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Many research designs require the assessment of inter-rater reliability (IRR) to 

demonstrate consistency among observational ratings provided by multiple coders. 

However, many studies use incorrect statistical procedures, fail to fully report the 

information necessary to interpret their results, or do not address how IRR affects the 

power of their subsequent analyses for hypothesis testing. This paper provides an 

overview of methodological issues related to the assessment of IRR with a focus on 

study design, selection of appropriate statistics, and the computation, interpretation, 

and reporting of some commonly-used IRR statistics. Computational examples include 

SPSS and R syntax for computing Cohen’s kappa and intra-class correlations to assess 

IRR. 

 

The assessment of inter-rater reliability (IRR, also called 

inter-rater agreement) is often necessary for research designs 

where data are collected through ratings provided by 

trained or untrained coders. However, many studies use 

incorrect statistical analyses to compute IRR, misinterpret 

the results from IRR analyses, or fail to consider the 

implications that IRR estimates have on statistical power for 

subsequent analyses.  

This paper will provide an overview of methodological 

issues related to the assessment of IRR, including aspects of 

study design, selection and computation of appropriate IRR 

statistics, and interpreting and reporting results. 

Computational examples include SPSS and R syntax for 

computing Cohen’s kappa for nominal variables and intra-

class correlations (ICCs) for ordinal, interval, and ratio 

variables. Although it is beyond the scope of the current 

paper to provide a comprehensive review of the many IRR 

statistics that are available, references will be provided to 

other IRR statistics suitable for designs not covered in this 

tutorial.  

A Primer on IRR 

The assessment of IRR provides a way of quantifying the 

degree of agreement between two or more coders who make 

independent ratings about the features of a set of subjects. In 

this paper, subjects will be used as a generic term for the 

people, things, or events that are rated in a study, such as 

the number of times a child reaches for a caregiver, the level 

of empathy displayed by an interviewer, or the presence or 

absence of a psychological diagnosis. Coders will be used as 

a generic term for the individuals who assign ratings in a 

study, such as trained research assistants or randomly-

selected participants. 

In classical test theory (Lord, 1959; Novick, 1966), observed 

scores (X) from psychometric instruments are thought to be 

composed of a true score (T) that represents the subject’s 

score that would be obtained if there were no measurement 

error, and an error component (E) that is due to 

measurement error (also called noise), such that 

  , 

or in abbreviated symbols, 

  . (1) 

Equation 1 also has the corresponding equation 

  , (2) 

where the variance of the observed scores is equal to the 

variance of the true scores plus the variance of the 

measurement error, if the assumption that the true scores 

and errors are uncorrelated is met. 

Measurement error (E) prevents one from being able to 

observe a subject’s true score directly, and may be 

introduced by several factors. For example, measurement 

error may be introduced by imprecision, inaccuracy, or poor 
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scaling of the items within an instrument (i.e., issues of 

internal consistency); instability of the measuring 

instrument in measuring the same subject over time (i.e., 

issues of test-retest reliability); and instability of the 

measuring instrument when measurements are made 

between coders (i.e., issues of IRR). Each of these issues may 

adversely affect reliability, and the latter of these issues is 

the focus of the current paper.  

IRR analysis aims to determine how much of the 

variance in the observed scores is due to variance in the true 

scores after the variance due to measurement error between 

coders has been removed (Novick, 1966), such that 

  . (3) 

For example, an IRR estimate of 0.80 would indicate that 

80% of the observed variance is due to true score variance or 

similarity in ratings between coders, and 20% is due to error 

variance or differences in ratings between coders.  

Because true scores (T) and measurement errors (E) 

cannot be directly accessed, the IRR of an instrument cannot 

be directly computed. Instead, true scores can be estimated 

by quantifying the covariance among sets of observed scores 

(X) provided by different coders for the same set of subjects, 

where it is assumed that the shared variance between 

ratings approximates the value of  and the unshared 

variance between ratings approximates , which 

allows reliability to be estimated in accordance with 

equation 3.  

IRR analysis is distinct from validity analysis, which 

assesses how closely an instrument measures an actual 

construct rather than how well coders provide similar 

ratings. Instruments may have varying levels of validity 

regardless of the IRR of the instrument. For example, an 

instrument may have good IRR but poor validity if coders’ 

scores are highly similar and have a large shared variance 

but the instrument does not properly represent the construct 

it is intended to measure. 

How are studies designed to assess IRR? 

Before a study utilizing behavioral observations is 

conducted, several design-related considerations must be 

decided a priori that impact how IRR will be assessed. These 

design issues are introduced here, and their impact on 

computation and interpretation are discussed more 

thoroughly in the computation sections below. 

First, it must be decided whether a coding study is 

designed such that all subjects in a study are rated by 

multiple coders, or if a subset of subjects are rated by 

multiple coders with the remainder coded by single coders. 

