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EXISTENCE AND UNIQUENESS OF THE
SOLUTION OF THE COUPLED

CONDUCTION�RADIATION ENERGY TRANSFER
ON DIFFUSE�GRAY SURFACES

Naji Qatanani, Amjad Barham and Qasem Heeh

Abstract. This article gives very signi�cant and up�to�date analytical results on the conductive�
radiative heat transfer model containing two conducting and opaque materials which are in contact

by radiation through a transparent medium bounded by di¤use�gray surfaces. Some properties of

the radiative integral operator will be presented. The main emphasis of this work deals also with

the question of existence and uniqueness of weak solution for this problem. The existence of weak

solution will be proved by showing that our problem is pseudomonotone and coercive. The unique-

ness of the solution will be proved using an idea from the analysis of nonlinear heat conduction.

1 Introduction

Radiative heat exchange plays a signi�cant factor in modern technology. It has to be
taken into account in general always, when the temperature on a visible surface of
the system is high enough, or when other heat transfer mechanisms are not present
(like in vacuum, for example). A part from some simple cases such as a convex
radiating body with known irradiation from in�nity, we have to take into account
the radiative heat exchange between di¤erent parts of the surface of our system. This
leads to a non�local boundary condition on the radiating part of the boundary, (see
for example [13]. There, we have shown that the non�local boundary value problem
has a maximum principle. Hence, we have proved the existence of a weak solution
by assuming the existence of upper and lower solutions. This result is then applied
to prove the existence under some hypotheses that guarantee the existence of sub�
and supersolutions. In typical industrial applications involving heat radiation the
material surfaces are not perfectly black, which implies that part of the radiation
hitting the surface is re�ected. To simplify the treatment of the re�ections we
shall in this work assume that the surfaces are di¤use emitters and re�ectors (i.e.
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44 N. Qatanani, A. Barham and Q. Heeh

they emit and re�ect radiation uniformly to all directions). Another important
simpli�cation is the assumption that the surfaces are grey, that is, they emit and
absorb all wavelengths in the same manner. This means that we can forget the
wavelength spectrum (color) of the radiation and model only the total intensity of
the radiated waves. In our previous work on heat radiation, [1, 12, 15, 18, 17] the
heat radiation integral equation

q0(x) = "(x) � T 4(x) + (1� "(x))
Z
�
G(x; y) �(x; y) q0(y) d�y

has received very much attention. There, we have focused on both theoretical and
numerical aspects of this equation. Moreover, the problem of coupling radiation with
other heat modes (conduction and convection) was also studied by many authors.
Concerning the simplest nontrivial case of conductive body with nonconvex opaque
radiating surface, we are aware of the work [7, 20] and our previous work [16, 14].
They all studied some properties of the operators related to the radiative transfer and
showed the existence of a weak solution under some restrictions (no enclosed surfaces,
limitations to material properties). The basic case has been extended to cover several
conductive bodies and time dependent problems [10]. In the case of semitransparent
material the analysis has been carried out in one dimensional case with nonre�ecting
surfaces [7] and in two and three�dimensional with di¤usively re�ecting surfaces [14].
The main goal of the present work is to study and analyze a model that has not been
considered before. Such model is considered as an abstraction of contactless heat
transfer in protected environment arising for example in semiconductor applications.
This mathematical model describing heat transfer by conduction and radiation will
be illustrated in section 2. The main part of this work is to prove the existence
and the uniqueness of a weak solution for this problem. The existence of a solution
will be proved by showing that our problem is pseudo-monotone and coercive. The
uniqueness of the solution will be proved using an idea borrowed from the analysis of
nonlinear heat conduction. Throughout this work we will use the following notations:

(i) The duality between Lp� and L
q
� for a Borel measure � is de�ned as

h f; g i� =
Z

f g d� ; f 2 Lp� and g 2 Lq�

with 1 � p � 1 , p and q are conjugate exponents, that is, 1p +
1
q = 1:

(ii) An operator K is positive if f � 0 implies K f � 0. We denote the positive
and negative parts of a function by either sub�or superscript:

f+ = f+ = max ( f; 0 ) and f� = f� = min ( � f; 0 ) :
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Coupled conduction�radiation energy transfer 45

(iii) Let � be a subset of @ 
 where local heat transfer occurs and de�ne an operator
A through h Af; g i =

R

 ai j @i f @i g dx +

R
� � jf jp�1 f g ds; p

> 1 The coe¢ cients ai j and � � 0 are bounded. The domain of A is
H1(
)

T
Lp+1
 ( �) where the measure 
 is the surface measure of � weighed

with the coe¢ cient �. The null space of A is denoted by

N(A) = f f 2 H1(
)
\

Lp+1
 (�) : Af = 0 g :

(iv) f aij g is strictly elliptic, that is, there exists a constant C > 0 such that

h Af; f i � C

Z


jrf j2 dx for all f 2 H1(
) :

2 The mathematical model

Suppose that 
 = 
1
S

2 � R3 is a union of two disjoint, conductive and

opaque bodies surrounded by transparent and non�conductive medium. Moreover,
we suppose that the radiative surfaces �1 and �2 are di¤use and grey, that is, the
emissivity " of the surfaces does not depend on the wavelength of the radiation.
Under the above assumptions the boundary value problem reads as

�r : ( kr T ) = g in 
 (2.1)

� k @T
@n

= " � ( T 4 � T 40 ) on �1 (2.2)

� k @T
@n

= q = q0 � qi on �2 (2.3)

where k is the heat conductivity, n is the outward unit normal, g is the given heat
generation distribution and q is the radiative heat �ux, which is de�ned as the
di¤erence between the outgoing radiation q0 and the incoming radiation qi. " is
the emissivity coe¢ cient (0="<1), � is the Stefan�Boltzman constant which has
the value 5:669996 � 10�8 W=(m2K4); T is the absolute temperature and T0 is
the e¤ective external radiation temperature. The outgoing radiation q0 and the
incoming radiation qi are related by the relation

qi = K q0 on �2: (2.4)

Moreover, the outgoing radiation q0 on �2 is a combination of the emitted and
re�ected energy [19]. This yields

q0 = " � T 4 + (1� ") qi = " � T 4 + (1� ")K q0 (2.5)
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46 N. Qatanani, A. Barham and Q. Heeh

The integral operator K : L1(�2 )! L1(�2 ) appearing in (2.4) and (2.5) has the
explicit form

K q0(x) =

Z
�2

G(x; y) �(x; y) q0(y) d�2(y) ; x 2 �2 (2.6)

where G( x, y ) is called the view factor between x and y on �2 and is de�ned as
(see, e.g., [21]).

G(x; y) =
cos �x cos �y

� jx� yj2
(2.7)

This can also be written in Cartesian form as

G(x; y) =
[ n(y) : (x� y) ] : [ n(x) : (y � x) ]

� jx� yj4
(2.8)

The Boolean function � appearing in equation (2.6) takes account of the shadow
zones. This function, termed the obstructing (shadow) function, is de�ned as

� (x ; y ) =

8>><>>:
1 ; if a point x can be seen when

looking from point y

0 ; otherwise :

(2.9)

In the following we recall some properties of the operator K de�ned in (2.6) and the
corresponding kernel G(x, y) de�ned in (2.7)�(2.8). These properties have already
been investigated in [18, 17]. Therefore, we will state some of these results without
proof unless there is a new approach for the proof.

Lemma 1. Assume that �2 is the boundary of a convex open set 
, and assume
that �2 is a surface to which the divergence theorem can be applied. Let x 2 �2, and
let �2 be smooth in an open neighborhood of �2. Then G(x; y) � 0 for y 2 �2, andZ

�2

G(x; y) d�2(y) = 1 (2.10)

Proof. This lemma has been proved in [18], however, we will develop here a di¤erent
approach to prove it. In [18] we have shown that by choosing a local coordinate sys-
tem in the point x 2 �2 and using the assumption that �2 2 C1;� with � 2 [ 0 ; 1) is a
Ljapunow surface together with the Taylor expansion of y in the local coordinate sys-
tem, the kernel G(x; y) is a weakly singular kernel of type j x� y j�2(1��) and hence
is integrable. Then we used the Stoke�s theorem to show that

Z
�2

G(x; y) d�2(y)=1.

