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Abstract

This paper introduces rpartScore (Galimberti, Soffritti, and Di Maso 2012), a new
R package for building classification trees for ordinal responses, that can be employed
whenever a set of scores is assigned to the ordered categories of the response. This package
has been created to overcome some problems that produced unexpected results from the
package rpartOrdinal (Archer 2010). Explanations for the causes of these unexpected
results are provided. The main functionalities of rpartScore are described, and its use is
illustrated through some examples.
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1. Introduction

rpartOrdinal is a package implemented by Archer (2010) in R (R Development Core Team
2012), that contains some splitting functions for building a classification tree for predicting
an ordinal response. These splitting functions are meant to be used in conjunction with
the R package rpart (Therneau and Atkinson 2011), which was originally introduced as an
implementation of the classification and regression trees (CART) methodology (Breiman,
Friedman, Olshen, and Stone 1984). Three splitting functions are considered in rpartOrdinal.
These three splitting functions are based on an ordinal impurity function (Piccarreta 2008),
the generalized Gini impurity function (Breiman et al. 1984) and the ordered twoing method
(Breiman et al. 1984).

While using this package on some real data (Galimberti and Soffritti 2012), we obtained some
unexpected results. A careful inspection of the R functions contained in rpartOrdinal led us to
discover the causes of these problems and to implement rpartScore (Galimberti et al. 2012),
a new R package that overcomes these problems. In this paper, we provide theoretical and
empirical explanations for the causes of the unexpected results obtained with rpartOrdinal

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Directory of Open Access Journals

https://core.ac.uk/display/27026743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/


2 rpartScore: Classification Trees for Ordinal Responses in R

(Section 2). We next describe the main functionalities of rpartScore (Section 3). Finally,
some directions for future research are highlighted in Section 4. All the examples shown in
this paper were performed using the R release 2.14.2.

2. Unexpected results from rpartOrdinal

The reasons why rpartOrdinal may produce unexpected results depend on multiple issues.
Some of these issues are related to the theoretical properties of the generalized Gini impurity
function and to the way this function has been implemented in rpartOrdinal. The first aspect
is detailed in Section 2.1, while Section 2.2 and Section 2.3 address the second aspect. Another
issue concerns the measure of the predictive performance used in the pruning procedure (see
Section 2.4).

2.1. Some properties of the generalized Gini impurity function

Using a notation similar to the one in Archer (2010), consider a data set {(yi, xi1, . . . , xip); i =
1, . . . , n} that contains the values of a response Y with J ordered categories {ω1 < ω2 < . . . <
ωJ} and of p predictors X1, . . . , Xp observed on n sample units. A classification tree can be
derived by recursively partitioning the data set using splitting rules, which are logical rules
defined according to the values of the predictors. Most statistical packages that can be used
to implement classification trees rely on splitting rules obtained using one predictor at a time.
According to the CART methodology, the optimal binary splitting rule for a given node t in
a tree T is the one that results in the largest decrease in node impurity, as measured using
a given impurity function. Let p(ωj |t) be the proportion of units in node t belonging to the
j-th category of Y , for j = 1, . . . , J . The generalized Gini impurity function (Breiman et al.
1984) for node t is given by

iGG(t) =
J∑
k=1

J∑
l=1

C(ωk|ωl)p(ωk|t)p(ωl|t), (1)

where C(ωk|ωl) represents the misclassification cost of assigning category ωk to a sample
unit belonging to category ωl. Clearly, C(ωj |ωj) = 0 for j = 1, . . . , J . When C(ωk|ωl) =
C(ωl|ωk) ∀ k 6= l, these misclassification costs are symmetric and can also be interpreted
as dissimilarities between pairs of categories of Y . The nominal Gini impurity function is
obtained as a special case of Equation 1 by choosing C(ωk|ωl) = 1 ∀ k 6= l.

For any binary split s of node t, units assigned to node t are partitioned into two child nodes,
tR and tL. According to Breiman et al. (1984), the decrease in node impurity induced by the
binary split s of node t is given by

∆ImpGG(t, s) = p(t)iGG(t)− p(tR)iGG(tR)− p(tL)iGG(tL), (2)

where p(t), p(tR) and p(tL) are the proportions of units assigned to nodes t, tR and tL,
respectively. At any step in the recursive partitioning procedure, an exhaustive search among
all the admissible binary splits for a given node is performed, and the split showing the largest
value of Equation 2 is selected.

Suppose that a set of increasing scores {s1 < s2 < . . . < sJ} is assigned to the ordered
categories of the response Y . Variable misclassification costs can be defined by considering



Journal of Statistical Software 3

suitable transformations of the absolute differences between pairs of scores. For example, if
one chooses C(ωk|ωl) = |sk − sl|, Equation 1 becomes

iGG1(t) =
J∑
k=1

J∑
l=1

|sk − sl|p(ωk|t)p(ωl|t). (3)

Piccarreta (2001) showed that iGG1(t) can also be computed as follows:

iGG1(t) = 2
J−1∑
j=1

(sj+1 − sj)F (ωj |t) (1− F (ωj |t)) , (4)

where F (ωj |t) =
∑j
h=1 p(ωh|t), for j = 1, . . . , J , are the cumulative proportions of Y in node

t. By choosing any set of scores such that (sj+1 − sj) = 1 for j = 1, . . . , J − 1, Equation 4
simplifies to

i∗GG1(t) = 2
J−1∑
j=1

F (ωj |t) (1− F (ωj |t)) , (5)

which is proportional to the ordinal impurity function iOS(t) =
∑J−1
j=1 F (ωj |t) (1− F (ωj |t))

proposed by Piccarreta (2008).

