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Rendiconti Sem. Mat. Univ. Pol. Torino

Vol. 77, 1 (2019), 45 – 82

L. Lussardi

THE PLATEAU PROBLEM IN THE

CALCULUS OF VARIATIONS

Abstract. This is a survey paper written for a course held for the Ph. D. program in Pure

and Applied Mathematics at Politecnico di Torino during autumn 2018. The course has been

dedicated to an overview of the main techniques for solving the Plateau problem, that is to

find a surface with minimal area that spans a given boundary curve in the space. This prob-

lem dates back to the physical experiments of Plateau who tried to understand the possible

configurations of soap films. From the mathematical point of view, the problem is very hard

and a lot of possible formulations are available: perhaps still today none of these answers is

the answer to the original formulation by Plateau. In this paper, first of all we will briefly

introduce the problem showing that, at least in the smooth case, if the first variation of the

area vanishes then the surface must have zero mean curvature. Then we will describe how the

classical solution by Douglas and Radó works, and we will pass to modern formulations of

the problem in the context of Geometric Measure Theory: sets of finite perimeter, currents,

and minimal sets.

1. Introduction

The original formulation of the problem might be the following one: given a closed

curve Γ in the space find a surface with minimal area spanning Γ. The Italian mathe-

matician J.-L. Lagrange (1736-1813) was the first, around the year 1760, that investi-

gated the problem, but today this problem is known as Plateau problem since the Bel-

gian physicist J. Plateau (1801-1833), in the middle of the 19th century, devised many

illustrative soap films experiments putting wires in a soap solution. The connection

Figure 1: A soap film created by the edges of a cube.
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46 L. Lussardi

between soap films and minimal surfaces was established by C.F. Gauss (1777-1855)

who worked, in 1830, on capillarity problems. Precisely, he found that at the equilib-

rium any liquid surface is a minimizer of the potential energy caused by the molecular

forces. For soap films such an energy is proportional to the area. In other words,

soap films can be viewed as physical models of stable minimal surfaces. Motivated

by experiments, Plateau conjectured that every closed curve (without double points)

spans a surface which minimizes the area, as every closed wire seemed to span some

soap film. The aim of this survey is to present some of the established solutions of the

Plateau problem. We will also take into account the generalization to higher dimension

and/or higher codimension: find a d-dimensional surface with minimal d-dimensional

volume spanning a pd�1q-dimensional boundary Γ. In this problem there are a lot of

ingredients that need to be clarified. For instance, we have to say what surface means,

that is at which level of generality we might work. Next, for a given notion of surface

what do we mean by d-dimensional volume? Again, what does it mean spanning a

given boundary? Depending on the meaning of these objects, the Plateau problem will

admit a suitable framework and, possibly, a solution. Here we are interested only in

the existence of solutions for the Plateau problem; we will not enter in details about

uniqueness.

2. Minimal surfaces equation and first examples

In this section we deal only with the smooth case. Precisely, we review some facts

of smooth differential geometry, we recall how to compute the area of a smooth sur-

face, and we prove that a smooth surface with minimal area has zero mean curvature

everywhere. The equation of minimal surfaces, namely

H� 0

(H stands for the mean curvature), is the Euler-Lagrange equation of the area func-

tional. Lagrange found this equation in 1762, but without explaining the geometrical

meaning; four years later the French mathematician J.-B. Meusnier (1754-1793) real-

ized that the Euler-Lagrange equation of the area functional says that the mean curva-

ture vanishes at any point.

2.1. A review on differential geometry

First of all, we review some basic facts of differential geometry for smooth surfaces;

for details we refer to Do Carmo [7]. For us, a d-dimensional surface in R
n (0  

d   n) is the image of a smooth map X : D Ñ R
n, where D is open in R

d , X is a

homoemorphism between D and XpDq, and ∇X has rank d. We will refer to local

coordinates as the coordinates u1, . . . ,ud P D. Usually, the geometric properties of

S � XpDq do not depend on X (think to the area of S), and for this reason X is often

called a parametrization of S. Since the rank of ∇X is d, the tangent vectors

B1X, . . . ,BdX
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are linearly independent everywhere, hence we can well define the tangent space to S

at p, denoted by TanpS, pq, as the d-dimensional vector space generated by

B1XpX�1ppqq, . . . ,BdXpX�1ppqq.
In order to define the mean curvature of S, we restrict to the case of hypersurfaces,

namely d � n�1. Fix p P S. First of all we have to choose a normal direction to S at

p. Let us take a unit vector nppq in such a way the matrix

rB1X|B2X| � � � |Bn�1X|ns
has positive determinant at p.

We denote by NorpS, pq the one dimensional vector space generated by nppq. Hence,

close to p the surface S is the graph of a smooth function

f : TanpS, pq Ñ NorpS, pq
Notice that a change of the direction of n gives a change of sign of f . Let us denote by

Ap the Hessian of f at p. The linear map

Ap : TanpS, pq Ñ TanpS, pq
is self-adjoint hence it admits n�1 real eigenvalues λ1, . . . ,λn�1 which are called prin-

cipal curvatures of S at p. We can define the mean curvature of S at p as

Hppq :� trAp � λ1 ��� ��λn�1.

There is an important relation between A and n: it turns out that

�dnppq � Ap.

For the special case n � 3 it is usual to take

n � B1X^B2X

|B1X^B2X| ,

where ^ is the standard vector product in R
3. It is possibile to prove that H has the

following expression in term of X:

H � eG�2F f �gE

EG�F2

where

E � |B1X|2, F � xB1X,B2Xy, G � |B2X|2,
and

e � xn,B2
11Xy, f � xn,B2

12Xy, g � xn,B2
22Xy

and x�, �y is the standard scalar product in R
3. In the theory of surfaces the coeffi-

cients E,F,G are usually known as coefficients of the first fundamental form, while the
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coefficients e, f ,g are usually known as coefficients of the second fundamental form.

We conclude this section with a remark on conformal coordinates. We say that X is

conformal if

E � G, F � 0.

In this case, it can be shown that the formula for H can be simplified, and it gives

(1) ∆X � 2EH,

where ∆X � p∆X1,∆X2,∆X3q. A question naturally arises: is it always true that any

surface can be reparametrized conformally? The answer is positive if X is smooth

enough (for instance Hölder continuous). Let us also mention that the existence of

conformal reparametrizations is much harder in higher dimension* and holds true under

restrictive assumptions on the surface.

2.2. Area formula

We pass now to the definition of area and the area formula. Let S be a d-dimensional

surface in R
n parametrized by X : D Ñ R

n. First, consider the simple case d � 2 and

n � 3. In this case we know that the area of S is given by

ApSq �
»

D

|B1X^B2X|du.

Notice now that if v,w P R
3 are linearly independent then

det

��� v1 v2 v3

w1 w2 w3


�� v1 w1

v2 w2

v3 w3

��� |v|2|w|2 �xv,wy2 � |v^w|2.

This means that

|B1X^B2X| �
b

detpp∇XqT ∇Xq.
Therefore, the area of S is also given by

ApSq �
»

D

b
detpp∇XqT ∇Xqdu.

This formula makes sense for general d and n and indeed it holds true:

ApXpDqq �
»

D

b
detpp∇XqT ∇Xqdu.

We need a further generalization of this formula. Precisely, if f : SÑR
n is smooth and

injective we have

(2) Ap f pSqq �
»

S

b
detppd f ppqqT d f ppqqds

*In higher dimension we say that X is conformal if |BiX| � |B jX| for any i, j and xBiX,B jXy � 0 for

any i � j.
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where d f ppq : TanpS, pq Ñ R
n is the differential of f as a map between surfaces, that

is

d f ppqpvq � ∇p f �Xqv, @v P TanpS, pq.

2.3. The first variation of the area

Using the area formula it is possibile to compute the first variation of the area. In other

words, given a smooth hypersurface S in R
n we want to find a formula for the quantity

d

dt
ApStq|t�0

where St is a one-parameter family of hypersurfaces in R
n such that S0 � S. The idea

is to choose a suitable family of variations of S. Precisely, we choose a smooth normal

vector field η to S (S is assumed to be orientable, which means that such η exists).

Then, if n is a choice of unit normal vector field on S, it is η � ϕn for some function

ϕ : S Ñ R. Let

St � tp� tηppq : p P Su.
Clearly St is a smooth surface only if t is small enough. Of course, the surface St can

be parametrized by ψt : S Ñ St given by

ψtppq � p� tηppq.

Since for t small ψt is smooth and injective we can apply area formula (2). We need to

compute dψt . Formally, we have

dψt � d p� tϕdn� tndϕ.

We are going to find the matrix which represents dψt . Choose an orthonormal basis

te1, . . . ,en�1u in TanpS, pq and take the orthonormal basis te1, . . . ,en�1,nu in R
n. With

respect to this choice of bases, the linear map dψt is represented by the n�pn� 1q
matrix

M �
�

Ipn�1q�pn�1q� tϕA

tp∇ϕqT



.

Hence we get

MT M � Ipn�1q�pn�1q� tϕpAT �Aq�Opt2q.
Remember that at first order detpI�Xq � 1� trX , from whichb

detpMT Mq �
b

1�2tϕtrA�Opt2q � 1� tϕH�Opt2q.

Applying formula (2) we deduce that

ApStq �
»

S

1� tϕH�Opt2qds � AreapSq� t

»
S

ϕHds�Opt2q.
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Finally, we get

(3)
d

dt
ApStq|t�0

��
»

S

ϕHds.

We can now deduce an important conclusion from (3). Indeed, by the arbitrariness

of ϕ we can say that if S minimizes the area among a class of surfaces for which

St produces admissible variations, then it must be H � 0 everywhere, which is the

equation of minimal surfaces. In literature actually minimal surface means simply

that H vanishes, or in other words S is a critical point of the area functional, and not

necessarily a minimizer.

