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Abstract. The study aims at estimating flow duration curves
(FDC) at ungauged sites in France and quantifying the as-
sociated uncertainties using a large dataset of 1080 FDCs.
The interpolation procedure focuses here on 15 percentiles
standardised by the mean annual flow, which is assumed to
be known at each site. In particular, this paper discusses the
impact of different catchment grouping procedures on the es-
timation of percentiles by regional regression models.

In a first step, five parsimonious FDC parametric models
are tested to approximate FDCs at gauged sites. The results
show that the model based on the expansion of Empirical Or-
thogonal Functions (EOF) outperforms the other tested mod-
els. In the EOF model, each FDC is interpreted as a linear
combination of regional amplitude functions with spatially
variable weighting factors corresponding to the parameters
of the model. In this approach, only one amplitude function
is required to obtain a satisfactory fit with most of the ob-
served curves. Thus, the considered model requires only two
parameters to be applicable at ungauged locations.

Secondly, homogeneous regions are derived according to
hydrological response, on the one hand, and geological, cli-
matic and topographic characteristics on the other hand. Hy-
drological similarity is assessed through two simple indica-
tors: the concavity index (IC) representing the shape of the
dimensionless FDC and the seasonality ratio (SR), which
is the ratio of summer and winter median flows. These
variables are used as homogeneity criteria in three different
methods for grouping catchments: (i) according to an a priori
classification of French Hydro-EcoRegions (HERs), (ii) by
applying regression tree clustering and (iii) by using neigh-
bourhoods obtained by canonical correlation analysis.
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Finally, considering all the data, and subsequently for each
group obtained through the tested grouping techniques, we
derive regression models between physiographic and/or cli-
matic variables and the two parameters of the EOF model.
Results on percentile estimation in cross validation show
that a significant benefit is obtained by defining homoge-
neous regions before developing regressions, particularly
when grouping methods make use of hydrogeological infor-
mation.

1 Introduction

A Flow Duration Curve (FDC) is the cumulative frequency
distribution of observed flows during a period of interest
(month, season, year, or entire period of record). It plots
specified flows against their corresponding probability of ex-
ceedance, which can be also interpreted as the percent of
time these specified values are equalled or exceeded. FDC
is a commonly used tool in water management applications,
since it displays the full range of flows, including low flows
and flood events (Vogel and Fennessey, 1995; Smakhtin,
2001). In the present study, long-term flow duration curves
are considered and derived from observed daily flows avail-
able at each site.

There have been numerous approaches proposed for esti-
mating FDC characteristics at ungauged locations, particu-
larly low-flow percentiles, using regression equations under
different climates (see Castellarin et al., 2007 for a recent
review). Despite their relevance for water management is-
sues, FDCs have until now received very little attention in
France. To our knowledge, the present study is the first at-
tempt to develop regional flow duration models in this coun-
try. Previous studies have concentrated on mapping mean
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river flow statistics, including long-term mean annual and
monthly flows (Sauquet, 2006; Sauquet et al., 2008). A
straightforward method using a knowledge of the mean an-
nual flowQA is to consider percentiles expressed as propor-
tions of the long-term mean flow of the corresponding catch-
ment as variables of interest. In this way, regionalization al-
lows us to focus on the shape of the FDC. The dimensionless
FDC and the mean annual flowQA are estimated separately,
and their combination provides the expected percentiles.

This method, known as the “index flow approach”, has
been previously adopted by numerous authors (e.g. Holmes
et al., 2002; Singh et al., 2001; Castellarin et al., 2004;
Ganora et al., 2009) leading to various procedures to estimate
normalised percentiles. The simplest model assumes that the
shapes of the FDC at all sites within the study area show a
low variability. In practice, dimensionless FDCs from mon-
itored catchments within the same region are pooled and av-
eraged to create a representative shape. Since the hypothesis
of similarity may be too restrictive, an alternative approach is
chosen here: a reliable mathematical model with few param-
eters, which vary in space and which are estimated at gaug-
ing stations, is used to approximate the dimensionless FDC.
The main advantages of the adopted approach can be listed
as follows:

– The choice of the index value ensures percentiles that
are consistent with the mean annual runoff at ungauged
sites, i.e. estimates are expected to be in the range of
QA .

– The regionalization procedure involves only a small
number of parameters, which are easy to interpret on
a physical basis, therefore reducing the computational
effort.

– It enables a distinction to be made between the water-
balance related component (i.e.QA) and the character-
istic response of the catchment to climate (i.e. the pa-
rameters of the shape of the dimensionless FDC), and
thus leads to a better identification of the most impor-
tant sources of spatial variability of FDC properties.

The last step of the procedure involves establishing empirical
relationships between the variables of interest and the basin
descriptors. Indeed, this approach is by far the most often
employed in regionalisation. In practice, empirical formu-
las, usually established by multiple regression, may perform
poorly when applied at a large scale due to the high vari-
ability of hydrological behaviours, yielding estimates with
large errors. One way to improve the performance is to de-
lineate homogeneous subregions assuming that pooled river
catchments with similar hydrological, physiographical and
meteorological characteristics will behave in a similar man-
ner, before going on to develop separate regional regressions
(Smakhtin, 2001).

