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Abstract. The main purpose of this study is to provide a
simple statistical analysis of several stability indices and pa-
rameters for extreme and non-extreme thunderstorm events
during the period 1997 to 2001 in Cyprus. For this study, ra-
diosonde data from Athalassa station (35◦1′ N, 33◦4′ E) were
analyzed during the aforementioned period. The stability in-
dices and parameters set under study are the K index, the
Total Totals (TT) index, the Convective Available Potential
Energy related parameters such as Convective Available Po-
tential Energy (CAPE), Downdraft CAPE (DCAPE) and the
Convective Inhibition (CIN), the Vorticity Generator Param-
eter (VGP), the Bulk Richardson Number (BRN), the BRN
Shear and the Storm Relative Helicity (SRH). An event is
categorized as extreme, if primarily, CAPE was non zero and
secondary, if values of both the K and the TotalTotals (TT)
indices exceeded 26.9 and 50, respectively. The cases with
positive CAPE but lower values of the other indices, were
identified as non-extreme. By calculating the median, the
lower and upper limits, as well as the lower and upper quar-
tiles of the values of these indices, the main characteristics of
their distribution were determined.
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(lefele@cytanet.com.cy)

1 Introduction

Stability indices have been developed and used for both re-
search and operational forecasting of severe weather and
thunderstorms by quantifying the thermodynamic instabil-
ity with the aid of radiosonde data. In general, it should be
noted that all the stability indices describe the potential for
convection, but the thresholds may vary with geographical
location, season and synoptic situation. This paper is dealing
with the statistical analysis of 9 parameters and/or indices
in the area of Cyprus; the CAPE, DCAPE, CIN, BRN, SRH,
VGP, BRNsh, TT and K index. In forecasting the most severe
convective storms, which also tend to be those that are long-
lasting and rotating, parameters such as the Bulk Richard-
son Number (Weisman and Klemp, 1982), BRN shear (Ras-
mussen and Wilhelmson, 1983) and storm-relative helicity
SRH (Davies-Jones, 1984) have been used. These parame-
ters gained acceptance in practical applications through the-
oretical, numerical modeling and observational studies. The
definition and interpretation of the various indices can also be
found online(National Weather Service, 2010) and inKönig
(2002). The present analysis aims to determine the ranges of
values of the aforementioned indices for the occurrence of
extreme and non extreme weather events.

2 Methodology

From a 5-year period thermodynamic indices and parame-
ters data base, the dates with a non zero CAPE were se-
lected. For these dates the atmosphere had the potential to
give extreme or non-extreme thunderstorm events. From
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Fig. 1. The distribution of the values of the K and TT indices of all
cases with non-zero value of CAPE.

weather events were observed, according to the monthly re-
port of the Meteorological Service of Cyprus, were selected.
The number of observed extreme weather cases was much
larger, but only the cases where all indices values were avail-
able were set under study. For these two groups of days, the
ones that the potential index and/or parameter values sug-
gested to be associated with extreme weather and the ones
that extreme weather actually occurred, the mean values of
the aforementioned indices and/or parameters were studied.

3 Results

3.1 K and TT indices

Figure 1 shows the statistical distribution of all the non-zero
CAPE soundings. 75% of the soundings have K index values
below 26.9 and TT index values below 50. These two values
were used for the definition of an extreme event,i.e. one
having K and TT values higher than the above thresholds,
all other non-zero CAPE events being categorized as non-
extreme.

3.1.1 K index

This index is due to George (1960) and is defined by

K = (T850 − T500) + D850 − (T700 − D700) (1)

Here,Ti andDi denote the temperature and dew point tem-
perature at a height corresponding to(i) hPa. The K index
is a measure of the thunderstorm potential based on vertical
temperature lapse rate, moisture content of the lower atmo-
sphere, and the vertical extent of the moist layer. For the days
with observed extreme weather, the upper quartile was not
reached, on an annual base; it was limited within the median
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Fig. 2. The distribution of the values of the CAPE index for the
days where extreme (right) and non-extreme (left) events occurred.

and the upper quartile. Nevertheless, it seems to be indica-
tive during summer and autumn, while in winter and spring
period lower values of around22◦C, should alert for possible
extreme weather (Appendix-Table A2).

3.1.2 Total Totals index

Totals Indices: The Total Totals index is attributable to Miller
(1972). It is defined as the sum of two indices:

TT = VT + CT (2)

where VT is the Vertical Totals index, defined byVT =
T850 − T500 , and the Cross Totals index, CT, defined by
CT = D850 − T500. During the observed extreme cases the
upper quartile is overreached in spring and summer and in
autumn and winter had slightly lower TT values, of almost
50◦C (Appendix-Table A2).

