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Abstract. In this study the shortwave cloud radiative ef-
fect (SWCRE) over ocean calculated by the ECHAM 5 cli-
mate model is evaluated for the cloud property input de-
rived from ship based measurements and satellite based esti-
mates and compared to ship based radiation measurements.
The ship observations yield cloud fraction, liquid water path
from a microwave radiometer, cloud bottom height as well as
temperature and humidity profiles from radiosonde ascents.
Level-2 products of the Satellite Application Facility on Cli-
mate Monitoring (CM SAF) from the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) have been used to
characterize clouds. Within a closure study six different ex-
periments have been defined to find the optimal set of mea-
surements to calculate downward shortwave radiation (DSR)
and the SWCRE from the model, and their results have been
evaluated under seven different synoptic situations. Four of
these experiments are defined to investigate the advantage
of including the satellite-based cloud droplet effective radius
as additional cloud property. The modeled SWCRE based on
satellite retrieved cloud properties has a comparable accuracy
to the modeled SWCRE based on ship data. For several cases,
an improvement through introducing the satellite-based esti-
mate of effective radius as additional information to the ship
based data was found. Due to their different measuring char-
acteristics, however, each dataset shows best results for dif-
ferent atmospheric conditions.

1 Introduction

Clouds strongly influence the energy budget of the Earth’s
atmosphere. Because of their high degree of temporal and

spatial variability, and the complexity of cloud processes,
it remains challenging to model and predict the effect of
clouds on the energy budget. The representation of clouds
in global circulation models (GCMs) are identified as the
largest source of uncertainty for predicting future climate
change by the International Panel on Climate Change and
others (IPCC, 2007; Ramanathan et al., 1989). Especially the
cloud radiative effect (CRE), defined as the difference be-
tween the net radiative fluxes of the cloudy and cloud-free at-
mosphere, is often not represented satisfactorily. The reason
for this is its dependence on a large number of cloud param-
eters and their highly variable distribution. These parameters
include the vertical profiles of ice and liquid water, effective
radius (re), and cloud droplet number concentration (CDNC).
To evaluate this source of uncertainty in GCMs, it is impor-
tant to identify those situations in which the model can re-
produce the CRE well and badly. For this purpose, ground-
based measurements as well as satellite based estimates can
be used (Macke et al., 2010a). Ground-based measurements
are also needed to verify the accuracy of satellite products,
which are generally based on more indirect retrieval tech-
niques. Over ocean, however, which covers nearly 2/3 of the
Earth, ground-based measurements of cloud properties and
radiative fluxes are sparse.

Starting with the Meridional Ocean Radiation Experi-
ment MORE (5 ship cruises;Sinitsyn et al., 2006; Macke
et al., 2007) and continued with the OCEANET project
(11 ship cruises;Macke, 2009; Macke et al., 2010a;
Kalisch and Macke, 2012), a comprehensive data set has
been established. OCEANET provides ship based mea-
surements of cloud properties and radiative fluxes with
high temporal resolution, including a total sky imager
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(TSI; Kalisch and Macke, 2008, 2012), from all cruises. Ad-
ditional instruments operated during some of the cruises in-
clude a microwave radiometer (RPG HATPRO;Rose et al.,
2005), a sun photometer for the MARITIME AEROSOL
NETWORK (MAN/AERONET;Smirnov et al., 2009), a Ra-
man lidar (Althausen et al., 2009), as well as instrumentation
for measuring turbulent fluxes. Due to the cruise tracks the
majority of clouds observed during OCEANET are relatively
thin liquid water clouds, which still pose significant chal-
lenges both to current measurement techniques and our sci-
entific understanding of cloud-climate interactions (Turner
et al., 2007).

Ebell et al. (2011) used atmospheres obtained from
ground-based measurements over land for the calculation of
the CRE, by feeding these measurements into a radiative
transfer model (RTM). They concentrated on the Convec-
tive and Orographically-induced Precipitation Study (COPS;
Wulfmeyer et al., 2011) measurement site where a wide
range of instruments including the Atmospheric Radiation
Measurement Mobile Facility (AMF) were deployed. For
single layer water clouds using the Rapid Radiative Transfer
Model for GCMs (RRTMG;Clough et al., 2005) a bias be-
tween the measured and modelled DSR of−39.1 Wm−2 was
found in that study.Guo and Coakley(2008) compared ship-
based radiation measurements for cloud free scenes against
corresponding satellite based Clouds and Earth’s Radiant En-
ergy System (CERES) estimates and RTM simulations, and
found agreements better than 2 % relative to the model sim-
ulations and between 2 and 3 % relative to the satellite es-
timates. They took their model atmospheres from National
Center for Environmental Prediction (NCEP) fields and a
marine aerosol optical depth (AOD) of 0.05 at a wavelength
of 0.55 µm was assumed.