The identification of homogeneous regions – both in the-
ory and practice – has received much attention in hydrology,

but no general methodology has emerged. Hence, different
methods of defining homogeneous regions can be found in
the literature, leading to geographically fixed regions (either
spatially contiguous or not) or neighbourhoods around each
target site. In the neighbourhood approach, each site is as-
sumed to have its own homogeneous region formed by gaug-
ing stations. Singh et al. (2001) has provided examples of
contiguous regions defined for estimating regional FDCs in
the Himalayan region of India based on a pre-existing divi-
sion into hydrometeorological subregions, while Laaha and
Blöschl (2006a) have tested grouping according to season-
ality indices in Austria. Geographically non-contiguous re-
gions are usually identified using multivariate analysis such
as multiple regression, principal component analysis or clas-
sification procedures, all of which incorporate catchment
characteristics as well as flow statistics (e.g. Isik and Singh,
2008 in Turkey; Nathan and MacMahon, 1990 in Australia;
Laaha and Bl̈oschl, 2006a,b and Laaha et al., 2010 in Austria;
Vezza et al., 2010 in Italy and Ganora et al., 2009 in north-
western Italy and Switzerland). Two main neighbourhood
methods are commonly employed. Both use auxiliary vari-
ables to define a catchment descriptor space where distances
are computed: these methods make use of the region of in-
fluence, as developed by Burn (1990a,b) (e.g. Holmes et al.,
2002 in the UK) and canonical correlation analysis (CCA)
promoted by Ouarda et al. (2001).

Since the a priori efficiency of grouping methods for re-
gionalizing FDC characteristics is unknown, we here assess
the relative performance of three approaches: (i) contiguous
regions obtained manually from expertise; (ii) regions ob-
tained through Classification and Regression Trees algorithm
(CART) and (iii) neighbourhoods based on canonical corre-
lation analysis (CCA). The choice of these methods was mo-
tivated (i) by a pre-existing partitioning established in France
to tackle some basic questions related to the European Water
Framework directive, (ii) by published studies demonstrating
the potential of CART models for the regionalisation of river
flow regimes in France (Snelder et al., 2009) and (iii) by the
wish to test a well-established method formerly developed to
address issues in flood estimation.

In this paper, we successively investigate two main issues,
the first being related to the choice of the most suitable para-
metric model to fit observed dimensionless FDCs at gauged
sites, while the second is linked to the way of defining ho-
mogeneous regions irrespective of the interpolation proce-
dure used to estimate FDC characteristics. Regarding the
last point, this study is in line with previous benchmark stud-
ies on the performance of different grouping techniques for
estimating low-flow percentiles (Laaha and Blöschl, 2006b;
Vezza et al., 2010). The present paper has the following
structure. The study area and data used are first presented
in Sect. 2. Then, Sect. 3 compares the various mathemati-
cal models tested to approximate FDCs at gauged sites. Fol-
lowing selection of the best performing parametric model,
Sect. 4 introduces the variable used for testing homogeneity.
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Three approaches for delineating homogeneous regions are
applied and compared in Sect. 5. The results of the fitted
regional regressions are discussed in Sect. 6, and some con-
clusions are drawn concerning future lines of research in the
final section.

2 Study area and data

Climate and geology are quite diverse in France (ap-
prox. area: 550 000 km2), with a maritime temperate influ-
ence in the north and west, and a Mediterranean climate with
hot and dry summers prevailing in the south. In these latter
regions, rainfall and evaporation drive the seasonal variations
of runoff, in contrast to mountainous areas (high-altitude
rivers in the Pyrenees and the Alps) where snowmelt-fed
regimes are observed. From a geological standpoint, France
is composed broadly of two major types of terrain: an imper-
meable Hercynian crystalline substratum principally located
in the north-west (Brittany) as well as in certain mountain-
ous areas (Alps, Pyrenees and Massif Central), and more or
less permeable sedimentary rocks (limestone and clay) in flat
plain areas (e.g. in the northern part of France, where large
aquifers sustain the water flow).

The dataset studied here (Fig. 1) consists of 1080 gauging
stations from among more than 3500 stations available in the
French database HYDRO (http://www.hydro.eaufrance.fr/).
The following selection criteria are imposed to select these
gauging stations: (i) no significant human influence on flow,
(ii) high quality of measurements, (iii) record covering at
least 18 years during the period 1970–2008. To guide the
selection process, we gather together and interpret qualita-
tive metadata concerning the degree of human influence on
the river flow regime and the uncertainty in discharge obser-
vations provided by the monitoring authorities. In addition,
we investigate the influence of major reservoirs and water di-
versions upstream from the gauging stations. Time-series are
also examined to detect abnormal temporal patterns or suspi-
cious values in the data.

The final selection corresponds to an average density of
about 2 gauging stations per 1000 km2. However, the distri-
bution of gauging stations across the country is not uniform,
with two notable areas of low station density, in northern
France and south Brittany. A total of 40 % of the selected
catchments have a record length of between 35 and 45 years
in most cases. Continuous observations during the period
1983–2000 are available for 90 % of all selected stations,
which ensures the temporal consistency of runoff statistics in
terms of climatic variability. The drainage areas vary in size
between 1.4 and 109 930 km2. Most of the gauged catch-
ments (44 %) have areas ranging from 100 to 500 km2. Less
than 9 % of the dataset, i.e. 92 of the 1030 gauging stations,
are subject to intermittency with a proportion of zero-flow
values higher than 1 %. Only five basins display more than
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Fig. 1. Study area and gauging stations identified by their respective centres of gravity (black 3 
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Fig. 1. Study area and gauging stations identified by their respective
centres of gravity (black squares).

20 % of zero-flow values and the maximal proportion of zero-
flow values equals 39 %.