In this new approach the positivity of G(x; y) follows from the inequalities 0 � �x,
�y � �/2 which follow also from the convexity of the region 
. Let x 2 �2, and
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Coupled conduction�radiation energy transfer 47

let � be a su¢ ciently small number. Exclude an ��neighborhood of x from 
, and
denote the remaining set by 
�: 
� = 
 \f y : jy � xj � � g . Let �� denote the
boundary of 
�; and e�� denote the boundary of 
\
�, the ��neighborhood of x that
was excluded from 
. Then

Z
�2

G(x; y) d�2(y) =

Z
��

G(x; y) d�2(y) +

Z
e�� G(x; y) d�2(y) (2.11)

For a continuously di¤erentiable vector V (y) de�ned 
�, the divergence theorem
states Z

��

V (y) : ny d�2(y) = �
Z

�

r : V (y) d y

We apply this with

V (y) =
[ (y � x) : nx ]
� jx� yj4

(x� y)

A straightforward computation shows

r : V (y) = 0 ; y 2 
�

Hence Z
��

G(x; y) d�2(y) =

Z
��

V (y) : ny d�2(y) = 0

Decomposing e�� into two parts:
e�� = W�

[
H�

with
W� = f y 2 �2 j jy � xj � � g

H� = f y 2 
 j jy � xj = � g

ThenZ
e�� G(x; y) d�2(y) =

Z
W�

G(x; y) d�2(y) +

Z
H�

G(x; y) d�2(y) (2.12)

We examine separately each of these two right�hand integrals. Since G(x; y) � C
[18], then we can write

0 �
Z
W�

G(x; y) d�2(y) � C

Z
W�

d�2(y) = O(�2) (2.13)
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48 N. Qatanani, A. Barham and Q. Heeh

This integral goes to zero as � ! 0. For the last integral in (2.12), we can simplify
G(x, y) and estimate the integral. For y 2 H�, ny = x�y

jx�yj , ny :
x�y
jx�yj = 1 ThenZ

H�

G(x; y) d�2(y) =

Z
H�

nx : (y � x)
jx� yj3

d�2(y) =
1

C3

Z
H�

nx : (y � x) d�2(y)

(2.14)
The set H� is approximately a hemisphere of radius �. We change the variable of
integration in the later integral to r, with y � x = �r, so that jrj = 1. Further,
if we re�orient the set in such a manner that the unit normal nx becomes the unit
vector k directed along the positive r3 � axisin R3. Then the integral in (2.14)
becomes Z

H�

G(x; y) d�2(y) =

Z
H1

k : r d�r + o (�)

with H1 = f r 2 R3 j r3> 0g. This yieldsZ
H�

G(x; y) d�2(y) = 1 + o (�) (2.15)

Combining this with (2.11)�(2.13) and taking limits � ! 0, we obtain (2.10).

Lemma 2. Assume �2 is a surface of the class C1;� with � 2 [ 0; 1). Then for any
arbitrary point x 2 �2 , Z

�2

G(x; y) �(x; y) d�2(y) = 1

where G(x , y) and �(x , y) are given in (2.8) and (2.9) respectively.

Proof. See [17].

Lemma 3. For the integral kernel G(x , y), it holds that G(x; y) � 0. The mapping

K : Lp(�2)! LP (�2)

is compact for 1 � p � 1. Furthermore,

(a) K is symmetric and positive

(b) K1 = 1 and kKk = 1 in Lp for 1 � p � 1

(c) The eigenvalue 1 of K is simple.

(d) The spectral radius �(K) = 1.

Proof. See [18, 17].

Lemma 4. For 1 � p � 1 and0 � " < 1 the operator I � (1 � ") K from Lp(�2)
into itself is invertible and this inverse is positive.