2.4. Some examples

We discuss some explicit examples of minimal surfaces, that is surfaces satisfying

H � 0 everywhere. A first, obvious, example is the flat surface: this is also the unique

solution of the Plateau problem when the boundary curve is a planar curve. A less ob-

vious example is the catenoid. We ask for a minimal surface which is also a revolution

surface. If we let

Xpu,vq � pacoshvcosu,acoshvsinu,avq, pu,vq P p0,2πq�R, a ¡ 0,

we find the surface generated by rotating the catenary

y � acosh
� z

a

	
around the z-axis. This surface, called catenoid, is a minimal surface. In order to see

this, first notice that the coordinates u,v are conformal:

E � G � a2 cosh2 v, F � 0.

Hence, we can apply (1) and we obtain, by direct computation,

H � 2

a2 cosh2 v
∆X � 0.

It is possible to prove that the catenoid is the unique minimal surface of revolution

(see Do Carmo [7] for details). The catenoid appears also as a solution of the soap

film bounded by two coaxial rings sufficiently close (see figure 2). The catenoid as a

solution of the Plateau problem with boundary given by two coaxial rings is not the

unique solution. There always exists the so called Goldschmidt solution (existence

proved by K. Goldschmidt (1807-1851) in 1831) to this Plateau problem: it consists

in two plane discs with no intermediate surface. If the two rings are close enough

then the Goldschmidt solution is a local minimizer and the minimizing catenoid is the

absolute minimizer, while at some distance the catenoid becomes unstable and so if the

two rings are far enough the Goldschmidt solution is the absolute minimizer and the
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Figure 2: A catenoid as a soap film that spans two coaxial rings.

catenoid is a local minimizer. We conclude with another example of minimal surface

which is the elicoid. Let

Xpu,vq � pasinhvcosu,asinhvsinu,avq, pu,vq P p0,2πq�R, a ¡ 0.

This surface, called elicoid, is a minimal surface. Indeed the same considerations for

the catenoid hold in this case:

E � G � a2 cosh2 v, F � 0, H � 2

a2 cosh2 v
∆X � 0.

It is possible to prove that the elicoid is the unique (other than the plane) ruled minimal

surface (see Do Carmo [7] for details).

2.5. Further remarks on the equation H � 0

We can ask, in general, for solutions of the equation H � 0 with prescribed boundary

conditions. From the point of view of PDE’s this problem is very hard since the mini-

mal surfaces equation arises from a functional with linear growth in the derivative. In

order to see this, let us restrict to the case of 2-dimensional graphs. Let Ω � R
2 open

bounded with smooth boundary and let u : Ω Ñ R smooth enough. The area of the

graph of u is given by

Apuq �
»

Ω

b
1�|∇u|2 dx.

We can set the Plateau problem in this case simply asking for minimizers of Apuq when

u is fixed on BΩ. This minimization problem leads to the equation

div
∇ua

1�|∇u|2 � 0.
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Figure 3: The elicoid as a soap film.

The difficulty with this equation, which is again H � 0, is hidden in the growth of A:

indeed A has linear growth in the gradient, so that the natural Sobolev space where

one could considers the minimization problem for A is W 1,1pΩq. But this space is

not reflexive, hence the direct methods of the Calculus of Variations cannot be easily

applied. In order to treat functionals as A one has to move to the space of functions of

bounded variations, but in this case one has to consider also discontinuous solutions,

which are not physical. To overcome the difficulty an idea could be to modify the area

functional in such a way it becomes a functional with superlinear growth. This is the

key point of the Douglas-Radó approach, which we are going to describe in the next

Section.

3. Disc-type Plateau problem

During the 19th century, the Plateau problem for 2-dimensional surfaces was solved

for many special boundary curves Γ. A general treatment for that arrived in 1930

independently by J. Douglas (1897-1965) and T. Radó (1896-1965). A simplification

has been given independently by R. Courant (1888-1972) and L. Tonelli (1885-1946).

In this section we will sketch the approach of Courant and Tonelli following Dierkes

et al. [6]. The idea is to consider surfaces parametrized on a disc in the plane. In other

words

D � tpu,vq P R
2 : u2� v2   1u

and X : D Ñ R
3 is a smooth parametrization, while, roughly speaking, the trace of X

on BD is a smooth parametrization of a prescribed closed curve Γ in R
3.
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3.1. The parametric area functional: lack of compactness

If we wish to apply the direct method of the Calculus of Variations in order to solve the

disc-type Plateau problem, we have to consider the area functional

ApXq �
»

D

|B1X^B2X|du

for which we have to check semicontinuity and compactness with respect to a suit-

able topology on a suitable domain. The weak lower semicontinuity of A in some

Sobolev space is not a problem: it turns out that A is weakly lower semicontinuous in

W 1,ppD;R3q for any p¥ 2. The key point here is that |B1X^B2X| is a convex function

of the determinants of the 2�2 minors of ∇X (what is called polyconvex function), and

the lower semicontinuity follows from standard results (see Dacorogna [5]). Concern-

ing the compactness, unfortunately the set

tX : ApXq ¤ cu
is not bounded in any reasonable Sobolev norm. The main obstruction is the fact that

F is invariant under reparametrization, that is for any diffeomorphism φ : D Ñ D we

have

ApXq � ApX�φq.
Hence, taking suitable φ we can make any Sobolev norm of X�φ as large as we want.

On the other hand, this invariance may help: indeed, we could use it in order to restrict

the search of minimizer to a much smaller and better behaved class of surfaces.

3.2. The Dirichlet functional

Given two vectors v,w P R
3 we have

|v^w| ¤ |v| |w| ¤ |v|2�|w|2
2

.

If v,w are the two columns of the matrix M then the previous estimate reads as

|v^w| ¤ 1

2
|M|2.

Moreover, the equality holds true if and only if |v| � |w| and xv,wy � 0. Thanks to the

previous considerations we can say that

ApXq �
»

D

|B1X^B2X|du ¤ 1

2

»
D

|∇X|2 du

and the equality holds true if and only if X is conformal. This suggests that we could

deal with the Dirichlet functional instead of the area functional and this should be better

since the Dirichlet functional has superlinear growth in the gradient so that we can work

in Sobolev spaces where good compactness properties hold true.
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3.3. Setting of the disc-type Plateau problem

In this paragraph we state the rigorous formulation of the disc-type Plateau problem.

Fix X PW 1,2pD;R3q. We denote C � BD and

X|C : C Ñ R
3

denotes the trace of X on C; it is well known that X|C P L2pC;R3q. Now it comes the

main point: we have to say that X|C is a prescribed curve in R
3. Fix a Jordan curve Γ in

R
3 which is oriented by a fixed homeomorphism γ : C Ñ Γ. Let ϕ : C Ñ Γ. We say that

ϕ is weakly monotonic if ϕ is continuous, surjective, and there exists a non-decreasing

function τ : r0,2πs Ñ R such that τp2πq � τp0q�2π and

ϕpeiθq � γpeiτpθqq, @θ P r0,2πs.
Roughly speaking, ϕ is weakly monotonic if the image points ϕpwq traverse Γ in

a constant direction when w moves on C in a constant direction. Denoting by

E : r0,2πs Ñ C the map Epθq � eiθ, we can rewrite the weak monotonic condition

as E � τ � γ�1 �ϕ �E . As a consequence of this formula, one easily obtains that if

tϕhu is a sequence of weakly monotonic maps C Ñ Γ which converges uniformly to

ϕ : C Ñ Γ, then ϕ is weakly monotonic. We are therefore ready to define the right

domain. Let

C pΓq � tX PW 1,2pD;R3q : X|C : C Ñ Γ is weakly monotonicu.
The class C pΓq turns out to be invariant under conformal transformations: remember

that σ : D Ñ D is said to be conformal if |B1σ| � |B2σ| and xB1σ,B2σy � 0. The idea

should be minimize

DpXq � 1

2

»
D

|∇X|2 du

on C pΓq. Indeed, assume that we have found X0 P C pΓq such that X0 is conformal and

DpX0q � min
XPCpΓq

DpXq.

If X P C pΓq we can pass to a conformal Xc by means of a conformal transformations

of coordinates, and therefore

ApXq � ApXcq � DpXcq ¥ DpX0q � ApX0q.

3.4. Proof of the existence of X0

In this paragraph we prove that if Γ has finite length then the problem

min
XPCpΓq

DpXq

has a conformal solution X0 PC0pD;R3q which is harmonic on D.
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Step 1: Reduction to C�pΓq. In order to solve the minimization problem we

have to find a minimizing sequence pXhq whose boundary values tXh|Cu contains

a subsequence that converges uniformly on C. The selection of such a minimizing

sequence will be achieved by the following artifice: we fix some points on Γ and work

only with parametrizations which fix these points; since it is enough to fix just three

points, this is the so called three points condition. Precisely, fix three different points

w1,w2,w3 PC and three different points Q1,Q2,Q3 P Γ such that γpwkq � Qk. Let

C�pΓq :� tX P C pΓq : X|Cpwkq � Qk, k � 1,2,3u.

If we denote

epΓq :� inf
CpΓq

D, e�pΓq :� inf
C�pΓq

D

of course we have e�pΓq ¥ epΓq. On the other hand, if X P C pΓq then there exist

three different points ζ1,ζ2,ζ3 P C such that X|Cpζkq � Qk for k � 1,2,3. Let

us take a conformal map σ : D Ñ D such that σpwkq � ζk for k � 1,2,3. Then

X �σ P C�pΓq and since D is invariant under conformal transformation we also have

that DpX�σq � DpXq. This means that actually epΓq � e�pΓq.

Step 2: C�pΓq � H. In order to show that the problem infC�pΓqD is well posed

we have to ensure that C�pΓq is non-empty. It is possible to prove (see for instance

[6] pages 254-255) that if Γ has finite length (for instance if ϕ is Lipschitz continuous)

then C�pΓq �H; we also observe that this condition is only sufficient.

Step 3: The Courant-Lebesgue Lemma. Let X P C0pD;R3q X C1pD;R3q and

assume that DpXq ¤M for some M ¥ 0. Let z0 PC and r ¡ 0 small. Denote

Srpz0q � DXBrpz0q, Crpz0q � DXBBrpz0q.