By defining C(ωk|ωl) = (sk − sl)2, Equation 1 results in

iGG2(t) =
J∑
k=1

J∑
l=1

(sk − sl)2p(ωk|t)p(ωl|t). (6)

By adding and subtracting to each term (sk − sl) the average score within node t, s(t) =∑J
j=1 sjp(ωj |t), it is easy to prove that

iGG2(t) = 2
J∑
j=1

(sj − s(t))2p(ωj |t) =
2

n · p(t)
SS(t), (7)

that is, iGG2(t) is proportional to SS(t), which is the deviance of the scores s1, . . . , sJ within
node t. The resulting splitting function is then equal to

∆ImpGG2(t, s) =
2

n
[SS(t)− SS(tR)− SS(tL)] . (8)

Thus, from a computational point of view, ∆ImpGG2(t, s) corresponds (up to a multiplicative
factor) to the ANOVA splitting function for a regression tree built using the scores s1, . . . , sJ
as numerical values of the ordered categories of the response Y . This equivalence also makes
it possible to simplify the search for the best split when the admissible binary splits are
defined according to a predictor X with M unordered categories. The split that maximizes
Equation 8 can be found by treating X as an ordinal categorical predictor, after ordering its
categories according to the M conditional mean scores of Y given X (see Breiman et al. 1984,
for a detailed proof of this result). This makes it possible to examine only M − 1 splits of the
2M−1− 1 splits that can be defined according to all of the partitions of the M categories into
two nonempty classes. Note that this computational simplification does not hold when the
decrease in impurity is evaluated using the impurity function in Equation 5 (see Section 2.3
for an example).
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2.2. Use of variable misclassification costs in rpartOrdinal

Archer (2010) proposes that the generalized Gini impurity function be implemented by spec-
ifying a matrix of variable misclassification costs as a loss parameter in the optional parms
argument within the rpart call. The method = argument of the loss.matrix function in
rpartOrdinal can be set to either "linear" or "quadratic" for creating linear or quadratic
costs, respectively. According to Archer (2010), classification trees based on iGG1(t) and
iGG2(t) should be derived in this way.

The following example shows some of the unexpected results produced by rpartOrdinal. Con-
sider the lowbwt data set, contained in rpartOrdinal and used in some illustrative applications
presented by Archer (2010). The ordinal response Category is obtained by binning the vari-
able bwt according to the following cutoffs: 2500, 3000, and 3500. This data set also contains
several covariates that can be used to predict this ordinal response (see Archer 2010, for
further details).

The linear costs corresponding to Category are obtained as follows:

R> library("rpartOrdinal")

R> data("lowbwt")

R> lowbwt$Category <- factor(ifelse(lowbwt$bwt <= 2500, 3,

+ ifelse(lowbwt$bwt <= 3000, 2, ifelse(lowbwt$bwt <= 3500, 1, 0))),

+ ordered = TRUE)

R> linear.loss <- loss.matrix(method = "linear", lowbwt$Category)

R> linear.loss

[,1] [,2] [,3] [,4]

[1,] 0 1 2 3

[2,] 1 0 1 2

[3,] 2 1 0 1

[4,] 3 2 1 0

It is evident that these costs can be obtained by choosing any set of scores such that (sj+1 −
sj) = 1 for j = 1, . . . , J − 1 and by setting C(ωk|ωl) = |sk − sl|. Thus, according to the
properties of the generalized Gini impurity function described in Section 2.1, the use of linear
misclassification costs should lead to the same optimal splits selected by the ordinal impurity
function iOS(t) because the two corresponding splitting functions are equal (up to a constant
multiplicative factor). However, the corresponding classification trees obtained by analyzing
the lowbwt data set using rpartOrdinal are different (see Archer 2010, pp. 7–8). This difference
is due to the fact that, contrary to what is stated by Archer (2010), p. 6, the specification
of a matrix of variable misclassification costs as a loss parameter in the optional parms

argument within the rpart call does not lead to a classification tree based on the generalized
Gini impurity function. This happens because the rpart function does not implement this
impurity function (Therneau and Atkinson 1997, p. 7), but in fact resorts to the so-called
altered prior method when supplied with variable misclassification costs (see Breiman et al.
1984; Therneau and Atkinson 1997, for a detailed description of this method and its rationale).
Briefly, this method assumes that the misclassification costs have the following structure:
C(ωk|ωl) = C(ωl) ∀ k 6= l, that is, variable misclassification costs that vary only according to
the true category of Y . The altered prior probabilities for the categories of Y are computed
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as follows:

π̃(ωj) =
π(ωj)C(ωj)∑J
j=1 π(ωj)C(ωj)

, j = 1, . . . , J, (9)

where π(ωj) is the prior probability of observing a unit belonging to category ωj . By default,
in the rpart function, these prior probabilities are set equal to the proportions of units in
the data set belonging to the J categories of Y : p(ωj) for j = 1, . . . , J . Furthermore, when
supplied with a matrix of variable misclassification costs, before computing the altered prior
probabilities, the rpart function sets C(ωj) =

∑J
k=1C(ωk|ωj) for j = 1, . . . , J . The altered

prior probabilities are then used to adjust the proportions p(ωj |t) according to the following
formula:

p̃(ωj |t) =
π̃(ωj)p(t|ωj)∑J
j=1 π̃(ωj)p(t|ωj)

, j = 1, . . . , J, (10)

where p(t|ωj) is the proportion of units belonging to the j-th category of Y which are assigned
to node t.

The altered proportions p̃(ωj |t) are then used to compute node impurity according to the
nominal Gini impurity function

iGG0(t) =
J∑
k=1

∑
l 6=k

p̃(ωk|t)p̃(ωl|t) = 1−
J∑
k=1

p̃(ωk|t)2, (11)

which is the impurity measure used by default in the rpart function for building classification
trees when Y is an unordered response. Thus, the resulting classification trees do not take
into account the ordered nature of the response.

In the lowbwt data set example, p(ωj), C(ωj) and π̃(ωj), for j = 1, . . . , 4 can be computed as
follows:

R> pj <- table(lowbwt$Category) / sum(table(lowbwt$Category))

R> round(pj, 4)

0 1 2 3

0.2434 0.2434 0.2011 0.3122

R> Cj.lin <- apply(linear.loss, 1, sum)

R> Cj.lin

[1] 6 4 4 6

R> pj.Cj.lin <- pj * Cj.lin

R> alt.pj.lin <- pj.Cj.lin / sum(pj.Cj.lin)

R> round(alt.pj.lin, 4)

0 1 2 3

0.2857 0.1905 0.1573 0.3665
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It is easy to see that using linear misclassification costs leads to increased prior probabilities
for extreme categories of the response and to decreased prior probabilities for intermediate
categories. Thus, when supplied with a linear misclassification cost matrix, the rpart function
not only employs an impurity function that ignores the ordinal nature of the response but
also simplifies the misclassification cost structure by giving more weight to misclassification
errors for extreme categories of Y .

To provide empirical evidence to support the conclusion that specifying a matrix of linear
misclassification costs as a loss parameter in the optional parms argument within the rpart

function call does not lead to a classification tree based on iGG1(t), three trees are built on
the lowbwt data set, using the same ordinal response and predictors as in Archer (2010):
ordinal.rpart is obtained using the ordinal impurity criterion implemented in rpartOrdi-
nal, linear.loss.rpart is obtained by supplying the linear misclassification cost matrix
linear.loss as a loss parameter in the optional parms argument within the rpart call
(as suggested by Archer 2010, p. 6) and altered.priors.lin.rpart is obtained by supply-
ing altered prior probabilities alt.pj.lin (computed according to Equation 9) as a prior

parameter in the optional parms argument within the rpart call.