The contrast between these two options is depicted in the 

left and right columns of Table 1. In general, rating all 

subjects is acceptable at the theoretical level for most study 

designs. However, in studies where providing ratings is 

costly and/or time-intensive, selecting a subset of subjects 

for IRR analysis may be more practical because it requires 

fewer overall ratings to be made, and the IRR for the subset 

of subjects may be used to generalize to the full sample.  

Second, it must be decided whether the subjects that are 

rated by multiple coders will be rated by the same set of 

coders (fully crossed design) or whether different subjects 

are rated by different subsets of coders. The contrast 

between these two options is depicted in the upper and 

lower rows of Table 1. Although fully crossed designs can 

require a higher overall number of ratings to be made, they 

allow for systematic bias between coders to be assessed and 

controlled for in an IRR estimate, which can improve overall 

IRR estimates. For example, ICCs may underestimate the 

true reliability for some designs that are not fully crossed, 

and researchers may need to use alternative statistics that 

are not well distributed in statistical software packages to 

assess IRR in some studies that are not fully crossed (Putka, 

Le, McCloy, & Diaz, 2008).  

Third, the psychometric properties of the coding system 

used in a study should be examined for possible areas that 

could strain IRR estimates. Naturally, rating scales already 

shown to have poor IRR are likely to produce low IRR 

estimates in subsequent studies. However, even if a rating 

system has been shown to have good IRR, restriction of 

range can potentially occur when a rating system is applied 

to new populations, which can substantially lower IRR 

estimates. Restriction of range often lowers IRR estimates 

because the  component of equation 3 is reduced, 

producing a lower IRR estimate even if  does not 

change. For example, consider two hypothetical studies 

where coders rate therapists’ levels of empathy on a well-

validated 1 to 5 Likert-type scale where 1 represents very 

low empathy and 5 represents very high empathy. The first 

study recruits therapists from a community clinic and 

results in a set of ratings that are normally distributed across 

the five points of the scale, and IRR for empathy ratings is 

good. The second study uses the same coders and coding 

system as the first study and recruits therapists from a 

university clinic who are highly trained at delivering 

therapy in an empathetic manner, and results in a set of 

ratings that are restricted to mostly 4’s and 5’s on the scale, 

and IRR for empathy ratings is low. IRR is likely to have 

been reduced due to restriction of range where  was 

reduced in the second study even though  may have 

been similar between studies because the same coders and 
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coding system were used. In cases where restricted range is 

likely, it is worth considering whether the scale should be 

modified, for example by expanding it into a 1 to 9 Liker-

type scale, adjusting the anchoring points, or omitting the 

scale altogether. These decisions are best made before a 

study begins, and pilot testing may be helpful for assessing 

the suitability of new or modified scales. 

Fourth, in studies using trained coders, it may often be 

necessary to conduct a considerable amount of training with 

practice subjects before subjects from the real study are 

coded. In these cases it is common to specify an a priori level 

of IRR that must be achieved before subjects from the real 

study are rated and to report this in the final study write-up. 

Commonly, the qualitative ratings for different IRR statistics 

can be used to assign these cutoff points; for example, a 

researcher may require all IRR estimates to be at least in the 

“good” range before coders can rate the real subjects in a 

study. 

What are common mistakes that people make in assessing 

and reporting IRR? 

Most general courses in statistics and experimental 

design devote little or no time to the study of IRR, which, 

combined with the lack of published comprehensive 

guidelines for assessing and reporting IRR, may result in 

several commonly-made mistakes in behavioral research. 

Several of these mistakes are briefly described below. 

Using percentages of agreement. Despite being definitively 

rejected as an adequate measure of IRR (Cohen, 1960; 

Krippendorff, 1980), many researchers continue to report the 

percentage that coders agree in their ratings as an index of 

coder agreement. For categorical data, this may be expressed 

as the number of agreements in observations divided by the 

total number of observations. For ordinal, interval, or ratio 

data where close-but-not-perfect agreement may be 

acceptable, percentages of agreement are sometimes 

expressed as the percentage of ratings that are in agreement 

within a particular interval. Perhaps the biggest criticism of 

percentages of agreement is that they do not correct for 

agreements that would be expected by chance and therefore 

overestimate the level of agreement. For example, if coders 

were to randomly rate 50% of subjects as “depressed” and 

50% as “not depressed” without regard to the subject’s 

actual characteristics, the expected percentage of agreement 

would be 50% even though all overlapping ratings were due 

to chance. If coders randomly rated 10% of subjects as 

depressed and 90% as not depressed, the expected 

percentage of agreement would be 82% even though this 

seemingly high level of agreement is still due entirely to 

chance. 

Not reporting which statistic or variant was used in an IRR 

analysis. Many studies fail to report which statistic was 

used to compute IRR (e.g., Cohen’s kappa, Fleiss’s kappa, 

ICCs) or which variant of that statistic was computed (e.g., 

Siegel & Castellan’s 1988 variant of Cohen’s kappa, two-way 

consistency average-measures ICC). Reporting both the 

statistic and its computational variant are crucial because 

there are many statistics for computing IRR and different 

Table 1.Designs for assigning coders to subjects IRR studies. 

