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Abstract. Storfjorden (Svalbard) is a sill-fjord with an active
polynya and exemplifies the dense water formation process
over the Arctic shelves. Here we report on our simulations of
Storfjorden covering the freezing season of 1999–2000 using
an eddy-permitting 3-D ocean circulation model with a fully
coupled dynamic and thermodynamic sea-ice model. The
model results in the polynya region and of the dense water
plume flowing over the sill crest are compared to observa-
tions. The connections of the overflow at the sill to the dense
water production at the polynya and to the local wind forcing
are investigated. Both the overflow and the polynya dynam-
ics are found to be sensitive to wind forcing. In response
to freezing and brine rejection over the polynya, the buoy-
ancy forcing initiates an abrupt positive density anomaly.
While the ocean integrates the buoyancy forcing over sev-
eral polynya events (about 25 days), the wind forcing domi-
nates the overflow response at the sill at weather scale. In the
model, the density excess is diluted in the basin and leads to
a gradual build-up of dense water behind the sill. The over-
flow transport is typically inferred from observations using
a single current profiler at the sill crest. Despite the signifi-
cant variability of the plume width, we show that a constant
overflow width of 15 km produces realistic estimates of the
overflow volume transport. Another difficulty in monitoring
the overflow is measuring the plume thickness in the absence
of hydrographic profiles. Volume flux estimates assuming
a constant plume width and the thickness inferred from ve-
locity profiles explain 58% of the modelled overflow volume
flux variance and agrees to within 10% when averaged over
the overflow season.

Correspondence to:F. Geyer
(florian.geyer@nersc.no)

1 Introduction

The continental shelves of the Arctic Ocean are widest in
the world oceans and constitute the main site for water
mass transformations and dense water formation in the Arc-
tic Ocean (Aagaard et al., 1985; Bauch et al., 1995). Wind
forcing is a crucial element for the chain of events including
the preconditioning, the dense water production over shelves
and the export of the dense water through shelf-basin interac-
tions. Prevailing offshore winds can maintain ice-free areas
in winter (coastal polynyas). Strong heat exchange in coastal
polynyas leads to ice freezing, brine-drainage and forma-
tion of dense, brine-enriched shelf water (BSW). BSW con-
tributes to the cold halocline (Aagaard et al., 1981; Winsor
and Bj̈ork, 2000), to the intermediate and deep layers (Rudels
and Quadfasel, 1991), and influences the overall heat and salt
budget of the deep basins (Aagaard et al., 1985; Schauer,
1995). In semi-enclosed basins, wind forcing can flush the
polynya-origin dense water and influence its spreading over
shelves. Prior to the freezing period, wind driven upwelling
of saline Atlantic origin water onto shelves can lead to denser
BSW; whereas accumulation of surface melt water can hin-
der dense water production regardless of significant ice pro-
duction.

In Storfjorden, a semi-enclosed basin in Svalbard
Archipelago (Fig.1), an active polynya recurs annually.
BSW gradually fills the fjord to the sill crest (115 m) and
initiates a gravity driven overflow (Schauer, 1995; Fer et al.,
2003, 2004; Skogseth et al., 2005a). The overflow is dense
enough to penetrate below the Atlantic Water in the region,
and has been observed in the deep Fram Strait as a thin layer
of warm, and high salinity water (Quadfasel et al., 1988).
Water mass transformation in the Storfjorden polynya, mech-
anisms by which the basin is ventilated, and the overflow
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Fig. 1. Map of Storfjorden and the Svalbard archipelago. The
ROMS model domain covers the filled area with a resolution of
2 km, the smaller frame shows the extent of the model results pre-
sented in this manuscript.

structure exemplify the shelf processes in the Arctic Ocean.
Using a time-dependent polynya model,Winsor and Bj̈ork
(2000) estimate a total dense water production of 0.7–1.2 Sv
(1 Sv=106 m3 s−1) in the Arctic coastal polynyas. Volume
transport of the Storfjorden overflow inferred from observa-
tions (Schauer, 1995; Geyer et al. 2009) amounts to 3 to 6%
of the total dense water production, suggesting that the con-
tribution of the Storfjorden polynya is significant. The reader
is referred toSkogseth et al.(2005b) for hydrographic char-
acteristics and water mass transformations in Storfjorden, to
Skogseth et al.(2007) for the meso-scale surface circulation
in Storfjorden and toSkogseth et al.(2008) for recent obser-
vations of the polynya processes and the polynya-overflow
link.