The catchment characteristics selected for use in the de-
lineation of hydrological regions and in the development of
regression equations are derived from GIS, combining the
SAFRAN high-resolution atmospheric reanalysis (Quintana-
Segúı et al., 2008; Vidal et al., 2010), a 1-km grid digital ele-
vation model and the associated drainage pattern (Sauquet,
2006). 18 catchment characteristics are selected for their
possible influence on the shape of the standardised flow du-
ration curve. The variables considered in this study include
the drainage area (A), the coordinates of the centre of grav-
ity (XG, YG), the mean catchment slope (Slp), the three
quartiles of the hypsometric curve (Z25, Z50 andZ75), the
mean annual catchment air temperature (TA), the mean sum-
mer catchment potential evapotranspiration (ETsummer) us-
ing the formulation suggested by Oudin et al. (2005), the
mean annual catchment actual evapotranspiration (AETA)
according to Turc’s (1954) formulation, the mean annual
catchment precipitation (PA), the variance of the twelve
mean monthly catchment precipitation values (VarPA), the
mean seasonal precipitation (Pwinter, Pspring, Psummer and
Pautumn), the catchment yield (CY) defined by the ratio (PA-
AETA)/QA and the fraction of the drainage catchment un-
derlain by impermeable substratum (% Imp).

In addition, we use the Hydro-EcoRegion classification
(HER) developed by Wasson et al. (2002). The HER de-
lineation was performed by experts incorporating different
aspects of the geology, climate, physiography, drainage den-
sity, vegetation and topography of France. In particular,
the HER classification is the result of the interpretation in
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terms of erosion resistance, permeability, and hydrochem-
istry of a original geological map provided by the Bureau
de Recherches Ǵeologiques et Minìeres (B. R. G. M., 1996).
The HER was not specifically developed to discriminate
river flow regimes. In the absence of quantitative informa-
tion on hydrogeology, HERs are considered to be the most
reliable surrogate. This classification divides France into
22 main regions (HER1) that are subdivided into 112 subre-
gions (HER2). We also compute the dominant class in terms
of fraction of the drainage catchment underlain by each HER.

3 A parametric model for estimating the flow duration
curve

As suggested in Sect. 1, the identification of parsimonious
models for summarizing FDCs is advantageous in reducing
the computational effort involved in the regionalisation pro-
cedure (only few parameters are required at ungauged sites
to estimate dimensionless FDCs).

Numerous formulas have been suggested to approximate
FDCs (e.g. Quimpo et al., 1983; Franchini and Suppo, 1996;
Yu et al., 2002; Castellarin et al., 2004; Li et al., 2010). Four
parametric functions were tested on the dataset in this study,
using the exponential model (Eq. 1), the logarithm model
(Eq. 2), the power law model (Eq. 3) and the model suggested
by Franchini and Suppo (Eq. 4) . These models approximate
FDC at each sitei, i = 1, ...,N :

Qp(i) = b(i) ea(i)p (1)

Qp(i) = b(i) + a(i) ln (p) (2)

Qp(i) = b(i) pa(i) (3)

Qp(i) = b(i) + a(i) (1 − p)c(i) (4)

where Qp is the p-th dimensionless flow percentile and
a(i),b(i) andc(i) are the parameters at locationi.

In addition to these four analytical functions, we test a
different approach based on a discrete decomposition into
the Empirical Orthogonal Function expansion (Holmström,
1963). This mathematical technique, also known as the
Karhunen-Loeve transform, aims at extracting common pat-
terns that represent a large fraction of the variability con-
tained in a sample ofN time series. EOF analysis has already
been used for several purposes in hydrology (e.g. Hisdal and
Tveito, 1991; Braud and Obled, 1991; Krasovskaia et al.,
1999). In this application, EOF analysis expresses logarith-
mically transformed FDC as a linear combination of shape
functions:

ln
(
Qp(i)

)
= γ (i) +

M∑
m=1

αm(i) βm(p), i = 1, ..., N (5)

whereM is the number of flow percentiles describing the
FDCs, N is the number of gauging stations,βm is the m-
th shape function andαm is the weight associated with each

m-th shape function. By definitionβm, m = 1, ...,M areM

orthogonal functions with zero mean. This constraint leads
us to introduce an additional term:

γ (i) =

∑
ln

(
Qp(i)

)/
M (6)

αm, m = 1, ..., M and γ (i) are the parameters of the EOF
model depending on the location of the sitei and have to be
estimated at ungauged sites. Note that the raw data is log-
arithmically transformed to avoid negative unrealistic esti-
mates. The advantage in applying this method is that it keeps
most of the dataset variance in a limited number of shape
functions. It is thus possible to truncate the series expansion
to a subset ofL <M functions to limit the number of model
parameters without significant loss of information.

All models are calibrated using 15 dimensionless per-
centiles Qp, with respective exceedance probabilities of
p = 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98 and
99 % of the observed FDCs. Analytical model parameters
were optimised on observations by applying ordinary least-
square procedures on logarithmically transformed data to re-
duce the influence of the largest observed values. Prior to
optimization, dimensionless percentiles equal to zero are re-
placed by 0.001 to apply the logarithmic transformation.

The EOF decomposition applied on the dataset provides
fourteen shape functions characterized by different patterns.
The first shape function, contributing 97.2 % to the total vari-
ance, represents the most common pattern of French FDCs.
The other shape functions account for a negligible part of
the total variance and allow readjustment for very particu-
lar FDCs patterns. Considering these results, we keep only
the first shape function. Thus, the number of parameters
for the EOF model is limited to two: the mean of the log-
transformed dimensionless percentilesγ and the weight as-
sociated with the first shape functionα1.