 All subjects rated 

by multiple coders 

Subset of subjects rated  

by multiple coders 

Design 

fully 

crossed 

 Coder A Coder B Coder C 

Subject 1 X X X 

Subject 2 X X X 

Subject 3 X X X 

Subject 4 X X X 

 

 Coder A Coder B Coder C 

Subject 1 X X X 

Subject 2 X   

Subject 3 X X X 

Subject 4  X  

 

Design 

not fully 

crossed 

 Coder A Coder B Coder C 

Subject 1  X X 

Subject 2 X  X 

Subject 3  X X 

Subject 4 X X  

 

 Coder A Coder B Coder C 

Subject 1 X X  

Subject 2 X   

Subject 3  X X 

Subject 4  X  

 

Note: “X” indicates that the ratings were provided by a given coder to the corresponding subject. 
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variants can substantially influence the interpretation of IRR 

estimates. Reference manuals for statistical software 

packages typically will provide references for the variants of 

IRR statistics that are used for computations, and some 

software packages allow users to select which variant they 

wish to compute. 

Not using the correct statistic for the study design. Many 

factors must be considered in the selection of the most 

appropriate statistical test, such as the metric in which a 

variable was coded (e.g., nominal vs. ordinal, interval, or 

ratio), the design of the study (e.g., whether all subjects vs. a 

subset of subjects are rated by multiple coders), and the 

intended purpose of the IRR estimate (e.g., to estimate the 

reliability of individual coders’ ratings vs. the reliability of 

the mean ratings from multiple coders). Researchers should 

be careful to assess the appropriateness of a statistic for their 

study design and look for alternative options that may be 

more suitable for their study. Appropriate statistics for 

various study designs are discussed in more depth in the 

computation sections below. 

Not performing IRR analyses on variables in their final 

transformed form. It is often more appropriate to report IRR 

estimates for variables in the form that they will be used for 

model testing rather their raw form. For example, if a 

researcher counts the frequency of certain behaviors then 

square-root transforms these for use in subsequent 

hypothesis testing, assessing IRR for the transformed 

variables, rather than the raw behavior counts, more 

accurately indicates the relative level of measurement error 

that is present in the final hypothesis testing. In situations 

where IRR estimates are high for a variable in its raw form 

but low for the variable in its final form (or vice versa), both 

IRR estimates may be reported to demonstrate that coders 

reliably rated subjects, despite the IRR for the final variable 

being low and possibly containing too much measurement 

error for further analysis.  

Not interpreting the effect of IRR on power and pertinent 

study questions. Finally, many researchers neglect to 

interpret the effect of IRR estimates on questions of interest 

to their study. For example, if it is important to show that 

coders can independently reach similar conclusions about 

the subjects they observe, it can be helpful to provide 

qualitative interpretations of IRR estimates by comparing 

them to previously-observed IRR estimates from similar 

instruments or providing qualitative ratings based on pre-

established cutoff points for good, acceptable, and 

unacceptable IRR.  

Implications of IRR estimates on statistical power should 

be commented on if the variables observed in the study are 

subject to subsequent hypothesis testing. Low IRR indicates 

that the observed ratings contain a large amount of 

measurement error, which adds noise to the signal a 

researcher wishes to detect in their hypothesis tests. Low 

IRR may increase the probability of type-II errors, as the 

increase in noise may suppress the researcher’s ability to 

detect a relationship that actually exists, and thus lead to 

false conclusions about the hypotheses under study. 

Possible reasons for low IRR should be discussed, e.g., 

IRR may be low due to restricted range, poor psychometric 

properties of a scale, poorly trained coders, difficulty in 

observing or quantifying the construct of interest, or other 

reasons. Decisions about dropping or retaining variables 

with low IRR from analyses should be discussed, and 

alternative models may need to be proposed if variables are 

dropped. 

Computing IRR 

Kappa for Nominal Variables 

Cohen’s (1960) kappa and related kappa variants are 

commonly used for assessing IRR for nominal (i.e., 

categorical) variables. Different variants of kappa allow for 

IRR to be assessed in fully-crossed and non-fully crossed 

designs.  

Mathematical foundations. Kappa statistics measure the 

observed level of agreement between coders for a set of 

nominal ratings and corrects for agreement that would be 

expected by chance, providing a standardized index of IRR 

that can be generalized across studies. The degree of 

observed agreement is determined by cross-tabulating 

ratings for two coders, and the agreement expected by 

chance is determined by the marginal frequencies of each 

coder’s ratings. Kappa is computed based on the equation  

   (4) 

where P(a) denotes the observed percentage of agreement, 

and P(e) denotes the probability of expected agreement due 

to chance. To illustrate the derivation of P(a) and P(e), Table 

2 provides hypothetical data from two coders who make one 

of two response options for each subject (e.g., the presence 

or absence of depression). For the data in Table 2, P(a) is 

equal to the observed percentage of agreement, indicated by 

the sum of the diagonal values divided by the total number 

of subjects, (42+37)/100 = .79. To compute P(e), we note from 

Table 2.  Agreement matrix for nominal variable. 