Proof. See [18, 17].
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Coupled conduction�radiation energy transfer 49

3 Variational form

In order to write (2.1)�(2.5) into variational form, we �rst assume that T 2 L5(�2),
and solving for q0 from equation (2.5), we have

q = (I �K) q0 = (I �K) ( I � (1� ") K )�1 " � T 4 = E � T 4 (3.1)

where E is a linear operator from Lp� to itself for 1 � p � 1. Next, we de�ne the
mapping A from H1(
)

T
L5
(�2) to ( H

1(
)
T
L5
(�2) )

� by

hAT;  i =
Z


k r T : r dx +

Z
�1

" � jT j3 T  ds (3.2)

Note that since the Stefan�Boltzmann law is physical only for non�negative value
of temperature we can replace T 4 by jT j3 T for mathematical convenience. Finally,
by setting d� = � ds, we can write our problem in variational form as

hAT;  i +
Z
�2

E jT j3 T  d� = h eg;  i ; 8 2 X = H1(
)
\

L5�
\

L5


(3.3)
where eg now contains also the data term on �1.

Lemma 5. The operator E is self�adjoint. As a mapping from L2� into itself, E is
positive semide�nite with respect to h : ; : i� inner product.

Proof. The self�adjointness of E is a consequence of (3.1). Let q 2 L2� be arbitrary
and denote by q the solution of ( I � (1� ") K ) q = " q. Then

h q ; E q i = h "�1 ( I � (1� ")K ) q ; (I �K) q i�

= h q ; (I �K) ("�1 � 1) (I �K) q i� + h q ; (I �K) q i� � 0

Lemma 6. The operator E can be written as E = I � F, where F is self�adjoint
positive and kFkp � 1. Moreover, every nonzero constant is an eigenfunction of F
with eigenvalue � = 1.

Proof. One can write

E = I � F = I � [ (1� ") + " K ( I � (1� ")K )�1 " ] (3.4)

where F is self�adjoint. The inverse term in F can be written as

( I � (1� ")K )�1 =
1X
i=0

( (1� ")K )i :
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50 N. Qatanani, A. Barham and Q. Heeh

As K is positive, all terms in the series are also positive. This implies that F is
positive. Since E is self�adjoint, then we can write

F = I � E = I � " ( I �K (1� ") )�1 (I �K) (3.5)

Next, we show that kF k1 � 1 and kF k1 � 1. From Riesz�Thorin theorem
[3, 4] it follows that kF kp � 1 for 1 < p < 8 . Since F is positive we have
F ( 1� q/ kqk1 ) � 0, for all q 2 L1� ; q 6= 0. Hence

kF k1 = sup
kF qk
kqk � kF (1)k1 = k1k1 = 1

as F (a) = a for every constant a. Moreover, self�adjointness implies that

kF k1 = kF �k1 = kF k1 � 1:

4 Existence results

In order to prove that the original boundary value problem has a solution, it is
su¢ cient to prove that our problem is pseudo-monotone and coercive [23, 24]. To
do that we introduce next the operator R : X ! X� de�ned by

hR T; i = hA T; i +
Z
�2

E jT j3 T  d� = h eg;  i ;
8 2 X = H1(
)

T
L5�
T
L5


(4.1)

Note that the space X is re�exive by the arguments given in [3]. To show that R is
pseudo-monotone we consider the following Lemma:

Lemma 7. The operator R : X ! X� is pseudo-monotone, that is, Ti *T weakly
in X and li �m

i!1
h R Ti ; Ti � T i � 0, imply that

hR T ; T �  i � lim
i!1

h R Ti ; Ti �  i 8 2 X (4.2)

Proof. One can write E = M�S whereM is a multiplication operator (M T ) (x) =

m (x) T (x) with 0 � m0 � m(x) � 1 and S is a compact operator in L5/4� . Since
the operator

h eA T ;  i = hAT ;  i + hM jT j3 T ;  i� ; 8 2 X (4.3)

is monotone then it is su¢ cient to prove that the mapping T 7! S jT j3 T is pseudo�
monotone in X. Let Ti *T weakly in X . Then Ti * T weakly in L5� and Ti
* T weakly in H1(
). Thus Ti ! T strongly in L2� as the embedding H

