cific heat of air, respectively, VPD the vapor pressure deficit
which is calculated from air temperature and relative humid-
ity data, andga the aerodynamic conductance was obtained
from sonic anemometer output as (Monteith and Unsworth,
1990):

1

ga
=

u

u2
∗

+6.2·u−0.67
∗ , (3)

whereu is the mean wind speed.
We examined the energy balance closure which is of-

ten considered to be an independent method to assess the
reliability of the EC measurements (Wilson, 2002; Aires,
2008). The energy balance closure was tested using a lin-
ear regression between the amount of the available energy
(Rn−G) and the sum of sensible heat and latent heat fluxes
(H + λE) using half-hourly data collected during the ex-
periment. The relationship we found was: (H + λE) =

0.74(Rn−G)+7.22, with R2
= 0.96. This result suggests

that the EC measurements underestimateH +λE by 26%.
Although, the energy balance closure is not perfect, it is typ-
ical of the range found at other flux sites. In a comparison of
the energy balance closure of 22 FLUXNET sites, Wilson et
al. (2002) reported slope, intercept andR2 ranging, respec-
tively, between 0.53 and 0.99,−32.9 and 36.9 W m−2, and
0.64 and 0.36 without any effect of vegetation height. In the
present study, one of the apparent causes for the imbalance
may relate to different source scales of measurements inRn
andG compared toH andλE (Schmid, 1994; Wilson, 2002).
The net radiometer and soil heat flux plates measure radiation
exchange from a relatively small portion of the landscape
near the measurement tower, while EC measurements rep-
resents an area hundreds of meters square in area (Schmid,
1994). Other possible source of errors lie in the contribution
of sub-mesoscale eddies to sensible and latent heat fluxes,
choice of theu∗ threshold, and non-inclusion of the heat stor-
age between the measurement level and the ground. Meyers
and Hollinger (2004) found that including the heat storage
between the measurement level and the ground, as well as
the ground heat storage above the plate in the energy balance
of a maize crop and a soybean crop, increase the regression
slopes of 3% to 6%.

3 Results and discussion

3.1 Seasonal variation in environmental conditions and
leaf area index

Over the study period, seasonal trends of soil and canopy
temperatures followed a pattern similar to that of air tem-
perature (hereafter referred to asTa). Daily average of soil,
canopy and, air temperature varied from 21.7 to 31.7◦C,
20.6 to 33.7◦C, and 19.4 to 31.2◦C, respectively. The
canopy temperature was slightly higher than the soil and
air temperatures. However, maximum values were observed
on DOY 222 (Fig. 1a). The total rainfall at the site was
328 mm (Fig. 1b). Soil water content (hereafter referred to
as SWC) followed patterns of precipitation. Maximum daily
average SWC (0.135 m3 m−3) across the upper soil layer
(0.02–0.05 m) occurred on DOY 184. In particular, there
was a gradual decrease in soil water content below wilt-
ing point (0.042 m3 m−3) on DOY 217–228 and DOY 250–
255, suggesting that peanut plants may have experienced
water stress during those periods (Fig. 1b). LAI rapidly
increased during crop development reaching the maximum
value of 7.81 m2 m−2 around DOY 210. While the mini-
mum LAI of 2.92 m2 m−2 was found during periods of stress
(DOY 217–228), the corresponding LAI reduction is due
to either drought-induced limitation of leaf area expansion
or temporary leaf wilting or rolling during periods of se-
vere stress (Chapman et al., 1993b; Clifford et al., 1993).
With 52 mm of total precipitation on DOY 235, LAI subse-
quently recovers reaching the values of 5.06 m2 m−2 to then
steadily decline throughout the end of study period as the
plant senesces (Fig. 2).

3.2 Responses of daytime NEE to PAR

PAR is the main climatic factor that drives photosynthesis
processes. To examine how NEE responds to change in PAR,
we use a rectangular hyperbolic Michaelis-Menten function
(Eq. 1) to describe the response of NEE averaged over a
30-min period (Fig. 3). In general, peanuts are fast grow-
ing so that the functional response of NEE to PAR was de-
termined separately for each growing stage using bins of 7
to 10 consecutive days of data (Table 1). The rectangu-
lar hyperbolic function was used successfully to describe
the relationship between NEE and PAR. Other than dur-
ing DOY 219–226 and DOY 227–234, days during which
both temperature (32±4.1 and 31.5±4.1◦C, respectively)
and VPD (2.00±1.18 and 2.06±1.19 kPa, respectively) were
high and SWC (0.037±0.002 and 0.048±0.020 m3 m−3, re-
spectively) was low (Table 1), the Michaelis-Menten func-
tion succeeded in describing the NEE-PAR relationship. Fig-
ure 3 shows the large scatter of the data points during these
periods should be noted, highlighting the dependence of
NEE-PAR relationship on other environmental factors. This
will be discussed in greater detail later.
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Fig. 1. Seasonal variation in(a) daily average of air temperature,
canopy temperature, and soil temperature at the depth of 2 cm;(b)
daily average soil water content (SWC) at the depth of 2–5 cm and
daily total precipitation (PTT) over the course of the study. DOY 1
means days of year.