The performance of each model is measured by the devia-
tions from the 15 dimensionless percentilesQp on which the
five models are fitted. Unrealistic values (negative) are also
replaced by 0.001. The boxplots in Fig. 2 give a graphical
overview of the performance of each model. The median and
the whiskers of the boxplots give a measure of the bias and
the accuracy of the model, respectively. In addition, Fig. 3
shows the fitted curves for four gauged catchments represen-
tative of the diversity of FDC patterns within the reference
dataset. The lower right panel displays results for one in-
termittent karstic basin, the Coulon River at Saint-Martin-
de-Castillon, located in southern France. This basin has a
proportion of zero-flows above 20 %. To allow calculations,
observedQp with exceedance probabilities ofp > 70 % have
been fixed to 0.001. Both logarithm and Franchini and Suppo
models provide negative values that are also replaced by de-
fault by 0.001. Note that we decide not to model the fre-
quency of zero-flows since highly intermittent rivers are not
dominant in the dataset (Sect. 2). The fitted curves obtained
for the Coulon River demonstrate the ability of the models
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Fig. 2. Empirical distribution of relative error for each percentile and each model. The 5 

boxplots are defined by the first quartile, the median and the third quartile. The whiskers 6 

extend to 1.5 of the interquartile range; open circles indicate outliers. 7 
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Fig. 2. Empirical distribution of relative error for each percentile and each model. The boxplots are defined by the first quartile, the median
and the third quartile. The whiskers extend to 1.5 of the interquartile range; open circles indicate outliers.

to predict values close to zero, and thus to approximate rea-
sonably well FDC at intermittent sites although the param-
eterizations are not specifically adapted to ephemeral rivers.
Results, considering all the dataset, show that:

– None of the models are perfect; in particular, none of the
models correctly reproduce low-flow percentiles (rela-
tive errors may exceed 150 % for some catchments). We
should note that this criterion is very selective for low
values (relative errors may reach large values when es-
timates are divided by a reference value close to zero).

– The biases appear most pronounced for the power-law
model (Eq. 3); low-flow percentiles as well as high-flow
percentiles tend to be largely overestimated.

– Comparable biases are found for the exponential model
(Eq. 1) and the Franchini and Suppo model (Eq. 4):
dimensionless percentilesQp are underestimated for
p ≤ 0.02 and for 0.7≤ p ≤ 0.9, whereasQp is overesti-
mated forp ≥ 0.98 and for 0.1≤ p ≤ 0.4.
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Fig. 3. Comparison of observed (open circles) and modelled flow duration curves (logarithm 2 

(red), exponential (blue), power law (green), Franchini and Suppo (grey), EOF (black)). 3 
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Fig. 3. Comparison of observed (open circles) and modelled flow duration curves (logarithm 2 

(red), exponential (blue), power law (green), Franchini and Suppo (grey), EOF (black)). 3 
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Fig. 3. Comparison of observed (open circles) and modelled flow duration curves (logarithm – red, exponential – blue, power law – green,
Franchini and Suppo – grey, EOF – black).

– The relative error range is smaller for the exponen-
tial model (Eq. 1) and the Franchini and Suppo model
(Eq. 4) as regards the two dimensionless percentiles
(p = 0.01, 0.02). However, there is a systematic nega-
tive bias in the estimation of high-flow dimensionless
percentiles.

– Results for the logarithm model (Eq. 2) follow a very
similar pattern to those for the EOF model (Eq. 5):
on average, they both overestimate dimensionless per-
centiles with 0.4≤ p ≤ 0.8, while high-flow and low-
flow percentiles are underestimated.

The degree of bias differs substantially depending on the fit-
ted model. The power law model (Eq. 3) yields the worst
estimates in terms of relative error (bias and spread are the
largest among the models). Comparable biases are found for
the exponential model (Eq. 1) and the Franchini and Suppo
model (Eq. 4). The EOF model (Eq. 5) appears to outperform
the other models tested despite poor performance for high-
flow percentiles. Although it performs nearly as well as the
logarithm model (Eq. 2), it also produces globally less biased
estimates (median relative errors are the closest to zero and
most of the interquartile ranges include zero for all the ex-
ceedance probabilities). The advantage of the EOF model is
probably an improved flexibility (the other models are insuf-
ficiently flexible to reproduce possible inflexion points in the
observations), since it results from an empirical modelling of
the FDC shapes. In view of these results, we finally adopt the
EOF model in the following steps. As an illustration, Fig. 4

displays the spatial pattern of the weight coefficientα1. The
right panel shows how the shape of the FDC approximated by
the EOF model evolves asα1 changes withγ fixed to zero.
High values ofα1 correspond to steep slopes of the FDC as
observed mainly along the Mediterranean and North-Atlantic
coasts, whereas small values correspond to flat slopes of the
FDC observed in northern France where the river flow regime
is governed by groundwater dynamics.

4 Variables for testing hydrological homogeneity

The application of grouping methods is conditioned by the
prior definition of variables to measure the degree of simi-
larity between catchment behaviour and the level of homo-
geneity within the region. The most obvious option would
be to derive groups based on the two variablesγ andα1 to be
interpolated. Nevertheless, this choice is not optimal since
these values result from an approximation of FDCs and, on
this basis any grouping procedure may misestimate the true
hydrological similarity between catchments. In our opinion
it is more relevant to handle parameters free from any ana-
lytical model. In addition, our choice is preferable for sub-
sequent applications of the obtained clusters. Several possi-
ble characteristics directly derived from river flow time series
are tested and two variables are finally selected based on their
correlation with the shape of the FDC and their interpretation
in terms of underlying hydrological processes.