Since z0 PC we can write

Crpz0q � tz0� reiθ : θ1prq ¤ θ¤ θ2prqu

for some θiprq with 0  θ2prq�θ1prq   π. Let

Zpr,θq � Xpz0� reiθq

defined in its natural domain. We have» r

0

1

ρ

» θ2pρq

θ1pρq
|Zθ|2 dθdρ¤

» r

0

» θ2pρq

θ1pρq

�
|Zρ|2� |Zθ|2

ρ2



ρdθdρ�

»
Srpz0q

|∇X|2 du

Fix δ P p0,1q small. The previous estimate gives

(4)

» ?
δ

δ

1

ρ

» θ2pρq

θ1pρq
|Zθ|2 dθdρ¤

»
Srpz0q

|∇X|2 du.
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Observe now that the set

J �
#

ρ P pδ,
?

δq :

» θ2pρq

θ1pρq
|Zθ|2 dθ

» ?
δ

δ

1

r
dr ¤

»
Srpz0q

|∇X|2 du

+

has positive 1-dimensional Lebesgue measure. Indeed, if L1pJq � 0 then we would

obtain » θ2pρq

θ1pρq
|Zθ|2 dθ ¡

»
Srpz0q

|∇X|2 du

�» ?
δ

δ

1

r
dr

��1{2

for L1-almost all ρ P J. Multiplying the previous inequality by 1
ρ and integrating on

pδ,
?

δq we would arrive to» ?
δ

δ

1

ρ

» θ2pρq

θ1pρq
|Zθ|2 dθdρ ¡

»
Srpz0q

|∇X|2 du,

which contradicts (4). Now, for any ρ P J and for any θ,θ1 with θ1pρq ¤ θ¤ θ1 ¤ θ2pρq
we obtain, by Hölder inequality,» θ1

θ
|Zθ|dθ ¤

�» θ1

θ
|Zθ|2 dθ

�1{2
|θ�θ1|1{2

¤
�»

Srpz0q
|∇X|2 du


1{2�» ?
δ

δ

1

r
dr

��1{2
|θ�θ1|1{2

�
�

2

logp1{δq
»

Srpz0q
|∇X|2 du


1{2
|θ�θ1|1{2

¤
�

4Mπ

logp1{δq

1{2

from which

|Zpρ,θ1q�Zpρ,θq| ¤
» θ1

θ
|Zθ|dθ ¤

�
4Mπ

logp1{δq

1{2

.

In other words, we have proved the Courant-Lebesgue Lemma: for any z0 PC and for

any δ P p0,1q there exists ρ P pδ,
?

δq such that

|Xpzq�Xpz1q| ¤
�

4Mπ

logp1{δq

1{2

where tz,z1u �CXBBρpz0q.

Step 4: A topological remark. Since Γ is the topological image of C, it is pos-

sible to prove that for any ε ¡ 0 there exists ℓpεq ¡ 0 such that any P,Q P Γ
with

0   |P�Q|   ℓpεq
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decompose Γ into two arcs Γ1pP,Qq and Γ2pP,Qq in such a way diamΓ1pP,Qq   ε.

Step 5: The key estimate on X|C . Let X P C�pΓq XC0pD;R3q XC1pD;R3q and

assume that DpXq ¤ M for some M ¥ 0. Let δ0 P p0,1q be such that

2
a

δ0   min
j�k

|w j �wk|.

If 0   ε   min j�k |Q j �Qk| we choose δ ¡ 0 such that�
4Mπ

log1{δ

1{2

  ℓpεq and δ   δ0.

We use now the Courant-Lebesgue Lemma: take an arbitrary point z0 PC and let ρ P
pδ,

?
δq be such that

|Xpzq�Xpz1q| ¤
�

4Mπ

log1{δ

1{2

where tz,z1u �CXBBρpz0q. Then |Xpzq�Xpz1q|   ℓpεq hence

diamΓ1pXpzq,Xpz1qq   ε.

Since ε   min j�k |Q j �Qk| the arc Γ1pXpzq,Xpz1qq contains at most one of the points

Q j. On the other hand XpCXBρpz0qq contains at most one of the points Q j because of

our choice of δ. Therefore it must be

XpCXBρpz0qq � Γ1pXpzq,Xpz1qq.
As a consequence, we get

|Xpwq�Xpw1q|   ε @w,w1 PCXBρpz0q
which implies the key estimate

(5) |Xpwq�Xpw1q|   ε @w,w1 PC such that |w�w1|   δ.

Step 6: Minimization by direct method of the Calculus of Variations. We are going to

solve minC�pΓq D. Let us take a minimizing sequence tXhu, that is DpXhq Ñ e�pΓq.
Let

Zh PC0pD;R3qXC2pD;R3qXW 1,2pD;R3q
be the unique solution to the problem"

∆Zh � 0 on D

Zh � Xh on C.

This solution minimizes D among all functions X PW 1,2pD;R3q such that

pX�Xhq|C � 0.
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As a consequence, we deduce that DpZhq ¤ DpXhq and since by construction Zh P
C�pΓq, we can say that tZhu is still a minimizing sequence. The advantage is that

Zh is harmonic in D for any h P N. Now, since Zh is minimizing for sure it holds

DpZhq ¤ M for some M ¡ 0. Applying (5) we can conclude that tZh|Cu is equicontin-

uous. Moreover, since ZhpCq � Γ the family tZh|Cu is also uniformly bounded. We

may therefore apply the Ascoli-Arzelà Theorem and then, up to a subsequence (not

relabeled), Zh|C Ñ ϕ uniformly on C, where ϕ : C Ñ Γ is weakly monotonic. Now the

conclusion follows using standard properties of harmonic functions. Since Zh|C Ñ ϕ

uniformly on BD, we have that Zh Ñ Z uniformly on D, where Z is continuous on D

and harmonic on D. Moreover, ∇Zh Ñ ∇Z uniformly on every D1 �� D, from which»
D1
|∇Zh|2 duÑ

»
D1
|∇Z|2 du.

Thus, for every D1 �� D we have

liminf
h

»
D

|∇Zh|2 du¥ liminf
h

»
D1
|∇Zh|2 du�

»
D1
|∇Z|2 du

which means that, when D1 Õ D,

e�pΓq � lim
h

DpZhq ¥ DpZq.

This concludes the proof of the fact that the problem

min
C�pΓq

D

has a solution X0 which is continuous on D and harmonic on D.

Step 7: Conformality of minimizers. Consider a vector field λ � pµ,νq P C1pR2;R2q.
For ε small take the family of maps τε : R

2 Ñ R
2 given by

τεpuq � u� ελpuq.
Choose some open set D0 with D��D0. Then it is easy to see that τε : D0 Ñ τεpD0q is

an orientation-preserving C1-diffeomorphism of D0 onto its image provided that |ε|  
ε0 for some ε0 ¡ 0. Take the inverse mapping σε, which is well defined on D�

ε � τεpDq.
Then

σεpwq � w� ελpwq�opεq, εÑ 0.

Consider now X PW 1,2pD;R3q and construct the family of functions

Xε : D�
ε Ñ R

3, Xε � X�σε.

The idea is to exploit the first inner variation of D in the direction of λ that is the

quantity defined by

δDpX,λq � d

dε |ε�0

1

2

»
D�ε
|∇Xε|2 dw.
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In order to compute the right-hand side first of all observe that»
D�ε

|∇Xε|2 dw �
»

D

|∇Xε � τε|2|det∇τε|du.

We have ∇Xεpwq � ∇Xpσεpwqq∇σεpwq, hence

∇Xεpτεpuqq � ∇Xpuq∇σεpτεpuqq.

It is easy to see that

∇σεpτεpuqq|ε�0
�
� B1µpuq B2νpuq

B1νpuq B2νvpuq



.

After a straightforward computation, we obtain

2δDpX,λq �
»

D

rp|B1X|2 �|B2X|2qpB1µ�B2νq�2xB1X,B2XypB2µ�B1νqsdu.

Fix now arbitrary functions ρ,σ PC8
c pDq and find h,k PC8pDq in such a way"

∆h � ρ on D

h � 0 on C
,

"
∆k � σ on D

k � 0 on C.

Therefore, taking µ � B1h�B2k and ν ��B2h�B1k we get

(6) 2δDpX,λq �
»

D

rp|B1X|2 �|B2X|2qρ�2xB1X,B2Xyσsdu.

Now we finally apply this formula. To do this, we choose X � X0. Since D and D�
ε

are diffeomorphic there is a conformal map kε : D Ñ D�
ε of D onto D�

ε , by virtue of

the Riemann Mapping Theorem†. Moreover, since BD�
ε is a Jordan curve, a classical

result grants that kε can be extended to a homeomorphism D Ñ D�
ε . It follows that

Yε � Xε � kε P C pΓq, so that

DpX0q ¤ DpYεq, |ε|   ε0.

But D is invariant under conformal transformation, therefore

DpYεq � 1

2

»
D�ε

|∇Xε|2 du,

†The Riemann Mapping Theorem states that if U is a non-empty simply connected open subset of C

which is not C, then there exists a biholomorphic mapping f : U ÑD. The idea of the proof can be explained

easily: given z0 PU , we ask for f which maps U to D with f pz0q � 0. Assume U bounded with smooth

boundary is smooth. Write f pzq � pz� z0qe
upzq�ivpzq, where u,v are to be determined. Since we require

| f | � 1 on BU , we need upzq � � log |z� z0| on BU . But u is the real part of a holomorphic function, hence

u is harmonic function. We then solve the Laplace equation with � log |z� z0| on BU , and therefore we find

v by means of Cauchy-Riemann conditions.
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which gives

DpX0q ¤ 1

2

»
D�ε

|∇Xε|2 du, |ε|   ε0.

As a consequence, it must be δDpX0,λq � 0 for any λ PC1pD;R3q. Using formula (6)

we conclude that

|B1X0|2 �|B2X0|2 � 0, xB1X0,B2X0y � 0

which means that X0 is conformal.

3.5. Some remarks

We conclude the section relative to the disc-type Plateau problem with some remarks.