The summary of each of these three R objects contains information about the selection of
the optimal split for node 1 (illustrated below) as well as other information on the cor-
responding tree. For the best five candidate splits of node 1 (each defined by a different
predictor), the summaries report the values of improve, which are computed as the decrease
in node impurity for ordinal.rpart and as the decrease in node impurity multiplied by n for
linear.loss.rpart and altered.priors.lin.rpart. A comparison of these values reveals
that linear.loss.rpart does not coincide with ordinal.rpart. The values of improve in
the summaries lead to a different ranking of the candidate splits; hence, these values are
not proportional (as they should be, according to the theoretical properties described in Sec-
tion 2.1). Furthermore, as expected, linear.loss.rpart gives the same values for improve

as does altered.priors.lin.rpart.

R> ordinal.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl + ht +

+ ui + ftv, data = lowbwt, method = ordinal)

R> summary(ordinal.rpart)

Call:

rpart(formula = Category ~ age + lwt + race + smoke + ptl + ht +

ui + ftv, data = lowbwt, method = ordinal)

n= 189

...

...

Node number 1: 189 observations, complexity param=0.04758604

predicted class= 3 expected loss= 1.354385

left son=2 (177 obs) right son=3 (12 obs)

Primary splits:

ht splits as LR, improve=0.32949840, (0 missing)

ui splits as LR, improve=0.25190870, (0 missing)

smoke splits as LR, improve=0.13943480, (0 missing)

race splits as LRR, improve=0.10658910, (0 missing)

lwt < 109.5 to the left, improve=0.03974253, (0 missing)
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Surrogate splits:

lwt < 232 to the left, agree=0.942, adj=0.083, (0 split)

...

...

R> linear.loss.rpart <- rpart(Category ~ age + lwt + race + smoke + ptl +

+ ht + ui + ftv, data = lowbwt, method = "class",

+ parms = list(loss = linear.loss))

R> summary(linear.loss.rpart)

Call:

rpart(formula = Category ~ age + lwt + race + smoke + ptl + ht +

ui + ftv, data = lowbwt, method = "class",

parms = list(loss = linear.loss))

n= 189

...

...

Node number 1: 189 observations, complexity param=0.0964467

predicted class=2 expected loss=1.042328

class counts: 46 46 38 59

probabilities: 0.243 0.243 0.201 0.312

left son=2 (147 obs) right son=3 (42 obs)

Primary splits:

lwt < 109.5 to the right, improve=5.361524, (0 missing)

ptl < 0.5 to the left, improve=4.925426, (0 missing)

race splits as LRR, improve=4.294291, (0 missing)

ui splits as LR, improve=3.047050, (0 missing)

smoke splits as LR, improve=2.993956, (0 missing)

Surrogate splits:

age < 14.5 to the right, agree=0.783, adj=0.024, (0 split)

...

...

R> altered.priors.lin.rpart <- rpart(Category ~ age + lwt + race + smoke +

+ ptl + ht + ui + ftv, data = lowbwt, method = "class",

+ parms = list(prior = alt.pj.lin))

R> summary(altered.priors.lin.rpart)

Call:

rpart(formula = Category ~ age + lwt + race + smoke + ptl + ht +

ui + ftv, data = lowbwt, method = "class",

parms = list(prior = alt.pj.lin))

n= 189

...

...

Node number 1: 189 observations, complexity param=0.06862745

predicted class=3 expected loss=0.6335404
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class counts: 46 46 38 59

probabilities: 0.286 0.190 0.157 0.366

left son=2 (147 obs) right son=3 (42 obs)

Primary splits:

lwt < 109.5 to the right, improve=5.361524, (0 missing)

ptl < 0.5 to the left, improve=4.925426, (0 missing)

race splits as LRR, improve=4.294291, (0 missing)

ui splits as LR, improve=3.047050, (0 missing)

smoke splits as LR, improve=2.993956, (0 missing)

Surrogate splits:

age < 14.5 to the right, agree=0.783, adj=0.024, (0 split)

...

...

Using a similar comparison, it is also possible to show that the use of a quadratic misclassifi-
cation cost matrix (as proposed by Archer 2010) leads to decreases in node impurity that are
not proportional to the ones obtained by fitting a regression tree to the scores of Y (as they
should be, according to the properties described in the Section 2.1) but are instead equal to
the decreases obtained by a classification tree built using the nominal Gini impurity function
and the following altered priors:

R> quadratic.loss <- loss.matrix(method = "quadratic", lowbwt$Category)

R> Cj.quad <- apply(quadratic.loss, 1, sum)

R> Cj.quad

[1] 14 6 6 14

R> pj <- table(lowbwt$Category) / sum(table(lowbwt$Category))

R> pj.Cj.quad <- pj * Cj.quad

R> alt.pj.quad <- pj.Cj.quad / sum(pj.Cj.quad)

R> round(alt.pj.quad,4)

0 1 2 3

0.3262 0.1398 0.1155 0.4184

Note that these latter comparisons are meaningful only with respect to the decreases in node
impurity: predicted values from the regression tree fitted to the scores of Y should not be
used, because they are equal to the average score within each terminal node and hence are
meaningless for predicting a categorical response.

2.3. Use of categorical predictors in rpartOrdinal

Other unexpected results may arise when using rpartOrdinal with unordered categorical pre-
dictors. As stated in Section 2.1, when a predictor with M unordered categories is considered,
2M−1−1 admissible splits can be defined, according to all of the partitions of the M categories
into two nonempty classes. However, if the impurity function iGG2(t) is used to compute the
decrease in node impurity, only M − 1 splits can be examined to find the best one. These
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M − 1 splits can be identified by treating the predictor as an ordinal one, after ordering its
categories according to the M conditional mean scores of Y , given the predictor.