3.2 Statistical analysis of the extreme and non extreme
weather cases

3.2.1 CAPE: Convective Available Potential Energy

CAPE is the maximum energy available to an ascending par-
cel and is given by

CAPE =

∫ pf

pn

(αp − αe) dp, (3)

wherepn is the pressure at the level of neutral buoyancy,pf

is the pressure at the level of free convection,αe the specific
volume of the environment andαp that of a parcel ascending
moist-adiabatically from the levelpf . The 75% of the non
extreme cases can occur with CAPE less than 860.8Jkg−1,

Fig. 1. The distribution of the values of the K and TT indices of all
cases with non-zero value of CAPE.

the aforementioned dates, in order to have more realistic
results, a second selection was made; only the dates for
which the values of all the thermodynamic indices and pa-
rameters were available were set under further study. For
these cases, the median, the lower and the upper quartile of
the K and TT indices were calculated and their distribution
was presented graphically using a “box-and-whisker” plot.
The latter provides a convenient, graphical way to display
the smallest value, lower quartile, median, upper quartile
and largest value of a set of data. From this analysis the
cases which were above the upper quartiles, were selected
and classified as potentially extreme weather cases, 69 in
number. The statistical analysis, using the box and whisker
method, of the CAPE, DCAPE, CIN, BRN, SRH, VGP and
BRNsh was performed for both categories, extreme and non-
extreme weather cases. A second selection was carried out
and 44 days, where extreme weather events were observed,
according to the monthly report of the Meteorological Ser-
vice of Cyprus, were selected. The number of observed
extreme weather cases was much larger, but only the cases
where all indices values were available were set under study.
For these two groups of days, the ones that the potential index
and/or parameter values suggested to be associated with ex-
treme weather and the ones that extreme weather actually oc-
curred, the mean values of the aforementioned indices and/or
parameters were studied (see Table 1).

3 Results

3.1 K and TT indices

Figure1 shows the statistical distribution of all the non-zero
CAPE soundings. 75% of the soundings have K index values
below 26.9 and TT index values below 50. These two val-
ues were used for the definition of an extreme event, i.e. one

Table 1. Average index values for the potentially and observed ex-
treme weather cases.

Index Potential Observed

K (◦C) 31.5 24.0
TT (◦C) 54.0 50.3
CAPE (J kg−1) 961.2 512.4
CIN (J kg−1) 26.1 24.9
BRN 77.1 28.3
VGP (J kg−1) 0.2 0.2
SRH (J kg−1) 74.0 64.2
BRNsh (J kg−1) 43.3 47.3
DCAPE (J kg−1) 654.6 263.6

Table 2. Mean seasonal index values for the potentially (P) and
observed (O) extreme weather cases.

Winter Spring Summer Autumn

P O P O P O P O

K 28.7 21.6 30.0 22.5 36.2 34.3 30.6 28.5
TT 52.0 49.8 53.0 51.9 59.1 51.6 51.9 49.7
CAPE 346.8 391.8 702.7 580.5 1648.8 1678.0 1004.1 553.8
CIN 27.1 12.7 13.5 2.3 25.9 57.0 38.4 63.3
BRN 39.3 24.5 24.6 27.2 168.9 169.0 74.4 23.8
VGP 0.1 0.1 0.2 0.2 0.3 0.327 0.2 0.2
SRH 84.3 75.9 94.9 44.2 52.2 13.0 65.6 67.4
BRNsh 46.2 45.4 59.3 42.4 29.9 10.0 37.0 58.3
DCAPE 166.1 115.5 488.7 227.3 1217.0 1266 635.6 460.2

having K and TT values higher than the above thresholds,
all other non-zero CAPE events being categorized as non-
extreme.

3.1.1 K index

This index is due toGeorge(1960) and is defined by

K = (T850 − T500) + D850 − (T700 − D700) (1)

Here,Ti andDi denote the temperature and dew point tem-
perature at a height corresponding to(i) hPa. The K index
is a measure of the thunderstorm potential based on vertical
temperature lapse rate, moisture content of the lower atmo-
sphere, and the vertical extent of the moist layer. For the days
with observed extreme weather, the upper quartile was not
reached, on an annual base; it was limited within the median
and the upper quartile. Nevertheless, it seems to be indica-
tive during summer and autumn, while in winter and spring
period lower values of around 22◦C, should alert for possible
extreme weather (Table 2).
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Fig. 1. The distribution of the values of the K and TT indices of all
cases with non-zero value of CAPE.

weather events were observed, according to the monthly re-
port of the Meteorological Service of Cyprus, were selected.
The number of observed extreme weather cases was much
larger, but only the cases where all indices values were avail-
able were set under study. For these two groups of days, the
ones that the potential index and/or parameter values sug-
gested to be associated with extreme weather and the ones
that extreme weather actually occurred, the mean values of
the aforementioned indices and/or parameters were studied.

3 Results

3.1 K and TT indices

Figure 1 shows the statistical distribution of all the non-zero
CAPE soundings. 75% of the soundings have K index values
below 26.9 and TT index values below 50. These two values
were used for the definition of an extreme event,i.e. one
having K and TT values higher than the above thresholds,
all other non-zero CAPE events being categorized as non-
extreme.