The first numerical model for the Storfjorden region em-
ployed a hydrostatic, reduced gravity plume model using a
stagnant ambient water (“1 1/2 layer model”) and bulk en-
trainment parameterization (Jungclaus et al., 1995). Fer and
Ådlandsvik (2008) conducted a high resolution 3-D ideal-
ized model study of the descent and mixing of the overflow
plume in the absence of tidal and wind forcing. A typical
annual cycle of the dense water production, corresponding to
a moderate ice production year, was artificially introduced
as buoyancy forcing in the basin north of the Storfjorden
sill. Both models employed an idealized ambient stratifi-
cation with horizontal isopycnals in the entire domain and
concentrated on the pathway of the overflow, its descent and
evolving water mass properties due to mixing.Skogseth et al.
(2008) studied the fate of the polynya derived water within
the Storfjorden basin (i.e., upstream of the sill) in an ideal-
ized model setting. The regional ocean model experiment
presented here, including a fully coupled dynamic and ther-
modynamic sea-ice model, is the most realistic simulation of

the dense water production and circulation in the Storfjorden
region to date. Results on the ice production in the polynya
obtained from the present simulation are reported inSmed-
srud et al.(2006). Here, we present analysis of the model
results concentrating on the description of the overflow at the
Storfjorden sill and its variability due to wind forcing. In ad-
dition, the connection between the dense water source at the
Storfjorden polynya and the overflow at the sill is explored.
This analysis can be compared to and supplements the recent
analysis of current profile observations at the Storfjorden sill
(Geyer et al., 2009).

The model and the model set-up used in this study are de-
scribed in detail inSmedsrud et al.(2006) and are summa-
rized in Sect.2 for completeness. A description of the an-
nual cycle of ice formation, polynya events, the mean picture
of the overflow at the sill and the spatial structure connected
to the overflow variability are presented in Sect.3. Subse-
quently, the results are discussed in Sect.4 with particular
attention to wind forcing and the overflow width at the sill,
followed by our conclusions in Sect.5.

2 Model and model set-up

The Regional Ocean Modeling System (ROMS,Shchep-
etkin and Williams, 2005) including a fully coupled dynamic
and thermodynamic sea-ice sub-model is set up as described
in Smedsrud et al.(2006). The ROMS model is based on
the primitive Boussinesq equations and employs a terrain-
following coordinate system in the vertical (Song and Haid-
vogel, 1994) and general orthogonal curvilinear coordinates
in the horizontal. The sea-ice model uses elastic-viscous-
plastic ice dynamics (Hunke and Dukowicz, 1997; Hunke,
2001) and two ice layers and one snow layer for thermo-
dynamic calculations followingMellor and Kantha(1989)
andHäkkinen and Mellor(1992). The model is split-mode
explicit and the time-step is 200 s, with an external mode
time-step of 5 s. As a turbulence closure, the generic length
scale scheme (Warner et al., 2005) is used for subgrid-scale
mixing of mass and momentum, with the two-equation k-kl
model parameters. The k-kl model is a modified form of
the Mellor-Yamada 2.5 closure (Mellor and Yamada, 1982).
This scheme produced credible results in coastal applications
where tidal mixing is important (Warner and Geyer, 2005)
and performed well in an ice-ocean interaction process study
in the Barents Sea using ROMS and the coupled ice model
(Budgell, 2005). The model diffusivity profiles from an ide-
alized ROMS simulation of the Storfjorden overflow com-
pared favorably to those inferred from direct turbulence mea-
surements (Fer andÅdlandsvik, 2008), giving further confi-
dence on the skill of the k-kl scheme.

The ROMS model is used in a three-stage one-way nest-
ing configuration (Budgell, 2005). A basin-scale model for
the North Atlantic and Arctic Ocean was initiated in 1948,
and forced daily with surface fluxes obtained from the US
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National Centers for Environmental Prediction (NCEP)/US
National Center for Atmospheric Research (NCAR) re-
analysis (Kalnay et al., 1996). The surface forcing was cor-
rected for the high-resolution model ice concentration as de-
scribed inBudgell(2005). Fields of wind stress, sensible and
latent heat fluxes, solar and long-wave radiation, and precip-
itation were used for forcing the model.