The following example shows that this computational simplification does not hold when the
decrease in impurity is defined according to the ordinal impurity function iOS(t) (nor when
iGG1(t) is considered). Let Y be an ordered response with scores {0, 1, 2, 3} and X be a
categorical predictor with M = 4 unordered categories {A,B,C,D}. Furthermore, consider
the cross-classification of n = 400 sample units, based on Y and X, obtained as follows:

R> y.labs <- 0:3

R> x.labs <- c("A", "B", "C", "D")

R> yx.labs <- expand.grid(y.labs, x.labs)

R> wt.1 <- c(6, 35, 45, 14, 36, 10, 10, 44, 51, 0, 0, 49, 0, 54, 46, 0)

R> yx.labs <- yx.labs[rep(1:nrow(yx.labs), wt.1), ]

R> y <- yx.labs[, 1]

R> x <- yx.labs[, 2]

R> cont.table <- table(y, x)

R> cont.table

x

y A B C D

0 6 36 51 0

1 35 10 0 54

2 45 10 0 46

3 14 44 49 0

The conditional mean scores of Y given the four categories of X are equal to

R> wt <- rep(1, length(y))

R> wtsum <- tapply(wt, x, sum)

R> ysum <- tapply(y * wt, x, sum)

R> means <- ysum / wtsum

R> means

A B C D

1.67 1.62 1.47 1.46

Thus, in this example, the categories of X can be ordered according to increasing values for
the conditional mean scores of Y as follows: D,C,B,A.

The following instructions make it possible to compute the decrease in node impurity using
iOS(t) for all the 23 − 1 = 7 admissible splits:

R> no.classes <- length(y.labs)

R> node <- xtabs(wt ~ y)/sum(wt)

R> cum.node<-cumsum(node)

R> root<-0

R> for(j in 1:(no.classes - 1)) root <- root +

+ cum.node[j] * (1 - cum.node[j])
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R> num.cat <- length(x.labs)

R> splits <- expand.grid(rep(list(c(0, 1)), (num.cat)))

R> splits <- splits[1:(nrow(splits) / 2), ]

R> splits <- splits[-1, ]

R> colnames(splits) <- x.labs

R> rownames(splits) <- 1:nrow(splits)

R> node.l <- function(a) apply(as.table(cont.table[, a == 1]), 1, sum)

R> left.1 <- apply(splits, 1, node.l)

R> right.1 <- as.numeric(xtabs(wt ~ y)) - left.1

R> col.left.1 <- apply(left.1, 2, sum)

R> col.right.1 <- apply(right.1, 2, sum)

R> freq.cum.l <- apply(left.1, 2, cumsum)

R> freq.cum.r <- apply(right.1, 2, cumsum)

R> cum.matrix.l.1 <- t(freq.cum.l) / col.left.1

R> cum.matrix.r.1 <- t(freq.cum.r) / col.right.1

R> left.imp.1 <- 0

R> right.imp.1 <- 0

R> for(j in 1:(no.classes - 1)) {

+ left.imp.1 <- left.imp.1 +

+ cum.matrix.l.1[, j] * (1 - cum.matrix.l.1[, j])

+ right.imp.1 <- right.imp.1 +

+ cum.matrix.r.1[, j] * (1 - cum.matrix.r.1[, j])

+ }

R> impure.1 <- (root - col.left.1 / sum(wt) * left.imp.1 -

+ col.right.1 / sum(wt) * right.imp.1)

R> cbind(splits, t(left.1), t(right.1), impure.1)

A B C D 0 1 2 3 0 1 2 3 impure.1

1 1 0 0 0 6 35 45 14 87 64 56 93 0.01697083

2 0 1 0 0 36 10 10 44 57 89 91 63 0.01547083

3 1 1 0 0 42 45 55 58 51 54 46 49 0.00303750

4 0 0 1 0 51 0 0 49 42 99 101 58 0.04247083

5 1 0 1 0 57 35 45 63 36 64 56 44 0.00541250

6 0 1 1 0 87 10 10 93 6 89 91 14 0.08003750

7 1 1 1 0 93 45 55 107 0 54 46 0 0.04307083

Note that the rows of splits make it possible to identify the categories of X belonging to
one of the two sets that define each binary partition of the M categories of X. Without
loss of generality, for any admissible split, it is assumed that each row of splits defines the
categories of X associated with the left child node. Furthermore, for any admissible split in
splits, there are corresponding columns in matrices left.1 and right.1 that contain the
conditional frequency distributions of Y in the left and right child node, respectively.

According to iOS(t), the maximum decrease in node impurity (0.0800) can be achieved by
considering the following binary partition of the categories of X: {(A,D), (B,C)}. Note that
this partition cannot be examined if the predictor is treated as an ordinal one, after ordering
its categories according to the conditional mean scores of Y .
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To obtain classification trees based on the ordinal impurity function iOS(t), Archer (2010)
defines the list ordinal, to be passed to method = option in rpart function. This list consists
of three functions named eval, split and init. In particular, the split function makes it
possible to compute, for any given node t, the decreases in node impurity induced by the
binary splits defined according to any predictor. When this function examines an unordered
categorical predictor X with M categories, it returns a list containing two objects: direction
and goodness. The direction object is a vector of length M containing the category labels
of X, ordered according to some criterion. In rpart, it is assumed that the best split can
be found by treating X as an ordinal predictor, where the ordering of its categories is the
one reported in direction. The goodness object contains the decreases in impurity for the
corresponding M − 1 splits.

The following instructions are taken from the ordinal$split function contained in rpartOr-
dinal and have been applied to the data summarized in cont.table. These instructions make
it possible to obtain the information that ordinal$split passes to the rpart function to
select the best split:

R> class.labs <- names(table((y)))

R> ux <- sort(unique(x))

R> ord <- order(means)

R> n <- length(ord)

R> y <- y[order(x)]

R> x <- sort(x)

R> ymat <- matrix(rep(0, length(x) * no.classes), ncol = no.classes)

R> for(j in 1:no.classes) {

+ ymat[which(y == class.labs[j]), j] <- cumsum(

+ wt[which(y == class.labs[j])])

+ }

R> keep <- matrix(logical(), nrow = dim(ymat)[1], ncol = no.classes)

R> for(i in 2:(dim(ymat)[1] - 1)) {

+ for(j in 1:no.classes) {

+ keep[i, j] <- ifelse((ymat[i, j] == (ymat[i - 1, j] + 1) &

+ ymat[i + 1, j] == 0) | (ymat[i, j] != 0 & ymat[i - 1, j] == 0 &

+ ymat[i + 1, j] == 0), TRUE, FALSE)

+ }

+ }

R> keep[1, ] <- keep[dim(ymat)[1], ] <- rep(TRUE, no.classes)

R> keep.row <- apply(keep, 1, sum)

R> ymat <- ymat[keep.row > 0, ]

R> rx <- x[keep.row > 0]

R> left <- matrix(nrow = dim(ymat)[1], ncol = dim(ymat)[2])

R> left[1, ] <- ymat[1, ]

R> for(i in 2:nrow(left)) {

+ for(j in 1:ncol(left)) {

+ left[i, j] <- ifelse(ymat[i, j] == 0, max(ymat[1:i, j]), ymat[i, j])

+ }

+ }

R> col.left <- apply(left, 1, sum)
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R> impure.l <- left / col.left

