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Variance component estimation with longitudinal data:
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ABSTRACT - A pedigree structure distributed in three different places was generated. For each offspring, phenotypic
information was generated for five different ages (12, 30, 48, 66 and 84 months). The data file was simulated allowing some
information to be lost (10, 20, 30 and 40%) by a random process and by selecting the ones with lower phenotypic values,
representing the selection effect. Three alternative analysis were used, the repeatability model, random regression model and
multiple-trait model. Random regression showed to be more adequate to continually describe the covariance structure of
growth over time than single-trait and repeatability models, when the assumption of a correlation between successive
measurements in the same individual was different from one another. Without selection, random regression and multiple-trait
models were very similar.
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INTRODUCTION

Data obtained by successive measurements in one
experimental unit or individual, the so called longitudinal
data, can be analyzed using different strategies. In
genetic breeding an interesting approach is to use
random regression. Henderson Junior (1982) proposed
the theory regarding the random regression coefficients,
based on the principle that if a regression coefficient
pertaining to each individual in an experiment is defined,
and if the individuals are a random sample of the
population, then the regression coefficients must be
considered random. This methodology has been used
to model traits that are measured over time, such as
growth traits. In order to adopt this model, the
measurements over time are considered to be successive
points on a continuous trajectory, and hence a prediction

of parameters is permitted, also for points (ages) where
measurements have not been done. To describe the fixed
curve for all the individuals, as well as the individual
ones, covariance functions (Kirkpatrick et al. 1990) that
describe the covariance structure between ages can be
used. In this context, covariance functions using
Legendre’s polynomials have been used because they
make calculations and interpretations easier.

Another alternative of analysis for longitudinal
data is the repeatability model, but it is necessary to
assume that successive measurements in the same
individual with the present correlation equal to the unit.
However, such assumptions are not always valid ones,
because for growth traits, for example, successive
measurements are always more strongly correlated than
those more distant in time.
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In a multi-trait approach we do not need to make
assumptions regarding the covariance structure, which
means that a non structured covariance matrix is used.
Consequently, this alternative requires the estimation
of a large number of parameters, and may cause many
computational difficulties.

The objective of this paper was to study variance
components and genetic parameter estimations using
random regression, repeatability and the multi-trait
models with longitudinal data with different levels of
lost information present in the data.

MATERIAL  AND METHODS

The data was simulated such that it represented
crossing structures distributed in three different places.
A progeny test was simulated, by crossing 30 males
each with three different females, with each crossing
generating ten different offspring. This crossing
structure was simulated in three different places. The
fixed effect of place was created to present non
significant statistical differences (similar means and
variances). For each offspring there were phenotypic
data at five different ages, 12, 30, 48, 66 and 84 months,
resulting in 120 relatives (30 males and 90 females),
giving a total of 1,020 individuals, with 900 of them
presenting information at five different ages, which
resulted in 4,500 observations of production.

The simulated longitudinal data can be described by
the mixed linear model defined as: y = Xβββββ + Za + Wp + εεεεε,
where y is the vector of observations from each individual;
βββββ represents the vector of fixed effect and of the general
curve parameters for all the individuals; X is the
incidence matrix of fixed effects levels and the regression
variables, corresponding to the standardized ages
associated to the Legendre’s polynomials; a and p are
the random vectors of random regression solutions of
the additive genetic effect and of random regression of
the permanent environmental effects, respectively; Z
and W are the matrices that associate the standardized
ages by the Legendre’s Polynomials to the a and p
vectors, respectively. εεεεε is the random temporary
environmental effect vector.

Assuming that the vectors y, a, p e e have a
normal distribution then E(a) = 0, and it’s variance is
V (a) = A ⊗⊗⊗⊗⊗ Ka = G, where Ka is a covariance matrix
between the random regression coefficients of the
additive genetic effect and A is a matrix that indicates

the degree of the individuals relationship, of equal
dimension to the total number of individuals (N). The
vector p has E(p) = 0 and a variance V(p) = I⊗⊗⊗⊗⊗Kp = P,
where Kp is a covariance matrix between random
regression coefficients of the permanent environmental
effect and I is an identity matrix of equal dimensions to
the number of individuals with information (n).
Finally, εεεεε has the expected value E(εεεεε) = 0, and a
variance of V (εεεεε) = Iσσσσσ2

e = R, where σσσσσ2
e is the temporary

environmental effect variance. Consequently, y
has a mean and variance equal to E(Y) = Xβββββ and
V(Y) = ZGZ’ + WPW’ + R, respectively.