The intermediate-scale model (average grid size of 9.3 km)
covered the Barents and Kara Seas and was run for 1990–
2002, initiated with 1990 fields from the large-scale fields.
This intermediate model provided the initial and boundary
conditions for the 2-km horizontal resolution Storfjorden
model run. The model was run for the duration of one year,
starting with ice-free conditions in August 1999. The nesting
steps are performed using an open boundary flow relaxation
scheme (Engedahl, 1995) for both ocean and ice variables.
Tides are not included in the present simulation.

The fine-scale, 2-km resolution, domain is shown in Fig. 1.
The analysis in this study concentrates on the area shown
in Fig. 2. The model domain is obtained by a rotated po-
lar stereographic map projection. The bathymetry is inter-
polated from the 2’ global dataset of the US National Geo-
physical Data Center (2001 version;http://www.ngdc.noaa.
gov/mgg/fliers/06mgg01.html). The land mask is modified
manually to fit the global self-consistent, hierarchical, high-
resolution shoreline database (GSHHS) coastline (Wessel
and Smith, 1996). The bathymetry is smoothed by a second-
order Shapiro filter, in order to minimize pressure gradi-
ent errors associated with abrupt topography changes. The
smoothing was repeated applied until the slope parameter of
Beckman and Haidvogel(1993) was less than 0.25. In total
30 vertical levels are used, with a finer resolution near the
surface and the bottom.

3 Results

3.1 Annual cycle of ice formation and polynya events

The modeled annual cycle of ice growth and decay in Stor-
fjorden started (1 August 1999) and ended (31 July 2000)
with open water conditions (Smedsrud et al., 2006). Daily
NCEP forcing is in good agreement with observations from
the Storfjorden area (Smedsrud et al., 2006; Skogseth et
al., 2009). The wind direction, however, is likely biased
westward as the coarse horizontal resolution of the NCEP
forcing (250 km) does not resolve the Svalbard Archipelago
well (Skogseth et al., 2007). This predominant wind di-
rection opens the Storfjorden polynya westward, away from
Edgeøya during strong wind episodes. The existing satellite
images, on the other hand, indicate that the polynya opens
southward (Skogseth et al., 2005a).

In mid-November, bands of ice form along Edgeøya, and
sea surface temperatures fall below 0◦C in Storfjorden. Dur-
ing December the ice cover spreads over the fjord, reach-
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Fig. 2. Storfjorden with stations 1–2 (squares), thick lines delimit
the extent of the Storfjorden basin. The black thick line is the Stor-
fjorden sill. Station 2 is positioned at the site where the main over-
flow occurs across the sill. Isobaths are drawn at 25 m intervals.
The center of the polynya area close to Edgeøya is indicated.

ing an ice concentration of around 70%. South of Storfjor-
den, sea ice enters into the model domain from the Barents
Sea. This ice partly accumulates on the western side of
Storfjorden, increasing the sea-ice concentrations, and partly
flows around the southern tip of Spitsbergen and melts in
the warmer surface waters of the West Spitsbergen Current
(Smedsrud et al., 2006).

During winter (January–April), sea-ice concentration in
Storfjorden changes quite rapidly in response to wind forc-
ing. During several events, the sea-ice velocity is directed
away from land, opening a large polynya. We identify the
polynya as grids with a mean ice thickness less than 0.3 m,
which is the transition between young and first-year ice
(WMO, 1970), consistent withSmedsrud et al.(2006). Ice
concentration alone is not a good criterion for identifying
the polynya in a high-resolution model, because open-water
areas in the model quickly freeze over with thin solid ice.
In nature, this ice forms as free-floating small frazil crystals
that are packed by the wind toward the leeward side of the
polynya. The polynya area averaged from December to April
is 2145 km2, covering 16.5% of Storfjorden area. For com-
parison, average polynya area inferred from a wind-driven
polynya width model constrained by satellite images, wind
data and surface hydrography observations, is 26.9% for the
freezing period in 2000, and varies between 14–34% for the
freezing seasons of 1998 to 2002 (Skogseth et al., 2005a).
Polynya activity will also be influenced by tides which are
not represented in this simulation. Especially close to Free-
mansundet north of Edgeøya the tidal currents are strong,
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however, the contribution to polynya opening and brine pro-
duction is estimated to be negligible (Ersdal, 2009). Us-
ing a modified version of the polynya model ofSkogseth
et al. (2005a) to include tidal forcing,Ersdal(2009) reports
only 2.7% increase in ice production when averaged between
1997 and 2002.