3.1.1 K index

This index is due to George (1960) and is defined by

K = (T850 − T500) + D850 − (T700 − D700) (1)

Here,Ti andDi denote the temperature and dew point tem-
perature at a height corresponding to(i) hPa. The K index
is a measure of the thunderstorm potential based on vertical
temperature lapse rate, moisture content of the lower atmo-
sphere, and the vertical extent of the moist layer. For the days
with observed extreme weather, the upper quartile was not
reached, on an annual base; it was limited within the median
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Fig. 2. The distribution of the values of the CAPE index for the
days where extreme (right) and non-extreme (left) events occurred.

and the upper quartile. Nevertheless, it seems to be indica-
tive during summer and autumn, while in winter and spring
period lower values of around22◦C, should alert for possible
extreme weather (Appendix-Table A2).

3.1.2 Total Totals index

Totals Indices: The Total Totals index is attributable to Miller
(1972). It is defined as the sum of two indices:

TT = VT + CT (2)

where VT is the Vertical Totals index, defined byVT =
T850 − T500 , and the Cross Totals index, CT, defined by
CT = D850 − T500. During the observed extreme cases the
upper quartile is overreached in spring and summer and in
autumn and winter had slightly lower TT values, of almost
50◦C (Appendix-Table A2).

3.2 Statistical analysis of the extreme and non extreme
weather cases

3.2.1 CAPE: Convective Available Potential Energy

CAPE is the maximum energy available to an ascending par-
cel and is given by

CAPE =

∫ pf

pn

(αp − αe) dp, (3)

wherepn is the pressure at the level of neutral buoyancy,pf

is the pressure at the level of free convection,αe the specific
volume of the environment andαp that of a parcel ascending
moist-adiabatically from the levelpf . The 75% of the non
extreme cases can occur with CAPE less than 860.8Jkg−1,
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3.1.2 Total Totals index

Totals Indices: The Total Totals index is attributable toMiller
(1972). It is defined as the sum of two indices:

TT = VT + CT (2)

where VT is the Vertical Totals index, defined by
VT=T850−T500 , and the Cross Totals index, CT, defined
by CT=D850−T500. During the observed extreme cases the
upper quartile is overreached in spring and summer and in
autumn and winter had slightly lower TT values, of almost
50◦C (Table 2).

3.2 Statistical analysis of the extreme and non extreme
weather cases

3.2.1 CAPE: Convective Available Potential Energy

CAPE is the maximum energy available to an ascending par-
cel and is given by

CAPE=

∫ pf

pn

(αp − αe) dp, (3)

wherepn is the pressure at the level of neutral buoyancy,pf
is the pressure at the level of free convection,αe the specific
volume of the environment andαp that of a parcel ascending
moist-adiabatically from the levelpf . The 75% of the non
extreme cases can occur with CAPE less than 860.8 J kg−1,
while the 50% of the extreme cases may occur with CAPE
more than 837 J kg−1 (see Fig.2). The upper limit for the
non-extreme cases (860.8 J kg−1) and the median limit for
the extreme ones (837 J kg−1) are only overreached in sum-
mer and autumn for the potentially extreme days and in
summer for the observed ones. In winter CAPE of 350 to
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while the 50% of the extreme cases may occur with CAPE
more than 837 Jkg−1 (see Fig. 2). The upper limit for the
non-extreme cases (860.8Jkg−1) and the median limit for the
extreme ones (837 Jkg−1) are only overreached in summer
and autumn for the potentially extreme days and in summer
for the observed ones. In winter CAPE of 350 to 400 Jkg−1

may be related to extreme weather occurrence. In spring,
extreme weather was observed with CAPE mean values of
580 Jkg−1. A significant differentiation was noted between
the mean seasonal CAPE values of the two studied groups
in autumn. Although the potentially extreme cases require
CAPE of around 1000 Jkg−1, the respective mean value of
the observed cases was only 553.8 Jkg−1 (Appendix-Table
A2).

3.2.2 CIN: Convective Inhibition

The energy required lifting an air parcel vertically and pseu-
doadiavadically from its present level(pi) to its level of free
convection is given by

CIN =

∫ pf

pi

Rd(Tvp − Tve) d ln p (4)

The quantitiesTvp and Tve represent the virtual tempera-
ture profiles of the parcel and the environment, respectively.
From the analysis it has arisen that 75% of the extreme cases
occur with CIN< 19.5 Jkg−1, while 50% of the non extreme
cases occur with CIN> 12 Jkg−1 (see Fig. 3). The mean
annual values of CIN for potentially and observed extreme
cases are around 25 Jkg−1. It is worth noticing, though, the
seasonal differences of the values on the days with observed
extreme weather; in winter and spring, much less energy is
required, while in summer and autumn this amount increases
to more than 55 Jkg−1 (Appendix-Table A2) .

3.2.3 DCAPE: Downdraft Convective Available Potential
Energy

The maximum energy available to a descending parcel may
be expressed as

DCAPE = −

∫ ps

pf

(αp − αe) dp, (5)

whereps is the surface pressure andpf in this case denotes
the level of free sink. From the DCAPE distribution shown
in Fig. 4, no significant discrimination between the extreme
and not extreme cases is found. The upper limit for the non-
extreme cases (1189.8Jkg−1) and the median limit for the
extreme ones (607 Jkg−1) are only overreached in summer
and autumn for the potentially extreme cases and in summer
for the observed ones (Appendix-Table A2).