First of all about uniqueness: for a given boundary curve Γ there may exist a lot of solu-

tions of different genus, orientable and non-orientable and so on. Concerning regular-

ity, it has been proven (see for instance Gulliver [10]) that disc-type minimal surfaces

cannot have singularities in the interior, so they are smooth surfaces. This does not

means that disc-type solutions are embedded, and they also may have self-intersection,

which is physically inconsistent. Hence, solutions of disc-type with self-intersection

for sure are not a good model for soap films. All of these phenomena are related in

Figure 4: A soap film which bounds a Jordan wire but it is not of disc-type: the disc-

type solution indeed should have a self-intersection.

some sense with the topology of the surface and the topology of the boundary curve.



The Plateau problem in the Calculus of Variations 61

If we wish to obtain more general existence results for soap films, we have to move to

a more general frameworks which do not care about topology in some sense. We are

going to describe these more general frameworks in the coming sections.

4. A review on measure theory

In this section we review the fundamental notions of measure theory that we need in

the rest of the paper. We refer to the book by Ambrosio-Fusco-Pallara [3] for details.

4.1. Measures

We recall that a measure space is a pair pX ,Eq where X �H and E is a σ-algebra on

X , that is:

(a) H,X P E ,

(b) XzE P E whenever E P E ,

(c) for any sequence pEhq in E we have

8¤
h�0

Eh P E .

A function µ : E Ñ r0,�8s is said to be a positive measure on pX ,Eq if

(a) µpHq � 0,

(b) for any sequence pEhq of pairwise disjoint elements of E it holds

µ

� 8¤
h�0

Eh

�
�

8̧

h�0

µpEhq (σ-additivity).

We denote by BpRnq the Borel σ-algebra on R
n, namely the smallest σ-algebra on R

n

containing all the open subsets of R
n; the elements of BpRnq are called Borel subsets

of R
n. A positive measure on pRn,BpRnqq is also called a Borel measure on R

n. A

positive measure µ is called finite if µpXq   �8. A function µ : E Ñ R
m, m P N with

m¥ 1, is said to be a vector-valued measure on pX ,Eq if the previous conditions (a)-(b)

hold true; in the case m � 1 we also say that µ is a real-valued measure on pX ,Eq. We

denote by |µ| the total variation of µ, defined by

|µ|pEq � sup

# 8̧

h�0

|µpEhq| : E �
8¤

h�0

Eh,Eh P E are pairwise disjoint

+
.

It is possibile to prove that |µ| is a positive finite measure on pX ,Eq. Let us mention

the polar decomposition of µ: there exists a unique function η P L1pX , |µ|qm such that



62 L. Lussardi

|η| � 1 and µ � η|µ|. Finally, if µh,µ are vector-valued measures on X we say that µh

converges to µ weakly�, and we write µh á� µ, if

lim
hÑ8

»
X

udµh �
»

X

udµ, @u PC0pXq

where C0pXq is the space of all continuous functions X Ñ R vanishing at infinity. An

important property is the lower semicontinuity of the total variation: if pµhq is a se-

quence of vector-valued measures on X and µh á� µ then

|µ|pXq ¤ liminf
h

|µh|pXq.

4.2. Hausdorff measures

We recall the notion of Hausdorff measure which plays the role of length or area for

subsets of higher dimensional spaces avoiding parametrization. Let E � R
n, let d P

r0,�8q and let δ¡ 0. We define

H d
δ pEq �

αd

2d
inf

# 8̧

h�0

pdiamEhqd : E �
8¤

h�0

Eh and diamEh ¤ δ

+
where αd is a suitable renormalization constant (we will more precise about that in a

moment). We also let

H dpEq � lim
δÑ0

H d
δ pEq � sup

δ¡0

H d
δ pEq

and we say that H dpEq is the d-dimensional Hausdorff measure of E. It turns out that

both H d
δ and H d are σ-subadditive on R

n, namely for any sequence pEhq

µ

� 8¤
h�0

Eh

�
¤

8̧

h�0

µpEhq, µ�H d
δ ,H d .

Nevertheless, it is not true that H d
δ is σ-additive on disjoint Borel subsets of R

n: actu-

ally, it is true that

H d
δ pEYFq �H d

δ pEq�H d
δ pFq

whenever distpE,Fq¡ δ. This is one of the reasons why we need to send δÑ 0. Indeed,

H d becomes σ-additive on disjoint Borel subsets of R
n, hence a Borel measure on R

n.

It is sufficient to bserve that

H dpEYFq �H dpEq�H dpFq
holds true whenever distpE,Fq ¡ 0, and the σ-additivity follows from the well known

Carathéodory’s Theorem. We also have that H d is invariant under isometries and scales

as a d-dimensional volume:

H dpλEq � λdH dpEq, @λ¥ 0.
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Moroever, if we choose αd as the volume of the unit ball in R
d , we have

Ld � H d � H d
δ

where Ld is the Lebesgue measure in R
d .

5. Minimization of the Hausdorff measure

In this section we briefly discuss the possibility to minimize directly the Hausdorff

measure on a suitable class of sets.

5.1. Minimization of H d

Since the notion of Hausdorff measure, a possible direct strategy could be to look at

the surface simply as a set and try to minimize H d on a suitable class. Let us see very

briefly how this approach could be investigated. Consider the class F of all non-empty

closed and connected subsets of a given compact domain D in R
n. On F take the

Hausdorff distance:

dHpE,Fq � inftr P r0,�8s : E � Fr, F � Eru, Er �
¤
xPE

Brpxq.

It turns out that pF ,dHq is a compact metric space. Moreover, if Γ is any subset of D

the subclass

FΓ � tE P F : Γ � Eu
is closed in F , hence compact too. If we are thinking to direct methods in the Calculus

of Variations compactness is fine, but what about lower semicontinuity of the Haus-

dorff measure with respect to the Hausdorff distance? By a well known theorem due to

Gołab it is possibile to prove that H 1 is lower semicontinuous on F . Putting together

the compactness result and the lower semicontinuity property it is possible to have the

existence of sets with minimal length: for every Γ�D there exists some connected and

closed set E which minimizes H 1 among all closed and connected sets which contain

Γ. Can we apply a similar argument for the Plateau problem? The first main difficulty

in stating the Plateau problem in this framework is represented by the boundary con-

dition: what does it mean that a set spans some curve Γ? A possibility could be the

following one: given a closed curve Γ in R
3 find a compact set E0 which minimizes

H 2 among all sets E such that Γ is homotopic to a constant in E. Another difficulty is

that the semicontinuity of H 1 depends heavily on the connectedness of the sets: if we

drop this assumption, lower semicontinuity fails. The real problem is that no topolog-

ical assumptions can ensure the semicontinuity of H 2 (or H d when d ¡ 1). However,

a direct approach to the Plateau problem in this direction has been investigated in the

’60s mainly by Reifenberg [14]: his proof of the existence result is rather complicated

and it involves algebraic topology so we will not enter in details. Nevertheless, we will

come back later on the set approach to Plateau problem.
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6. The approach via sets of finite perimeter

In this section we briefly describe the theory of sets of finite perimeter which dates back

to Caccioppoli but here we will define them by means of the distributional approach

which is due to De Giorgi; for details we refer to the book by Ambrosio-Fusco-Pallara

[3] or to the monograph by Maggi [13].

6.1. Sets of finite perimeter

In order to apply successfully the direct method of the Calculus of Variations we would

like to define a class F of sets in R
n such that:

(a) F is endowed with a topology with good compactness properties so that sets

with smooth boundaries belong to F and are dense;

(b) a notion of perimeter P pEq for any E P F such that the map E ÞÑ P pEq is lower

semicontinuous on F and P extends H n�1: precisely, P pEq �H n�1pBEq when-

ever BE is a smooth hypersurface in R
n;

(c) for every E P F there is a sequence Eh Ñ E such that BEh are smooth and

H n�1pBEhq Ñ P pEq.

It is evident that this program might work only for hypersurfaces, and this is one of

the main drawbacks of the approach via sets of finite perimeter. However, let us see

how it works. The key observation is that the boundary of a set is related with the

distributional derivative of its the characteristic function. For instance, if E � ra,bs
then

11E � δa �δb

which is a finite measure concentrated on ta,bu � BE. Moreover,

|11E |pRq � 2 � H 0pBEq.

Let us try to see how to extract the correct information from that, in a general situation.

Let E � R
n be a Borel set with finite Lebesgue measure. We say that E is a set of

finite perimeter if the distributional derivative of 1E is a vector-valued measure on

pRn,BpRnqq, where BpRnqq is the σ-algebra of all Borel subsets of R
n (namely the

smallest σ-algebra which contains all the open subsets of R
n). In other words, there

exist µ1, . . . ,µn real-valued measures such that»
E

Bϕ

Bxi

dx ��
»

ϕdµi, @ϕ PC8c pRnq, i � 1, . . . ,n.

Equivalently, we can require»
E

divφdx ��
»
xφ,ηyd|µ|, @φ PC8c pRn;Rnq,
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where µ � η|µ| is the polar decomposition of µ. The measure µ is therefore uniquely

determined and is denoted by D1E . We thus define

P pEq � |D1E |pRnq

which is called perimeter of E. We endow the class F of sets of finite perimeter with

the L1 distance, namely

dpE,Fq � }1E �1F}L1 .