The flux of brine from the ice freezing produces the BSW,
and is directly proportional to the sea-ice growth. For the
BSW downflow, the polynya events set the location and tim-
ing of the strongest brine release. The largest polynya areas
occur during the early winter ice formation in December and
January and the northern fjord water gradually increases in
salinity. During the polynya events in February–April the
brine release occurs within 10–20 km offshore of Edgeøya
(area indicated in Fig.2). Following the initial freeze up,
the main polynya events occur on 6–9 and 25–27 February
and 22–24 March in this simulation (see Fig.11, introduced
later). Events with relatively shorter duration follow in April,
before the ice formation and salt release cease in May.

3.2 Overflow at the Storfjorden sill

The polynya-derived water sinks to the deep pools in Stor-
fjorden and gradually fills the basin to the sill level. Further
ice formation and BSW production lead to a dense plume of
BSW flowing over the sill crest. The volume transport and
the density excess of the overflow are crucial in determining
the depth the plume sinks down the continental slope west
of Spitsbergen. Recently, the overflow has been monitored
by measuring current profiles and the near-bottom temper-
ature at the crest of the sill. The current profiles are col-
lected using a 300 kHz uplooking acoustic Doppler current
profiler (ADCP) moored in a bottom frame. When sampled
at 4-m vertical bins, the ADCP had a typical vertical range
of 100 m which varied seasonally depending on the scatter-
ers in the water column. Observations covering the period
2003 to 2007 are reported inGeyer et al.(2009). From the
ROMS model data, we extract time series at the location cor-
responding to the mooring position (station 2, Fig.2) and
evaluate the skill of the simulation. To be consistent with the
observation-based analysis, we define the overflow season as
the period between the first and the last instance of BSW
flowing across the sill, using the standard specifications for
BSW (T < −1.5◦C andS > 34.8, Loeng, 1991). The mod-
eled overflow season lasted from 6 January to 26 July 2000.
This duration of 202 days, or about 55% of the year, slightly
longer than the season length of 46–53% inferred from the
ADCP measuremets.

The magnitude and seasonal cycle of the overflow for the
modeled year 1999–2000 at the sill (Fig.3) are compara-
ble to the observations (Geyer et al., 2009). The strongest
out-fjord current is observed early in the season and then de-
clines gradually, reminiscent of the mean seasonal overflow
cycle established from 4 years of observations (Geyer et al.,
2009). The mean seasonal modeled overflow flux is 0.07 Sv
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(0.04 Sv, annual average), larger than the ADCP-inferred an-
nual average between 0.022–0.034 Sv. Strong and persistent
cross-sill flow directed out of the fjord is associated with cold
bottom temperatures, but becomes intermittent with increas-
ing temperatures.

During the period before the onset of the overflow season,
relatively high bottom temperature and cross-sill current co-
vary, reflecting the south-north horizontal temperature gradi-
ent across the sill.Skogseth et al.(2005b) describe this re-
gions as the “exchange zone” between Storfjorden and Stor-
fjordrenna.

The correspondence between the bottom temperatures and
the cross-sill current profiles compares well with the obser-
vations (compare Fig.4 with Fig. 4 of Geyer et al.(2009)).
For the strongest bottom outflow, the bottom temperature is
close to the freezing point, while for the inflow, tempera-
ture is above 1◦C on average. The most frequent bottom
speeds are between 5 and 15 cm s−1 and directed out of the
fjord. Overlain on a background outfjord flow in the entire
water column is a bottom-intensified outflow. A reversal of
the surface current is observed only for the strongest inflow
ensembles.

The average distribution of temperature and currents along
the sill section, averaged over the overflow season, is shown
in Fig. 5. BSW, which forms the cold overflow from Stor-
fjorden, is concentrated mainly on the western side of the sill
where it hugs the western slope and forms a 15–20 m thick
layer on average. Along the bottom a thinner layer of about
5 m thickness also stretches further east. Flow directed out of
the fjord is concentrated on the western half of the sill, inten-
sified close to the bottom associated with the BSW plume.
The inflow over the eastern part of the sill is primarily con-
nected to the modified Atlantic Water. The BSW is mainly
identified by temperature since the simulated salinity over
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the sill crestS > 34.8 throughout the overflow season, biased
high (see discussion in Sect.4.2).