Until now, the assessment of model-based cloud proper-
ties over the ocean (e.g. as estimated by ISCCP;Rossow and
Schiffer (1991)) and their associated cloud radiative effect
(e.g. as observed by ERBE (Barkstrom, 1984) & CERES
(Wielicki et al., 1996)) has mostly been based on satellite
data sets, or on data of voluntary observing ships (e.g.Be-
dacht et al., 2007). The observations collected on board of the
Research Vessel (R/V)POLARSTERNfacilitate such evalua-
tions, and represent a unique dataset in terms of instrumental
capabilities as well as temporal and spatial resolution.

The aim of this study is to test which dataset of observed
cloud properties serves as best input to calculate the cloud
radiative effect by the ECHAM-5 RTM, ship or satellite ob-
servations. To this end different experiments with different
combinations of measurements from ship and from satellite
have been performed. This paper is structured as follows:
an overview of the ship- and satellite-based data sets is pre-
sented in the next section, followed by a description of the
radiative transfer model used for our study. In the method-
ology section the averaging technique and assumptions used
in the RTM are described. In a closure study presented in
Sect.5, different experiments are carried out for determin-

ing the optimal input parameters to the RTM by comparing
modeled radiative fluxes to the ship measurements. Finally,
discussions and conclusions are given in Sect.6.

2 Data

Two different data sources are considered for this study.
Ship data are used which resolve cloud radiative effects
on small spatial and temporal scales. The ship-based atmo-
spheric measurements are used as input for the RTM. The
ship-based radiation flux measurements are used for valida-
tion. The satellite retrievals of effective radius and liquid wa-
ter path are used as alternative or additional RTM input. In
the following both datasets (surface measurements and satel-
lite products) and the algorithms used to derive them are de-
scribed.

2.1 Ship measurements

Liquid water path (LWP), temperature, and humidity (T +H )
profiles have been derived from a HATPRO microwave ra-
diometer (Rose et al., 2005). A statistical retrieval is applied
to the microwave radiometer (MWR) measurements, which
relies on a training dataset to compute LWP andT + H -
profiles from observed radiances. Errors in brightness tem-
perature of 1 K lead to a maximum error of 30 gm2 in LWP
(Crewell and Loehnert, 2003). A pyranometer of type CM21
(Kipp and Zonen, 2004) is used to measure global radia-
tive fluxes with an instrumental response time of five sec-
onds. The WMO (World Meteorological Organization, 2008)
specifies a total achievable uncertainty within the 95 % con-
fidence level of better than 3 % for hourly means or an error
of 30 Wm−2 for 1000 Wm−2 irradiance. Due to ship move-
ment and salt coating on the radiometer dome and also from
shadowing and reflection at the ships super structure which
in turn depends on the location of clouds and the sun with re-
spect to the orientation of the ship measurements have likely
a slightly degraded accuracy compared to land-based opera-
tion. FollowingKalisch and Macke(2008, 2012) an error of
less than 4 % for hourly means is assumed. A total sky imager
captures images of the whole sky every fifteen seconds. An
algorithm based onKalisch and Macke(2008) computes the
cloud fraction for each image using the difference between
the red and blue information from the RGB colorspace. For
the majority of the images, the authors identified a devia-
tion smaller than 10 % between the computed and the ob-
served cloud fraction. The pyranometer and total sky imager
are both measuring a hemispheric field of view. For the total
sky imager pixels corresponding to ship parts are excluded
from the analysis. For the pyranometer times when the sun is
covered by ship parts are calculated and excluded from our
analysis.
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2.2 Satellite based estimates of cloud properties

The Satellite Application Facility on Climate Monitoring
(CM SAF; Schulz et al., 2009) initiated by EUMETSAT
provides several products on cloud properties and radiative
fluxes derived from Meteosat SEVIRI. A large number of
level-3 products corresponding to hourly, daily, and monthly
means on a 15× 15km sinusoidal grid are available. In or-
der to evaluate a radiative transfer scheme and its ability
to resolve the cloud radiative effect, it is beneficial to use
products at highest possible temporal and spatial resolution
which have optimum spatial and temporal collocation to the
ship measurements. Instead of the level-3 products provided
operationally by CM SAF level-2 products have been cal-
culated therefore with the CM SAF retrieval algorithms to
obtain cloud properties (liquid water path (LWP), cloud opti-
cal thickness (COT), and effective radius (re), seeRoebeling
et al., 2006) on satellite pixel basis. From COT andre, the
LWP is estimated by Eq. (1) (Roebeling et al., 2006, see Ap-
pendixA).