Based on the statistical analysis using Eq. (1), the regres-
sion coefficients indicated that the change in PAR accounted
for 67 to 89% of the variations in NEE. Theα values varied
from −0.0183 to−0.0438 µmol CO2 µmol−1 photons. This
value was well within the range ofα reported for crops and
grasslands (−0.008 to −0.465 µmol CO2 µmol−1 photons;
Ruimy et al., 1995; Valentini et al., 1995; Suyker and Verma,
2001; Suyker et al., 2004). The lowα at the end of the study
was most likely due to late life cycle of the peanut plant, then
in its senescent phase.

In order to further examine the dependence of the NEE-
PAR response onTa, VPD, and SWC, daytime NEE ob-
tained during the peak growing stage (DOY 201–240) were
separated into threeTa classes (Ta < 28◦C, 28< Ta <

32◦C, andTa > 32◦C), three VPD classes (VPD<1.0 kPa,
1.0 < VPD<2.0 kPa, and VPD>2.0 kPa), and three SWC
classes (SWC<0.04 m3 m−3, 0.04<SWC<0.07 m3 m−3,
and SWC>0.07 m3 m−3) (Fig. 4a–c). Within each group,
the NEE data were further subdivided by PAR into
200 µmol CO2 µmol−1 photons increments ranging from 0 to
2200 µmol CO2 µmol−1 photons and then were bin averaged
for each PAR subgroup.

Results showed NEE increased as PAR increased for all
temperature conditions (Fig. 4a). These results are in general
agreement with previous findings suggesting that peanuts

Fig. 2. Seasonal variation in leaf area index (LAI)± standard error
over the course of the study.

perform well in the temperature range between 24 to 33◦C
(Saxena et al., 1983). However, at high temperature (Ta >

32◦C), the NEE was lower than the other two tempera-
ture ranges. Similar toTa, NEE increased with PAR in-
creased at all VPD ranges (Fig. 4b). NEE-PAR response
curves at VPD<1.0 kPa and 1.0<VPD<2.0 kPa mostly over-
lapped each other, indicating that there were no signifi-
cant effects on NEE-PAR relationships between these two
VPD ranges. When peanut was subjected to high VPD
(>2.0 kPa), NEE was lower than the other two VPD con-
ditions. Unlike Ta and VPD, there were pronounced dif-
ferences in the light-response curves among different soil
water regimes (Fig. 4c). When SWC was not limiting
(SWC>0.04 m3 m−3), NEE increased with PAR and there
was no indication of canopy light saturation. For very low
SWC (<0.04 m3 m−3), NEE increased with PAR at first and
then decreased considerably (NEE gets more positive re-
sulted from ecosystem loss carbon to the atmosphere) when
PAR exceeded 1300 µmol photons m−2 s−1. A reduction in
NEE in dry conditions has been observed in different ecosys-
tems (Sims and Bradford, 2001; Hastings et al., 2005; Li
et al., 2005; Fu et al., 2006; Aires et al., 2008b; Holst et
al., 2008; Wang et al., 2008) and caused by midday stomata
closure when irradiance, temperature, and VPD are all high,
when the SWC is low (Sims and Bradford, 2001; Li et al.,
2005; Aires et al., 2008b) or by enhanced ecosystem respira-
tion at high temperature (Fu et al., 2006; Holst et al., 2008).

3.3 Response of daytime NEE to water stress

As discussed above, carbon uptake in this ecosystem re-
sults from several factors, including PAR, LAI,Ta, VPD,
and SWC. Among these factors, SWC was the dom-
inant factor limiting the NEE-PAR response of peanut
during the peak growing stages (Fig. 4c). To illus-
trate the underlying physiological mechanisms of depres-
sion of NEE, we investigated the diurnal course of NEE

www.biogeosciences.net/7/1159/2010/ Biogeosciences, 7, 1159–1170, 2010
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Table 1. Values of parameters in the Michaelis-Menten function (Eq. 1).