3.3 Circulation in Storfjorden

The mean surface circulation is consistent with observa-
tions (Skogseth et al., 2005b) and a previous model study
(Skogseth et al., 2007). The dominant pattern in the Storfjor-
den basin is a cyclonic surface circulation (Fig.6), with the
main inflow over the eastern half of the sill and across Stor-
fjordbanken, the shallow bank between the sill and Edgeøya.
Inflow also occurs through the narrow Freemansundet north
of Edgeøya. Surface outflow from the basin is over the west-
ern half of the sill and the adjacent ridge stretching north-
wards toward Spitsbergen.

Deviations from the mean surface circulation and the av-
erage distribution of flow across the sill are calculated for
strong overflow cases. The average over times with the
strongest overflow identified with bottom cross-sill velocities
uout> 20 cm s−1 (directed out of the fjord) corresponds to the
following flow changes: the outflow leaning on the western
slope of the sill is strengthened overall, with an intensifica-
tion toward the bottom (Fig.7a). There is a corresponding
increase in the inflow strength, both over the middle part of
the sill and toward the eastern flank, particularly in the up-
per 30 m, and through Freemansundet between Edgeøya and
Barentsøya. The surface inflow extents further across Stor-
fjordbanken east of the sill (Fig.7b). The increase in the
surface inflow is not balanced by a corresponding increase in
the surface outflow over the ridge northwest of the sill.
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Fig. 6. Mean surface circulation in Storfjorden. Isobaths are drawn
at 50 m intervals. Thick lines delineate the Storfjorden basin. The
thick black line marks the position of the sill.

4 Discussion

4.1 Wind forcing of the overflow

Geyer et al.(2009) observed significant coherency between
the wind forcing and the dense overflow at the Storfjorden
sill for periods longer than 4 days and postulated a wind-
driven surface flow into the fjord and a return flow at depth
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as the connecting mechanism. Surface inflow is expected due
to Ekman transport in response to wind stress, typically due
to winds directed from 45–135◦T. We detect the times of
wind from east-northeast (45–90◦T) and from east-southeast
(90–135◦T), and calculated the corresponding ensemble av-
erages. Deviations from the mean circulation are shown in
Figs.8–9. Average surface inflow is enhanced for both east-
northeasterlies (Fig.8) and east-southeasterlies (Fig.9). The
patterns of the two different ensembles, however, vary. The
wind from east-southeast transports water infjord across the
entire southern boundary (Fig.9), while the wind from east-
northeast mainly leads to an increased inflow over the bank
east of the sill (Fig.8). East-northeasterly winds also open
the Storfjorden polynya west of Edgeøya (see e.g., Fig. 2 in
Smedsrud et al., 2006). The connection of polynya events
and overflow is discussed in Sect.4.2.

The east-northeasterly winds are associated with an in-
creased dense overflow (Fig.8a). East-southeasterly winds
correspond to enhanced outflow mainly at intermediate
depths and the weakening of the warm inflow over the east-
ern part of the sill (Fig.9a). East-northeasterlies push the sur-
face water in Storfjorden westward against the east coast of
Spitsbergen. The resulting pileup of water against the coast
is the driving force for the southward return flow at depth.
This surface response to wind forcing was also observed in
a regional model study of the region using fine-scale wind
forcing in the absence of ice (Skogseth et al., 2007).

Geyer et al.(2009) suggested that infjord surface Ekman
flux had skill to predict overflow strength and variability. The
flow distribution over the sill crest for the east-northeasterly
winds (Fig.8a), albeit weaker, closely resembles the distri-
bution for the strongest overflow incidences (Sect.3; Fig. 7).
For the analysis of the model results, the net surface Ekman

fluxes in and out of the fjord are calculated from the surface
wind stressτ

FE,x =
τy

fρW

; FE,y = −
τx

fρW

(1)

integrated across the boundaries of Storfjorden as indicated
in Fig. 2. Heref = 1.42·10−4 s−1 is the Coriolis parame-
ter andρW = 1027 kg m−3 is the density of sea water. The
resulting net surface Ekman flux into the fjord is typically
strong during the freezing period and is significantly weaker
during summer, comparable to the overflow cycle (Fig.10).
During the freezing season large overflow flux is associated
with large values ofFE , however, the opposite is not true. For
instance, in early January significantFE has no discernible
overflow flux, as very limited dense water is present in the
fjord this early in the freezing season. We therefore con-
clude that while the net surface Ekman flux into the fjord
can give a good indication of the overflow volume flux and
its variability, caution is needed in interpreting the Ekman
inflow and the bottom outflow response, as they are not di-
rectly equivalent. This conclusion is also supported by the
qualitatively different response of fjord circulation and dense
overflow to wind forcing by, respectively, east-southeasterly
and east-northeasterly winds (Figs.8–9).