LWP =
2

3
COT re ρw (1)

Only LWP and COT are provided as official CM SAF prod-
ucts, but Eq. (1) can be used to obtain an estimate of the
effective radius as well.Roebeling et al.(2008) and others
have investigated the accuracy of CM SAF cloud properties
by validating them against ground-based data. The LWP was
compared to microwave radiometer measurements collected
from the CloudNet stations at Chilbolton (UK) and Palaiseau
(France). For the LWP a correlation between satellite based
and ground-based data of 0.78 with a standard deviation of
42 gm−2 was found.Schulz and Hollmann(2009) specify the
accuracy of the CM SAF COT retrieval with 40–60 % RMS
and−20–0 % bias in their “Annual Product Quality Assess-
ment Report 2009”. Propagating this uncertainty to satellite
estimates of surface irradiance, and combining it with the un-
certainty of surface irradiance measurements,Deneke et al.
(2005) find that deviations larger than 7 % are possible.

3 Model

Observations are used to describe the atmosphere in the
radiative transfer scheme of the ECHAM-5 climate model
(Roeckner et al., 2003). As in other GCMs the radiative trans-
fer calculations are based on the assumption of plane parallel
clouds, which implies a horizontally homogeneous distribu-
tion of cloud water and droplet number concentration within
one grid cell. Scattering by cloud droplets and ice crystals
is computed by Mie theory and molecular scattering is taken
into account by Rayleigh scattering. Scattering and absorp-
tion by aerosols are considered using the “Global Aerosol
DataSet” (Koepke et al., 1997). This data set provides the
climatologically averaged distribution of 10 different aerosol

types for the winter and summer season on a global grid with
a resolution of 0.5◦ by 0.5◦.

4 Methodology

The vertical and horizontal distribution of cloud micro-
physics varies strongly. At present it is not possible to mea-
sure this distribution with sufficient spatial resolution to re-
solve all relevant scales of variability. Our measurement
setup on the ship provides us only with vertically integrated
measurements of cloud properties at high temporal resolu-
tion. To further complicate the interpretation, these mea-
surements correspond to different volumes sampled by the
instruments, and thus different parts of cloud passing the
ship. MSG-SEVIRI estimates provide spatially averaged in-
formation over the pixel area (3× 3km2 in nadir). The RTM
on the other hand calculates radiative fluxes based on pre-
scribed atmospheric profiles, which only vary vertically and
neglect horizontal variability apart from cloud fraction. The
challenge is thus to reconcile modeled and measured radia-
tive fluxes. Therefore, the atmosphere has to be prescribed
in a way that modeled fluxes match those measured best.
Within this study the challenge of comparing two different
datasets is encountered, each obtained from different instru-
ments with their own characteristics, perspectives, and their
own sources of errors. In particular, efforts are made to gen-
erate an optimally collocated dataset, and to find the best
combination of measurements to reproduce the measured
SWCRE with the RTM.

4.1 Averaging to a combined spatial and temporal grid

In our study we need to collocate and synchronize three
datasets that result from observations at different spatial
and temporal resolutions: (1) the ship-based HATPRO mi-
crowave observations, which samples a small portion of the
cloud (vertical beam has an opening angle of 4 degrees) at a
high temporal resolution (every second a measurement); (2)
the ship-based pyranometer and the total sky imager obser-
vations, which sample at a high temporal resolution (every
2 (pyranometer) and 15 (TSI imager) seconds) and with a
large opening angle (180 degrees). However, depending on
the height of the cloud base these instruments will sample
very different portions of a cloud field, ranging from a few
m2 in case of fog conditions to hundreds of km2 in case of
clear sky or cirrus cloud conditions. Finally, the satellite ob-
servations from the METEOSAT instruments, which sample
at a spatial resolution of 3×3km2 at nadir every 15 min. It is
a challenge to combine these measurements, and use them as
input in a climate model or as reference observations for val-
idation. In our study we applied the following approach to re-
duce the effect of spatial and temporal uncertainties, and col-
locate and synchronize our observations. FollowingGreuell
and Roebeling(2009) spatial averages have been obtained

www.atmos-chem-phys.net/12/12243/2012/ Atmos. Chem. Phys., 12, 12243–12253, 2012



12246 T. Hanschmann et al.: Ship and satellite observations over the ocean

10 12 14 16
UTC

0

100

200

300

400

500

LW
P 

[g
/m

2 ]

LWP-MWR
LWP-MWR Gauss

LWP-CMSAF Gauss

m
is

si
ng

 in
pu

t

Fig. 1. Liquid Water Path for 3 November 2007. Ship based mi-
crowave radiometer LWP (blue, LWP-MWR Gauss), averaged with
a Gaussian weighting function (30 min half max/full width) over all
measurements with LWP> 0 and multiplied by the cloud fraction.
CM SAF LWP (dark grey, LWP-CMSAF Gauss) averaged using
spatial Gaussian weighting function (3 pixels half max/full width).
In light grey is shown the full-resolution ship based microwave ra-
diometer LWP as indicator for the variability.

from satellite estimates using a Gaussian weighting function
with a full width half maximum (FWHM) of 3×3 pixels. For
averaging the ship based time series, it has been found that
Gaussian weighted averaging over 30 min leads to the best
results, close to the 40 min reported byDeneke et al.(2009).
This roughly corresponds to the time it takes for the ship
to cross the hemispheric field of view of the pyranometer.
With these averaging techniques, time series of both datasets
representing similar scales of variability have been obtained.
This is shown in Fig. 1 for the LWP on 3 November 2007.