The fixed effects and the general regression curve
for all the individuals are associated to the b vector.
The data simulation was carried out by using a second
degree polynomial model, with Legendre’s orthogonal
polynomials to describe both the fixed trajectory and
the random effects of the model. The temporary
residual effect was assumed to have a normal
distribution with an average equal to zero and a
variance of σσσσσ2

εεεεε =2.2 unity2 and the Ka and Kp covariance
matrices of random regression coefficients of the
additive genetic and permanent environmental effect,
were respectively defined as follows,

  and

          .

The βββββ vector containing the fixed curve was obtained by
βββββ = (φφφφφ’ φφφφφ)-1 (φφφφφ’ γγγγγ), where γγγγγ’= [15.14  26.82  35.72  41.84  45.1]
represents the average production at months 12, 30, 48,
66 and 84, respectively. The φφφφφ matrix represents the
multiplication between the standardized ages matrix
(M) with the one that describes the three first
Legendre’s polynomials (Λ), φφφφφ = MΛΛΛΛΛ, resulting in
βββββ’ = (φφφφφ’ φφφφφ)-1 (φφφφφ’ γγγγγ))’= [47.8832  12.2381  –2.3636],
which is the vector of solutions for the fixed curve
for all the individuals in the study representing the
intercept and the linear and quadratic coefficients of
the equation, respectively. If UT1/2

a  and UT1/2
p are the

Cholesky decomposition of the covariance matrices of
the random regression coefficients for additive genetic
and permanent environmental effects, respectively, and
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A is a numerator relationship matrix between individuals,
where AT1/2

a is the Cholesky decomposition of this
relationship matrix, then the vector y (phenotypes)
con ta in ing  the  “ i” th  t r a i t s  ( age)  i s  de f ined  as
y =βββββ+ AT 1/2

a   Za   UT 1/2
a  +  Zp  UT 1/2

p  +  e .
After the complete data file simulation 450

individuals with information were randomly chosen,
which had the production information at 84 months
deleted giving a second file with a 10% loss of
information. Subsequently, the same individuals had
deleted the production information at months 66, 48 and
30, giving new data files with 20%, 30% and 40% losses
of information, respectively. The elimination of
information from individuals using a random process
aimed at studying the efficiency of the common methods
used in longitudinal data analysis, when applied to
incomplete data. Our goal was to study the lost
observations effects.

Again, with the complete data file, the individual
elimination process was made. However in this case,
the individuals whose information was deleted were the
ones who had the least phenotypic value and
represented samples with the selection effect, with the
objective to study the efficiency of the common
strategies analysis used in longitudinal data analysis,
regarding the effect of lost observations by the
selection effect.

Production data in each situation were analyzed
to estimate the (co)variance components and the
genetic parameters by different methods. Both the
simulation and manipulation of the data files were
realized with the Statistical Analysis System version
8.1 (SAS 1990, SAS Institute Inc.).

Considering an analysis where each age is like a
repeated measurement in the same individual, the
repeatability model is described as y = Xb + Za + Wp + e,
where y is a n x 1vector of n observations (production),
X is an incidence matrix of local fixed effects and of the
age (co) variable for each individual’s production, Z
and W are the incidence matrices of the individual’s
random additive genetic and permanent environmental
effects associated to vectors a and p of the additive
genetic and permanent environmental values, and e is
the residual vector with the same dimension of y.

The random regression model used considered
each age as a point in a continuous trajectory, fitting
covariance functions both for the additive genetic effect
and for the permanent environmental one, where both

functions used the first three Legendre’s polynomials,
characterizing a second degree polynomial function.
This model can be described as y = Xβββββ + Za + Wp + e;
where y is the vector of n observations of production at
each age; X is the incidence matrix of local fixed effects
and the standardized ages between -1 to +1 that
describes the averaged trajectory of all individuals by
the Legendre’s polynomials; βββββ is the solutions vector
of local fixed effects and of the fixed regression of all
the individuals; Z and W are diagonal block matrices
with the standardized ages associated to the random
regression coefficients of the additive genetic and
permanent environmental random effects for each
individual, respectively; a and p are random regression
model vectors of additive genetic and permanent
environmental effects, respectively, for each individual.
The vector e  represents the random temporary
environmental effects.

In the multiple trait analysis each age was
considered a distinct characteristic. The model used is
described as y = Xβββββ + Za + e, where :

.

yi is the response variable vector; Xi is the incidence
matrix of the local fixed effects; βββββ is the local fixed effects
levels solutions; Z is an incidence matrix of random
effects; a and e are the additive genetic and residual
random effect vectors, respectively, at the i’th age.