Notice that dpE,Fq � LnpE∆Fq, where E∆F denotes the symmetric difference be-

tween E and F . With this choice it is immediate to see that E ÞÑ P pEq is lower semi-

continuous: indeed, observe that

P pEq � sup
φPC8c pRn;Rnq, |φ|¤1

»
E

divφdx

namely E ÞÑ P pEq is the supremum of a family of continuous functions. Let us see

why sets with smooth boundary enter in this definition. If E is a bounded open set in

R
n with sufficiently smooth boundary then for any φ PC8

c pRn;Rnq we have, applying

the Divergence Theorem, »
E

divφdx ��
»
BE

xφ,νEydH n�1

where νE is the inner unit normal of BE. This formula implies that E has finite perime-

ter and

D1E � νE �1BE �H n�1

that is P pEq �H n�1pBEq. It is also possible to show that for any set of finite perimeter

E there exists a sequence of smooth sets Eh such that Eh
L1Ñ E and P pEhq Ñ P pEq. We

finally notice that we have also the compactness property: if tEhu is a sequence of sets

of finite perimeter contained in a fixed ball and with uniformly bounded perimeter, then

up to a subsequence (not relabeled) Eh
L1Ñ E where E has finite perimeter. The proof

of the compactness property is not hard but is based on something we did not mention,

that is the theory of functions of bounded variation. We briefly sketch the argument. If

Ω is an open set in R
n a function u P L1pΩq is said to be a function of bounded variation

(the space of all these functions is denoted by BV pΩq) if the distributional derivative Du

is a vector-valued measure on R
n, namely there exist µ1, . . . ,µn real-valued measures

such that »
u
Bϕ

Bxi

dx ��
»

ϕdµi, @ϕ PC8
c pRnq, i � 1, . . . ,n.

Of course, E has finite perimeter if and only if 1E P BV pRnq. It turns out that on BV pΩq
we can put the weak� convergence

uh á� u ðñ
"

uh
L1Ñ u

Duh á� Du.
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Moreover, and this is the key remark, this convergence is really a weak� convergence in

the sense of functional analysis: it can be proved that BV pΩq is the dual of a separable

Banach space and the weak� convergence induced by such a duality is exactly what

we have defined as weak� convergence. Compactness therefore follows from Banach-

Alaoglu Theorem if we have ||uh||L1 ¤ c and |Duh|pΩq ¤ c. If we translate these two

conditions in terms of sets of finite perimeter we get the required compactness for sets

of finite perimeter. We conclude the section concerning general properties of sets of

finite perimeter with the structure theorem, which is due to De Giorgi and Federer.

Before stating it, we recall the notion of rectifiability. By means of the Hausdorff

measure it is possible to define a first very weak notion of surface. Let E be a Borel

subset of R
n. We say that E is d-rectifiable if

E � E0Y
8¤

h�1

Eh

where H dpE0q � 0 and Eh is contained in the image of a Lipschitz function fh : R
d Ñ

R
n. It is possibile to prove that the smoothness of the regular part of E can be strength-

ened: indeed, it turns out that E is d-rectifiable if and only if

E � E0Y
8¤

h�1

Eh

where H dpE0q � 0 and Eh is contained in a d-dimensional surface of class C1. The

class of d-rectifiable sets is the largest class for which it is still possible to give a notion

of tangent space: it turns out that there is a Borel map τ that associate at any E a

subspace of R
n of dimension d such that for every surface S of class C1 and dimension

d contained in E there holds

τppq � TanpS, pq, H d-a.e. p P SXE.

Moreover, such τ is unique up to a H d-null subset of E. We let

TanpE, pq � τppq

and we call it the approximate tangent space to E at p. This construction looks strange,

but we have to understand that the notion of tangent space to a rectifiable set is not de-

fined in any pointwise way, in particular it does not make sense to specify TanpE, pq at

some given point p (like to specify the value at x of some f P Lp). The key observation

is that if S1,S2 are two C1 surfaces with dimension d in R
n then TanpS1, pq�TanpS2, pq

for H d-a.e. x P S1 X S2. In order to clarify this, think that Si are locally the graph of

maps R
d Ñ R

n�d of class C1. Let f1, f2 : R
d Ñ R of class C1 and let

I � tx P R
d : f1pxq � f2pxq and d f1pxq � d f2pxqu.

Then I is a C1 surface with dimension d�1 (or it is empty).
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Now, we review the notion of density. For any t P r0,1s and for any E Borel set in

R
n,

Et �
"

x P R
n : lim

rÑ0

LnpE XBrpxqq
αnrn

� t

*
.

We say that x has density t if x P Et . We let

B�E � R
nzpE0YE1q.

The sets E0 and E1 could be considered as the measure theoretic exterior and interior

of E respectively. Thus B�E, called essential boundary of E, in the sense of measure

theory should be the “nice" part of BE. Indeed, if now E has finite perimeter set in R
n

then the De Giorgi structure Theorem says that:

(a) B�E is pn�1q-rectifiable and P pEq � H n�1pB�Eq   �8;

(b) H n�1-a.e. x P B�E has density 1{2;

(c) there exists a Borel map ν : B�E Ñ R
n such that if

Ex,r � 1

r
pE � xq

then for H n�1-a.e. x P B�E we have 1Ex,r Ñ 1Hνpxq in L1
locpRnq where

Hv � tx P R
n : xx,vy ¥ 0u;

(d) D1E � ν �1B�E �H n�1

The map ν is also called approximate inner normal to E. Statement (c) says that if we

blow up centering in a point on B�E we obtain an half plane orthogonal to νpxq.

6.2. Plateau problem in the context of sets of finite perimeter

We are ready to apply the theory of sets of finite perimeter to the Plateau problem. Fix

Ω a bounded open and convex subset of R
3 (we do in R

3 but more generally it can be

done in R
n). Let Γ be a curve on BΩ which is the boundary, relative to BΩ, of some

Σ0 � BΩ. We then construct a smooth, bounded and open set E0 � R
3zΩ such that

BE0XBΩ� Σ0. Of course we are assuming that BΩ,Γ,Σ0 are regular enough. The idea

is to look at minimizers of P pEq among all sets of finite perimeter such that EzΩ� E0.

In order to find a closed relation, we relax this last condition in L3ppEzΩq∆E0q � 0.

Then, applying the direct method of the Calculus of Variations we can say that if X

denotes the class of all sets of finite perimeter E such that L3ppEzΩq∆E0q � 0 then the

problem

min
EPX

P pEq
has a solution. One might wonder why we did not follow a simpler argument, that

is minimize the perimeter among all sets E contained in Ω such that B�E XBΩ �
Σ0. The reason is that the measure theoretic version H 2ppB�E XBΩq∆Σ0q � 0 is not

closed: behind this fact there is the lack of weak�-continuity of the trace operator of

BV functions.
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6.3. Concluding remarks on the approach via sets of finite perimeter

The approach presented in this section imposes strong constraints on the geometry of

the boundary curve Γ. Actually, the theory of sets of finite perimeter is not really suited

for the Plateau problem. A typical problem for which sets of finite perimeter are a good

framework is the following one: find the domain E in R
3 which minimizes

H 2pBEq�
»

E

f pxqdx� additional constraints (e.g. volume prescribed).

Concerning regularity, one would like to show that the minimizer found in the class

of sets of finite perimeter is smooth enough in order to say that is a soap film. How-

ever, regularity results are hard to prove and the theory of sets of finite perimeter hides

some of the deep technical difficulties inherent to the Plateau problem. In order to say

something, consider the simplest issue: the regularity of a set E in R
n which minimizes

the perimeter with respect to all possible compact supported perturbations. Then it is

possibile to show that BEzS is smooth, where S is a closed set of singularities, and:

(a) if 2 ¤ n ¤ 7 then S is empty (in fact, BE is analytical);

(b) if n � 8 then S has no accumulation points in E;

(c) if n ¥ 9 then H dpSq � 0 for every d ¡ n�8.

This regularity statement can be obtained combining a lot of results proved by Alm-

gren, Allard, Bombieri, De Giorgi, Federer, Schoen, Simon, and others, in the study of

area minimizing currents and stationary varifolds. An explicit example showing this

result is given by the cone

E � tpx,yq P R
4�R

4 : |x| � |y|u

which turns out to be a minimizer with respect to compactly supported perturbations:

this is the famous result conjectured by Simons and its minimality was finally proved

by Bombieri, De Giorgi and Giusti in 1969 (see [4]). In any case, if we want to remain

in R
3, using sets of finite perimeter we cannot hope to model soap films which develop

singularities.

7. The approach via currents

We want to describe another distributional approach to the Plateau problem, namely

the approach via currents. In some sense such an approach is the real distributional

approach since the space of currents is defined as the dual of a suitable space exactly as

in the classical theory of distributions. The notion of current goes back to De Rham and

related works on differential geometry, but soon this tool entered analysis in order to

have a suitable weak notion of surface, and this is due mainly to Federer and Fleming.

Here we only sketch the theory of currents; for details see Federer [9] or Simon [15].
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7.1. Covectors and simple vectors

First of all we need some elements of multilinear algebra. Let V be a real vector space

of dimension n; we denote by V� the dual of V . For any d P t0, . . . ,nu a d-covector on

V is simply a linear map α : V d Ñ R which is alternating, that is

αpvσp1q, . . . ,vσpdqq � sgnpσqαpv1, . . . ,vdq

whenever σ P Sd , the set of all permutations on t1, . . . ,du, and sgnpσq stands for the sign

of σ. The vector space of all d-covectors on V is denoted by ΛdpV q. By convention, we

let Λ0pV q �V . Moreover, Λ1pV q �V�. We introduce the so called exterior product in

ΛdpV q: for any α P ΛdpV q and β P Λd1pV q let α^β P Λd�d1pV q defined by means of

α^βpv1, . . . ,vd�d1q �
1

d!d1!

¸
σPSd�d1

αpvσp1q, . . . ,vσpdqqβpvσpd�1q, . . . ,vσpd�d1qq.

The meaning of the normalization constant will be explained later. By construction,

we have

β^α � p�1qdd1α^β, α^α � 0, α^pβ^ηq � pα^βq^η.

Now, we want to construct a basis in ΛdpV q. Let us fix a basis te1, . . . ,enu in V .

Consider the dual basis of te1, . . . ,enu denoted by tdx1, . . . ,dxnu where

dxi PV�, dxipe jq � δi
j �
"

1 if i � j

0 if i � j.