  Coder A  

  Absent Present Total 

Coder B 
Absent 42 13 55 

Present 8 37 45 

 Total 50 50 100 
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the marginal means of Table 2 that Coder A rated 

depression as present 50/100 times and Coder B rated 

depression as present 45/100 times. The probability of 

obtaining agreement about the presence of depression if 

ratings were assigned randomly between coders would be 

0.50 × 0.45 = 0.225, and the probability of obtaining chance 

agreement about the absence of depression would be (1-

0.50) × (1-0.45) = 0.275. The total probability of any chance 

agreement would then be 0.225 + 0.275 = 0.50, and κ = (0.79 - 

0.50)/(1 - 0.50) = 0.58. 

Possible values for kappa statistics range from -1 to 1, 

with 1 indicating perfect agreement, 0 indicating completely 

random agreement, and -1 indicating “perfect” 

disagreement. Landis and Koch (1977) provide guidelines 

for interpreting kappa values, with values from 0.0 to 0.2 

indicating slight agreement, 0.21 to 0.40 indicating fair 

agreement, 0.41 to 0.60 indicating moderate agreement, 0.61 

to 0.80 indicating substantial agreement, and 0.81 to 1.0 

indicating almost perfect or perfect agreement. However, 

the use of these qualitative cutoffs is debated, and 

Krippendorff (1980) provides a more conservative 

interpretation suggesting that conclusions should be 

discounted for variables with values less than 0.67, 

conclusions tentatively be made for values between 0.67 and 

0.80, and definite conclusions be made for values above 0.80. 

In practice, however, kappa coefficients below 

Krippendorff’s conservative cutoff values are often retained 

in research studies, and Krippendorff offers these cutoffs 

based on his own work in content analysis while 

recognizing that acceptable IRR estimates will vary 

depending on the study methods and the research question. 

Common kappa variants for 2 coders. Cohen’s original 

(1960) kappa is subject to biases in some instances and is 

only suitable for fully-crossed designs with exactly two 

coders. As a result, several variants of kappa have been 

developed that accommodate different datasets. The chosen 

kappa variant substantially influences the estimation and 

interpretation of IRR coefficients, and it is important that 

researchers select the appropriate statistic based on their 

design and data and report it accordingly. Including full 

mathematical expositions of these variants is beyond the 

scope of the present article but they are available in the 

references provided.  

Two well-documented effects can substantially cause 

Cohen’s kappa to misrepresent the IRR of a measure (Di 

Eugenio & Glass, 2004, Gwet, 2002), and two kappa variants 

have been developed to accommodate these effects. The first 

effect appears when the marginal distributions of observed 

ratings fall under one category of ratings at a much higher 

rate over another, called the prevalence problem, which 

typically causes kappa estimates to be unrepresentatively 

low. Prevalence problems may exist within a set of ratings 

due to the nature of the coding system used in a study, the 

tendency for coders to identify one or more categories of 

behavior codes more often than others, or due to truly 

unequal frequencies of events occurring within the 

population under study. The second effect appears when the 

marginal distributions of specific ratings are substantially 

different between coders, called the bias problem, which 

typically causes kappa estimates to be unrepresentatively 

high. Di Eugenio and Glass (2004) show how two variants of 

Cohen’s (1960) kappa (Byrt, Bishop, & Carlin, 1993; Siegel & 

Castellan, 1988, pp. 284-291) may be selected based on 

problems of prevalence and bias in the marginal 

distributions. Specifically, Siegel and Castellan’s kappa 

obtains accurate IRR estimates in the presence of bias, 

whereas Cohen’s and Byrt et al’s kappa estimates are 

inflated by bias and therefore not preferred when bias is 

present. Alternatively, Byrt et al.’s formula for kappa 

corrects for prevalence, whereas Cohen’s and Siegel and 

Castellan’s kappa estimates are unrepresentatively low 

when prevalence effects are present and may not be 

preferred if substantial prevalence problems are present. No 

single kappa variant corrects for both bias and prevalence, 

and therefore multiple kappa variants may need to be 

reported to account for each of the different distributional 

problems that are present within a sample. 

Cohen (1968) provides an alternative weighted kappa 

that allows researchers to differentially penalize 

disagreements based on the magnitude of the disagreement. 

Cohen’s weighted kappa is typically used for categorical 

data with an ordinal structure, such as in a rating system 

that categorizes high, medium, or low presence of a 

particular attribute. In this case a subject being rated as high 

by one coder and low by another should result in a lower 

IRR estimate than when a subject is rated as high by one 

coder and medium by another. Norman and Streiner (2008) 

show that using a weighted kappa with quadratic weights 

for ordinal scales is identical to a two-way mixed, single-

measures, consistency ICC, and the two may be substituted 

interchangeably.  This interchangeability poses a specific 

advantage when three or more coders are used in a study, 

since ICCs can accommodate three or more coders whereas 

weighted kappa can only accommodate two coders 

(Norman & Streiner, 2008). 