4.2 Model inputs and requirements

For radiative flux calculations the optical properties of gases,
aerosols and clouds are required as input to the RTM, given
by the vertical profiles of extinction, single scattering albedo
and the scattering phase function. From our observations,
however, only the liquid water path and effective radius is
available. Hence, these physical properties have to be trans-
formed into consistent optical properties. For the considered
shortwave range, it is known that the scattering properties
of an arbitrary cloud droplet size distribution are well repre-
sented by the effective radius (Hansen and Travis, 1974). In
the radiative transfer scheme of GCMs the effective radius is
often a diagnostic variable and a function of the liquid water
path and a prescribed cloud droplet number concentration.
By inverting the used relations, the effective radius can be
determined for the RTM calculations. The extinction coef-
ficient is again a function of the effective radius and liquid
water content (LWC). The cloud optical thickness is calcu-
lated internally for each spectral band from the model layer

MWR CM-SAF 

Cloud 
Op�cal 

Thickness 

Effec�ve 
Radius 

Cloud Proper�es 

LWP 
[Kg/m2] 

Mixing ra�o of 
liquid water in a 
dry atmosphere 

[Kg/Kg] 

ECHAM-5 

LWC 
[g/m3] 

MSG-SEVIRI  

CH10 

Ceilo- 

graph 

Radio- 

sonde 

Devices 

Pressure 

difference 

Density 

of dry air 

Gravitational 

acceleration 

Hydrosta�c 

Observed 
cloud 

thickness 

Model 
layer 

thickness 

Ideal gas law 
T P R 

CDNC 

Model 

layer 

thickness 

Extinction 

Le� or right as cloud 
ver�cal extent for LWP 

 to LWC conversion 

Fig. 2. Schematic overview on the dependences in the transforma-
tion from measured liquid water path to cloud properties in the
model.

thickness and the extinction coefficient. The dependencies
of cloud properties in the RTM used for this study are il-
lustrated in the scheme shown in Fig.2, and formalized in
the AppendixA. As mentioned before the main assumption
of the RTM is the homogeneous plane parallel representa-
tion of clouds. Also the cloudy column does not interact with
the clear sky column. This enables modeling the cloudy at-
mosphere separately from the clear and combining both by
Eq. (2):

DSR= N DSRcloudy+ (1− N) DSRclear (2)

The linear relation uses the cloud fraction,N , to combine
the modeled clear sky and cloudy irradiance. Thus, the mod-
eled DSR is very sensitive to errors in cloud fraction for
broken cloud situations. The used RTM can be run in two
standard configurations with 19 and 31 vertical levels to re-
solve a range from 1013 hPa to 10 hPa. It was chosen to lo-
cate the cloud in a single model layer because cloud profile
information are not available and because most clouds dur-
ing the selected days have a small vertical extent. The hu-
midity profiles from the radiosonde ascend are used to diag-
nose the cloud base height which is used to select the closest
model layer. To minimize the CPU costs the lower model

Atmos. Chem. Phys., 12, 12243–12253, 2012 www.atmos-chem-phys.net/12/12243/2012/



T. Hanschmann et al.: Ship and satellite observations over the ocean 12247

Table 1.Overview of different parameters prescribed in the model.
Additionally it is shown, how these parameters are derived and what
the dependencies are.

Parameter Source

Mixing ratio of calculated from LWP (ship-based
MWR or CM SAF)

liquid water and model layer thickness
calculated in two manners

CDNC (a) climatological profile from
ECHAM-5
(b) calculated from satellite
effective radius based
on model equations

Cloud cover calculated from total sky imager

Cloud height calculated from radiosonde
humidity profile

Temperature profile calculated from ship-based MWR

Humidity profile calculated from ship-based MWR

Surface pressure taken from the on-board measure-
ments of
R/V Polarstern

resolution has been used. A fixed value for the cloud droplet
number concentration is used which causes additional uncer-
tainty as will be discussed in the closure study. Table1 gives
an overview of the atmospheric parameters which are input
into the model including their source.