R> row.total <- apply(ymat, 2, max)

R> right <- matrix(rep(row.total, dim(left)[1]), ncol = no.classes,

+ byrow = TRUE) - left

R> col.right <- apply(right, 1, sum)

R> impure.r <- right / col.right

R> cum.matrix.l <- t(apply(impure.l, 1, cumsum))

R> cum.matrix.r <- t(apply(impure.r, 1, cumsum))

R> left.imp <- 0

R> right.imp <- 0

R> for(j in 1:(no.classes - 1)) {

+ left.imp <- left.imp + cum.matrix.l[, j] * (1 - cum.matrix.l[, j])

+ right.imp <- right.imp + cum.matrix.r[, j] * (1 - cum.matrix.r[, j])

+ }

R> impure <- (root - col.left / length(y) * left.imp -

+ col.right / length(y) * right.imp)

R> summary.impure <- aggregate(impure, by = list(rx),

+ function(x) max(x, na.rm = TRUE))

R> names(summary.impure) <- c("x", "goodness")

R> list(goodness = summary.impure$goodness[-n], direction = ux[ord])

$goodness

[1] 0.03990128 0.02639743 0.04307083

$direction

[1] D C B A

Levels: A B C D

According to these results, the binary partition {(A), (B,C,D)} of the categories of X should
be used to define the best split, leading to a decrease in node impurity equal to 0.0431.

This example shows that the ordinal$split function proposed by Archer (2010) to imple-
ment the ordinal impurity function wrongly assumes that the best split can be found after
ordering the categories of X by increasing values of the conditional mean scores of Y . Thus,
the split selected using ordinal$split may be different from the optimal one (as in the
example provided).

Furthermore, the reported values for the decrease in node impurity are wrongly computed.
According to the values contained in impure.1, the decreases in impurity associated with the
splits {(A,B,C), (D)}, {(A,B), (C,D)}, and {(A), (B,C,D)} (which correspond to rows 7, 3
and 1 of the splits object) are 0.0431, 0.0030, and 0.0170, respectively.

These latter errors can be explained by examining the left and right objects, whose rows
contain the conditional distributions of Y in 13 different partitions of the sample units into two
classes that are examined by ordinal$split. The impure object provides the corresponding
decreases in impurity.

R> cbind(left, right, impure)
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impure

[1,] 1 0 0 0 92 99 101 107 0.002333365

[2,] 6 0 0 0 87 99 101 107 0.014177855

[3,] 6 35 0 0 87 64 101 107 0.039901285

[4,] 6 35 45 0 87 64 56 107 0.026854112

[5,] 6 35 45 14 87 64 56 93 0.016970833

[6,] 42 35 45 14 51 64 56 93 0.020776716

[7,] 42 45 45 14 51 54 56 93 0.026397434

[8,] 42 45 55 14 51 54 46 93 0.024923292

[9,] 42 45 55 58 51 54 46 49 0.003037500

[10,] 93 45 55 58 0 54 46 49 0.042531579

[11,] 93 45 55 107 0 54 46 0 0.043070833

[12,] 93 99 55 107 0 0 46 0 0.046261511

[13,] 93 99 101 107 0 0 0 0 NA

By carefully inspecting these objects, it is possible to note that some partitions of the sample
units examined by the function ordinal$split do not correspond to any admissible split
defined by X.

Furthermore, the conditional distributions of Y and the decreases in node impurity corre-
sponding to splits defined according to the ordering given by direction are contained in
rows 11, 9 and 5, while the values contained in goodness correspond to rows 3, 7 and 11.

2.4. Optimal tree size selection

As many authors have pointed out (see, for example, Breiman et al. 1984; Murthy 1998;
Hastie, Tibshirani, and Friedman 2009), one of the main issues in recursive partitioning
methods is the selection of the optimal tree size. This issue is particularly crucial when the
aim of the analysis is to obtain a prediction rule for future observations. Several techniques
have been suggested for obtaining correctly sized trees (see, for example, Niblett and Bratko
1986; Mingers 1987; Quinlan 1993; Cappelli, Mola, and Siciliano 2002; Zhong, Georgiopoulos,
and Anagnostopoulos 2008). A comparison among some of these pruning procedures can be
found in Esposito, Malerba, and Semeraro (1997). One of the most popular techniques is
the pruning procedure proposed by Breiman et al. (1984). This procedure is based on the
cost-complexity measure

Rα(T ) = R(T ) + α · card(T ), (12)

where R(T ) is usually a measure of the predictive performance of the tree T , card(T ) is the
complexity of T (measured by its number of leaves) and α is a tuning parameter (α > 0) that
governs the trade-off between predictive performance and tree complexity. The choice of the
functional form for R(T ) depends on the nature of Y .

The method = option in rpart function allows users to specify not only their own split func-
tions but also their own predictive performance measures. In particular, the function eval is
used to compute ŝ(t) and R(t), which are the predicted value of Y and the predictive perfor-
mance measure within node t, respectively. R(T ) is then obtained as

∑
t∈T̃ R(t), where T̃ is

the set of the terminal nodes of the tree T . The eval function associated with the ordinal

method implemented by Archer (2010) is given by

R> ordinal$eval
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function (y, wt, parms)

{

labels <- names(table(y))

freq <- tapply(wt, y, sum)

id <- labels[which(freq == max(freq))]

newid <- ifelse(length(id) > 1, id[sample(1:length(id), size = 1)], id)

wmean <- sum(y * wt)/sum(wt)

rss <- sum(wt * (y - wmean)^2)

list(label = newid, deviance = rss)

}

<environment: namespace:rpartOrdinal>

Note that this function sets ŝ(t) equal to the modal category of Y within node t. However, it
computes R(t) as the within-node deviance, which is inconsistent with the categorical nature
of the response, as it implicitly exploits the average score as predicted value for Y . The same
eval function is also associated with the twoing method implemented by Archer (2010).

Two more suitable predictive performance measures to be used when Y is an ordinal response
are the total number of misclassifications Rmr(T ) (Breiman et al. 1984) and the total misclas-
sification cost Rmc(T ) (Piccarreta 2008). When a set of increasing scores {s1 < s2 < . . . < sJ}
is assigned to the ordered categories of Y , these measures can be computed as follows:

Rmr(T ) =
n∑
i=1

[
1− I{si}(ŝi,T )

]
, (13)

Rmc(T ) =
n∑
i=1

|si − ŝi,T |, (14)

where si is the observed score for unit i, ŝi,T is the predicted score for unit i according to the
tree T , and I{si}(ŝi,T ) = 1 if si = ŝi,T and 0 otherwise. Note that ŝi,T = ŝ(t) for all units i
that are assigned to the terminal node t of T , according to the splitting rules in the tree T .