1(
) �
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Coupled conduction�radiation energy transfer 51

L2( �2 ) is compact [2, 4]. Consequently, Ti ! T � � a : e : in �2 and hence
alsojTi j3 Ti ! jT j3 T � � a : e : Hence jTi j3 Ti * jTi j3 T weakly in L5/4� as the

sequence
n
jTi j3 Ti

o
is bounded in L5/4� . Finally the compactness of S implies

that

hS jT j3 T ; T� i � h S jTi j3 Ti ; Ti� i� = hS ( jT j3 T � jTi j3 Ti ) ; Ti� i�

� hS jT j3 T ; T � Ti i� ! 0 ; 8 2 X (4.4)

The coercivity in L5� can be proved through the following two Lemmas:

Lemma 8. For 1 � p � 1 and T 2 L5� , it holds kF kLp� � 1 and hE jT j3 T ; T i� �
0.

Proof. Let T 2 L1� be positive. ThenZ
F T d� =

Z
T F �1 d� �

Z
T d�

Since F is positive, this implies that kF kL1� � 1. On the other hand F
�
1�  / k kLp�

�
�

0 and thus kF kL1� � kF 1kL1� � 1. Using Riesz interpolation theorem [24] it
follows that kF kLp� � 1, 1 � p � 1. To show the second part of this Lemma we use
the H�older inequality hE jT j3 ; T i� � kT k5L5� � k F jT j3 T k

L
5/4
�

kT kL5� �
( 1� kF k ) kT k5L5� � 0 .

Lemma 9. For T 2 L5� , T =2 N(E) implies that hE jT j3 ; T i� > 0 .

Proof. Since F is positive, then we have

hE jT j3 ; T i� � hE T 4+ ; T+ i� + hE T 4� ; T� i� (4.5)

Under the assumption that T � 0 and kT kL5 = 1, we can use the Riesz interpolation
theorem [3, 4] to show that

h F T 4 ; T i�h T 4 ; T i� = kT k5L5� if T =2 N(E) (4.6)

where N(E)is the null space of E de�ned as N(E) = f T 2 L1� ; E T = 0 g. As
S is compact then it can be expressed as an integral operator [4, 6]. Moreover, one
can write FT as

F T = (1�m) T + S T = lim
"!0

Z
f"(x; y) T (y) d�y for f" � 0:
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Next, we let p = 5/4 , p1 = 6/5, p2 = 2 and let q ; q1 ; q2 be the corresponding
conjugate exponents. Further, let � = 9/10 so that 1

p = �
p1
+ 1��

p2
. Hence for

T;  � 0 we can writeZ
T (

Z
f"  d� ) d� =

Z
T (

Z
f �+(1��)"  

p ( �
p1
+ 1��

p2
)
d� ) d�

Using H�older inequality we get

�
Z

T (

Z
f"  

p
p1 d� )� (

Z
f" 

p
p2 d� )1�� d�

� (

Z
T

q
q1

Z
f"  

p
p1 d� d� )� (

Z
T

q
q2

Z
f"  

p
p2 d� d� )1��

let " ! 0 we obtain

h T ; F  i � h T
q
q1 ; F  

p
p1 i�� h T

q
q2 ; F  

p
p2 i1��� (4.7)

For  = T 4 (4.7) yields

h T ; F T 4 i� � h T 5/2 ; F T 5/2 i� (4.8)

Finally, assume h T 5/2 ; F T 5/2 i = kT k5L5� . Then, letting  = T 5/2 we have

0 = h  ;  � F  i� � k k2L2� � kF  kL2� k kL2� so that kF  k L2� =

k kL2� . Since

h  ; (I � F �F  ) i� = h  ;  i� � h F  ; F  i� = 0

we have

kE  k2L2� = h ; E�E  i� = h ; (I�F ) + (I�F �) � (I�F �F ) i� = 0

This implies that T 5/2 =  2 N(E) and hence T 2 N(E). Therefore, if T =2
N(E) then inequalities (4.6) and (4.8) are strict .