5 Closure study

For the closure study the shortwave cloud radiative ef-
fect (SWCRE) at the surface has been computed with the
ECHAM-5 RTM and compared to the ship-based SWCRE
measurements. Six experiments have been defined for test-
ing the sensitivity of the model to different combinations of
ship- and satellite-based observations concerning the repre-
sentation of clouds as input to the RTM. The experiments are
listed below:

1. Experiment PS: the atmosphere in the model is de-
scribed by ship-based measurements only. The standard
profile for the cloud droplet number concentration as
prescribed by ECHAM-5 is used. Hereby the effective
radius is mainly a function of the measured LWP and
a climatological cloud droplet number concentration.
Here, PS serves as an abbreviation for Polarstern, which
is the vessel ground-based measurements are perfomed
on.

2. Experiment PS-RSAT: as experiment PS but with
droplet effective radius, from the satellite retrieval.

Fig. 3.SWCRE for 3 November 2007 which was dominated by op-
tical thin overcast conditions(a) and the SWCRE for 10 November
2007 which was dominated by broken cloud conditions with a large
averaged cloud fraction(b). The grey area around the observation
line refers to the standard deviation within the 30 min averaging pe-
riod.

3. Experiment PS-R10: as experiment PS but with constant
effective radius of 10 µm as used in the ISCCP satel-
lite retrieval (i.e.Rossow and Schiffer, 1991; Han et al.,
1994).

4. Experiment CMSAF: only CM SAF based LWP andre
are used to describe the cloud properties.

5. Experiment CMSAF-NORSAT: as experiment CMSAF
but without satellite-basedre. The ECHAM-5 standard
profile of cloud droplet number concentrations is used
to obtain the effective cloud droplet radius.

6. Experiment CMSAF-R10: for consistency an experi-
ment using a constant effective radius of 10 µm but a
LWP from the CM SAF retrieval is also included.

Seven days with different atmospheric conditions have been
selected for this study, ranging from clear skies to broken
clouds with different cloud fraction to overcast with optically
thick clouds (see Table2). For each day the diurnal cycle of

www.atmos-chem-phys.net/12/12243/2012/ Atmos. Chem. Phys., 12, 12243–12253, 2012



12248 T. Hanschmann et al.: Ship and satellite observations over the ocean

Table 2.Top table: overview of the days used within this study with their mean location and atmospheric condition. Bottom table: daily mean
and standard deviation of cloud fraction (N ) in %, liquid water path (LWP) in gm−2 and cloud base height (CBH) in m.

# Date Mean position Atmospheric condition

1 31/10/2007 42◦ N/10◦ W Clear sky
2 02/11/2007 33◦ N/13◦ W Midlatitiude scattered clouds
3 03/11/2007 30◦ N/14◦ W Stratocumulus with break ups
4 10/11/2007 05◦ N/17◦ W Mixed clouds with stratocumulus fields
5 12/11/2007 02◦ N/13◦ W Tropical scattered clouds with clear sky periods
6 13/11/2007 01◦ S/10◦ W Mixed clouds with overcast periods
7 16/11/2007 10◦ S/02◦ W Stratocumulus with high sun

# Mean ofN STDEV ofN Mean of LWP STDEV of LWP Mean of CBH

1 3 4 2 3 479
2 15 12 24 56 561
3 75 23 23 51 1860
4 54 24 64 17 2554
5 10 8 20 32 1461
6 67 29 48 90 828
7 74 31 32 29 1207

the surface SWCRE has been modeled with a temporal res-
olution of 15 min corresponding to the SEVIRI repeat cycle.
Equation (3) defines the SWCRE at the surface as used here,
with α denoting the ocean albedo taken from ECHAM-5.

SWCRE= (1− α)(DSRall sky− DSRclear) (3)

Figure3 shows the diurnal cycle of the SWCRE for two days.
The upper panel displays a day nearly overcast clouds which
are breaking up during noon and which are getting thinner
in the afternoon. The lower panel displays a day with broken
clouds dominated by a large cloud fraction. In both panels
the black curve corresponds to the ship based measurements
and the shaded area around it covers± one standard deviation
for each averaging period. The other curves show the mod-
eled SWCRE for the different experiments (blue for exper-
iment PS, light blue for experiment PS-RSAT, magenta for
experiment PS-R10, red for experiment CMSAF, orange for
experiment CMSAF-NORSAT, and brown for experiment
CMSAF-R10). The light grey bar is used to indicate prob-
lems with the input data such as rain for the microwave ra-
diometer, sunglint for CM SAF data, shadowing of the pyra-
nometer, etc. Both panels indicate that the model can roughly
reproduce the diurnal cycle of the SWCRE. There is a signif-
icant spread within the six experiments as well as a more or
less pronounced bias compared to the observed SWCRE.