The predictive performance measures in Equation 13 and Equation 14 can also be exploited
to select ŝ(t), ∀t ∈ T̃ , by minimizing them within each node. In particular, ŝ(t) is given by
the within-node modal score when Rmr(T ) is used and by the within-node median score when
Rmc(T ) is used.

3. A new package for classification trees with ordinal response

To overcome the problems with rpartOrdinal highlighted in Section 2, we have implemented
rpartScore, a new R package that makes it possible to build classification trees for responses
with ordered categories. This package can be employed whenever a set of increasing scores
{s1 < s2 < . . . < sJ} is assigned to the categories of the response. The simplest choice for
these scores is given by sj = j for j = 1, . . . , J , but this package can be used with any other
choice for the scores. General guidelines for choosing scores to be assigned to a categorical
variable can be found, for example, in Agresti (2002).

This package uses the general CART framework. In particular, it allows the user to grow clas-
sification trees using splitting functions based on the impurity functions iGG1(t) and iGG2(t).
Furthermore, it performs the pruning procedure using either Rmr(T ) or Rmc(T ).
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rpartScore requires the rpart package. The main function in rpartScore is rpartScore, which
uses the function rpart internally. In particular, rpartScore creates a model frame, a list
containing parameters that control aspects of the rpart fit, and a list of three functions
named eval, split and init. These three objects are passed to the function rpart through
the arguments model, control and method, respectively. Because the function rpart does
not perform cross-validation when the argument method is set equal to a list, the function
rpartScore also uses the function xpred.rpart to internally compute the cross-validated
values for the predictive performance measure, used to select the optimal tree size, and their
estimated standard errors. Note that this can require long computational times, especially
when the pruning procedure requires the evaluation of many subtrees. In this situation, it
may be advisable to use either a small number of cross-validation groups or an independent
test set.

The functionalities of rpartScore are almost the same as those of rpart. The main difference
is the presence of two arguments (split and prune) instead of the method argument.

The argument split controls the impurity function used to grow the classification tree by
setting it equal to iGG1(t) ("abs" - is the default option) or to iGG2(t) ("quad"). Note that
when split = "abs" and (sj+1 − sj) = 1 for j = 1, . . . , J − 1, rpartScore builds a tree
based on the ordinal impurity function iOS(t) or, equivalently, based on the generalized Gini
impurity function with linear costs as proposed by Archer (2010) but without producing the
unexpected results that are obtained using rpartOrdinal (see Section 2.2 and Section 2.3).
In particular, the internal call to rpart in rpartScore uses the function splitAbs, which,
in contrast to the function ordinal$split in rpartOrdinal, examines all of the admissible
splits for unordered categorical predictors as well. Furthermore, the objects direction and
goodness returned by splitAbs are devised such that the internal call to rpart selects the
optimal split (for further details, see the internal code of splitAbs).

Analogously, classification trees based on the generalized Gini impurity function with quadratic
costs can be obtained by setting split = "quad" and choosing scores such that (sj+1−sj) = 1
for j = 1, . . . , J − 1.

The argument prune makes it possible to select the predictive performance measure used to
prune the classification tree and can take two values: "mr" (Rmr(T )) or "mc" (Rmc(T ) - is the
default option). In this way, rpartScore overcomes the problem highlighted in Section 2.4,
using predictive performance measures that are consistent with the categorical nature of the
response.

The function rpartScore returns an object belonging to the class rpart. Thus, all of the func-
tions contained in the rpart package for summarizing, plotting and pruning trees, as well as
for making predictions, can also be applied to the objects obtained using rpartScore. These
objects can also be displayed, summarized and plotted using the functionalities of the partykit
package (Hothorn and Zeileis 2012). However, since objects created using rpartScore contain
as response a numeric variable whose values correspond to the scores {s1 < s2 < . . . < sJ}, the
default options in partykit functions interpret the response as a quantitative variable. This
may lead to summary measures and graphical representations of the dependent variable that
are not consistent with its original nature. In order to avoid this problem, suitable options
have to be chosen when using partykit functions.
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3.1. Illustrative example: Low birth weight data set

The use of the rpartScore function is illustrated by analyzing the lowbwt data set described
in Section 2.2. First, numerical scores have to be assigned to the categories of Category. The
following set of scores is considered: {0, 1, 2, 3}:

R> library("rpartScore")

R> lowbwt$Category.s <- ifelse(lowbwt$bwt <= 2500, 3,

+ ifelse(lowbwt$bwt <= 3000, 2, ifelse(lowbwt$bwt <= 3500, 1, 0)))

The following instructions are meant to allow reproducibility of the 10-fold cross-validation
results:

R> set.seed(16112011)

R> xgroups <- sample(rep(1:10, length = nrow(lowbwt)), nrow(lowbwt),

+ replace = FALSE)

As a first example, rpartScore is applied using the default options (iGG1(t) as the impurity
function and Rmc(T ) as the predictive performance measure):

R> T.abs.mc <- rpartScore(Category.s ~ age + lwt + race + smoke + ptl + ht +

+ ui + ftv, data = lowbwt, xval = xgroups)

The object T.abs.mc contains information that makes it possible to select the optimal tree
size as any object of the class rpart. This information can be displayed using the printcp

and plotcp functions:

R> plotcp(T.abs.mc)

R> printcp(T.abs.mc)

rpartScore(formula = Category.s ~ age + lwt + race + smoke +

ptl + ht + ui + ftv, data = lowbwt, xval = xgroups)

Variables actually used in tree construction:

[1] age lwt race smoke ui

Root node error: 197/189 = 1.0423

n= 189

CP nsplit rel error xerror xstd

1 0.096447 0 1.00000 1.06091 0.042135

2 0.060914 1 0.90355 1.06599 0.036605

3 0.030457 2 0.84264 0.98985 0.055722

4 0.027919 3 0.81218 1.00508 0.045854

5 0.016920 5 0.75635 0.97970 0.029642

6 0.015228 8 0.70558 0.96447 0.030457

7 0.010000 9 0.69036 0.94924 0.031333
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Figure 1: Relative cross-validated total misclassification costs for T.abs.mc and the 1-se rule
threshold.

According to the 1-se rule (Breiman et al. 1984), the optimal tree size is equal to 6 (see
Figure 1). The function prune makes it possible to extract the corresponding optimal tree,
as shown in Figure 2. For each node in the tree, units that satisfy the corresponding splitting
rule are assigned to the left child node, while units that do not satisfy that rule are assigned
to the right child node.