E[y] = Xβββββ and V[y] = ZGZ’+R where G = A⊗⊗⊗⊗⊗Go is
the genetic additive variance and covariance matrix and
R = I⊗⊗⊗⊗⊗Ro where Ro is the residual variance and
covariance matrix.

To compare the results from different data files
with different strategies of analysis, genetic parameters
and variances estimates were evaluated. In some cases
the likelihood ratio test was used (Rao 1973).

The analyses were all processed with the software
DFREML Version 3.0 (Meyer 1998).

RESULTS AND DISCUSSION

With the repeatability model analysis and random
loss of information, the heritability estimates were similar
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between the different ages (Table 1). However, when
the loss of information occurred by selection, there
was a reduction in the additive genetic variance,
according to the loss of information level.

The additive genetic variance estimates at each
age, for the complete data file with loss of information,
with  and without  se lect ion,  by using random
regression models are presented in Table 2.

The loss of information obtained with the
random process did not modify the heritability
estimates at any loss of information level (Table 3).
According to Dal Zotto (2000), in random regression
models the minimum number of observations to be
considered for each permanent environmental effect
level must be equal to the number of parameters used
to describe the data trajectory plus one. According
to Schaeffer and Dekkers (1994), random regression
models can also be used when individuals have only
one piece of information. Results obtained in this
study are in agreement with these authors.

When the loss of information was made by
eliminating the individuals with the least phenotypic
values, the genetic and environmental variance
estimates reduced, causing smaller values for the
heritability estimates. With selection, only the random
regression heritability estimates with a 10% loss of

information were similar to the complete data file
analysis estimates. Resende et al. (2001), using
random regression models to describe the diameter
at  breast  height  within one to seven year old
Eucalyptus  urophyl la  t rees ,  found tha t  the
heritability estimates were very similar to that
obtained by single-trait models before three years
old. For advanced ages the estimates were smaller.
The authors discussed that single-trait analysis
overestimated the parameter estimates because of the
phenotypic variance reduction, due to the least
vigorous individual death, became naturally selected
for population adaptation. Matheson and Raymond
(1984),  ci ted by Resende et  al .  (2001),  found
her i tab i l i ty  es t imates  in  two Pinus  radia ta
populations equal to 0.12 and 0.24. The estimates
assumed values of 0.21 and 0.33 after the worst plants
were eliminated, respectively. These results were
opposite to those obtained in this study, probably
due to the sample size, since our data was simulated
cons ider ing  a  progeny tes t  wi th  only  two
genera t ions ;  the  ances t ry  and the  of fspr ing .
Therefore, the elimination of information from smaller
phenotypic values and consequently the elimination
of the smaller genotypic values changed the data
structure.

Loss of information without selection (%) Loss of information with selection (%)
Estimates 0 10 20 30 40 10 20 30 40

1.225 1.101 0.994 0.969 0.979 0.970 0.694 0.464 0.299
0.217 0.271 0.285 0.280 0.311 0.215 0.121 0.058 0.012
3.666 3.358 3.401 3.398 3.481 3.368 3.357 3.325 3.378
3.883 3.629 3.686 3.678 3.792 3.583 3.478 3.383 3.391
0.24 0.23 0.21 0.21 0.21 0.21 0.17 0.12 0.08

Table 1. Additive genetic variance, permanent environmental variance, temporary environmental variance, environmental variance,
and heritability estimates, by using the repeatability model, with and without selection

Age Data Loss of information without selection (%) Loss of information with selection (%)
(Months) Complete 10 20 30 40 10 20 30 40

12 0.613 0.606 0.613 0.569 0.530 0.596 0.599 0.667 0.580
30 0.683 0.719 0.719 0.827 0.901 0.734 0.789 0.695 0.313
48 1.010 1.080 1.044 1.196 1.320 1.028 0.785 0.480 0.149
66 1.793 1.920 1.818 1.845 1.933 1.683 0.693 0.309 0.176
84 3.304 3.549 3.359 3.031 3.030 2.987 0.784 1.015 0.932

Table 2. Estimates of additive genetic variance in each age for the complete and incomplete data file, with and without selection, by
using random regression models
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The complete data files were analyzed by two
random regression models, where the difference between
them was in the temporary environmental effect
variance. In the first model the variances were constant
and in the second model each age had a different
variance. Comparing the estimates of variance
components and heritability, and also comparing the
models likely function values (Table 4), its acceptance
at a 5% significance level indicates that the temporary
environmental variances being homogeneous or
heterogeneous did not influence the model fit.