The dual basis tdx1, . . . ,dxnu is a basis in V� � Λ1pV q. For any i1, . . . , id P t1, . . . ,nu
we have dxi1 ^�� �^dxid P ΛdpV q. It is possible to show that

tdxi1 ^�� �^dxid : i j P t1, . . . ,nuu

is a basis in ΛdpV q. As a consequence of that and remembering the properties of ^,

any α P ΛdpV q can be written in a unique way as

α �
¸

i1 ��� id

αi1,...,id dxi1 ^�� �^dxid , αi1,...,id P R.

As a consequence,

dimΛdpV q �
�

n

d



.

We remark that

(7) dxi1 ^�� �^dxid pv1, . . . ,vdq � detA

where A is the d � d matrix defined by A jℓ � dxi jpvℓq, that is the matrix whose ℓ-th

column is given by the coordinates of vℓ with respect to the basis te1, . . . ,enu (in order
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to have (7) the normalization constant in the definition of ^ plays a role). Using d-

covectors we can define the simple d-vectors, which are the main objects we need.

Define, on V d , the equivalence relation � given by

pv1, . . . ,vdq � pv1
1, . . . ,v

1
dq ðñ αpv1, . . . ,vdq � αpv1

1, . . . ,v
1
dq @α P ΛdpV q.

We call simple d-vector any element rv1, . . . ,vds PV{ �; we also write 0 for r0, . . . ,0s.
It is possible to prove that

(a) pv1, . . . ,vdq � p0, . . . ,0q if and only if v1, . . . ,vd are linearly dependent;

(b) pv1, . . . ,vdq � pv1
1, . . . ,v

1
dq � p0, . . . ,0q then

spantv1, . . . ,vdu � spantv1
1, . . . ,v

1
du.

Moreover, the matrix of change of basis has determinant 1.

Assume now that V is endowed with a scalar product. For any v1, . . . ,vd P V , let

Rpv1, . . . ,vdq be the rectangle spanned by v1, . . . ,vd . Notice that if

pv1, . . . ,vdq � pv1
1, . . . ,v

1
dq � p0, . . . ,0q

then Rpv1, . . . ,vdq and Rpv1
1, . . . ,v

1
dq have the same d-dimensional volume: such a vol-

ume is denoted by |rv1, . . . ,vds| and is called norm‡ of the simple d-vector rv1, . . . ,vds.
Recall that if W is a vector space then an orientation of W is an equivalence class of

bases where two bases are equivalent if the change of basis matrix has positive deter-

minant. Therefore, if again

pv1, . . . ,vdq � pv1
1, . . . ,v

1
dq � p0, . . . ,0q

and W � spantv1, . . . ,vdu then pv1, . . . ,vdq and pv1
1, . . . ,v

1
dq induce on W the same ori-

entation. This means that the map

0 � rv1, . . . ,vds ÞÑ pW,orientation of W , |rv1, . . . ,vds|q
is well defined. It is also possible to show that such a map is one-to-one. This is the

main point: we have that unitary simple d-vectors are in one-to-one correspondence

with oriented d-planes in V , and this permits to have an algebra on the set of oriented

d-planes in V .

7.2. Orientation of d-dimensional surfaces

We want to define what an orientation on a surface is, since forms, as we will se later,

can be integrated only on oriented surfaces. Let S be a smooth d-dimensional surface

in R
n. An orientation on S is a continuous§ map that assigns to each x P S a unit simple

‡Be careful, this cannot be a norm in the sense of normed spaces since the space of all simple d-vectors

is not linear.
§Recall that the space of all simple d-vectors is a quotient of a topological space, hence topological too.
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d-vector τpxq � rv1pxq, . . . ,vdpxqs which spans TanpS,xq. If S has an orientation and

has a boundary BS �H, there is a canonical way to orient also BS if we have fixed an

orientation on S. Precisely, for any x P BS we can define the exterior normal ηpxq. Then,

if S is oriented by τ � rv1, . . . ,vds we endow BS with the orientation rv11, . . . ,v1d�1s such

that

rv1pxq, . . . ,vdpxqs � rηpxq,v11pxq, . . . ,v1d�1pxqs, @x P BS.

7.3. Differential forms

Using d-covectors we are able to introduce differential forms on surfaces. Let Ω be

an open set in R
n. A d-form on Ω is a “smooth map” ω that assigns to each x P Ω

an element ωpxq P ΛdpRnq. In order to clarify what smooth means, let us write ω in

coordinates. If we fix a basis te1, . . . ,enu in R
n then we can write

ωpxq �
¸

i1 ��� id

ωi1,...,id pxqdxi1 ^�� �^dxid , ωi1,...,id : Ω Ñ R.

It is now easy to set what smooth means: simply, ωi1,...,id P C8pΩq. It is easy to see

that this regularity does not depend on the choice of the basis te1, . . . ,enu. The most

important operation on forms is the exterior derivative:

dω �
¸

i1 ��� id

dωi1,...,id ^dxi1 ^�� �^dxid .

Here we are assuming that

dωi1,...,id �
ņ

i�1

Bωi1,...,id

Bxi

dxi.

It turns out that dω is a pd�1q-form.

7.4. Integration of forms on surfaces

We now move to the integration of forms on surfaces. The main application of the

theory of forms is the integration on (oriented) surfaces, and the Stokes formula, which

is the key point in order to understand why we need forms for the notion of current. If

S is a smooth and oriented d-dimensional surface in R
n, τ is an orientation on S, and ω

is a d-form on some open set containing S, we let»
S

ω �
»

S

xωpxq,τpxqydH dpxq

whenever the integral on the right hand-side exists. If now S is also compact and ω is a

pd�1q-form on some open set containing S we have the Stokes formula:»
BS

ω �
»

S

dω.

Of course, here we are assuming that BS has the canonical orientation induced by τ.
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7.5. Vectors

We construct the space of d-vectors on V exploiting the fact that V can be canonically

identified with its dual V�. Precisely, we let ΛdpV q :� ΛdpV�q. The duality between

V and V� extends to a duality between ΛdpV q and ΛdpV q. We in fact use the natu-

ral reflexivity of V , that is V�� is canonically isomorphic to V , which means that if

te1, . . . ,enu is a basis on V then te1, . . . ,enu is still a basis on V�� simply setting

eipdx jq � δ
j
i .

In particular, notice that the quantity v1^�� �^vd turns out to be well defined whenever

v1, . . . ,vd PV . Moreover, it is possibile to show that for any α P ΛdpV q there holds

αpv1 ^�� �^ vdq � αpv1, . . . ,vdq.

Remember now that pv1, . . . ,vdq � pv11, . . . ,v1dq if and only if αpv1, . . . ,vdq �
αpv11, . . . ,v1dq for any α P ΛdpV q, which the means that

αpv1 ^�� �^ vdq � αpv11 ^�� �^ v1dq, @α P ΛdpV q.

Thus, pv1, . . . ,vdq � pv11, . . . ,v1dq if and only if v1^�� �^vd � v11^�� �^v1d . In particular,

we can identify the simple d-vector rv1, . . . ,vds with v1^�� �^vd . If V is endowed with

a scalar product, we can define the mass norm on ΛdpV q as the convex envelope of the

restriction of the Euclidean norm to simple d-vectors, that is

}v} :� inf

#
Ņ

i�1

ti|vi| : vi is simple and

Ņ

i�1

ti � 1

+
.

Accordingly, we can define the comass norm of α P ΛdpV q as the dual norm of the

mass norm, that is

}α} :� supt|αpvq| : ||v|| ¤ 1u.

7.6. Currents and Plateau problem in terms of currents

We are ready to define currents. In order to explain the idea, take a d-dimensional

surface in R
n with boundary BS. If we mimic the definition of distribution we could

consider a linear and “continuous" functional of the type

ϕ ÞÑ
»

S

ϕdH d ,

where, as in the classical theory of distributions, ϕ belongs to a suitable set of test func-

tions. This seems to be the natural way to have a weak notion of surface. But there

is a huge drawback: what is the weak version of BS? It is essential to have that, since

we are dealing with the Plateau problem. There is no chance: if we decide to follow

the natural idea to integrate functions on S we are in trouble with the boundary. The
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right idea comes from the integration of forms: Stokes formula provides the distribu-

tional notion of BS. More precisely, if DdpRnq denotes the set of all d-forms on R
n

with compact support, then the dual space of DdpRnq is the space of all d-currents on

R
n, denoted by DdpRnq. Here, dual means topological dual, so in principle one has to

construct a topology on DdpRnq: this can be done as in the standard theory of distri-

butions. Accordingly with the dual nature of DdpRnq, if Th,T P DdpRnq we say that

Th Ñ T if

xTh,ωy Ñ xT,ωy, @ω P DdpRnq.
Of course, as for distributions, the main example of a current is given by a smooth

surface: if S is a smooth d-dimensional oriented surface in R
n we define TS P DdpRnq

by means of

xTS,ωy �
»

S

ω, @ω P DdpRnq.

The next crucial notion is the definition of boundary of a current, and this can be well

defined via the Stokes formula: if we look again at the smooth case, we notice that

Dd�1pRnq Q ω ÞÑ
»
BS

ω �
»

S

dω � xBTS,dωy

defines a pd � 1q current which is the canonical current associated to BS. Then, in

general if T P DdpRnq we define the boundary of T as BT P Dd�1pRnq given by

xBT,ωy � xT,dωy.

By construction, for oriented surfaces we have

BTS � TBS.

Thus, we have found a weak notion of surface and a corresponding weak notion of its

boundary. In order to at least state the Plateau problem it remains to understand what is

the "area" of a current. We introduce the mass of a current in this way: if T P DdpRnq
then we let

MpT q :� sup
||ωpxq||¤1

xT,ωy.

For oriented surfaces we have

MpTSq � H dpSq.

Before going on, let us see an illustrative example. In R
2 take the segment I � r0,1s�

t0u. We orient I using τpxq � e1 � p1,0q, for any x P I. We want to see what the

boundary of TI is. For any 0-form ω with compact support in R
2, that is a smooth

function with compact support in R
2, we have

xBTI ,ωy � xTI ,dωy �
»

I

x Bω

Bx1
dx1� Bω

Bx2
dx2,e1ydH 1 �

» 1

0

Bω

Bx1
dx1 � ωp1,0q�ωp0,0q
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that is

BTI � δp1,0q�δp0,0q.