Theorem 10. There exists a constant C such that

hRT ; T i � C min
n
kT k2X ; kT kqX

o
8 T 2 X (4.9)

where q = max fp+ 1 ; 5 g.

Proof. To give a sketch of the proof we follow an idea from [9, 19] and some analysis of
the nonlinear heat conduction. Suppose that (4.9) is not true if kT kX � 1. Then

for each integer i there is eTi 2 X such that



 eTi


 � 1 and




 eTi



X
> i hR eTi ; eTi i.

The sequence eTi = eTi. 


 eTi



X
satis�es k TikX = 1 and
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k Tik2X � i C

� Z


jrTij

2 dx +



 eTi


p�1

X

Z
�1

j Tijp+1 ds +



 eTi


3

X
hE jTi j3 Ti ; Ti i�

�
� i C

� Z


jrTij2 dx +

Z
�1

j Tijp+1 ds + hE jTi j3 Ti ; Ti i�
�

(4.10)
Since fTig is bounded in X , there is a subsequence Ti and T 2 X such that Ti
converges weakly to T in the spaces L5� ; H

1(
) and Lp+1(�1). Moreover, Ti ! T
strongly in L2(
), as the embedding H1(
) � L2(
) is compact. Now (4.10)
implies that

kT kLp+1(�1) � lim
i!1

kTikLP+1(�1) = lim
i!0

kTikLp+1(�1) = 0:

Thus T j�1 = 0 and Radon�Riesz Theorem implies that Ti ! T strongly in
Lp+1(�1). Furthermore, (4.10) implies that

hE jTi j3 Ti ; Ti i� ! 0 (4.11)

Since Ti *T weakly in L5�, we have jTi j
3 Ti * jT j3 T weakly in L5/4� and hence

hS jTi j3 Ti ; Ti i� � hS jT j3 T ; T i� ! 0 (4.12)

as S is compact ( hence also S� is compact ). Ti *T weakly in L5� implies also

m1/5 T



L5�

� lim
i!1



m1/5 Ti



L5�
and hence from (4.11) and (4.12) we obtain

0 = lim
i!1

hE jTi j3 Ti ; Ti i� � lim
i!1

hM jTi j3 Ti ; Ti i� � lim
i!1

hS jTi j3 Ti ; Ti i�

� hM jT j3 T ; T � hS jT j3 T ; T i� = hE jT j3 T ; T i� (4.13)

Hence from Lemma 9 this implies that T 2 N(E). Furthermore, we have


m1/5 Ti




5
L5�

= hE jTi j3 Ti ; Ti i� � hS jTi j3 Ti ; Ti i� ! 0 (4.14)

Hence Ti ! 0 strongly in L5� . Since Ti ! 0 strongly also in H1(
) and Lp+1(�1),
we have Ti ! 0 strongly in X. This is a contradiction as k TikX = 1 for every i.
The proof for k T kX < 1 is similar. In fact we only need to replace the left�hand
side of (4.10) with k T kqX .
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5 Uniqueness of the solution

Theorem 11. Let T1 and T2 be solutions of (3.3), corresponding to the right hand
sides g1 ; g2 2 X�, and suppose that

h g1 � g2 ;  i � 0 ; 8 � 0 ;  2 X:

Then T1 � T2 L�a : e : in 
 ; 
�a : e : on �1 and ��a : e : in �2. Consequently,
the solution of (3.3) is unique.