LAI SWC Ta VPD α NEEsat Re
Treatment (m2 m−2) (m3 m−3) (◦C) (kPa) (µmol µmol−1) (µmol CO2 m−2 s−1) (µmol CO2 m−2 s−1) n R2

DOY 181–190 4.72 0.073±0.026 27.1±3.3 1.22±0.71 −0.0358±0.0061 −35.69±2.08 5.35±1.06 235 0.78
DOY 191–200 4.55 0.061±0.018 27.9±3.1 1.20±0.70 −0.0350±0.0041 −56.22±3.76 5.27±0.96 234 0.88
DOY 201–210 6.00 0.074±0.035 27.3±3.4 1.23±0.69 −0.0328±0.0044 −62.58±6.26 4.65±1.06 244 0.84
DOY 211–218 7.81 0.065±0.029 28.8±3.3 1.28±0.73 −0.0359±0.0069 −51.35±4.87 6.14±1.54 192 0.76
DOY 219–226 0.037±0.002 32.1±4.1 2.00±1.18 −0.4306±0.9883∗ −24.02±21.67∗ 16.68±22.17∗ 188 0.10
DOY 227–234 2.92 0.048±0.020 31.5±4.1 2.06±1.19 −0.0921±0.1226∗ −18.71±6.92 8.60±7.96∗ 183 0.16
DOY 235–244 5.06 0.088±0.025 26.8±3.0 0.70±0.52 −0.0321±0.0036 −50.23±3.70 5.22±0.78 194 0.89
DOY 245–254 4.74 0.050±0.023 27.6±2.9 1.31±0.70 −0.0438±0.0091 −28.72±1.18 5.63±1.26 233 0.75
DOY 255–264 0.064±0.024 24.4±3.1 0.80±0.50 −0.0305±0.0077 −20.56±1.17 3.87±1.04 203 0.67
DOY 265–271 4.06 0.075±0.016 26.3±3.3 0.89±0.64 −0.0183±0.0057 −19.06±2.19 4.03±1.00 129 0.69

LAI, leaf area index; SWC, soil water content at 2-5 cm depth;Ta, air temperature at 2 m above the ground; VPD, atmospheric water vapor
deficit atTa; α, the apparent quantum yield; NEEsat, the saturation value of NEE at an infinite light level not significant;Re, the ecosystem
respiration during the daytime; n, observation; and R2, the coefficient of determination;
∗ not significant atP ≤ 0.05.

Fig. 3. Example of light-response curves at different growth stages during the study period. The Michaelis-Menten equation as described in
Eq. (1) was used to fit the data, and the regression coefficients (R2) are presented.

and gs on clear days in two contrasting conditions. Dur-
ing non-stress days, corresponding to an average of SWC
of 0.075±0.026 m3 m−3, similar trends were observed for
Ta and VPD. Ta and VPD increased during the daytime
reaching the maximum at 31.7±1.4◦C and 2.05±0.39 kPa,
respectively, in the late afternoon (Fig. 5a). NEE in-
creased to a maximum of 26.71±5.72 µmol CO2 m−2 s−1

at about midday and then decreased as the afternoon pro-
gressed (Fig. 5b). The maximumgs appeared around noon,
which indicates sufficient water available for the ecosys-
tem (Fig. 5b). During periods with water stress, with

the average of SWC of 0.037±0.002 m3 m−3, the diur-
nal course ofTa and VPD were similar to those on the
non-stress days, but the maximum values (36.9±1.6◦C for
Ta, 3.93±0.83 kPa for VPD) were much higher than dur-
ing the non-stress days (Fig. 5c). The diurnal trends of
NEE followed a pattern similar togs, which increased
to a maximum (15.98±3.16 µmol CO2 m−2 s−1 for NEE,
0.0107±0.0074 m s−1 for gs) around mid-morning and then
rapidly declined as VPD increased (Fig. 5d). In the late af-
ternoon when VPD decreased, the NEE andgs decreased and
recovered slightly approaching conditions seen earlier during
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Fig. 4. Relationship between net ecosystem CO2 exchange (NEE)
and photosynthetically active radiation (PAR) under(a) different air
temperature (Ta), (b) different vapor pressure deficit (VPD), and(c)
under different soil water content (SWC) during the peak growing
stages (DOY 201–240). NEE data were averaged with PAR bins.
Bin width is 200 µmol photons m−2 s−1. Bars indicate standard de-
viations.