The first variable is directly related to empirical proper-
ties observed on FDCs. The analysis of observed FDCs
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Fig. 5. Spatial distribution of concavity index IC observed at gauged catchments identified by the location of their centre of gravity.

suggests that the 10th percentile is a breakpoint delineating
two parts of the curve: gradient tends to be higher in the
upper branch (10 %< p < 99 %) than in the lower branch
(1 %< p < 10 %). On this basis, a concavity index is com-
puted as follows:

IC =
Q10 − Q99

Q1 − Q99
(7)

This descriptor is a measure of the contrast between low-
flow and high-flow regimes. Figure 5 presents a map of the
concavity index in France including the location of the se-
lected stations. The parameter takes values between 0 and 1.
Values close to 1 are observed where large aquifers (e.g. in
northern France) and storage in snow packs (e.g. in moun-
tainous areas) moderate the variability of daily flow. Values
close to 0 are related to catchments exposed to contrasted
climate (e.g. small catchments in the Mediterranean area
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experiencing hot and dry summers and intense short rainy
events in autumn) and also to catchments with no storage ca-
pacity (e.g. on impermeable substratum) resulting in severe
low-flow and quick runoff in response to rainfall events. It
is noteworthy that IC is well correlated with the parameters
of the analytical FDC models (Fig. 4), as well as with the
average base flow index (not shown here).

The second variable is the seasonality index. Laaha and
Blöschl (2006a) demonstrated the value of such a variable
for regionalizing the low-flow percentileQ95 in Austria. In-
deed, grouping based on seasonality indices performs bet-
ter than alternative groupings, since these indices allow a
good discrimination of low flow processes at the regional
scale when seasonal variability of runoff is high. Laaha
and Bl̈oschl (2006a) have used the ratio of the 95th per-
centile of the winter (December to March) FDC divided by
the 95th percentile of the summer (April to November) FDC.
Since our objective encompasses low flows, we use a Sea-
sonality Ratio (SR) based on the medians instead:

SR = Q50 (summer)/Q50 (winter) (8)

SR≈ 1 relates to catchments with nearly uniform flow
throughout the year, often when significant groundwater con-
tributions filter out seasonal climatic variability. Catch-
ments influenced by snowmelt-fed processes display SR< 1,
whereas this variable is above 1 for typical rainfall-fed catch-
ments with low flow in summer and high flow in winter. SR
is used here in conjunction with IC to improve identification
of the causes of low seasonal variability in runoff (snow or
groundwater storage). The variation in SR is governed by
geology and air temperature, and is consequently subject to
topographic influences in France.

The two variables IC and SR are the flow characteristics
used to delineate homogeneous groups. Methods and results
are presented in the next section.

5 Grouping methods

5.1 Methods

5.1.1 Visual grouping (VG)

Non-overlapping regions of approximately homogeneous
low-flow indices SR and IC are first visually identified. The
starting point is the division of France into 112 Hydro-
EcoRegions (HER2s) at the finest level of resolution (Wasson
et al., 2002). The HER2s introduced in Sect. 2 are pooled
based on hydrological expert knowledge.

The boundaries of HER2s are first superimposed to the
map displayed in Fig. 5. The most similar neighbouring
HER2s are progressively pooled by respecting contiguity,
while minimizing the dispersion within each cluster and
maximizing the dissimilarity between the clusters based on
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Fig. 6. Results of classification based on visual grouping (VG).

visual inspection. The pooling process is far from straight-
forward. In particular, due to the uneven density of the ref-
erence network, some of the HER2s contain too few stations
to relate them unequivocally to other neighbouring HER2s.
Hence, we use additional information such as rough descrip-
tions of hydrogeology to merge the ungauged HER2s with
one of the adjacent clusters. Lastly, inspection of SR val-
ues leads to a partitioning of the preliminary groups into
sub-groups of HER2s that are homogenous in terms of sea-
sonality. Figure 6 presents the division of France into the
18 different regions so obtained. Mixed regions may per-
sist due to the heterogeneity at the HER2 scale or due to
the merging of HER2s containing a small number of gauged
sites to large clusters. The identified regions include from
21 to 138 gauged sites and the average size is 57 (5 % of the
dataset).

5.1.2 Regression Tree (RT)

The aim of the analyses via tree-building algorithms is to pre-
dict dependent variables from a set of factor effects. Classi-
fication and Regression Tree approaches perform successive
binary splittings of a given dataset according to decision vari-
ables. One advantage of this method is its ability to handle
qualitative data (e.g. membership of a specific class). In gen-
eral, RT leads to a set of “if-then” logical conditions as a
basis for classification. The algorithm identifies the best pos-
sible predictors, starting from the most discriminating fac-
tors and proceeding to the less important controls, to divide
the clusters (nodes) into two successive parts. The optimal
choices are determined recursively by increasing the homo-
geneity within the two resulting clusters. For this application,
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we use the R software package rpart (Therneau and Atkin-
son, 2010). The decision variables are selected automati-
cally by the algorithm among the 19 catchment descriptors
(i.e. including the dominant HER2) to ensure an optimal ho-
mogeneity of IC chosen as the dependent variable, in the suc-
cessive clusters. The only constraint consists of including at
least 30 gauging stations in each region. At the end, 22 hy-
drological regions are identified with a mean number of 54
gauging stations per region (Fig. 7).

5.1.3 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (Hotelling, 1936) is a mul-
tivariate statistical method suited to study interrelations be-
tween two sets of variables. CCA has been previously pro-
posed by Ouarda et al. (2001) as a neighbourhood definition
method. CCA provides two sets of canonical variablesVj ,
j = 1, ...,k andWj , j = 1, ...,k obtained as follows:

– Vj , j = 1, ...,k are linear combinations ofk standardized
hydrological variablesXj , j = 1, ...,k.

– Wj , j = 1, ...,k are linear combinations ofr standard-
ized physiographic and climatic characteristics of the
catchmentYj , j = 1, ...,r(k < r).

– (Vj , Wj ) have maximum correlation.

– (Vi , Vj ), (Vi , Wj ) and (Wi , Wj ) (i 6= j ) are uncorrelated.