Common kappa-like variants for 3 or more coders. The 

mathematical foundations of kappa provided by Cohen 

(1960) make this statistic only suitable for two coders, 

therefore IRR statistics for nominal data with three or more 

coders are typically formalized as extensions of Scott’s 

(1955) Pi statistic (e.g., Fleiss’s 1971) or are computed using 

the arithmetic mean of kappa or P(e) (e.g., Light 1971; Davies 
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& Fleiss, 1982). 

Fleiss (1971) provides formulas for a kappa-like 

coefficient that is suitable for studies where any constant 

number of m coders is randomly sampled from a larger 

population of coders, with each subject rated by a different 

sample of m coders. For example, this may be appropriate in 

a study where psychiatric patients are assigned as having 

(or not having) a major depression diagnosis by several 

health professionals, where each patient is diagnosed by m 

health professionals randomly sampled from a larger 

population. Gross (1986) provides formulas for a statistic 

similar to Fleiss’s kappa for studies with similar designs 

when the number of coders in the study is large relative to 

the number of subjects. In accordance with the assumption 

that a new sample of coders is selected for each subject, 

Fleiss’s coefficient is inappropriate for studies with fully-

crossed designs. 

For fully-crossed designs with three or more coders, 

Light (1971) suggests computing kappa for all coder pairs 

then using the arithmetic mean of these estimates to provide 

an overall index of agreement. Davies and Fleiss (1982) 

propose a similar solution that uses the average P(e) 

between all coder pairs to compute a kappa-like statistic for 

multiple coders. Both Light’s and Davies and Fleiss’s 

solutions are unavailable in most statistical packages; 

however, Light’s solution can easily be implemented by 

computing kappa for all coder pairs using statistical 

software then manually computing the arithmetic mean. 

A summary of the kappa and kappa-like statistical 

variants discussed here is outlined in Table 7. 

Computational example. A brief example for computing 

kappa with SPSS and the R concord package (Lemon & 

Fellows, 2007) are provided based on the hypothetical 

nominal ratings of depression in Table 3, where “2” 

indicates current major depression, “1” indicates a history of 

major depression but no current diagnosis, and “0” 

indicates no history of or current major depression. 

Although not discussed here, the R irr package (Gamer, 

Lemon, Fellows, & Singh, 2010) includes functions for 

computing weighted Cohen’s (1968) kappa, Fleiss’s (1971) 

kappa, and Light’s (1971) average kappa computed from 

Siegel & Castellan’s variant of kappa, and the user is 

referred to the irr reference manual for more information 

(Gamer et al., 2010). 

SPSS and R both require data to be structured with 

separate variables for each coder for each variable of 

interest, as shown for the depression variable in Table 3. If 

additional variables were rated by each coder, then each 

variable would have additional columns for each coder 

(e.g., Rater1_Anxiety, Rater2_Anxiety, etc.), and kappa must 

be computed separately for each variable. Datasets that are 

formatted with ratings from different coders listed in one 

column may be reformatted by using the VARSTOCASES 

command in SPSS (see tutorial provided by Lacroix & 

Giguère, 2006) or the reshape function in R. 

A researcher should specify which kappa variant should 

be computed based on the marginal distributions of the 

observed ratings and the study design. The researcher may 

consider reporting Byrt et al.’s (1983) prevalence-adjusted 

kappa or Siegel & Castellan’s (1988) bias-adjusted kappa if 

prevalence or bias problems are strong (Di Eugenio & Glass, 

2004). Each of these kappa variants is available in the R 

concord package; however, SPSS only computes Siegel & 

Castellan’s kappa (Yaffee, 2003).  

The marginal distributions for the data in Table 3 do not 

suggest strong prevalence or bias problems; therefore, 

Cohen’s kappa can provide a sufficient IRR estimate for each 

coder pair. Since three coders are used, the researcher will 

likely wish to compute a single kappa-like statistic that 

summarizes IRR across all coders by computing the mean of 

kappa for all coder-pairs (Light, 1971). Syntax for computing 

kappa for two coders in SPSS and the R concord package are 

provided in Table 4, and the syntax may be modified to 

calculate kappa for all coder pairs when three or more 

coders are present. Both procedures provide point estimates 

and significance tests for the null hypothesis that κ = 0. In 

practice, only point estimates are typically reported, as 

significance test are expected to indicate that kappa is 

greater than 0 for studies that use trained coders (Davies & 

Fleiss, 1982). 

The resulting estimate of Cohen’s kappa averaged across 

coder pairs is 0.68 (coder pair kappa estimates = 0.62 [coders 

1 and 2], 0.61 [coders 2 and 3], and 0.80 [coders 1 and 3]), 

Table 3.  Hypothetical nominal depression ratings for 

kappa example. 