R> T.abs.mc.min.pos <- which.min(T.abs.mc$cptable[, 4])

R> th.1std.rule.mc <- T.abs.mc$cptable[T.abs.mc.min.pos, 4] +

+ T.abs.mc$cptable[T.abs.mc.min.pos, 5]

R> best.1std.rule.mc <- which.max(T.abs.mc$cptable[, 4] < th.1std.rule.mc)

R> best.1std.rule.mc.cp <- T.abs.mc$cptable[best.1std.rule.mc, 1]

R> T.abs.mc.opt <- prune(T.abs.mc, cp = best.1std.rule.mc.cp)

R> plot(T.abs.mc.opt, margin = 0.05)

R> text(T.abs.mc.opt, pretty = TRUE)

The following instructions make it possible to perform a similar analysis using Rmr(T ) instead
of Rmc(T ) as the predictive performance measure:

R> T.abs.mr <- rpartScore(Category.s ~ age + lwt + race + smoke +

+ ptl + ht + ui + ftv, data = lowbwt, prune = "mr", xval = xgroups)

R> T.abs.mr.min.pos <- which.min(T.abs.mr$cptable[, 4])

R> th.1std.rule.mr <- T.abs.mr$cptable[T.abs.mr.min.pos, 4] +

+ T.abs.mr$cptable[T.abs.mr.min.pos, 5]

R> best.1std.rule.mr <- which.max(T.abs.mr$cptable[, 4] < th.1std.rule.mr)
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|lwt< 109.5

age< 18.5 ui=Yes
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age< 19.5
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Figure 2: Optimal classification tree using iGG1(t) and Rmc(T ).

R> best.1std.rule.mr.cp <- T.abs.mr$cptable[best.1std.rule.mr, 1]

R> T.abs.mr.opt <- prune(T.abs.mr, cp = best.1std.rule.mr.cp)

R> par(mfrow = c(1, 2))

R> plotcp(T.abs.mr)

R> plot(T.abs.mr.opt, margin = 0.05)

R> text(T.abs.mr.opt, pretty = TRUE)

R> par(mfrow = c(1, 1))

As shown in Figure 3, the change in the predictive performance measure leads to the selection
of an optimal tree size equal to 4 (thus, to a simpler classification tree). The optimal splitting
rules of T.abs.mr.opt are present also in T.abs.mc.opt, and this is due to the use of the
same splitting function for building the two trees. Note that 3 out of 4 terminal nodes of
T.abs.mr.opt are characterized by the same predicted score.

The classification trees based on the impurity function iGG2(t) and pruned according to either
Rmc(T ) or Rmr(T ) are displayed in Figure 4 and in Figure 5 and can be obtained as follows:

R> T.quad.mc <- rpartScore(Category.s ~ age + lwt + race + smoke +

+ ptl + ht + ui + ftv, split = "quad", data = lowbwt, xval = xgroups)

R> T.quad.mc.min.pos <- which.min(T.quad.mc$cptable[, 4])

R> th.1std.rule.mc <- T.quad.mc$cptable[T.quad.mc.min.pos, 4] +

+ T.quad.mc$cptable[T.quad.mc.min.pos, 5]

R> best.1std.rule.mc <- which.max(T.quad.mc$cptable[, 4] < th.1std.rule.mc)

R> best.1std.rule.mc.cp <- T.quad.mc$cptable[best.1std.rule.mc, 1]

R> T.quad.mc.opt <- prune(T.quad.mc, cp = best.1std.rule.mc.cp)

R> par(mfrow = c(1, 2))

R> plotcp(T.quad.mc)

R> plot(T.quad.mc.opt, margin = 0.05)

R> text(T.quad.mc.opt, pretty = TRUE)

R> par(mfrow = c(1, 1))

R> T.quad.mr <- rpartScore(Category.s ~ age + lwt + race + smoke + ptl + ht +

+ ui + ftv, split = "quad", prune = "mr", data = lowbwt, xval = xgroups)
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Figure 3: Results using iGG1(t) and Rmr(T ). Left panel: Relative cross-validated total
number of misclassifications for T.abs.mr and the 1-se rule threshold. Right panel: Optimal
classification tree.
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Figure 5: Results using iGG2(t) and Rmr(T ). Left panel: Relative cross-validated total
number of misclassifications for T.quad.mr and the 1-se rule threshold. Right panel: Optimal
classification tree.

R> T.quad.mr.min.pos <- which.min(T.quad.mr$cptable[, 4])

R> th.1std.rule.mr <- T.quad.mr$cptable[T.quad.mr.min.pos, 4] +

+ T.quad.mr$cptable[T.quad.mr.min.pos, 5]

R> best.1std.rule.mr <- which.max(T.quad.mr$cptable[, 4] < th.1std.rule.mr)

R> best.1std.rule.mr.cp <- T.quad.mr$cptable[best.1std.rule.mr, 1]

R> T.quad.mr.opt <- prune(T.quad.mr, cp = best.1std.rule.mr.cp)

R> par(mfrow = c(1, 2))

R> plotcp(T.quad.mr)

R> plot(T.quad.mr.opt, margin = 0.05)

R> text(T.quad.mr.opt,pretty = TRUE)

R> par(mfrow = c(1, 1))

In this example, the choice of the splitting function has little effect on the tree topology.
The two trees T.abs.mc.opt and T.quad.mc.opt, pruned using Rmc(T ), differ only in the
thresholds used in one splitting rule: age<18.5 and age<19.5, respectively (see Figure 2 and
Figure 4). Similarly, T.quad.mr.opt is identical to T.abs.mr.opt, except for the presence of
an additional splitting rule and, thus, an additional terminal node (see Figure 3 and Figure 5).

3.2. Choosing splitting function and predictive performance measure

The function rpartScore allows the user to obtain K = 4 different trees, according to the
choice of the splitting function and the predictive performance measure. In the illustrative
example shown in Section 3.1, the main differences among these trees can be attributed to
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the choice of the predictive performance measure. The identification of the best combination
of the splitting function and the predictive performance measure is beyond the scope of this
paper. However, by exploiting the theoretical framework described in Hothorn, Leisch, Zeileis,
and Hornik (2005), a simulation experiment with a dependent K = 4 samples design has been
performed on the lowbwt data set, to evaluate whether significant differences exist among the
K = 4 solutions.