the day (Fig. 5d). The recovery ofgs was small because of
the reduced plant transpiration and soil evaporation as both of
these were limited by low soil water content (Fu et al., 2006).
Early daytime peaks in NEE have been observed previously
at Metolius (Anthoni et al., 1999) and in a California grass-
land (Valentini et al., 1995). Valentini (1995) indicated that
afternoon stomatal closure can have a dramatic impact on the
diurnal cycle of assimilation, resulting in an early morning
peak in NEE, i.e. a response often enhanced during periods
of low soil water content. This is consistent with theoretical
studies of optimal stomatal control suggesting that afternoon
CO2 uptake should be suppressed as soil drying progresses
(Cowan, 1982)

The distinct hysteresis loop was evident in the relation-
ship between NEE and PAR for both non-stress and water-
stress days (Fig. 6a, b). However, the hysteresis loop
was much reduced in area on the non-stress days when
compared to water-stress days. On non-stress days, as
PAR increased in the morning, NEE increased (gets more
negative) reaching the peak value at the highest PAR of
2080 µmol photons m−2 s−1 and as PAR decreased in the af-
ternoon, NEE declined (Fig. 6a). The result suggests that
Ta, VPD, and SWC are not the limiting factors in the NEE-
PAR response. During water-stress conditions, as PAR in-
creased in the morning, NEE increased, reaching the peak
value at PAR of 1100 µmol photons m−2 s−1 and then rapidly
decreased, reaching almost zero at the end of morning. As
PAR decreased, NEE remained constant nearly zero through-
out the afternoon (Fig. 6b). Zeppel et al. (2004) explained
that hysteresis occurs when an increase in an independent
variable,x, does not cause the same response in a dependent
variable,y, when the variablex decreases. In the morning,
as PAR increased, carbon uptake increased, but in the after-
noon, carbon uptake at any given PAR was lower than the
rate in the morning at the same PAR.

The diurnal pattern of NEE depends on the interac-
tion between the atmosphere and physiological response.
Körner (1995) attributed the asymmetric (hysteresis) shape
of the diurnal cycle of NEE during dry periods with high
VPD to a limitation of photosynthesis due to stomatal clo-
sure at high VPD or to enhanced respiration induced by high
temperatures. Moreover, a wide range of studies have shown
that ecosystem respiration also exhibits hysteresis. This may
be attributed either to the fact that temperature is out of phase
between the different levels from leaf to deep soil (Gaumont-
Guay et al., 2006; Graf et al., 2008; Pingintha et al., 2010),
to a lagged response of root respiration to light (Tang et al.,
2005), or both (Bahn et al., 2008). In the present study,
the daytime NEE data obtained during non-stress and water-
stress days was compiled using different bins ofTa and VPD.
Bin width was 2◦C for Ta and 0.5 kPa for VPD, respectively.
The NEE data were averaged over each bin regardless of
PAR, and then were plotted againstTa and VPD in Fig. 7a
and Fig. 7b, respectively. Clearly, under non-stress condi-
tions, NEE almost linearly increased asTa (Fig. 7a) and VPD
(Fig. 7b) increased. In contrast, under water-stress condi-
tions, NEE increased withTa until approximately 29◦C, then
decreased with any additional increase inTa (Fig. 7a). Simi-
larly, NEE also increased with increasing VPD and decreased
as VPD above 1.2 kPa (Fig. 7b).

Bhagsari et al. (1976) observed large reductions in pho-
tosynthesis and stomatal conductance as the relative water
content of peanut leaves decreased from 80 to 75%. They
further concluded that the main effect of a soil water deficit
on leaf carbon exchange rate is exerted through stomatal clo-
sure. Reddy et al. (2003) reported also a decrease in leaf
mesophyll conductance during water stress. This feature has
been suggested to be of importance as water stress increases,
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Fig. 5. Diurnal variations of negative net ecosystem CO2 exchange (-NEE), surface conductance (gs) and correspondingly environmental
factors of air temperature (Ta) and vapor pressure deficit (VPD) on clear days under non-stress conditions (a andb, measured on DOY 210,
212, 213, 214, and 216) and water-stress conditions (c andd, measured on DOY 220, 222, 225, 226, and 227). Bars indicate standard
deviations.