Subject Dep_Rater1 Dep_Rater2 Dep_Rater3 

1 1 0 1 

2 0 0 0 

3 1 1 1 

4 0 0 0 

5 0 0 0 

6 1 1 2 

7 0 1 1 

8 0 2 0 

9 1 0 1 

10 0 0 0 

11 2 2 2 

12 2 2 2 
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indicating substantial agreement according to Landis and 

Koch (1977). In SPSS, only Siegel and Castellan’s kappa is 

provided, and kappa averaged across coder pairs is 0.56, 

indicating moderate agreement (Landis & Koch, 1977). 

According to Krippendorff’s (1980) more conservative 

cutoffs, the Cohen’s kappa estimate suggests that tentative 

conclusions about the fidelity of the coding may be made, 

whereas the Siegel & Castellan’s kappa estimate suggests 

that such conclusions should be discarded. Reporting of 

these results should detail the specifics of the kappa variant 

that was chosen, provide a qualitative interpretation of the 

estimate, and describe any implications the estimate has on 

statistical power. For example, the results of this analysis 

may be reported as follows:  

An IRR analysis was performed to assess the degree that 

coders consistently assigned categorical depression ratings to 

subjects in the study. The marginal distributions of depression 

ratings did not indicate prevalence or bias problems, 

suggesting that Cohen’s (1960) kappa was an appropriate 

index of IRR (Di Eugenis & Glass, 2004). Kappa was 

computed for each coder pair then averaged to provide a single 

index of IRR (Light, 1971). The resulting kappa indicated 

substantial agreement, κ = 0.68 (Landis & Koch, 1977), and is 

in line with previously published IRR estimates obtained from 

coding similar constructs in previous studies. The IRR 

analysis suggested that coders had substantial agreement in 

depression ratings, although the variable of interest contained 

a modest amount of error variance due to differences in 

subjective ratings given by coders, and therefore statistical 

power for subsequent analyses may be modestly reduced, 

although the ratings were deemed as adequate for use in the 

hypothesis tests of the present study.  

ICCs for Ordinal, Interval, or Ratio Variables 

The intra-class correlation (ICC) is one of the most 

commonly-used statistics for assessing IRR for ordinal, 

interval, and ratio variables. ICCs are suitable for studies 

with two or more coders, and may be used when all subjects 

in a study are rated by multiple coders, or when only a 

subset of subjects is rated by multiple coders and the rest are 

rated by one coder. ICCs are suitable for fully-crossed 

designs or when a new set of coders is randomly selected for 

each participant. Unlike Cohen’s (1960) kappa, which 

quantifies IRR based on all-or-nothing agreement, ICCs 

incorporate the magnitude of the disagreement to compute 

IRR estimates, with larger-magnitude disagreements 

resulting in lower ICCs than smaller-magnitude 

disagreements. 

Mathematical foundations. Different study designs 

necessitate the use of different ICC variants, but all ICC 

variants share the same underlying assumption that ratings 

from multiple coders for a set of subjects are composed of a 

true score component and measurement error component. 

This can be rewritten from equation 1 in the form  

   (5) 

where  is the rating provided to subject i by coder j, μ is 

the mean of the true score for variable X,  is the deviation 

of the true score from the mean for subject i, and  is the 

measurement error. In fully-crossed designs, main effects 

between coders where one coder systematically provides 

higher ratings than another coder may also be modeled by 

revising equation 5 such that  

   (6) 

where  represents the degree that coder j systematically 

Table 4.  Syntax for computing kappa in SPSS and R 

SPSS Syntax 

CROSSTABS 

  /TABLES=Dep_Rater1 BY Dep_Rater2 'select the two variables to compute kappa 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=KAPPA    

  /CELLS=COUNT 

  /COUNT ROUND CELL. 

R Syntax 

library(concord)  #Load the concord library (must already be installed) 

print(table(myRatings[,1])) #Examine marginal distributions of coder 1 for bias and  

#prevalence problems 

print(table(myRatings [,2])) #Examine marginal distributions of coder 2 

print(cohen.kappa(myRatings[,1:2])) #compute kappa estimate 

Note: R syntax assumes that data are in a matrix or data frame called “myRatings.” SPSS syntax will 

compute Siegel and Castellan’s (1988) kappa only.  R syntax will compute kappa statistics based on Cohen 

(1960), Siegel and Castellan (1988), and Byrt et al. (1993). 
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deviates from the mean and  represents the interaction 

between subject deviation and coder deviation. The 

variances of the components in equations 5 and 6 are then 

used to compute ICCs, with different combinations of these 

components employed based on the design of the study. 

Higher ICC values indicate greater IRR, with an ICC 

estimate of 1 indicating perfect agreement and 0 indicating 

only random agreement. Negative ICC estimates indicate 

systematic disagreement, and some ICCs may be less than -1 

when there are three or more coders. Cicchetti (1994) 

provides commonly-cited cutoffs for qualitative ratings of 

agreement based on ICC values, with IRR being poor for 

ICC values less than .40, fair for values between .40 and .59, 

good for values between .60 and .74, and excellent for values 

between .75 and 1.0. 