In the data analysis considering each age as a trait
by multi-trait models analyzing traits side by side (bi-
trait model) the same results were observed. The
heritability estimates for the complete and incomplete
data files with and without selection are presented in
Table 5. These values represent the minimum and
maximum estimates obtained by the analysis of traits side
by side. The selection caused a variability reduction since
the loss of information increased, in other words this
model was very sensitive to the selection effect. However,
all the heritability estimates were similar when the loss of
information was not made by a selective process.

Generally, independent from the analysis strategy
used (single-trait, multi-trait or random regression
models) the selection effect caused the least

discrimination among individuals and reduced the
variability between them. The genetic variance was
reduced as a result of less variability between
individuals and consequently smaller heritability
estimates. With a 10% loss of information the heritability
values did not change, with a 20% loss the heritability
values reduced at the last two ages, with a 30% loss the
reduction in heritability values occurred at the three
last ages and with a 40% loss the reduction occurred at
the four last ages. However with a 10% loss of
information with selection the random regression model
analysis was the best alternative.

Knowing that the loss of information could change
the temporary environmental effects, the data was also
analyzed with a 40% loss of information with selection,
but assuming heterogeneous variance for the temporary
environmental effect at each age. Moreover the complete
data file was also analyzed to check the permanent
environmental effect of variance homogeneity effects.
Comparing the variance components and heritability
estimates and comparing the models using the likelihood
function values (Table 6) it was observed that the
variance heterogeneity for both the complete and the
select data file did not change the data variation
description. Therefore the loss of information did not
change the temporary environmental effect.

Age Complete Loss of information without selection (%) Loss of information with selection (%)
(Months) Data 10 20 30 40 10 20 30 40

12 0.16 0.15 0.15 0.15 0.14 0.15 0.15 0.17 0.15
30 0.18 0.18 0.18 0.21 0.23 0.19 0.19 0.19 0.09
48 0.22 0.23 0.22 0.25 0.28 0.22 0.18 0.13 0.04
66 0.35 0.38 0.36 0.37 0.39 0.35 0.21 0.11 0.06
84 0.41 0.46 0.44 0.40 0.41 0.43 0.16 0.20 0.19

Table 3. Estimates of heritability in each age for the complete and incomplete data file, with and without selection, by using random
regression model

Homogeneous residual Heterogeneous residual
Ages σσσσσ2

a σσσσσ2
p σσσσσ2

e h2 σσσσσ2
a σσσσσ2

p σσσσσ2
e h2

12 0.623 1.236 2.067 0.16 0.586 1.263 2.043 0.15
30 0.705 1.048 2.067 0.18 0.707 1.031 2.084 0.18
48 1.089 1.537 2.067 0.23 1.116 1.532 2.113 0.23
60 1.811 1.223 2.067 0.35 1.876 1.198 1.918 0.38
84 2.916 2.864 2.067 0.37 3.083 2.523 2.389 0.39

-2Log(L) 10624.23 10621.64
χ22.59 ( P > 0.05)

Table 4. Additive genetic variance (σ2
a), permanent environment (σ2

p), and temporary environment (σ2
e), and heritability (h2) estimates,

in each age by random regression models with different assumptions, likelihood functions and likelihood ratio tests (χ2) values
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The heritability estimates arising from random
regression models when using complete or incomplete
data files with and without selection were similar to the
multi-trait models analysis estimates. However the
heritability estimates obtained with the multi-trait model

Loss of information without selection (%)
Ages Complete 10% 20% 30% 40%
12 0.12 – 0.14 0.13 – 0.14 0.13 – 0.14 0.11 – 0.13 0.12 – 0.13
30 0.20 – 0.21 0.20 – 0.25 0.20 – 0.25 0.20 – 0.25 0.27 – 0.29
48 0.19 – 0.23 0.19 – 0.23 0.19 – 0.23 0.20 – 0.26 0.23 – 0.26
66 0.39 – 0.42 0.33 – 0.40 0.38 – 0.42 0.38 – 0.42 0.38 – 0.40
84 0.37 – 0.40 0.32 – 0.43 0.38 – 0.41 0.38 – 0.41 0.38 – 0.40

Loss of information with selection (%)
Ages Complete 10% 20% 30% 40%
12 0.12 – 0.14 0.13 – 0.14 0.13 – 0.15 0.13 0.13
30 0.20 – 0.21 0.20 – 0.25 0.19 – 0.20 0.20 – 0.25 0.12 – 0.14
48 0.19 – 0.23 0.19 – 0.23 0.19 – 0.22 0.05 – 0.07 0.05 – 0.06
66 0.39 – 0.42 0.40 – 0.42 0.03 – 0.11 0.03 – 0.07 0.03 – 0.06
84 0.37 – 0.40 0.11 – 0.23 0.11 – 0.18 0.15 – 0.19 0.16 – 0.18