because it limits the transfer of CO2 from the intercellular
air spaces to the carboxylation sites (Bogi and Loreto, 1989)
results in a reduction in photosynthesis. It is evident that the
reduction of photosynthesis was related to the variation ofgs
with water-stress (Anthoni et al., 2002; Aires et al., 2008b).
In our case, under water-stress days without the limitation of
PAR (>1000 µmol photons m−2 s−1), decreasing ings with
increasing VPD was observed (R2

= 0.95; Fig. 8). Consider-
ing the consequences of water stress, Oguntunde (2005) also
found a strong correlation between canopy conductance and
VPD in stressed cassava at non-limiting solar radiation. The
observed decrease ings with increasing VPD corresponds to
a decrease in carbon uptake, indicating strong stomatal con-
trol. These results inferred that during times when plants
were subject to water stress, the afternoon NEE decreased
caused by a limitation of photosynthesis due to stomatal clo-
sure at high VPD. Furthermore, since ecosystem respiration,
a significant fraction of NEE, typically increases with tem-
perature (e.g. Reichstein et al., 2005; Fu et al., 2006; Wang
et al., 2008), the higher afternoon temperatures may have led
to a decrease in NEE during that time of day (Fu et al., 2006).
We can then infer that the suppression of NEE in the peanut
ecosystem during periods of water stress resulting from a
limitation of photosynthesis attributed to stomatal closure
at high VPD and enhanced respiration due to high temper-
ature, is responsible for a large of hysteresis loop. The con-
sistent presence of hysteresis appears to limit the ability of
the Michaelis-Menten function to adequately predict daytime
NEE as a function of PAR. Future work should be done to
construct a gap-filling model that takes into account tempera-
ture and vapor pressure deficit, both variables of significance

Fig. 6. The relationship between photosynthetically active radiation
(PAR) and net ecosystem CO2 exchange (NEE) on clear days under
(a) non-stress conditions (measured on DOY 210, 212, 213, 214,
and 216) and(b) water-stress conditions (measured on DOY 220,
222, 225, 226, and 227). The arrows indicate the direction of the
hysteresis effect.
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Fig. 7. The response of net ecosystem CO2 exchange (NEE) to(a)
air Temperature (Ta) and(b) vapor pressure deficit (VPD) on clear
days under non-stress conditions (measured on DOY 210, 212, 213,
214, and 216) and water-stress conditions (measured on DOY 220,
222, 225, 226, and 227). NEE was bin averaged. Bin size was 2◦C
for Ta and 0.5 kPa for VPD, respectively. Bars indicate standard
deviations.

in water-stressed conditions, and apply these finding to other
ecosystems.

4 Conclusions

We quantified NEE and its response to drought stress over
a rainfed peanut field during the growing season using the
eddy-covariance method. PAR was the primary driver con-
trolling daytime NEE, accounting for 67 to 89% of the vari-
ations in NEE during the peanut growing season. How-
ever, Michaelis-Menten model describing NEE during day-
time as a function of PAR could not be used during por-
tions of the peak growing stage, indicating that other envi-
ronmental variables became proportionally more important
in controlling NEE during these periods. We found that, for
very low soil water content conditions (SWC<0.04 m3 m−3),
NEE significantly decreased when PAR values exceeded
1300 µmol photons m−2 s−1. Results suggest that soil water
content was the dominant factor limiting the NEE-PAR re-
sponse of peanut during the peak growing stage.

Fig. 8. Response of half-hourly surface conductance (gs)

to vapor pressure deficit (VPD) during water-stress condi-
tion (measured on DOY 220, 222, 225, 226, and 227) when
PAR>1000 µmol photons m−2 s−1.

A pronounced hysteresis in NEE was observed in both
non-stress and water-stress conditions as a function of PAR.
However, the magnitude of hysteresis was much larger dur-
ing water-stress days than non-stress days. NEE was sup-
pressed under high air temperature and vapor pressure deficit
during periods of water stress due to higher ecosystem respi-
ration at high temperatures and stomatal limitation of photo-
synthesis at high vapor pressure deficit.

The resultant large hysteresis loop leads to the failure of
the Michaelis-Menten function in describing the NEE-PAR
relationship. Previous studies have described the effect of
high vapor pressure deficit and temperature on net ecosystem
CO2 exchange, but the characterization of these variables im-
pact being linked through hysteresis is largely unexplored.
This research will aid in developing more robust gap filling
methodologies. Further studies of water-limited ecosystems
are needed to develop improved models during these extreme
environmental conditions to more reliably predict long-term
NEE. This in turn should lead to improvements in our esti-
mation of the global carbon balance.
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