Again, notable seasonal variations are noted; much lower
values are associated with observed and potentially extreme
weather in winter (115, 166 Jkg−1) and in increasing order,
spring (227, 489 Jkg−1), autumn (460, 636 Jkg−1) and sum-
mer (1266, 1217 Jkg−1) (Appendix-Table A2).
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Fig. 3. The distribution of the values of the CIN index for the days
where extreme (right) and non-extreme (left) events occurred.
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Fig. 3. The distribution of the values of the CIN index for the days
where extreme (right) and non-extreme (left) events occurred.

400 J kg−1 may be related to extreme weather occurrence.
In spring, extreme weather was observed with CAPE mean
values of 580 J kg−1. A significant differentiation was noted
between the mean seasonal CAPE values of the two studied
groups in autumn. Although the potentially extreme cases
require CAPE of around 1000 J kg−1, the respective mean
value of the observed cases was only 553.8 J kg−1 (Table 2).

3.2.2 CIN: Convective Inhibition

The energy required lifting an air parcel vertically and pseu-
doadiavadically from its present level (pi) to its level of free
convection is given by

CIN =

∫ pf

pi

Rd(Tvp − Tve) d ln p (4)

The quantitiesTvp and Tve represent the virtual tempera-
ture profiles of the parcel and the environment, respectively.
From the analysis it has arisen that 75% of the extreme cases
occur with CIN<19.5 J kg−1, while 50% of the non extreme
cases occur with CIN>12 J kg−1 (see Fig.3). The mean
annual values of CIN for potentially and observed extreme
cases are around 25 J kg−1 (see Table 1). It is worth noticing,
though, the seasonal differences of the values on the days
with observed extreme weather; in winter and spring, much
less energy is required, while in summer and autumn this
amount increases to more than 55 J kg−1 (Table 2) .

3.2.3 DCAPE: Downdraft Convective Available
Potential Energy

The maximum energy available to a descending parcel may
be expressed as

DCAPE= −

∫ ps

pf

(αp − αe) dp, (5)
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while the 50% of the extreme cases may occur with CAPE
more than 837 Jkg−1 (see Fig. 2). The upper limit for the
non-extreme cases (860.8Jkg−1) and the median limit for the
extreme ones (837 Jkg−1) are only overreached in summer
and autumn for the potentially extreme days and in summer
for the observed ones. In winter CAPE of 350 to 400 Jkg−1

may be related to extreme weather occurrence. In spring,
extreme weather was observed with CAPE mean values of
580 Jkg−1. A significant differentiation was noted between
the mean seasonal CAPE values of the two studied groups
in autumn. Although the potentially extreme cases require
CAPE of around 1000 Jkg−1, the respective mean value of
the observed cases was only 553.8 Jkg−1 (Appendix-Table
A2).

3.2.2 CIN: Convective Inhibition

The energy required lifting an air parcel vertically and pseu-
doadiavadically from its present level(pi) to its level of free
convection is given by

CIN =
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pi

Rd(Tvp − Tve) d ln p (4)

The quantitiesTvp and Tve represent the virtual tempera-
ture profiles of the parcel and the environment, respectively.
From the analysis it has arisen that 75% of the extreme cases
occur with CIN< 19.5 Jkg−1, while 50% of the non extreme
cases occur with CIN> 12 Jkg−1 (see Fig. 3). The mean
annual values of CIN for potentially and observed extreme
cases are around 25 Jkg−1. It is worth noticing, though, the
seasonal differences of the values on the days with observed
extreme weather; in winter and spring, much less energy is
required, while in summer and autumn this amount increases
to more than 55 Jkg−1 (Appendix-Table A2) .

3.2.3 DCAPE: Downdraft Convective Available Potential
Energy

The maximum energy available to a descending parcel may
be expressed as

DCAPE = −

∫ ps

pf

(αp − αe) dp, (5)

whereps is the surface pressure andpf in this case denotes
the level of free sink. From the DCAPE distribution shown
in Fig. 4, no significant discrimination between the extreme
and not extreme cases is found. The upper limit for the non-
extreme cases (1189.8Jkg−1) and the median limit for the
extreme ones (607 Jkg−1) are only overreached in summer
and autumn for the potentially extreme cases and in summer
for the observed ones (Appendix-Table A2).

Again, notable seasonal variations are noted; much lower
values are associated with observed and potentially extreme
weather in winter (115, 166 Jkg−1) and in increasing order,
spring (227, 489 Jkg−1), autumn (460, 636 Jkg−1) and sum-
mer (1266, 1217 Jkg−1) (Appendix-Table A2).
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Fig. 4. The distribution of the values of the DCAPE index for the
days where extreme (right) and non-extreme (left) events occurred.

whereps is the surface pressure andpf in this case denotes
the level of free sink. From the DCAPE distribution shown
in Fig. 4, no significant discrimination between the extreme
and not extreme cases is found. The upper limit for the non-
extreme cases (1189.8 J kg−1) and the median limit for the
extreme ones (607 J kg−1) are only overreached in summer
and autumn for the potentially extreme cases and in summer
for the observed ones (Table 2).