Common ICC variants. Different ICC variants must be 

chosen based on the nature of the study and the type of 

agreement the researcher wishes to capture. Four major 

factors determine which ICC variant is appropriate based on 

one’s study design (McGraw & Wong, 1996; Shrout & Fleiss, 

1979) and briefly reviewed here. 

First, the researcher must specify a one-way or two-way 

model for the ICC, which is based on the way coders are 

selected for the study. If a different set of coders is randomly 

selected from a larger population of coders for each subject 

then the researcher must use a one-way model. This is called 

“one-way” because the new random sample of coders for 

each subject prevents the ICC from accounting for 

systematic deviations due to specific coders (  in equation 

6) or two-way coder × subject interactions (  in equation 

6). In fully crossed designs, a two-way model is appropriate. 

Second, the researcher must specify whether good IRR 

should be characterized by absolute agreement or 

consistency in the ratings. If it is important for raters to 

provide scores that are similar in absolute value, then 

absolute agreement should be used, whereas if it’s more 

important that raters provide scores that are similar in rank 

order, then consistency should be used. For example, 

consider one coder who provides generally low ratings (e.g., 

1-5 on an 8-point Likert scale) and another coder who 

provides generally high ratings (e.g., 4-8 on the same scale). 

One would expect the absolute agreement of these ratings to 

be low, as there were large discrepancies in the actual values 

of the ratings; however, it is possible for the consistency of 

these ratings to be high if the rank orderings of these ratings 

were similar between the two coders.  

Third, the researcher must specify the unit of analysis 

that the ICC results apply to, that is, whether the ICC is 

meant to quantify the reliability of the ratings based on 

averages of ratings provided by several coders or based on 

ratings provided by a single coder. In studies where all 

subjects are coded by multiple raters and the average of 

their ratings is used for hypothesis testing, average-

measures ICCs are appropriate. However, in studies where a 

subset of subjects is coded by multiple raters and the 

reliability of their ratings is meant to generalize to the 

subjects rated by one coder, a single-measures ICC must be 

used. Just as the average of multiple measurements tends to 

be more reliable than a single measurement, average-

measures ICCs tend to be higher than single-measures ICCs. 

In cases where single-measures ICCs are low but average-

measures ICCs are high, the researcher may report both 

ICCs to demonstrate this discrepancy (Shrout & Fleiss, 

1979). 

Fourth, the researcher should specify whether the coders 

selected for the study are considered to be random or fixed 

effects. If the coders in the study are randomly selected from 

a larger population and their ratings are meant to generalize 

to that population then the researcher may use a random 

effects model. These models are termed random because 

subjects and coders are both considered to be randomly 

selected. For example, this may be used in a study that 

assesses the degree to which randomly-selected 

psychologists give similar intelligence ratings to a set of 

subjects, with the intention of generalizing the results to a 

larger population of psychologists. If the researcher does not 

wish to generalize the coder ratings in a study to a larger 

population of coders or if the coders in a study are not 

randomly sampled, they may use a mixed effects model. 

These models are called mixed because the subjects are 

considered to be random but the coders are considered 

fixed. Note, however, that the ICC estimates for random and 

mixed models are identical, and the distinction between 

random and mixed is important for interpretation of the 

generalizability of the findings rather than for computation 

(McGraw & Wong, 1996).  

ICCs use list-wise deletion for missing data, and 

therefore cannot accommodate datasets in fully-crossed 

designs with large amounts of missing data, and 

Krippendorff’s alpha (Hayes & Krippendorff, 2007) may be 

more suitable when problems are posed by missing data in 

fully-crossed designs.  

A summary of the ICC parameter options discussed here 

is outlined in Table 7. 

Computational example. A brief example for computing 

ICCs with SPSS and the R irr package is provided based on 

the hypothetical 7-point empathy ratings in Table 5.  

As with Cohen’s kappa, SPSS and R both require data to 

be structured with separate variables for each coder for each 

variable of interest, as shown for one variable representing 

empathy ratings in Table 5. If multiple variables were rated 

for each subject, each variable for each coder would be listed 
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in a new column in Table 5, and ICCs would be computed in 

separate analyses for each variable.  

Both SPSS and the R irr package require users to specify 

a one-way or two-way model, absolute agreement or 

consistency type, and single- or average-measures units. The 

design of the hypothetical study informs the proper 

selection of ICC variants. Note that while SPSS, but not the R 

irr package, allows a user to specify random or mixed effect, 

the computation and results for random and mixed effects 

are identical. For this hypothetical study, all subjects were 

rated by all coders, which means the researcher should 

likely use a two-way model ICC because the design is fully 

crossed and an average-measures unit ICC because the 

researcher is likely interested in the reliability of the mean 

ratings provided by all coders. The researcher is interested 

in assessing the degree that coder ratings were consistent 

with one another such that higher ratings by one coder 

corresponded with higher ratings from another coder, but 

not in the degree that coders agreed in the absolute values of 

their ratings, warranting a consistency type ICC. Coders 

were not randomly selected and therefore the researcher is 

interested in knowing how well coders agreed on their 

ratings within the current study but not in generalizing 

these ratings to a larger population of coders, warranting a 

mixed model. The data presented in Table 5 are in their final 

form and will not be further transformed, and thus these are 

the variables on which an IRR analysis should be conducted.  