Theoretical developments show that the weight forVj

(resp. for Wj ) is the i-th eigenvector6−1
XX6XY 6−1

YY 6′

XY

(resp.6−1
YY 6′

XY 6−1
XX6XY ), where6XY is thek × r covari-

ance matrix and6′

XY the transpose of6XY . Canonical vari-
ablesVj , j = 1, ...,k andWj , j = 1, ...,k can be interpreted as
coordinates in hydrological and catchment-related physical
spaces, respectively. KnowingYj , j = 1, ...,r at ungauged lo-
cation, it is then possible to computeWj , j = 1, ...,k and, by
calculating correlation coefficients between canonical vari-
ables (Vi , Wj ), their possible proximity – according to Ma-
halanobis distance – to the gauged stations in the hydrolog-
ical space, which delineates the neighbourhood around each
site.

CCA has been formerly applied to estimate regional flood
frequency (e.g. Ouarda et al., 2001; Chokmani and Ouarda,
2004; Shu and Ouarda, 2007). The present article is prob-
ably one of the first published studies on an application of
CCA to predict FDCs at ungauged locations. Here, CCA
is carried out between the two indicators IC and SR and
all the catchment descriptors (except for dominant HER2,
since conventional CCA cannot handle qualitative variables).
The geological description is thus reduced to the percent-
age of impervious areas. All combinations of 2 to 18 vari-
ables among the 18 catchment characteristics, as detailed in
Sect. 2, are tested, leading us to adopt a combination of six
characteristics which yield the best correlations between the
first two pairs of canonical variables, i.e. (V1, W1) and (V2,
W2). These catchment characteristics relate to location (the
coordinates of the centre of gravity), climate (the mean an-
nual catchment actual evapotranspiration and the variance of
the twelve values of mean monthly catchment precipitation),
geology (fraction of the drainage catchment with imperme-
able substratum) and elevation (the third quartile of the hyp-
sometric curve).

In addition to the variables involved in CCA, we need to
define the boundaries of the neighbourhood to exclude gaug-
ing stations located too far from the target site. Ouarda et
al. (2001) suggested a distance threshold depending on a
given confidence level and on target site. Preliminary tests
show the difficulty of defining a satisfactory confidence level
for our dataset, in particular for highly atypical sites from
which too few similar sites can be selected to derive reli-
able regional regressions. Consequently, we choose here to
fix the number of stations contributing to a neighbourhood
to 50, i.e. the 50 closest gauging stations to the target site, to
allow objective comparisons with the results of the two other
grouping methods.

5.2 Results

Figures 6 and 7 present maps obtained by VG and RT, re-
spectively. One colour is assigned to each reach of the main
river network (i.e. all locations draining more than 50 km2).
It is not possible to display results from CCA on a map since
each site has its own neighbourhood. A comparison between
the two maps suggests that:
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Fig. 8. Empirical distributions of the two hydrological indicators for each cluster according to VG(a) and RT(b).

– The two procedures based on the same auxiliary vari-
ables lead to different divisions. The spatial pattern
provided by RT is patchier than the one obtained by
VG: small tributaries may belong to different classes
than the main stream they flow into. The relative influ-
ence of location on class allocation is naturally moder-
ate since mountainous basins in the Alps and Pyrenees
are pooled together. This result is in direct agreement
with the previous studies dedicated to flood quantile es-
timation (Merz and Bl̈oschl, 2005; Ouarda et al., 2001),
which concluded that geographical proximity does not
involve hydrological similarity.

– Common geographical groupings can be found e.g. in
the north of France (in brown in Fig. 6 and in cyan in
Fig. 7) and in the west of France (in orange in Fig. 6
and in dark blue in Fig. 7), supporting visually the fact
that the two divisions are not totally inconsistent.

To supplement this analysis, we examine the empirical dis-
tributions of both SR and IC per region (identified by a letter
on the x-axis). Figure 8 shows the box plots. There is no
clear difference between the spread of SR and IC. The ab-
sence of any significant improvement in terms of homogene-
ity within each group (regarding the interquartile provided
by the empirical distribution of each variable) or discrimina-
tion between groups (regarding the differences between the
medians of each groups for each variable) is due to the valu-
able information contained in the Hydro-EcoRegions. Both
methods lead to two very distinct regions with high values for
IC. To provide proof, the membership with respect to HER
clusters is chosen to define the first splitting variable (Fig. 9).

Regarding CCA, we compare our results with pub-
lished studies in terms of correlation structure. Figure 10

indicates moderate correlations between the canonical vari-
ables: r1 = 0.71 betweenW1 andV1 and r2 = 0.57 between
W2 andV2.

These values are lower than those obtained in regional
flood quantile estimation by Ouarda et al. (2001) in the
Province of Ontario (Canada) (r1 between 0.959 and 0.960
and r2 between 0.279 and 0.422), by Haché et al. (2002)
in the Saint-Maurice River region (Canada) (r1 = 0.986 et
r2 = 0.842) and by Ouarda et al. (2008) in Mexico (r1 = 0.966
andr2 = 0.247).

In these studies, an analysis of the weights associated with
the hydrological variablesX and the catchment descriptors
Y in the linear combinations shows that the high correlation
coefficientr1 depends mainly on the strong link between one
T -year flood quantile expressed in m3 s−1 and the drainage
areaA. This reflects the dependence of the productivity of
the basin in terms of volume to the catchment size. On the
contrary, the correlation coefficientr2 is very weak in most
cases, which illustrates the difficulty of identifying relevant
basin descriptors to explain the residual spatial variability.
As a result, the identification of neighbouring catchments us-
ing the Mahalanobis distance leads to cluster catchments of
equivalent size (the weight of the second pair of canonical
variable (=r2

2) is practically negligible in the calculation of
the distance) which is evidently the most important factor of
similarity between catchments (but probably not sufficient to
ensure homogeneity).