4.2 Polynya events and the overflow

The two main influences on the Storfjorden overflow on
time scales longer than the tidal frequencies are the buoy-
ancy forcing from the dense water source at the Storfjorden
polynya and the wind forcing in and around Storfjorden. Us-
ing hydrographic measurements in April 2006, during a su-
percooling event of polynya activity,Skogseth et al.(2008)
trace the high salinity signal and detect it flow past the sill
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Fig. 8. Left panel: difference from mean cross-sill velocity for times of east-northeasterly winds (45–90◦T, 86 of 365 days). Contour lines
are drawn in 1 cm s−1 increments. Solid lines denote flow directed out of the fjord and zero flow, dotted lines denote flow into the fjord.
Right panel: difference from mean surface circulation in Storfjorden for times of easterly to northeasterly winds. Isobaths are drawn at 50 m
intervals. Thick lines delineate the Storfjorden basin. The thick black line marks the position of the sill.
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Fig. 9. Left panel: difference from mean cross-sill velocity for times of east-southeasterly winds (90–135◦T, 64 of 365 days). Contour lines
are drawn in 1 cm s−1 increments. Solid lines denote flow directed out of the fjord and zero flow, dotted lines denote flow into the fjord.
Right panel: difference from mean surface circulation in Storfjorden for times of southeasterly to easterly winds. Isobaths are drawn at 50 m
intervals. Thick lines delineate the Storfjorden basin. The thick black line marks the position of the sill.

crest 12 to 18 days after the polynya event. This time lag,
also consistent with a conservative analytical estimate, com-
pares with the filling time of the basin to the sill level from
the start of freezing period. Once the interface has reached
the sill level, subsequent events with high salinity pulse are
estimated to reach the sill in 1 to 3 days (Skogseth et al.,
2008). The ROMS model results do not support a direct
polynya-overflow link with a 1–3 days time delay. It is in-
stead dominated by an immediate (one day or less) overflow
response to surface winds from east to northeast directions
(Fig. 11c).

All seven major polynya events during the freezing sea-
son in 2000 can be connected to strong easterly wind
events (Fig.11). The polynya opens (gradually increasing
polynya area,AP ), responding immediately to wind forcing
(Fig. 11a). The polynya closes (AP reduces due to freez-
ing and ice formation) relatively slowly following an open-
ing event. The closing of the polynya occurs a few days to
two weeks after the wind forcing ceases. As the ice freezes in
the closing polynya, salinity in the polynya region increases
(Fig. 11b). Once the polynya has reached freezing tempera-
ture, all polynya events lead to ice formation and brine rejec-
tion visible as local salinity maxima in the central polynya
area (Fig.11b).
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fjord (black line) in 1999–2000 compared with the overflow volume
flux Q at the sill (squares). Dashed line denotes the mean value of
Q, in Sv, for the overflow season.

Modeled salinities are too high due to an overestimation
of the import of Atlantic Water into the Barents Sea in the
intermediate-scale model of the Barents and Kara Seas used
in nesting (Budgell, 2005). Relatively saline water enter-
ing the polynya region then leads to BSW of high salinity.
For comparison, values of maximum salinity observed in the
deepest pool of the basin (hence after being diluted from the
polynya to the mid-basin) vary between about 34.7 to 35.83
(Skogseth et al., 2005a) with the largest value recorded in
April 2002 (Anderson et al., 2004).