Proof. Before sketching the main ingredients of the proof of the uniqueness of the
solution of (3.3) we need to introduce the following notations: For " > 0 we denote

0 = f x 2 �
 : T1(x) < T2(x) g 
" = f x 2 
0 : T2(x) � T1(x) >" g

 " = min f " ; ( T2 � T1 )+ g :

We will also denote the Lebesque measure in Rn by L . In order to prove this theorem
we follow the idea from [8]. We need to show that �(
0) + L(
0) + 
(
0) = 0.
We argue by contradiction and assume �rst that �(
0) > 0. First Theorem 10 imply
that

k "k2L5� � C f
Z


ai j @i  "@j " dx + (

Z
�1

� j " jp+1 ds )
2

p+1 + (

Z
�2

E  4" " d� )
2/5 g

The next step is to estimateZ


ai j @i  "@j " dx � " k "kL5� g � f"; (5.1)

and

(

Z
�1

� j " jp+1 ds )
2

p+1 + (

Z
�

E  4" " d� )

2/5 � " k "kL5� g" + h" (5.2)

where g" ! 0 as " ! 0 and h" � f" can be ignored when " is small enough.
Finally, these estimates give

�( 
") � "�1 (

Z

"

"5 d� )1/5 � "�1 k "kL5� � g" ! 0 (5.3)

This leads to a contradiction. Similarly we can prove that L(
0) = 
 (
0) = 0.
In the following we give a sketch for the derivation of (5.1)�(5.3). To derive the
estimate (5.1) we can writeZ



ai j @i  "@j " dx =

Z


ai j @i ( T2 � T1 ) @j " dx

= h g2 � g1 ;  " i �
Z
�1

� ( jT2 jp�1 T2 � jT1 jp�1 T1 )  " ds

+

Z
�2

E ( jT1 j3 T1 � jT2 j3 T2 )  " d� :

(5.4)
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The last term in (5.4) can be decomposed asZ
�2

E ( jT1 j3 T1 � jT2 j3 T2 )  " d� =

Z
�2n 
0

( jT1 j3 T1 � jT2 j3 T2 ) E�  " d�

+

Z

0n 
"

( jT1 j3 T1 � jT2 j3 T2 ) E�  " d�

+

Z

"

( jT1 j3 T1 � jT2 j3 T2 ) E�  " d� :

In fact the �rst term on the right�hand side is negative as jT1 j3 T1 � jT2 j3 T2 � 0
and E�  " = 0 � F �  " � 0 in �2n
0. To investigate the second term we
observe

jT2 j3 T2 � jT1 j3 T1 � ( T2 � T1 ) Q ( jT2 j ; jT1 j )

where Q(x; y) = x3 + x2 y + x y2 + y3. ThenZ

0n 
"

( jT1 j3 T1 � jT2 j3 T2 ) E�  " d� �
Z

0n 
"

( jT2 j3 T2 � jT1 j3 T1 ) F �  " d�

�
Z

0n 
"

( T2 � T1 ) Q ( jT2 j ; jT1 j ) F � " d�

� " k "kL5� g" ;

where
g" = k F ( Q ( jT2 j ; jT1 j ) kL5/4�

! 0 as " ! 0

Thus Z


ai j @i  "@j " dx � " k "kL5/4�

g" � f"

where

g" =

Z
�1

� ( jT2 jp�1 T2� jT1 jp�1 T1 )  " ds +
Z

"

( jT2 j3 T2� jT1 j3 T1 ) E� " d� :

To derive (5.2) we observe that E�  " = " � F �  " � " � F �" � 0 in 
" :
Moreover, we can show thatZ

�2

E  4" " d� �
Z

0n
"

 4" jE� " j d� +

Z

"

 4" E
�  " d�

� "5/2 k "k
5/2
L5�

g" + "4
Z

"

E�  " d�

where g" ! 0 as " ! 0 : Thus we conclude that

(

Z
�1

� j " jp+1 ds )
2

p+1 + (

Z
�2

(E  4")  " d� )
2/5 � " k "kL5� g" + h"
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where

h" = (

Z
�1

� j " jp+1 ds )
2

p+1 + ( "4
Z

"

E�  " d� )
2/5 :

Finally, we show that �(
0) + L(
0) + 
(
0) = 0. The steps above imply that

k "kL5� � " g"

when " is small enough. Hence

�(
") = "�1 (

Z

"

"5 d� )1/5 � "�1 k "kL5� � g" ! 0:

This is a contradiction, since also �(
") ! �(
0) > 0. Therefore �(
0) = 0.
From this fact it is straight forward to conclude L(
0) = 
(
0) = 0 .
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