Generalizing this example, if γ : r0,1s Ñ R
n is a smooth function and C � γpIq is ori-

ented by the tangent vector γ1 then

BTC � δγp1q�δγp0q.

We will come back to this example, now we go on with the theory. Of course, currents

of interests have finite mass. These currents can be characterized. Let µ be a real

measure on R
n and let τ P L1

µpRn;ΛdpRnqq. Define the current T � τµ as

xT,ωy �
»
xωpxq,τpxqydµ.

Then, one easily has MpT q¤ ||τ||1 � |τµ|pRnq, hence T has finite mass. Actually, this is

the general case. Indeed, if MpT q  �8 then T is a linear functional on DdpRnqwhich

is bounded with respect to the supremum norm on forms. Hence T can be extended by

density to a linear functional on the closure of DdpRnq with respect to the supremum

norm, which is the space of all continuous d-form vanishing at infinity. Therefore, T

is represented by a vector-valued measure with values in the dual of ΛdpRnq, which is

ΛdpRnq, and all such measures can be written as τµ as in the previous example. In view

of this equivalence, we can state a first compactness/lower semicontinuity theorem: if

pThq is a sequence of d-currents with finite mass such that MpThq ¤ c for some c ¡ 0

then, up to a subsequence (not relabeled), Th Ñ T in DdpRnq and

MpT q ¤ liminf
h

MpThq.

In particular, T has finite mass. For the Plateau problem we wish also to consider

currents such that also the boundary has finite mass. We say that a d-current is a

normal current if both MpT q and MpBT q are finite. The advantage is that for normal

currents we have compactness and lower semicontinuity of the masses: if pThq is a

sequence of normal d-currents such that MpThq�MpBThq ¤ c for some c ¡ 0 then, up

to a subsequence (not relabeled), Th Ñ T in DdpRnq, BTh ÑBT in Dd�1pRnq and

MpT q ¤ liminf
h

MpThq, MpBT q ¤ liminf
h

MpBThq.

In particular, T is normal. Indeed, let us apply the compactness and lower semiconti-

nuity theorem for currents with finite mass both to Th and BTh. Up to subsequences,

Th Ñ T , BTh ÑU , and

MpT q ¤ liminf
h

MpThq, MpUq ¤ liminf
h

MpBThq.

It is sufficient to prove that U � BT . Let ω P Dd�1pRnq. Then

xBT,ωy � xT,dωy � lim
h
xTh,dωy � lim

h
xBTh,ωy � xU,ωy
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and this yields the conclusion. Thanks to the previous theorem, we can solve the

Plateau problem in terms of normal currents. Let T0 be a given normal d-current on

R
n. Then the problem

mintMpT q : T is a normal d-current and BT � BT0u

has a solution. Notice that in this formulation of the Plateau problem we fix T0 normal

d-current and we ask for minimizers in the class

tT is a normal d-current and BT � BT0u.

The natural way to set the problem would be fix T0 normal pd�1q-current and ask for

minimizers in the class

tT is a normal d-current and BT � T0u.

But in this last case one has to prove that this class is notempty, and this could be not

trivial. In other words, we are saying that the admissible boundary data are all the

objects which are really obtained as the boundary of something. Nevertheless, this

solution to the Plateau problem is not satisfactory because the class of normal currents

is too large. Let us see an example. Let T be the 1-current on R
2 given by T � τµ

where µ is the Lebesgue measure on the square Q � r�1,1s2 and τpxq � e1 � p1,0q for

any x P Q. Notice that MpT q � 4. We want to find BT . Let ω be a 0-form (that is, a

function) with compact support on R
2. Then we have

xBT,ωy � xT,dωy �
»

Q

x Bω

Bx1
dx1 � Bω

Bx2
dx2,e1ydx �

»
Q

Bω

Bx1
dx

�
» 1

�1

ωp1,x2q�ωp�1,x2qdx2 �
»

ωτ1 dµ1

where µ1 is H 1 restricted to I� � t�1u� r�1,1s and τ1 � �1 on I� and τ1 � �1 on

I�. In particular, MpBT q � 4 hence T is a normal current. This example suggests

that working with normal currents we might obtain, in general, very mild solutions.

The idea is to consider currents which, in some sense, are “supported" on at least a

rectifiable set. We say that T P DdpRnq is a d-rectifiable current if there exist:

(a) a d-rectifiable set E in R
n,

(b) an orientation τ on E, that is a Borel map that to H d-a.e. x P E assigns a unit

simple d-vector τpxq which spans TanpE,xq,
(c) a multiplicity function, that is a summable (with respect to the H d measure)

function m : E Ñ R,

such that

xT,ωy �
»

E

xωpxq,τpxqympxqdH dpxq, @ω P DdpRnq.
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In this case, we denote T by rE,τ,ms. We notice that it holds

MprE,τ,msq �
»

E

|m|dH d .

If S is a smooth d-dimensional surface oriented by τ then

TS � rS,τ,1s.
Notice that at a first sight it seems that we can treat also non-orientable surfaces in

the framework of (integral) currents, since we are not assuming any continuity of the

orientation. Indeed, by definition an orientation of a rectifiable set is simply a Borel

choice of a unit simple d-vector which spans the approximate tangent space H d-a.e. on

E. Actually something wrong happens if we wish to preserve the “physical" boundary:

indeed, a discontinuity of the orientation affects the boundary of T . As an example

take

T � rr0,1s,�e1,1s� rr1,2s,e1,1s.
Then,

BT � δ2�δ0�2δ1.

As a consequence, if we use the framework of integral currents we find only good

models for orientable soap films, since any discontinuity in the orientation produces

some boundary which is not physical. As for normal currents, we wish to consider

d-rectifiable currents such that also the boundary is rectifiable. We then try to look at

compactness and lower semicontinuity for such a currents. The bad thing is that there

is no compactness: let us sketch an example. Let

Eh �
h�1¤
k�0

r0,1s�
"

1

2h

*
, Th �

�
Eh,e1,

1

h

�
.

First of all notice that both Th and BTh are rectifiable and MpThq�MpBThq � 3. Never-

theless, it is possible to prove that

Th �
�

Eh,e1,
1

h

�
Ñ T � e1L2 r0,1s2

and T is not rectifiable. This is due to the fact that the multiplicity is arbitrarily close to

0. Assuming integer multiplicity it is possible to prove what we need, that is the cele-

brated Federer-Fleming Compactness Theorem, which is, probably, the most important

result in the theory of currents. Precisely, we say that rE,τ,ms is a d-rectifiable current

with integer multiplicity if m takes values in Z, and finally we say that T P DdpRnq is

a k-integral current if both T and BT are rectifiable currents with integer multiplicity.

The Federer-Fleming Compactness Theorem states that if pThq is a sequence of integral

d-currents such that MpThq�MpBThq ¤ c for some c ¡ 0 then, up to a subsequence

(not relabeled), Th Ñ T in DdpRnq, BTh ÑBT in Dd�1pRnq and

MpT q ¤ liminf
h

MpThq, MpBT q ¤ liminf
h

MpBThq.
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Moreover, T is an integral current. As for normal currents, thanks to the Federer-

Fleming Theorem we can solve the Plateau problem in terms of integral currents, which

is, in some sense, the “right” formulation of the Plateau problem in terms of currents.

Let T0 be a given integral d-current on R
n. Then the problem

mintMpT q : T is a integral d-current and BT � BT0u
has a solution.

7.7. Concluding remarks on the theory of currents

First of all notice that, in principle, one could obtain, as a solution of the Plateau prob-

lem in the context of integral currents, a current with some multiplicity different from

1. This can happen, think to minimizing sequences of currents which attach in the limit

in some region with positive mass. Actually, the right object to minimize should be the

size of a current and not the mass, where the size is defined as

SprE,τ,msq � H dptx P E : mpxq � 0uq.
But the situation for size minimizers is far from clear. Even if d � 2 and S is the current

of integration on a smooth curve, there is no general existence result for an integral cur-

rent T such that BT � S and SpT q is minimal. The main problem is compactness: from

a bound on the size we are not able, in general, to deduce a bound on the mass, hence

we are not in position to apply the Federer-Fleming compactness result. Another draw-

back of the use of integral currents is that we cannot treat non-orientable boundaries

since, as we have already observed, the discontinuity of the orientation produces, in

general, new boundaries. However, there is a possibility to obtain also non-orientable

soap films using currents: it is sufficient to work with rectifiable currents modulo ν,

where ν ¥ 2 is an integer. More precisely, two rectifiable currents T and S are con-

gruent modulo ν if T � S � νQ for some current Q. In particular, we can say that T

and �T are congruent modulo 2, and this permits, in principle, to solve the Plateau

problem in a more general context using the equivalence classes of rectifiable currents

modulo ν. We point out that non-orientable surfaces occur as soap films. We also re-

mark that there is an alternative perspective to currents for working with non-oriented

objects, which is the theory of varifolds, introduced by Almgren in ’70 and developed

mainly by Allard and Hutchinson in view of the applications to variational problems

which involve curvatures of surfaces. We do not want to enter in details, the interested

reader can consult for instance the original paper by Almgren [1]. We just point out

that for varifolds the main difficulty is to produce a good definition of boundary. We

conclude with some remarks on the regularity. How much regular are the soap films

produced by integral currents? In R
2 the situation is almost perfect: indeed, it is pos-

sible to prove that if T is a mass-minimizing 1-integral current in R
2 then the “interior

part" of T (the part of T which is not in the boundary of T ) consists of disjoint line

segments. In the case 2 ¤ n ¤ 7, if T is a mass-minimizing pn�1q-integral current in

R
n then the interior part of T is a smooth embedded hypersurface: if we go back to

Figure 4 the soap film solution corresponds to an embedded solution, which could be
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Figure 5: A Möbius strip-like soap film

the mass-minimizing integral current. When n¡ 7 we already know that the regularity

is lost, since the result of Bombieri-De Giorgi-Giusti [4]. In any case, as for sets of fi-

nite perimeter, we cannot hope to have the singularities developed by some soap films.