Salinity maxima typically occurs 5 to 12 days following
the maxima inAP . The salinity signal of polynya events gets
diluted in the basin (Fig.11b) and it is not possible to trace a
significantly high salinity pulse from the polynya to the sill.
The result of polynya events is a gradual increase in salin-
ity and density in the basin. Bottom salinity at the sill crest
closely follows the salinity at the sill level in the basin but
with greater variability (Fig.11b), possibly due to episodic
wind-induced overflow events carrying water from below the
sill depth. Some signal propagation from the polynya can of
course not be excluded, but the salinity variations at the sill
adhere much closer to the wind-driven velocity variations at
the sill than to salinity variations upstream. Salinity varia-
tions as a cause for the velocity variations at the sill can be
excluded as the salinity maxima at the sill are occurring with
1–2 days time lag to the overflow transport maxima.

Lagged-correlation analysis yieldr2
= 0.78 at 25 days lag

between the polynya area and the overflow at the sill. Max-
imum correlation with the wind stress, on the other hand,
is at one day lag (wind leading), 0.55 using wind stress
and 0.69 using the favorable wind stress component from
67.5◦T. All the stated values are significant at 95% confi-
dence. The ocean thus integrates the polynya forcing over
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Fig. 11. Comparison of daily time series for(a)polynya areaAP

(gray shading) and wind stressτw (red) (b) bottom salinityS aver-
aged in the polynya area close to Edgeøya (see Fig.2), at the sill
level at station 1 and at the bottom at the sill (station 2),(c) BSW
volume transportQ across the sill and wind stress component from
67.5◦T.

several events, consistent withChapman(1999) who found
that typical ocean adjustment scale is typically 10–20 days
depending on the geometry and forcing of the polynya.

The ability of the wind forcing to drive out dense water
from behind the sill, visible from strong overflow events not
connected to salinity maxima at the sill (Fig.11) and the
dampening of high salinity events in the basin suggest that
the dense water production at the polynya acts rather as a
background mechanism: the gradual salinity increase in the
Storfjorden basin provides the brine-enriched shelf water,
which fills up the basin to the sill level and is then flowing
over the sill, mainly in the form of wind-driven pulses.

Possible excessive mixing in the model could dampen
the salinity signal of a polynya event and hinder the de-
tection of propagation from polynya to the sill. The mix-
ing scheme used in this study is state-of-the-art, but Mellor-
Yamada schemes typically leads to overly strong mixing. For
instance, when evaluated against Red Sea outflow observa-
tions, k-kl scheme resulted in too large eddy diffusivities
(Ilicak et al., 2008). Furthermore, the horizontal resolution
(2 km) is likely too coarse to properly resolve the dense flow
from the polynya area to the Storfjorden basin, due to the
complex bathymetry in the region (Skogseth et al., 2008).

4.3 Overflow width and height at the sill, and their in-
fluence on transport estimates from measurements

In this section, the regional ocean model results are used
to test assumptions commonly made when interpreting field
data of the Storfjorden overflow. We use the model data only,
and calculate the overflow volume transport using various
assumptions including identical methods applied to obser-
vations from a single mooring. The width of the overflow
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Fig. 12. Time series of overflow widthw (grey) and corresponding
overflow widthwcorr (black) with respect to station profiles at the
sill. The horizontal line denotes the constant overflow width used
in Geyer et al.(2009).

plume is a source of large uncertainty in estimating volume
transport from moored observations (Schauer, 1995; Schauer
and Fahrbach, 1999; Geyer et al., 2009). Typically a constant
width of 15 km is assumed. The model results show that the
overflow plume width at the sill crest can vary substantially
exceeding 40 km during the overflow maximum in February
and early March, thus covering two thirds of the width of
the sill and the adjacent slopes (Fig.12). The episodic wide
plume events receive support from the recent observation of
BSW over the the easternmost part of the sill (Skogseth et
al., 2008). However, if we define the corresponding width,
wcorr, that is required to obtain the (modeled) overflow vol-
ume transport

Q = wcorr

∫ z=0

z=−H

uoutdz (2)

from (modeled) profiles of outflow velocity of BSWuout at
the location corresponding to the sill mooring (station 2), the
variability is considerably smaller. Except for a few events
when the overflow misses the station, the corresponding
overflow width is about 15 km throughout the overflow sea-
son (Fig.12), in agreement with the width assumed inGeyer
et al.(2009) and earlier studies (Schauer, 1995; Schauer and
Fahrbach, 1999).