Again, notable seasonal variations are noted; much lower
values are associated with observed and potentially extreme
weather in winter (115, 166 J kg−1) and in increasing order,
spring (227, 489 J kg−1), autumn (460, 636 J kg−1) and sum-
mer (1266, 1217 J kg−1) (Table 2).

3.2.4 BRN: Bulk Richardson Number

The BRN is defined as the dimensionless ratio of CAPE to
a measure of the vertical wind shear. From the BRN distri-
bution shown in Fig.5, it can be seen that 75% of the non
extreme cases have BRN values less than 44 and more than
50% of the extreme cases have values less than 50, which de-
note that the environment is favored for supercells (Weisman
and Klemp, 1982), meaning that the BRN is a poor predic-
tor. The mean value of the BRN for the observed cases is
less than the median, while for the potentially is above the
upper quartile. By looking the seasonal values, during win-
ter and spring much lower BRN was noted, for both the po-
tentially and observed extreme days. In summer the BRN is
much bigger, around 169 for the two groups of cases. Finally,
in autumn the potentially extreme cases exceeded the upper
quartile limit, but for the observed ones the BRN was again
lower, even lower than the median (median = 32) (Table 2).
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3.2.4 BRN: Bulk Richardson number

The BRN is defined as the dimensionless ratio of CAPE to
a measure of the vertical wind shear. From the BRN distri-
bution shown in Fig. 5, it can be seen that 75% of the non
extreme cases have BRN values less than 44 and more than
50% of the extreme cases have values less than 50, which de-
note that the environment is favored for supercells (Weisman
& Klemp, 1982), meaning that the BRN is a poor predic-
tor. The mean value of the BRN for the observed cases is
less than the median, while for the potentially is above the
upper quartile. By looking the seasonal values, during win-
ter and spring much lower BRN was noted, for both the po-
tentially and observed extreme days. In summer the BRN is
much bigger, around 169 for the two groups of cases. Finally,
in autumn the potentially extreme cases exceeded the upper
quartile limit, but for the observed ones the BRN was again
lower, even lower than the median (median=32) (Appendix-
Table A2).

3.2.5 BRNsh

The BRNsh parameter provides a measure for the vector dif-
ference in the wind through the vertical.

The plot of the BRNsh (see Fig. 6) implies that this in-
dex is a very poor predictor for the extreme and not extreme
cases. The BRNsh index values for the observed extreme
cases ranged within the median and the upper quartile limits.
The lowest values were found in summer, where observed
extreme weather is related to values of 10 Jkg−1, which is
lower than the lower quartile limit (Appendix-Table A2).
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3.2.6 SRH: Storm Relative Helicity

SRH (Davies-Joneset al., 1990) provides a measure of any
tornado potential and is defined as

SRH = −

∫ h

0

k · (V − c) ×
∂V

∂z
dz (6)

whereV is the horizontal velocity vector,c is the storm mo-
tion vector andh is the storm depth. As can be concluded
from the plot (see Fig. 7), the SRH is a very poor predictor.

The SRH index values, for the potentially and observed ex-
treme cases, ranged within the median and the upper quartile
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3.2.4 BRN: Bulk Richardson number

The BRN is defined as the dimensionless ratio of CAPE to
a measure of the vertical wind shear. From the BRN distri-
bution shown in Fig. 5, it can be seen that 75% of the non
extreme cases have BRN values less than 44 and more than
50% of the extreme cases have values less than 50, which de-
note that the environment is favored for supercells (Weisman
& Klemp, 1982), meaning that the BRN is a poor predic-
tor. The mean value of the BRN for the observed cases is
less than the median, while for the potentially is above the
upper quartile. By looking the seasonal values, during win-
ter and spring much lower BRN was noted, for both the po-
tentially and observed extreme days. In summer the BRN is
much bigger, around 169 for the two groups of cases. Finally,
in autumn the potentially extreme cases exceeded the upper
quartile limit, but for the observed ones the BRN was again
lower, even lower than the median (median=32) (Appendix-
Table A2).

3.2.5 BRNsh

The BRNsh parameter provides a measure for the vector dif-
ference in the wind through the vertical.

The plot of the BRNsh (see Fig. 6) implies that this in-
dex is a very poor predictor for the extreme and not extreme
cases. The BRNsh index values for the observed extreme
cases ranged within the median and the upper quartile limits.
The lowest values were found in summer, where observed
extreme weather is related to values of 10 Jkg−1, which is
lower than the lower quartile limit (Appendix-Table A2).
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SRH (Davies-Joneset al., 1990) provides a measure of any
tornado potential and is defined as

SRH = −
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k · (V − c) ×
∂V
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whereV is the horizontal velocity vector,c is the storm mo-
tion vector andh is the storm depth. As can be concluded
from the plot (see Fig. 7), the SRH is a very poor predictor.

The SRH index values, for the potentially and observed ex-
treme cases, ranged within the median and the upper quartile
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3.2.5 BRNsh

The BRNsh parameter provides a measure for the vector dif-
ference in the wind through the vertical.