The low-level mostly cloudy cloud situation in Fig.3a un-
til 12:00 UTC is well captured by most experiments. This
also indicates that the additional satellite-based information
of cloud droplet effective radius improves the representation
of the state of the atmosphere. As the sky slightly clears
during noon, a pronounced broken cloud effect (positive
SWCRE) occurs, which cannot be reproduced by the RTM
leading to a strong underestimation. In the afternoon, the ex-

periments show the largest variability and generally underes-
timate the SWCRE, i.e. they produce smaller cloud-induced
shading than is shown in the observations. Interestingly, the
experiments with satellite-based LWP show better results in-
dicating that the ship-based microwave radiometer underesti-
mates the LWP for the thinner water clouds in the afternoon.

The strongly inhomogeneous broken cloud case in Fig.3b
shows a correspondingly large variability in the observed
SWCRE that is partly captured by the six model experiments.
Again, all RTM results show a similar deviation from the ob-
servation due to the inherent cloud homogeneity that can not
reproduce situations with local clouds blocking the direct so-
lar irradiation or cloud holes that allow for direct sun despite
a large cloud fraction. Both situations explain the systematic
biases around 13:00, 14:00 and 15:00 UTC. There is no sin-
gle combination of ship- and satellite-based cloud descrip-
tion that explains the observations best. At least, ship-based
LWP with satellitere work better than using ship-based mea-
surements only.

Finally, the ability of the different RTM experiments to re-
produce the downwelling shortwave radiation has been quan-
tified and compared. In Table3, the differences between
the modeled and the measured (model− measurement) daily
mean DSR, the bias, are shown in Wm−2. In the second col-
umn of the table, the daily mean measured DSR is shown,
which are the pyranometer measurements with times of shad-
owing through ship superstructures removed. In the third col-
umn the clear sky mean DSR is shown. The parametrisation
from Kalisch and Macke(2008) is used to calculate the DSR
for this purpose under clear conditions. For the clear sky case
a slightly larger DSR is observed, compared to the modeled
clear sky value. This deviation is most likely the result of two
competing effects: the shadowing of the forward scattered
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Table 3.Results of the six experiments applied to seven different atmospheric conditions examined within this study are shown as deviations
of the modeled to the measured daily mean DSR(bias). Additionally the measured and parameterized clear sky DSR at the surface is given
in Wm−2. The parametrization is taken fromKalisch and Macke(2008). In the last two rows the mean bias and the mean absolute deviation
of the bias over all cases and for each experiment is shown in Wm−2.

Mean DSR Mean DSR Exp. PS Exp. PS-RSAT Exp. PS-R10 Exp. CMSAF Exp. CMSAF- Exp. CMSAF-
measured clear sky NORSAT R10
(Wm−2) (Wm−2) (Wm−2) (Wm−2) (Wm−2) (Wm−2) (Wm−2) (Wm−2)

Clear sky 453.2 450.8 −2.5 −2.5 −2.5 −2.5 −2.5 −2.5

Midlatitude
scattered clouds 418.2 495.4 +55.95 +58.3 +62.1 +67.3 +62.8 +69.5

Tropical scattered
clouds with
clear sky periods 628.0 638.4 −2.0 +2.3 +3.4 +1.9 −1.4 +3.6

Mixed clouds
with stratocumulus 529.2 682.9 −70.1 +6.9 +1.8 −29.0 −93.5 −38.6

Mixed clouds
with overcast periods 352.0 549.7 −30.9 +12.6 +11.4 −41.7 −62.6 −58.3

Stratocumulus
with break ups 341.5 535.1 +39.4 +61.6 +96.2 −0.2 −25.2 +41.2

Stratocumulus
with high sun 389.2 557.4 +20.9 +59.8 +50.9 −41.1 −102.6 −64.7

mean bias±
standard deviation 1.5± 42.8 28.4± 29.8 31.9± 38.1 −6.5± 37.7 −32.1± 58.5 −7.1± 50.4

mean absolute deviation
of the bias 31.7 29.1 32.6 26.2 50.1 39.8

solar radiation and the reflection of solar radiation by the
ship’s superstructure. The observed diurnal cycle of the clear
sky flux (not shown here) indicates that the reflection effect
is slightly stronger than the shadowing effect. However, the
difference between the two artifacts is less than 3 Wm−2,
which is well within the accuracy of the pyranometer. Dif-
ferent aerosol loads can also be the source of the deviation.
The small deviation for the clear sky case shows that in the
absence of clouds the RTM can well reproduce the diurnal
cycle of DSR at the surface.