Here, two dimensionless variables (SR and IC) largely free
of the scale effect are considered as the set of hydrologi-
cal descriptorsX. Even if we can expect a small influence
due to the size of the catchment on the flatness of the FDC,
i.e. on IC, results show that the correlation between IC and
the drainage area in the dataset is very weak and that the
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introduction ofA among the basin descriptorsY does not
significantly improve the correlations between the two first
canonical variables. The highest correlation coefficient ob-
served is no more than 0.34 between SR and the first quartile
of the hypsometric curve. The context for the definition of
the first pair of canonical variable in our application is thus
close to the conditions met by Ouarda et al. (2001, 2008) and
Hach́e et al. (2002) concerning the second pair of canonical
variables. We fail to find any combination of catchment de-
scriptors that is strongly correlated with the two parameters
SR and IC. As a consequence, there is no longer any guaran-
teed correspondence between the hydrological space and the
catchment-related physical space defined by CCA.

In this study, we do not use statistical tests (e.g. ANOVA,
Laaha and Bl̈oschl, 2006a) on the clusters of gauged basins
to check homogeneity in terms of FDC characteristics. Con-
trary to other applications (e.g. in Regional Flood Frequency
Analysis, where a measure of regional heterogeneity is used
to validate the derivation of a representative pooled growth
curve), we consider that statistical homogeneity (i.e. low
variability around the mean values) is not a necessary con-
dition for ensuring accurate quantile estimates. Indeed, an
efficient interpolation technique (e.g. an empirical formula)
to predict the river flow characteristics of interest could com-
pensate for the effect of heterogeneity within the groups.
Here, clustering is a way of removing the large-scale vari-
ability due to dominant factors that are possibly difficult to
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Fig. 10. Correspondence between position of the gauged sites in
the hydrological space and the catchment descriptors space –V1
andV2 (resp.W1 andW2) are the two first canonical variables of
hydrological space (resp. of basin descriptors space).

identify (e.g. hydrogeological properties). Then, interpo-
lation procedures are aimed at modelling the unexplained
residual spatial variability at a finer scale whatever the homo-
geneity. The following section presents the proposed method
to develop regional regressions for each grouping procedure.
We compare the relative performances of each grouping tech-
nique in terms of prediction of dimensionless FDCs.
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6 Regional regression

6.1 Method

The homogeneous regions are now identified. Multiple re-
gressions can be developed that model the relations between
the EOF model parameters and catchment descriptors. We
also investigate both linear and power-form models:

α1 = λ0 +

∑
j∈[1;18]

λj Yj (9)

γ = λ′

0 +

∑
j∈[1;18]

λ′

j Yj (10)

α1 = λ0

∏
j∈[1;18]

Y
λj

j (11)

γ = λ′

0

∏
j∈[1;18]

Y
λ′

ji

j (12)

Parametersλj , j ∈ [0, 18] and λ′

j , j ∈ [0, 18] are fitted
to observations for each homogeneous group by the ordi-
nary least-squares method (using log-transformed data to fit
power-form models).

To define the most appropriate model for each region, we
test all possible combinations including one to four variables
among the 18 quantitative variables, selecting the 10 best re-
gression models in terms of the adjusted correlation coef-
ficient. These models are then refined/filtered using an in-
teractive procedure: (i) outliers using Cook’s distance are
first removed, (ii) the statistical properties of residuals (in-
cluding normality and homoscedasticity) are checked by vi-
sual inspection (only for the first two grouping methods) and
(iii) the robustness of each empirical formula is finally as-
sessed by leave-one-out cross-validation. The final models
are selected in view of the best value of the correlation coef-
ficient obtained by leave-one-out cross-validation.

6.2 Results

To assess the performance of the a priori region delineation,
we develop a global regression using the whole dataset of
available gauging stations and the procedure described in
Sect. 6.1. The descriptors involved are the elevation ex-
ceeded in 25 % of the catchment, the mean annual catchment
air temperature, the catchment yield and the fraction of the
drainage catchment with impermeable substratum. Note that
two of these descriptors reflect the importance of geologi-
cal properties in accounting for the variability of the EOF
model parameters on the large scale. An analysis of the
predictive models derived from the VG and RT approaches
demonstrates that:

– Linear and power-form models are found to be suitable
in a similar proportion of cases to fit the data.
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Fig. 11. Results for the global regression model.

– The performance of the regression as well as the set of
relevant descriptors may vary substantially from one re-
gion to another.R2 ranges from 0 to 0.86, with the me-
dian equal to 0.41. Most of the regressions involve four
relevant basin descriptors.

– The four most important explanatory variables regard-
ing α1 are the catchment yield CY, the drainage areaA,
the y-coordinate of the centre of gravity YG and the per-
centage ofA with impermeable substratum % Imp. On
average, all three variables are involved in three empir-
ical formulas out of ten. Their presence is partly jus-
tified: YG may reflect the progressive influence of the
Mediterranean climate on flow variability from North to
South; CY and % Imp characterize more or less directly
the effect of geology (all things considered, the higher
the fraction of impervious area, the sharper should be
the FDC); lastly, the relevance ofA can be justified if we
assume that the flatness of the FDC probably increases
with the size of the basin due to larger storage capacities
and combinations of different river flow patterns origi-
nating from upstream tributaries.

The global predictive performance of each method in cross-
validation (i.e. for all the sample set) is assessed using the
root mean square error (RMSE) and the correlation coeffi-
cient R2 of the regression between observed and predicted
values for the EOF model parameters,γ andα1. In addi-
tion to these statistics, scatter plots are drawn and visually
inspected to compare the spread of the predictions. These re-
sults are reported in the next four figures (Figs. 11 to 14). The
two upper panels plot estimated against observed values (γ
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Fig. 12. Results for the regional regression model applied to visual grouping. 3 
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Fig. 13. Results for the regional regression model applied to groups derived from RT. 7 
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Fig. 12. Results for the regional regression model applied to visual
grouping.

on the left andα1 on the right). Each point is related to one
gauging station. A one-to-one line (in red) is added to each
graph. Absolute relative errors are also computed for each of
the 15 selected dimensionless percentilesQp, and their em-
pirical statistical distributions are summarised by box plots
in the lower panel.