Table 5. Heritability estimates using the complete and incomplete data file considering or not the selection by the multi-trait model in
the uni-trait analysis

Table 6. Additive genetic ( ), permanent environment ( ), temporary environment ( ) variances, heritability ( ) estimates,
likelihood function logarithm and likelihood ratio test (χ2) values for the complete and selected data with a 40% loss of information in
random regression models

Complete data Homogeneous residual Heterogeneous residual
Ages

12 0.613 1.252 2.062 0.16 0.618 1.261 2.044 0.16
30 0.683 1.079 2.062 0.18 0.702 1.049 2.090 0.18
48 1.010 1.598 2.062 0.22 1.044 1.561 2.154 0.22
60 1.793 1.228 2.062 0.35 1.825 1.187 1.890 0.37
84 3.304 2.630 2.062 0.41 3.277 2.337 2.480 0.40

-2Log(L) 10624.22 10621.64
χ2     2.58 (P > 0.05)

Selection data
Ages

12 0.580 1.383 1.984 0.15 0.565 1.509 1.838 0.14
30 0.313 1.009 1.984 0.09 0.298 0.993 2.230 0.08
48 0.149 1.214 1.984 0.04 0.141 1.215 1.963 0.04
60 0.176 0.545 1.984 0.06 0.184 0.517 1.693 0.07
84 0.932 1.906 1.984 0.19 0.920 1.495 2.588 0.18

-2Log(L) 5979.28 5970.94
χ2     8.34 (P > 0.05)

were more affected by the loss of information data than
those obtained by random regression models. With a
10% loss of information the heritability estimates
obtained by the random regression model were similar
to those obtained with the complete data file. However
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the multi-trait model at the same loss of information
level presented underestimated values at the last age
studied. Therefore as the random regression models had
used covariance functions that give a continuous
covariance structure of random effects associated to
the analyzed character description, it can be affirmed
that they can better express the mixed linear model’s
random effects variance that describe longitudinal data.
By considering that the trait in study can change in
time, this strategy is more realistic than the repeatability
model, and because it uses fewer parameters it becomes
more attractive than the multi-trait models that can be
prohibited in practical applications with a large number
of parameters.

Schaeffer and Wilton (1998) discussed that in some
cases when all the traits are observed in each individual
and the traits heritability are similar and all of them are
positively correlated, the model analysis that considers
multiple traits would not offer a significant increase in
the genetic evaluation accuracy.

CONCLUSIONS

When the assumption is that the correlation
between successive measurements in a single individual
is equal to one which is invalid, then random regression
models in the genetic analysis can provide better results
than repeatability models.

Random regression models yield covariance and
genetic parameter estimates similar to those obtained
by multiple-trait models, however, with the use of fewer
parameters in the model, which in practice is an
advantage.

In small population samples submitted to the
selection effect,  multi-trait  models were more
susceptible to the selection bias than the random
regression models analysis, but additional studies are
necessary for more conclusive findings.

Considering the continuous nature of the
dependent variable, random regression models must be
preferred to single trait models in high loss of
information level data files.

Estimação de componentes de variância com dados
longitudinais: um estudo de simulação com métodos
alternativos

RESUMO - Foi gerada uma estrutura de pedigree, considerando-se três locais diferentes. Para cada prole foram geradas
informações fenotípicas em cinco idades diferentes (aos 12, 30, 48, 66 e 84 meses). O arquivo de dados foi gerado permitindo
que algumas informações fossem perdidas (10, 20, 30 e 40%) por um processo aleatório e por aqueles indivíduos com menor
valor fenotípico, representando o efeito da seleção. Foram utilizados Modelos de repetibilidade, de regressão aleatória e
multi-característica. Modelos de regressão aleatória foram mais adequados para descrever continuamente as estruturas de
covariâncias de crescimento ao longo do tempo, do que modelos de repetibilidade, quando a pressuposição de que a
correlação entre mensurações sucessivas no mesmo indivíduo é diferente da unidade. Sob ausência de seleção, os modelos de
regressão aleatória e multi-característica foram semelhantes. Entretanto, sob o efeito da seleção, o modelo multi-característica
mostrou-se mais susceptível ao viés de seleção.

Palavras-chave: Modelo de regressão aleatória, modelo multi-característica, modelos de repetibilidade, seleção.
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