The plot of the BRNsh (see Fig.6) implies that this in-
dex is a very poor predictor for the extreme and not extreme
cases. The BRNsh index values for the observed extreme
cases ranged within the median and the upper quartile limits.
The lowest values were found in summer, where observed
extreme weather is related to values of 10 J kg−1, which is
lower than the lower quartile limit (Table 2).
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3.2.4 BRN: Bulk Richardson number

The BRN is defined as the dimensionless ratio of CAPE to
a measure of the vertical wind shear. From the BRN distri-
bution shown in Fig. 5, it can be seen that 75% of the non
extreme cases have BRN values less than 44 and more than
50% of the extreme cases have values less than 50, which de-
note that the environment is favored for supercells (Weisman
& Klemp, 1982), meaning that the BRN is a poor predic-
tor. The mean value of the BRN for the observed cases is
less than the median, while for the potentially is above the
upper quartile. By looking the seasonal values, during win-
ter and spring much lower BRN was noted, for both the po-
tentially and observed extreme days. In summer the BRN is
much bigger, around 169 for the two groups of cases. Finally,
in autumn the potentially extreme cases exceeded the upper
quartile limit, but for the observed ones the BRN was again
lower, even lower than the median (median=32) (Appendix-
Table A2).

3.2.5 BRNsh

The BRNsh parameter provides a measure for the vector dif-
ference in the wind through the vertical.

The plot of the BRNsh (see Fig. 6) implies that this in-
dex is a very poor predictor for the extreme and not extreme
cases. The BRNsh index values for the observed extreme
cases ranged within the median and the upper quartile limits.
The lowest values were found in summer, where observed
extreme weather is related to values of 10 Jkg−1, which is
lower than the lower quartile limit (Appendix-Table A2).
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whereV is the horizontal velocity vector,c is the storm mo-
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from the plot (see Fig. 7), the SRH is a very poor predictor.
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3.2.6 SRH: Storm Relative Helicity

SRH (Davies-Jones et al., 1990) provides a measure of any
tornado potential and is defined as

SRH= −

∫ h

0
k · (V − c) ×

∂V

∂z
dz (6)

whereV is the horizontal velocity vector,c is the storm mo-
tion vector andh is the storm depth. As can be concluded
from the plot (see Fig.7), the SRH is a very poor predictor.

The SRH index values, for the potentially and observed ex-
treme cases, ranged within the median and the upper quartile
limits (45–110.3 J kg−1); higher values were found for win-
ter, spring and autumn. In winter and spring the days with
observed extreme weather had lower SRH values compared
with the potentially ones, while slightly higher values were
noted in autumn. In summer, the mean SRH value on the
days with observed extreme weather was only 13.0 J kg−1,
which is even lower than the lower quartile limit (23 J kg−1)
(Table 2).

3.2.7 VGP: Vorticity Generator Parameter

VGP provides a measure for the probability of vorticity being
tilted into the vertical, leading to rotating updrafts; this is
defined by (Rasmussen & Wilhelmson, 1983):

VGP= s̄
√

CAPE (7)

wheres̄ is the mean shear (or hodograph length divided by
depth), given by

s̄ =
1

h

∫ h

0

∂V

∂z
dz (8)
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limits (45–110.3Jkg−1); higher values were found for win-
ter, spring and autumn. In winter and spring the days with
observed extreme weather had lower SRH values compared
with the potentially ones, while slightly higher values were
noted in autumn. In summer, the mean SRH value on the
days with observed extreme weather was only 13.0 Jkg−1,
which is even lower than the lower quartile limit (23 Jkg−1)
(Appendix-Table A2).

3.2.7 VGP: Vorticity Generator Parameter

VGP provides a measure for the probability of vorticity being
tilted into the vertical, leading to rotating updrafts; this is
defined by (Rasmussen & Wilhelmson, 1983):

VGP = s̄
√

CAPE (7)

wheres̄ is the mean shear (or hodograph length divided by
depth), given by

s̄ =
1

h

∫ h

0

∂V

∂z
dz (8)

From the VGP plot (see Fig. 8), it can be concluded that
the VGP index is a better predictor between the two groups
than the DCAPE, SRH and BRNsh. 75% of the non extreme
cases have values below 0.18 Jkg−1, while 50% of the ex-
treme cases have values above 0.17 Jkg−1. From the study
of VGP for the potentially and observed extreme cases it has
also arisen that the upper quartile limit for the extreme cases
(0.302 Jkg−1) is only representative in summer. Values of
0.2 can be regarded as adequate for extreme weather to occur
in spring and autumn, while in winter even 0.1 should alert
for extreme weather (Appendix-Table A2).
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3.3 Comparison of the frequency of occurrence of the po-
tentially and observed extreme weather days

As mentioned before, the selection of the days considered as
potentially extreme weather cases, was based on the criteria
set using the K and TT indices. For the criteria and thresh-
olds to be adopted, the number of the potential cases should
be similar to the observed ones. In other case, the thresh-
olds should be modified. The 69 extreme weather cases as
defined by the upper quartiles of the TT and K indices are
seasonally distributed as follows (see Figures 9 and 10 for
the seasonal and monthly distribution, respectively); 12 in
winter (DJF), 20 in spring (MAM), 17 in summer (JJA) and
20 in autumn (SON), with higher frequencies of occurrence
during June (12), May (9) and October (8). The 44 observed
extreme weather cases are seasonally distributed as follows;
20 in winter (DJF), 11 in spring (MAM), 1 in summer (JJA)
and 12 in autumn (SON), with higher frequencies occurring
in December (14), October (6) and March (5). By looking
at the seasonal distribution of the cases (Figure 9), it is ev-
ident that the thresholds TT=50 and K=26.9 can be consid-
ered as satisfactory for the spring and autumnal season, since

Fig. 8. The distribution of the values of the VGP index for the days
where extreme (right) and non-extreme (left) events occurred.