However, notice that such singularities appear when we have, as boundary, curved ob-

jects which are not well covered by the theory of currents: for instance, in the Figure

1 we can see a singular soap film, surely not covered by currents, but here the problem

is that this soap film cannot be reduced to a rectifiable current whose boundary, in the

sense of currents, is the set of the edges of a cube.

8. Minimal sets approach

Perhaps the best model for the soap films is represented by the Almgren minimal sets,

introduced by Almgren in [2]. The idea is to come back, in some sense, to the set

approach, as the already cited one by Reifenberg [14]. The surface is a (d-rectifiable)

set and we minimize the d-dimensional Hausdorff measure among a suitable class of

sets.

8.1. Almgren minimal sets and Taylor regularity

Let S�R
n be a closed set and A�R

n be an open set. We say that S is a d-dimensional

minimal set in A (briefly minimal set if we do not need further details) if for any closed

ball C � A and every Lipschitz map ϕ : R
n Ñ R

n such that ϕ|RnzC � id and ϕpCq �C

we have

H dpSq ¤H dpϕpSqq.
Roughly speaking, a minimal set is such that if we apply any local deformation of the

set the d-dimensional Hausdorff measure increases. The reason for which minimal

sets are the best model for soap films stems in the regularity theorem for such objects.
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Indeed, J. Taylor in 1976 [16] proved that the singularities of 2-dimensional minimal

sets in R
3 are precisely those produced by soap films. The analysis of Taylor is very

deep. First of all, she proved that if S is a minimal set then S is d-rectifiable, but there

is a more detailed analysis of the blow up around points of S. From rectifiability, we

already know that at H d-a.e. x P S there exists the approximate tangent space TanpS,xq
defined by the blow up procedure, that is looking at the limit

(8) lim
rÑ0�

1

r
pSXBrpxq� xq

The key point of the Taylor’s approach is to understand what happens if we do the blow

up (8) centering at any point of S. Taylor proved that

C � lim
rÑ0�

1

r
pSXBrpxq� xq

always exists and, by construction, is a cone, that is rC�C for any r¡ 0. Moreover, the

fact that S was a minimal set reflects on C: since the definition of minimal sets requires

only local perturbations it is not difficult to believe that C turns out to be a minimal set

too, a so called minimal cone. Having proved that, it comes the last part: finding all the

possible minimal cones and this should correspond to all possible singularities for min-

imal sets. Actually, only 1-dimensional minimal cones in R
2, 1-dimensional minimal

cones in R
3 and 2-dimensional minimal cones in R

3 are completely classified; higher

dimensions and codimensions are far from clear still today. The three 2-dimensional

minimal cones in R
3 are:

(a) the plane configuration (this happens when the blow up procedure gives the tan-

gent space);

(b) the Y-configuration: three plane sheets crossing on a line and forming a 120�

angle;

(c) the T-configuration: four lines crossing in a point (called tetrahedrical point)

and forming a 109,47� angle.

All these three configurations are realized by some minimal sets represented by soap

films. The flat surface of course produces an example of plane configuration. Concern-

ing plane sheets that meet at 120� and lines meeting at 109,47�, see Figure 6. The two

possible singularities of minimal sets in R
3 (Y and T) are precisely the only singulari-

ties conjectured by Plateau. For this reason, the fact that a soap film can only have Y

and T singularities are known still today as Plateau’s laws.

8.2. Plateau problem in the context of minimal sets

As we have already mentioned in the Reifenberg’s approach, the main difficulty of the

set point of view is to have a good notion of boundary. Very recently a framework for

that has been investigated and some existence results have been proved. In this section
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Figure 6: The soap films created by a tetrahedral boundary.

we will state what is proved in [8] by De Lellis, Ghiraldin, and Maggi. This paper is

motivated by a very elegant idea introduced by Harrison (see related papers [11] and

[12]) in order to give a definition of boundary. Let us give the following definition [8,

Def. 3] (see [12] for the original approach). Let n ¥ 3 and let H be a closed subset of

R
n. Let

CH � tγ : S
1 Ñ R

nzH smooth embedding of S
1 into R

nu.
Let C � CH . We say that C is closed by homotopy if together with any γ P C the set

C contains all elements belonging to the homotopy class rγs P π1pRnzHq, where π1pXq
denotes the fundamental group of X . Let C � CH and let K be a relatively closed set in

R
nzH. We say that K is a C -spanning set of H if

KX γpS1q �H @γ P C .

We denote by F pH,C q the class of all relatively closed sets in R
nzH which are C -

spanning set of H. Roughly speaking, K PF pH,C qmeans that the set K has a boundary

which lies on H. When H is a closed curve in R
3 this corresponds to the fact that

the soap film K wets all the curve H, which is precisely what we want. In order to

understand better this let us discuss the typical choice when H is a pn�2q-dimensional

closed submanifold of R
n, which is the idea of Harrison [11]. Let K be relatively closed

in R
nzH and let Ki be the connected components of K. We say that K spans H if for

any i and for any γ P CH the linking number between γ and Ki has modulus 1 while

the linking number between γ and K j is 0 for any j � i. The class of all of these γ’s

is closed by homotopy. We now continue to follow [8] where the following existence

theorem has been proved. Let n¥ 3, let H be a closed subset of R
n, and let C � CH be

closed by homotopy. Assume that there exists K PF pH,C q such that H n�1pKq  �8.

Then, the problem

min
KPF pH,Cq

H n�1pKq



The Plateau problem in the Calculus of Variations 81

has a solution which is a pn� 1q-dimensional minimal set in R
nzH. We only sketch

the idea of the proof. A difficult part, and we do not enter in details on that, is the

proof of the existence of a minimizing sequence which consists of pn� 1q-rectifiable

sets. If we take a minimizing sequence pKhq of pn�1q-rectifiable sets, we can consider

the corresponding associated measures µh � H n�1 Kh. Then, up to a subsequence,

µh á� µ in R
nzH. Now, it is possibile to prove, using arguments of Geometric Measure

Theory, that

µ¥ θH n�1 K, on subsets of R
nzH,

where θ¥ 1 and K � sptµzH is pn�1q-rectifiable. In particular, we get

liminf
h

H n�1pKhq ¥H n�1pKq.

Hence, the direct method of the Calculus of Variations should apply. The only thing

we have to be careful about is the closedness of the spanning condition. Suppose

by contradiction that some loop γ P C does not intersect K. Since both γ and K are

compact, we can find some ε¡ 0 such that U2εpγq does not intersect K and is contained

in R
nzH: here Urpγq denotes the tubular neighborhood of γpS1q. Hence µpU2εpγqq � 0

and thus

(9) lim
h

H n�1pKhXUεpγqq � 0.

Notice now that if ε is small there is a diffeomorphism Φ : S
1�Bn�1

ε p0q ÑUεpγq such

that Φ|
S1�t0u � γ. Let y P Bn�1

ε p0q and set γy � Φ|
S1�tyu . Then γy P rγs represents an

element of π1pRnzHq. As a consequence, it must be KhX γypS1q � H. It is now not

difficult to conclude that

H n�1pKhXUεpγqq ¥ c

for some c¡ 0 independent on h, which contradicts (9). Finally, it is possibile to show

that the solution is a pn�1q-dimensional minimal set thanks again to the fact that K is

a limit of a minimizing sequence.

This approach furnishes a good answer to the Plateau problem: when H is a Jordan

curve in R
3 we obtain the existence of a minimal set K in R

3zH that spans H. There-

fore, “the boundary of K is H” and, by Taylor’s regularity, K can have singularities but

only of Plateau’s type.

References

[1] ALMGREN F.J., The theory of varifolds, Mimeographed notes, Princeton, 1965.

[2] ALMGREN F.J., Existence and regularity almost everywhere of solutions to elliptic variational prob-

lems with constraints, Mem. AMS 165 (1976), 199 pages.

[3] AMBROSIO L, FUSCO N. AND PALLARA D., Functions of bounded variation and free discontinuity

problems, Oxford Mathematical Monographs, 2000.

[4] BOMBIERI E, DE GIORGI E AND GIUSTI E., Minimal cones and the Bernstein problem, In-

vent. Math. 7 (1969), 243–268.

[5] DACOROGNA B., Direct methods in the Calculus of Variations, Springer-Verlag New York, 2008.



82 L. Lussardi

[6] DIERKES U., HILDEBRANDT S. AND SAUVIGNY F., Minimal surfaces, Springer-Verlag Berlin Hei-

delberg, 2010.

[7] DO CARMO M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

[8] DE LELLIS C., GHIRALDIN F AND MAGGI F., A direct approach to Plateau’s problem,

J. Eur. Math. Soc. 19 (2017), 2219–2240.

[9] FEDERER F., Geometric Measure Theory, Springer-Verlag Berlin Heidelberg, 1996.

[10] GULLIVER R., Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. 97

(1973), 275–305.

[11] HARRISON J., Soap film solutions to Plateau’s problem, J. Geom. Anal. 24 (2014), 271–297.

[12] HARRISON J. AND PUG H., Existence and soap film regularity of solutions to Plateau’s problem,

Adv. Calc. Var. 9 (2016), 357–394.

[13] MAGGI F., Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric

Measure Theory, Cambridge University Press, 2012.

[14] REIFENBERG E.H., Solution of the Plateau problem for m-dimensional surfaces of varying topological

type, Acta Math. 104 (1960), 1–92.

[15] SIMON L., Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Anal-

ysis, Australian Mathematical Society, vol. 3, 1983.

[16] TAYLOR J., The structure of singularities in soap-bubble-like and soap-films-like minimal surfaces,

Ann. of Math. 103 (1976), no. 3, 489–539.

AMS Subject Classification: 49-02, 49Q05, 49Q20

Luca Lussardi

Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino

C so Duca degli Abruzzi 24, 10129 Torino, Italy

e-mail: luca.lussardi@polito.it

Lavoro pervenuto in redazione il MM.GG.AAAA.