The extent of the brine-enriched shelf water follows
mainly the temperature distribution at the sill (Sect.3), but
cannot be delineated using the velocity distribution. Due to
the lack of temperature profiles at the sill,Geyer et al.(2009)
estimated the vertical extent of the overflow from velocity
profiles. Our model results allow us to assess any systematic
errors in the corresponding overflow flux calculations. Fig-
ure 13 a compares the modeled overflow height at station 2
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Fig. 13. Upper panel: comparison of overflow height calculated
from velocity profiles following the method detailed inGeyer et al.
(2009) (black) with overflow height directly determined by veloc-
ity profiles and water mass properties (grey). Lower panel: com-
parison of overflow volume flux estimates from determined using
overflow height estimate and constant overflow width of 15km (thin
black line) and correct overflow height and constant overflow width
of 15 km (thick black line), respectively, with directly determined
overflow volume transport (grey).

calculated directly from water-mass characteristics and ve-
locity profiles to that calculated by velocity profiles alone,
using the method laid out inGeyer et al.(2009). For the ac-
tive overflow period from January to April the plume height
determined from current profiles agrees reasonably well with
the actual height, so that the method captures the vertical ex-
tent of the overflow correctly. For the later and weaker part
of the overflow season from May to July, however, the plume
thickness is substantially overestimated. The overestimation
is neither connected to bottom velocities nor temperatures,
but rather caused by the outflow of warmer water at interme-
diate layers.

The effects of the plume width and height estimates on
the overflow transport are shown in Fig.13b. The overflow
volume transport is calculated in three different ways from
model data. The “actual” overflow volume transport (Q1) is
calculated by integrating the total outflow of BSW across the
sill. Secondly, velocity and hydrographic (T /S) profiles are
extracted at station 2 (the mooring location), and the volume
transport (Q2) is calculated using the outflow over the thick-
ness of the BSW identified byT /S properties, assuming 15
km width. Finally, the volume transport (Q3) is calculated
using the outflow over the thickness identified by the outflow
velocity profiles and assuming 15 km width. The calculation
of Q3 is identical to that from current profile observations
from the mooring. Overflow volume transportQ2 is accept-
ably accurate since the constant width of 15 km is a reason-
able approximation and the plume thickness is properly in-
ferred. The overflow transportQ3 is correct for a large part
of the overflow season, but overestimates the actual transport
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for the intermittent overflow periods from May to July. Av-
eraged over the 202 days overflow season, overflow volume
flux Q1 = 0.071±0.076 Sv (±one standard deviation). Cur-
rent profile based estimate captures both the mean and the
variability resulting inQ3 = 0.077±0.078 Sv. Q3 explains
58% of the variance ofQ1 and on the average agrees to
within 10% ofQ1 with a standard error of 0.054 Sv.

5 Conclusions

Results from the first realistic simulation of the Storfjor-
den region are presented. The regional ocean model system
(ROMS) with a fully coupled dynamic and thermodynamic
sea-ice model realistically reproduces the salient features of
one freezing and overflow season in Storfjorden. Results are
consistent with previously reported circulation patterns and
the observations from both the polynya and the overflow re-
gion.

The overflow volume transport of brine-enriched shelf wa-
ter (BSW) at the sill is strongly connected to wind forcing.
Wind from east-northeast enhances surface inflow across
Storfjordbanken between the sill and Edgeøya and a corre-
sponding return flow at depth in the western part of the sill,
which strengthens the dense overflow. While the Storfjor-
den polynya opens in response to easterly winds, causing ice
formation and BSW production, the density excess cannot
be traced into the basin as a pulse but instead a gradual in-
crease in local salinity and density is seen. The variability
of the dense overflow at the sill crest is found to be deter-
mined largely by the wind stress. The response of the fjord
and hence the overflow to isolated polynya events is at longer
time scales (about 25 days), which integrates the buoyancy
forcing induced by the polynya over several polynya events.
This result suggests that reasonable estimates of ocean re-
sponse can be obtained from coarse observations of satellite
images and surface forcing at steady state or at coarse tem-
poral resolution.

The overflow plume width at the sill crest varies, occasion-
ally exceeding 40 km (entire extent of the sill). However, the
common constant overflow width assumption used to esti-
mate volume transports from point measurements is shown
to hold rather well. Detailed analysis of the model data sug-
gests that, assuming the modeled total overflow transport as
benchmark value, the volume flux of the BSW plume can be
monitored by a single current profiler at the sill crest captur-
ing 58% of the variability and accurate to within 10% when
averaged over the overflow duration.
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