Summarizing the results in Table3, no clear quality differ-
ences are found between using ship-based or satellite-based
cloud properties for describing the observed short wave cloud
radiative effect. Compared toEbell et al.(2011) for most ex-
periments a lower bias is found when considering the mean
absolute deviation of the bias of each experiment over all
cases. Both experiment groups, CMSAF and PS, show sim-
ilar values which decrease when the satellite based effective
radius is included in the dataset. Furthermore, we compared
our findings to the CM SAF target accuracies in their CDOP
Product Requirments DocumentCMSAF (2011), which
specifies 20 Wm−2 for daily means as target accuracy for
the surface incoming shortwave radiation product. Applied
to our results for mean bias, the 20 Wm−2 can be achieved
for three of the six experiments. Compared to the mean ab-
solute deviation of the bias of our results the 20 Wm−2 is
smaller, but both experiments which include the CM-SAF

effective Radius achieve accuracies relatively close to this
target (26 Wm−2 and 29 Wm−2). Results of the single cases
show that the experiments CMSAF show better results for
the overcast case with optically thin clouds and also for the
broken cloud case with large cloud fraction. Experiment PS
shows slightly better results for the broken cloud case with
small cloud fraction. These results are possibly related to
the fact that satellite retrievals of cloud properties have more
problems with small-scale cloudiness than surface-based re-
trieval schemes. Using the effective radius as additional in-
formation for the experiments CMSAF and PS leads to the
same or better results compared to the experiments with the
standard CDNC profile and the constant effective radius. Re-
sults of both experiments using a constant effective radius
do show deviations similar or larger compared to the exper-
iments with the prescribed CM SAF effective radius under
nearly all conditions.

Comparing our results under clear sky conditions to those
of Guo and Coakley(2008) slightly smaller deviations are
found in our comparison between modeled and measured
DSR. For a clear sky day an average difference of about
0.5 % has been found.Guo and Coakley(2008) compared
the surface radiation measured on board of a vessel to model
results. Their model was driven by atmospheric profiles from
NCEP analysis fields. They found an averaged disagreement
of 2 % over 12 days selected for constant clear sky condi-
tions. However, given the larger measurement uncertainties
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and only a single day of data for our study, this difference
is not statistically significant. Generally, a larger number of
cases should be considered to obtain statistically robust esti-
mates of the model performance under the different synopti-
cal situations.

Another study comparing ship-based measured DSR and
satellite based estimates of DSR isMacke et al.(2010b).
They compared instantaneous and daily data and determined
random and systematic deviations. Our results for daily
mean DSR show higher deviations (up to 102 Wm−2 versus
20 Wm−2 in Macke et al., 2010b). This likely results from
the additional complexity introduced by using the ship-based
cloud properties, with their specific uncertainties and yet an-
other sampling geometry.

There are several problems and limitations which are re-
sponsible for the quality of the modeled SWCRE. Firstly, the
timeseries of MWR-LWP only samples a one-dimensional
cross section of the area of interest. Thus, any anisotropy in
the horizontal LWP distribution will result in a sampling bias
compared to a 2-D LWP sampling as performed by the satel-
lite retrievals. Sub-pixel inhomogeneity also biases the satel-
lite retrieval towards smaller LWP. Related to this problem,
the specific cloud constellation relative to the sun position
is relevant, which cannot be resolved from the satellite ob-
servations but has a strong effect on the CRE, i.e. by block-
ing or passing the direct solar irradiation. Furthermore, the
cloud cover used in this study is derived from the sky imager
for pixels with a wide range of observation zenith angles.
Hence, it may be biased relative to zenith view for broken
clouds with large vertical extent due to obscuration by cloud
sides and is affected by clouds which have little relevance
for radiation e.g. opposite to the sun and far away at the hori-
zon. These problems limit the ability of performing a 1-D
radiative closure study from ground- and satellite based ob-
servations.

6 Summary and conclusion

This study addresses the following two questions: (1) How
accurate does the radiative transfer scheme of the ECHAM-
5 GCM reproduce the measured SWCRE over the ocean
based on ship-based and satellite-based estimates of the at-
mospheric state? (2) Is there an optimal combination of ship-
and satellite-based observation that describes the SWCRE
best? To answer these questions, modeled SWCRE have been
compared to SWCRE from ship observations.

For this purpose six different experiments have been con-
ducted, and their results have been analyzed for results for
seven different atmospheric conditions. The experiments dif-
fer in the way the parameter used to describe the clouds are
coming from, either from ship-based or satellite measure-
ments alone, from a combination of both or from a combi-
nation of measurements and a-priori cloud properties.

In the considered cases, using satellite data does not result
in a loss in accuracy. Furthermore, we could not identify a
higher accuracy by using the ship-based cloud properties as
model input. Satellite estimates can show reduced accuracies
under broken cloud situations with small cloud fraction. This
is likely due to sub-pixel cloudiness that is not resolved by
the satellite. For the numerical experiments an improvement
by using the satellite-based estimate of effective radius as
additional input to the ship-based observations mostly has
been found.