Differences have been measured in terms of ordinal association between predicted and observed
scores, using Somers’ d measure (Agresti 2002). This is an asymmetric measure of association,
which in this experiment has been computed as the difference between the proportions of
concordant and discordant pairs of units with respect to the observed and predicted scores
out of those pairs that are untied with respect to the observed scores. The choice of this
measure instead of a symmetric one, such as Goodman and Kruskal’s γ or Kendall’s τb, is
due to the fact that these symmetric measures are not defined when the predicted score is
constant for all of the units (which happens whenever the optimal tree size is 1). The function
somersXY, which computes values of Somers’ d measure for a set of observed (argument x)
and predicted (argument y) scores, is implemented as follows:

R> somersXY <- function(x, y) {

+ out <- table(x, y)

+ r <- nrow(out)

+ c <- ncol(out)

+ p <- matrix(rep(0, r * c), ncol = c)

+ q <- matrix(rep(0, r * c), ncol = c)

+ somers.num <- 0

+ if(c > 1) {

+ for(i in 2:r) {

+ for(j in 2:c) {

+ p[i, j] <- sum(out[i, j] * sum(out[1:(i - 1), 1:(j - 1)]))

+ }

+ }

+ for(i in 2:r) {

+ for(j in 1:(c - 1)) {

+ q[i, j] <- sum(out[i, j] * sum(out[1:(i - 1), (j + 1):c]))

+ }

+ }

+ somers.num <- (sum(p) - sum(q))

+ }

+ n <- length(x)

+ out.x <- table(x)

+ somers.den <- 0.5 * (n * (n - 1) - sum(out.x * (out.x - 1)))

+ somers.num / somers.den

+ }

A training set (containing 131 of the 189 units in the lowbwt data set, selected using a
stratified random scheme) has been employed to grow and prune four classification trees (one
for each combination of the splitting function and the predictive performance measure) using
10-fold cross-validation and the 1-se rule. These trees have been used to predict the scores of
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the remaining 58 units (the test set). The value of Somers’ d has been computed for the test
set for each of the four trees. To account for sampling variability, B = 100 different pairs of
training and test sets have been considered, resulting in a total of 400 values for Somers’ d.
Stratified sampling has been performed using the R package sampling (Tillé and Matei 2012).

R> set.seed(16112011)

R> b.rep <- 100

R> splitting <- c("abs", "quad")

R> pruning <- c("mc", "mr")

R> sp.comb <- expand.grid(splitting = splitting, pruning = pruning)

R> sp.comb.rep <- sp.comb[rep(1:4, b.rep), ]

R> somers.B <- c()

R> library("sampling")

R> size.cat <- as.numeric(trunc(table(lowbwt$Category.s) * 0.7))

R> size.cat.ord <- size.cat[order(0:3, decreasing = TRUE)]

R> n.train <- sum(size.cat)

R> B <- nrow(sp.comb.rep)

R> for(b in 1:B) {

+ if (b %% 4 == 1) train <- strata(lowbwt, "Category.s",

+ size = size.cat.ord, method = "srswor")

+ lowbwt.train <- lowbwt[c(train$ID_unit), ]

+ lowbwt.test <- lowbwt[-c(train$ID_unit), ]

+ if (b %% 4 == 1) xgroups <- sample(rep(1:10,

+ length = nrow(lowbwt.train)), nrow(lowbwt.train), replace = FALSE)

+ fit <- rpartScore(Category.s ~ age + lwt + race + smoke + ptl + ht +

+ ui + ftv, data = lowbwt.train,

+ split = as.character(sp.comb.rep[b, 1]),

+ prune = as.character(sp.comb.rep[b, 2]), xval = xgroups)

+ xerror.min.pos <- which.min(fit$cptable[, 4])

+ th.1std.rule <- fit$cptable[xerror.min.pos, 4] +

+ fit$cptable[xerror.min.pos, 5]

+ best.1std.rule <- which.max(fit$cptable[, 4] < th.1std.rule)

+ best.1std.rule.cp <- fit$cptable[best.1std.rule, 1]

+ fit.best <- prune(fit, cp = best.1std.rule.cp)

+ test.pred <- predict(fit.best, newdata = lowbwt.test)

+ somers.B[b] <- somersXY(lowbwt.test$Category, test.pred)

+ }

The global hypothesis of equality of the four solutions has been tested using Friedman’s
nonparametric rank test for repeated measurements in a randomized complete block design
(see, for example, Hollander and Wolfe 1999, p. 272), treating each of the 100 training sets
as a block. The test statistic and the corresponding asymptotic p value have been computed
using the friedman_test function in the coin package (Hothorn, Hornik, van de Wiel, and
Zeileis 2008).

R> settings <- factor(rep(1:4, b.rep),

+ labels = c("abs+mc", "quad+mc", "abs+mr", "quad+mr"))
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R> dataset <- factor(rep(1:b.rep, each = 4))

R> results <- data.frame(somers.B)

R> results$settings <- settings

R> results$dataset <- dataset

R> library("coin")

R> friedman_test(somers.B ~ settings | dataset, data = results)

Asymptotic Friedman Test

data: somers.B by

settings (abs+mc, quad+mc, abs+mr, quad+mr)

stratified by dataset

chi-squared = 4.7503, df = 3, p-value = 0.191

According to these results, the global equality hypothesis is not rejected at a 0.05 significance
level (or lower than 0.05). Thus, for the lowbwt data set, there are not significant differences
in the results obtained using different combinations of the splitting function and the predictive
performance measure.

4. Concluding remarks

This paper has introduced rpartScore, a new R package that makes it possible to build
classification trees for ordinal responses within the general CART framework. This package
has been implemented to overcome some unexpected results that may arise using the package
rpartOrdinal. Classification trees for ordinal responses can also be obtained through the party
package, which recursively partitions data using a two-step procedure, based on association
tests between the response and each predictor (Hothorn, Hornik, and Zeileis 2006).

Because the function rpartScore allows the user to obtain four different trees, it may be useful
to establish general guidelines for choosing the best combination of the splitting function and
the predictive performance measure to be used. This remains an open issue that will be
addressed in our future research. The study described in Section 3.2 will be extended to other
artificial and real data sets, with particular attention to situations in which the categories
of the response are unbalanced. Furthermore, along with Somers’s d, other measures able to
evaluate the global quality of a tree will be considered.

Finally, it is worth noting that this package could also be employed to build regression trees,
when the response Y is a quantitative variable, by treating the observed values of Y as scores.
In this case, it is advisable to choose Rmc(T ) as the predictive performance measure. It may
be interesting to evaluate the properties of the resulting regression trees, with a particular
focus on their robustness in the presence of outlying values for Y , to establish whether they
could represent a valid alternative to standard least squares regression trees and to regression
trees based on M -estimators (Galimberti, Pillati, and Soffritti 2007, 2011).
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