From the VGP plot (see Fig.8), it can be concluded that
the VGP index is a better predictor between the two groups
than the DCAPE, SRH and BRNsh. 75% of the non extreme
cases have values below 0.18 J kg−1, while 50% of the ex-
treme cases have values above 0.17 J kg−1. From the study
of VGP for the potentially and observed extreme cases it
has also arisen that the upper quartile limit for the extreme
cases (0.302 J kg−1) is only representative in summer. Val-
ues of 0.2 can be regarded as adequate for extreme weather to
occur in spring and autumn, while in winter even 0.1 should
alert for extreme weather (Table 2).

3.3 Comparison of the frequency of occurrence of the
potentially and observed extreme weather days

As mentioned before, the selection of the days considered as
potentially extreme weather cases, was based on the criteria
set using the K and TT indices. For the criteria and thresh-
olds to be adopted, the number of the potential cases should
be similar to the observed ones. In other case, the thresh-
olds should be modified. The 69 extreme weather cases as
defined by the upper quartiles of the TT and K indices are
seasonally distributed as follows (see Figs.9 and10 for the
seasonal and monthly distribution, respectively); 12 in win-
ter (DJF), 20 in spring (MAM), 17 in summer (JJA) and 20 in
autumn (SON), with higher frequencies of occurrence during
June (12), May (9) and October (8).

The 44 observed extreme weather cases are seasonally dis-
tributed as follows; 20 in winter (DJF), 11 in spring (MAM),
1 in summer (JJA) and 12 in autumn (SON), with higher
frequencies occurring in December (14), October (6) and
March (5). By looking at the seasonal distribution of the
cases (Fig.9), it is evident that the thresholds TT = 50 and
K = 26.9 can be considered as satisfactory for the spring and
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limits (45–110.3Jkg−1); higher values were found for win-
ter, spring and autumn. In winter and spring the days with
observed extreme weather had lower SRH values compared
with the potentially ones, while slightly higher values were
noted in autumn. In summer, the mean SRH value on the
days with observed extreme weather was only 13.0 Jkg−1,
which is even lower than the lower quartile limit (23 Jkg−1)
(Appendix-Table A2).

3.2.7 VGP: Vorticity Generator Parameter

VGP provides a measure for the probability of vorticity being
tilted into the vertical, leading to rotating updrafts; this is
defined by (Rasmussen & Wilhelmson, 1983):

VGP = s̄
√

CAPE (7)

wheres̄ is the mean shear (or hodograph length divided by
depth), given by
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From the VGP plot (see Fig. 8), it can be concluded that
the VGP index is a better predictor between the two groups
than the DCAPE, SRH and BRNsh. 75% of the non extreme
cases have values below 0.18 Jkg−1, while 50% of the ex-
treme cases have values above 0.17 Jkg−1. From the study
of VGP for the potentially and observed extreme cases it has
also arisen that the upper quartile limit for the extreme cases
(0.302 Jkg−1) is only representative in summer. Values of
0.2 can be regarded as adequate for extreme weather to occur
in spring and autumn, while in winter even 0.1 should alert
for extreme weather (Appendix-Table A2).
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3.3 Comparison of the frequency of occurrence of the po-
tentially and observed extreme weather days

As mentioned before, the selection of the days considered as
potentially extreme weather cases, was based on the criteria
set using the K and TT indices. For the criteria and thresh-
olds to be adopted, the number of the potential cases should
be similar to the observed ones. In other case, the thresh-
olds should be modified. The 69 extreme weather cases as
defined by the upper quartiles of the TT and K indices are
seasonally distributed as follows (see Figures 9 and 10 for
the seasonal and monthly distribution, respectively); 12 in
winter (DJF), 20 in spring (MAM), 17 in summer (JJA) and
20 in autumn (SON), with higher frequencies of occurrence
during June (12), May (9) and October (8). The 44 observed
extreme weather cases are seasonally distributed as follows;
20 in winter (DJF), 11 in spring (MAM), 1 in summer (JJA)
and 12 in autumn (SON), with higher frequencies occurring
in December (14), October (6) and March (5). By looking
at the seasonal distribution of the cases (Figure 9), it is ev-
ident that the thresholds TT=50 and K=26.9 can be consid-
ered as satisfactory for the spring and autumnal season, since

Fig. 9. Seasonal distribution of the potentially and observed ex-
treme weather cases.

autumnal season, since the percentage of occurrence is simi-
lar for the two studied groups. On the contrary, these thresh-
olds cannot be regarded as indicative for winter; they exclude
a significant number of extreme weather cases during winter-
time. For this reason, when the applications refer to the area
of Cyprus during the winter period, these thresholds should
be modified, by lowering the threshold points. Unfortunately,
no trustworthy results can be derived for the summer season;
only one case of extreme weather was reported in August
(a number of cases was excluded due to missing radiosonde
data) and the increased False Alarm Rate suggested by the
percentage difference between the potential and the observed
group may be misleading.