Syntax for computing ICCs with SPSS and the R irr 

package are provided in Table 6. Both procedures provide 

point estimates, confidence intervals, degrees of freedom, 

and significance tests for the null hypothesis that ICC = 0. In 

practice, only point estimates are typically reported, 

although confidence intervals can provide additional useful 

information, particularly if ICCs are low or if the confidence 

interval is large due to a small sample size. Significance test 

results are not typically reported in IRR studies, as it is 

expected that IRR estimates will typically be greater than 0 

for trained coders (Davies & Fleiss, 1982). 

The resulting ICC is high, ICC = 0.96, indicating excellent 

IRR for empathy ratings. Based on a casual observation of 

the data in Table 5, this high ICC is not surprising given that 

the disagreements between coders appear to be small 

relative to the range of scores observed in the study, and 

there does not appear to be significant restriction of range or 

gross violations of normality. Reporting of these results 

should detail the specifics of the ICC variant that was chosen 

and provide a qualitative interpretation of the ICC 

Table 5.  Hypothetical ordinal empathy ratings for ICC 

example. 

Subject Emp_Rater1 Emp_Rater2 Emp_Rater3 

1 6 5 6 

2 5 5 5 

3 6 6 7 

4 2 1 3 

5 3 3 3 

6 2 1 1 

7 6 5 5 

8 7 6 6 

9 5 5 4 

10 4 3 5 

Note: File structure is presented in spreadsheet format, 

where the first row must be converted to variable names 

when imported into SPSS or R. 

 

Table 6.  Syntax for computing ICCs in SPSS and R. 

SPSS Syntax 

RELIABILITY  

  /VARIABLES=Emp_Rater1 Emp_Rater2 Emp_Rater3  

  /SCALE('ALL VARIABLES') ALL  

  /MODEL=ALPHA  

  /ICC=MODEL(RANDOM) TYPE(CONSISTENCY) CIN=95 TESTVAL=0. 

R Syntax 

library(irr)  #Load the irr package (must already be installed) 

hist(myRatings[,1])) #Examine histogram for rater 1 for violations of normality 

hist(myRatings[,2])) #Examine histogram for rater 2 

print(icc(myRatings, model="twoway", type="consistency", unit="average"))  

 #Specify the ICC model, type, and unit as appropriate.   

 #Use help(icc) for keywords 

Note: R syntax assumes that data are in a matrix or data frame called “myRatings.”  In SPSS, model may be 

MIXED, RANDOM, or ONEWAY, type may be CONSISTENCY or ABSOLUTE.  Single- and average-

measures units will be included in SPSS output.  In R, model may be twoway or oneway, type may be 

consistency or absolute, and unit may be average or single. 
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estimate’s implications on agreement and power. The results 

of this analysis may be reported as follows:  

IRR was assessed using a two-way mixed, consistency, 

average-measures ICC (McGraw & Wong, 1996) to assess the 

degree that coders provided consistency in their ratings of 

empathy across subjects. The resulting ICC was in the 

excellent range, ICC = 0.96 (Cicchetti, 1994), indicating that 

coders had a high degree of agreement and suggesting that 

empathy was rated similarly across coders. The high ICC 

suggests that a minimal amount of measurement error was 

introduced by the independent coders, and therefore statistical 

power for subsequent analyses is not substantially reduced. 

Empathy ratings were therefore deemed to be suitable for use 

in the hypothesis tests of the present study. 

Conclusion 

The previous sections provided details on the 

computation of two of the most common IRR statistics. 

These statistics were discussed here for tutorial purposes 

because of their common usage in behavioral research; 

however, alternative statistics not discussed here may pose 

specific advantages in some situations. For example, 

Krippendorff’s alpha can be generalized across nominal, 

ordinal, interval, and ratio variable types and is more 

flexible with missing observations than kappa or ICCs, 

although it is less well-known and is not natively available 

in many statistical programs. The reader is referred to Hayes 

and Krippendorff (2007) for an introduction and tutorial on 

Krippendorff’s alpha. For certain cases of non-fully crossed 

designs, Putka et al. (2007) provide an index of IRR that 

allow systematic deviations of specific coders to be removed 

from the error variance term, which in some cases may be 

superior to ICCs because ICCs cannot remove systematic 

coder deviations in non-fully crossed designs.  

Many research designs require assessments of IRR to 

show the magnitude of agreement achieved between coders. 

Appropriate IRR statistics must be carefully selected by 

researchers to ensure their statistics fit with the design and 

goal of their study and that the statistics being used are 

appropriate based on the distributions of the observed 

ratings. Researchers should use validated IRR statistics 

when assessing IRR rather than using percentages of 

agreement or other indicators that do neither account for 

chance agreement nor provide information about statistical 

power. Thoroughly analyzing and reporting results of IRR 

analyses will more clearly convey one’s results to the 

research community. 
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