The strong variability of the DSR in broken cloud situa-
tions causes a fundamental problem in the comparison of ra-
diative transfer model results and radiation measurements. To
overcome this issue models which include three dimensional
radiative transfer effects are needed together with realistic
cloud fields. In addition, we have to deal with the problem
of merging two different observations, from the surface and
the top of atmosphere, which leads to systematic uncertain-
ties. Additional instruments such as a cloud radar, as it will
be available on research vessels in the future, combined with
a increased set of data can reduce the limitations which were
encountered in this study. An interesting aspect would be the
closure of satellite based estimates and ship data in overcast
conditions compared to broken cloudy conditions. Unfortu-
nately, in our dataset no fully overcast day could be found.

This study also demonstrates the importance of using the
pixel-based level-2 CM SAF data for studying deviations be-
tween modeled and measured irradiance. In several cases,
mechanisms responsible for the differences between mod-
eled radiation and the pyranometer measurements could only
be analyzed because of the high temporal and spatial resolu-
tion of the level-2 data.

Appendix A

Relationship between cloud physical and optical
properties

For calculating the radiative effects of a cloud by means of a
radiative transfer model, the vertical profile of cloud optical
properties are required as input (extinction, single scattering
albedo, phase function). Atmospheric models and measure-
ments, however, often provide information about clouds in
form of physical parameters such as cloud water content or
cloud droplet size/size distribution. Hence, the relationships
between the physical and optical properties have to be es-
tablished. In this appendix, we present a short overview of
the most important relations for our study. Our discussion is
based onLiou (1980).

The spatial distribution of cloud droplets is completely de-
scribed by the spectral cloud droplet size distribution,n(r).
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For many applications, the total cloud droplet number con-
centration,N , is of interest, which is given by

N =

∞∫
0

n(r)dr . (A1)

Using some basic mathematics, we can derive the main phys-
ical cloud properties from the size distribution:

– The liquid water content is given by

LWC =
4

3
πρw

∞∫
0

r3n(r)dr , (A2)

with ρw as the density of liquid water, and43π as vol-
ume of one cloud droplet assuming a spherical particle
shape.

– The extinction coefficient is defined by

βext = π

∞∫
0

Qext(r)r
2n(r)dr ,n(r)dr , (A3)

whereQextπr2 denotes the extinction cross section of
an individual cloud droplet.Qext is called the extinction
efficiency factor, and is a function of the cloud droplet
radius, the wavelengths of the stimulating light beam,
and the refraction index. The extinction efficiency fac-
tor for cloud droplets can be set to 2 (Liou, 1980; Hu
and Stamnes, 1993) with good accuracy in the visible
wavelength range.

– Both relations can be re-written usingN :

LWC =
4

3
Nπρwr3

vol , (A4)

with rvol =̂, volume mean radius

βext = NπQextr
2
a = 2Nπr2

a , (A5)

with r2
a =̂ cross sectional area

Hu and Stamnes(1993) show that cloud optical properties, as
they are used in radiative transfer models, are mainly sensi-
tive to the effective radiusre, which is defined by the ratio of
the second and third moment of the droplet size distribution
n(r):

re =

∫
∞

0 r3n(r)dr∫
∞

0 r2n(r)dr
=

r3
vol

r2
a

. (A6)

To account for the differences betweenrvol, that we can ob-
tain from the cloud water concentration, andre, that repre-
sents the size distribution for scattering purposes, a conver-
sion factork is introduced:re = krvol. Roeckner et al.(2003)
determined the value ofk as 1.077 for maritime clouds.

On a closer look we identify in Eq. (A2) the 3rd moment
of the cloud droplet size distribution and in the Eq. (A3) the
2nd moment. Substituting the 3rd moment from Eq. (A2) and
and 2nd moment from Eq. (A3) into Eq. (A6), the following
well known (i.e.Reid et al., 1999) relation is obtained:

re =
3

4

2π

πρw

LWC

βext

=
3

2

LWC

βext

(A7)

In our study, the measurements do not provide the extinc-
tion coefficient. Therefore, we need relation Eq. (A7) in an-
other form. We can derive an expression ofre directly from

Eq. (A2). rvol =
3
√

3LWC
4πρwN

still consists the volume radius and

we have to use the conversionre = krvol and derive:

re = k 3

√
LWC

4πρwN
. (A8)

With a detailed look the difference between Eqs. (A7) and
(A8) is the extinction coefficient, which is replaced by its
definition. For the purpose of our study, functions containing
extinction and liquid water content can be integrated verti-
cally over the atmospheric column by assuming a vertically
homogeneous cloud layer and transforming them to the LWP
and COT as function parameters. This also enables solving
Eq. (A7) for the COT.
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