Figure 11 presents the cross validation results for the na-
tional regression. As expected, the scores are unsatisfactory:
dispersion is high around the one-to-one line (R2 < 0.20 for
both EOF model parameters) and the low-flow percentiles
are poorly predicted. By comparison, the next three figures
(Figs. 12 to 14) illustrate the performance of the three tested
grouping methods, suggesting that:

– The regional regression based on the three grouping ap-
proaches is better than global regressions as in Laaha
and Bl̈oschl (2006b) and in Vezza et al. (2010); results
for all models follow a similar pattern in terms of rela-
tive error on dimensionless percentiles: the highest er-
rors are obtained for the lowest values.

– VG performs nearly as well as RT, with comparableR2

and RMSE; however, we should note that estimations
by the VG approach are probably more heteroscedastic
(the spread of errors increases along withα1). RT yields
slightly more accurate quantile estimates than VG when
comparing the spread of the relative absolute errors,
i.e. the length of the whiskers of the box plots in Figs. 11
and 12.
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Fig. 13.Results for the regional regression model applied to groups
derived from RT.

– CCA only slightly outperforms global regression. This
finding is astonishing since CCA is known as a very ef-
ficient regional estimation method.

To understand the unexpected performance of CCA, addi-
tional computations are carried out to compare the expected
neighbourhoods – which are ideally defined in the hydrolog-
ical space – with those defined by CCA. We first verify that
the regional regressions obtained with the expected neigh-
bourhoods are suited to estimate the EOF model parameters.
The results show very satisfactory performances (R2 reaches
0.63 and 0.69 forγ and α1, respectively). This great dif-
ference between performances is probably due to the fact
that the neighbours selected by CCA are almost never those
expected: for the 50 closest gauged basins, there is only a
weak concordance between the theoretical neighbourhoods
and those predicted by CCA. This confirms that the corre-
lation between canonical variables is not strong enough to
guarantee the correspondence between the physiographical
and hydrological spaces and thus ensure the efficiency of
CCA. As mentioned above, this probably reflects the lack of
efficient catchment characteristics needed to strengthen the
link between the two spaces. Clearly, these characteristics
are explicitly linked to hydrogeology, since the application
of the two other methods differs only by the introduction of
such a variable (i.e. dominant HER2).
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Fig. 14. Results for the regional regression model applied to neigh-
bourhoods derived from CCA.

7 Conclusions

In this study, a regionalisation method is proposed to esti-
mate flow duration characteristics. The developed approach
assumes that the mean annual flowQa is known before esti-
mating FDCs at ungauged sites. Efforts are therefore concen-
trated on estimating the shape of the normalised FDC using
a large data set of FDCs derived from 1080 gauging stations.

First, a parametric and parcimonious model based on EOF
decomposition is developed to fit the observed shapes of the
FDC. A comparison with other models cited in the literature
demonstrates that the EOF model leads to the best estimates
at gauging stations. One reason could be that, conversely to
the empirical approach, analytical formulas are not flexible
enough to accommodate the full range of observed shapes.
Thus, it would be unrealistic to support the idea of a single
parametric model adapted to all hydrological conditions.

In a second step, different grouping techniques are com-
pared for identifying homogeneous regions and developing
separate regression models. Two of the grouping procedures,
VG and RT, which show comparable performances, demon-
strate a significant advantage for the development of regional
regressions. It is noteworthy that the RT classification pro-
cedure has the advantage of being automatic and objective,
whereas heterogeneity may persist in the VG groups, which
could explain its lower ranking (2nd). Nevertheless, a large
part of the variance remains unexplained. Further research
could be devoted to the interpolation of the residuals. We
could apply techniques such as adapted kriging (Sauquet,
2006), Top-Kriging (Skøien et al., 2006) or physiographical

space-based interpolation (Castiglioni et al., 2009) for this
purpose.

The third and last grouping method, CCA, performed
poorly, despite the great flexibility in neighbourhood selec-
tion, i.e. a neighbourhood is defined individually for each
target site. These unexpected poor scores for CCA may re-
sult from the difficulty of obtaining a sufficient correlation
link between hydrological and physiographical spaces in the
absence of relevant characteristics to describe the hydroge-
ological properties within the catchments. Indeed, for the
other two grouping techniques, hydrogeology is summarized
by a single qualitative variable, i.e. the class of the dominant
HER2, which provides sufficient information to increase ho-
mogeneity within regions and ensure more efficient regional
regressions. As a result, the application of CCA in prede-
fined regions with homogeneous hydrogeological properties
should be investigated to compare equitably CCA to other
methods on the same basis.
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A., Chokmani, K., Gingras, H., Quentin, E., Trujillo, E., and
Bobée, B.: Intercomparison of regional flood frequency estima-
tion methods at ungauged sites for a Mexican case study, J. Hy-
drol., 348(1–2), 40–58, 2008.

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., An-
ctil, F., and Loumagne, C.: Which potential evapotranspiration
input for a lumped rainfall-runoff model? Part 2 Towards a sim-
ple and efficient potential evapotranspiration model for rainfall-
runoff modelling, J. Hydrol., 303, 290–306, 2005.

Quimpo, R. G., Alejandrino, A. A., and McNally, T. A.: Region-
alised flow duration curves for Philippines, J. Water Resour. Pl.,
109(4), 320–330, 1983.
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