4 Conclusions

The primary aim of this study is to provide a useful tool
for distinguishing extreme and non-extreme thunderstorm
events over Cyprus. The thresholds used for assessing and
categorizing weather events are set using the upper quartile
of the distribution of the K and TT indices corresponding
to non-zero CAPE. The analysis has shown that out of the
seven indices studied, only two of them can be considered
as good predictors: these are the CAPE and VGP indices.
The median of the extreme is almost the same with the upper
quartile of the non-extreme events leading to the conclusion
that soundings with CAPE above 837 J kg−1 and VGP above
0.17 J kg−1 will have the potential for extreme thunderstorm
events. The analysis based on the mean values of the same
indices and/or parameters of the potentially extreme events
and the observed ones reveals the following:

1. The mean values of the CAPE-related parameters
and the shear-CAPE combination parameters for both
groups exhibit their maximum values during the sum-
mer and their lowest values mainly during winter. There
are two plausible reasons for this distribution; the
tropopause is higher during the summer and the shear
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limits (45–110.3Jkg−1); higher values were found for win-
ter, spring and autumn. In winter and spring the days with
observed extreme weather had lower SRH values compared
with the potentially ones, while slightly higher values were
noted in autumn. In summer, the mean SRH value on the
days with observed extreme weather was only 13.0 Jkg−1,
which is even lower than the lower quartile limit (23 Jkg−1)
(Appendix-Table A2).

3.2.7 VGP: Vorticity Generator Parameter

VGP provides a measure for the probability of vorticity being
tilted into the vertical, leading to rotating updrafts; this is
defined by (Rasmussen & Wilhelmson, 1983):

VGP = s̄
√

CAPE (7)

wheres̄ is the mean shear (or hodograph length divided by
depth), given by

s̄ =
1

h

∫ h

0

∂V
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dz (8)

From the VGP plot (see Fig. 8), it can be concluded that
the VGP index is a better predictor between the two groups
than the DCAPE, SRH and BRNsh. 75% of the non extreme
cases have values below 0.18 Jkg−1, while 50% of the ex-
treme cases have values above 0.17 Jkg−1. From the study
of VGP for the potentially and observed extreme cases it has
also arisen that the upper quartile limit for the extreme cases
(0.302 Jkg−1) is only representative in summer. Values of
0.2 can be regarded as adequate for extreme weather to occur
in spring and autumn, while in winter even 0.1 should alert
for extreme weather (Appendix-Table A2).
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3.3 Comparison of the frequency of occurrence of the po-
tentially and observed extreme weather days

As mentioned before, the selection of the days considered as
potentially extreme weather cases, was based on the criteria
set using the K and TT indices. For the criteria and thresh-
olds to be adopted, the number of the potential cases should
be similar to the observed ones. In other case, the thresh-
olds should be modified. The 69 extreme weather cases as
defined by the upper quartiles of the TT and K indices are
seasonally distributed as follows (see Figures 9 and 10 for
the seasonal and monthly distribution, respectively); 12 in
winter (DJF), 20 in spring (MAM), 17 in summer (JJA) and
20 in autumn (SON), with higher frequencies of occurrence
during June (12), May (9) and October (8). The 44 observed
extreme weather cases are seasonally distributed as follows;
20 in winter (DJF), 11 in spring (MAM), 1 in summer (JJA)
and 12 in autumn (SON), with higher frequencies occurring
in December (14), October (6) and March (5). By looking
at the seasonal distribution of the cases (Figure 9), it is ev-
ident that the thresholds TT=50 and K=26.9 can be consid-
ered as satisfactory for the spring and autumnal season, since

Fig. 10. Monthly distribution of the potentially and observed ex-
treme weather cases.

is weak. The occurrence of thunderstorm events dur-
ing winter with low CAPE values are strongly related to
dynamics effects i.e. baroclinic depressions.

2. The mean values of the shear-related parameters display
their maximum values during spring and their lowest
during the summer.

3. For the same indices stated in 1 above (except the VGP
index) the mean values of the potentially-extreme events
are higher than the observed ones during spring and au-
tumn. This is because the thunderstorm events are also
related to dynamic effects. The seasonal mean value of
VGP is the same for both the potentially-extreme and
the observed extreme cases.

The percentage of occurrence of the potentially-extreme
and the observed-extreme thunderstorm events are simi-
lar during spring and autumn. During winter the number
of the observed-extreme events is higher than that of the
potentially-extreme events and this can be attributed partly
to the dynamic effects that can lead to extreme thunderstorm
events.
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