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Abstract—The paper presents a generic framework for analysis
of stator resistance variation in the stability of position observers.
The adverse impact of the resistance error on the active flux
based sensorless control is studied. A new technique, Adaptive
Projection vector for Position error estimation (APP), is proposed
to have inherent immunity to resistance errors; in addition, a
resistance adaption is devised for accurate estimation of stator
flux and torque. The observers are subjected to stability analysis.
The instability of active flux control and the merits of the
proposed technique are experimentally demonstrated on a 1 kW
synchronous reluctance machine test bench.

Index Terms—Sensorless control, stator resistance adaption,
active flux, synchronous reluctance machine, hybrid flux observer.

I. INTRODUCTION

Owing to the saliency of synchronous reluctance (SyR)
machine, the position and speed estimation without an en-
coder or resolver becomes realizable. The literature contains
numerous works on high frequency signal injection methods
in different reference frames for operation at low and zero
speeds region; [1] presents a comprehensive review of high
frequency injection techniques. Fundamental wave excitation
based approach is preferred at medium and high speeds;
fusion methods are available for smooth transition between the
two methods [2]. The proposed technique falls in the second
category and can easily be augmented with high frequency
injection schemes.

The flux and position observers are highly susceptible to
resistance variation at low speeds, leading to large steady-
state errors and even instability. To circumvent this, several
methods have been explored: stator resistance observer for
salient synchronous machines is proposed in [3]; sliding mode
observer is developed in [4]; a recursive least square approach
is resorted to identify resistance online in [5].

The section II and III introduces notations and establishes
the generic framework for analysis of sensorless control sys-
tem. The section IV and V presents the main contributions of
the paper, they are as follows:

• The instability of active flux based sensorless control
owing to resistance errors is expounded.

• A position observer based on Adaptive Projection vector
for Position error estimation (APP) is developed that is
immune to resistance error for operating points respecting
Maximum Torque Per Amps (MTPA) law.

• The immunity also extends to the voltage error due to
non-ideal compensation of inverters as the fundamental
component of voltage error is in phase with the stator
current [6].

• A stator resistance adaption is developed to alleviate the
steady-state position error at non-MTPA operating points;
furthermore, it aids in accurate estimation of stator flux
and torque.

• The observers are subjected to stability analysis.
The section VI evaluates the performance of proposed method
with a 1.1 kW SyR motor drive.

II. MOTOR MODEL

The electrical rotor position is θ and the electrical angular
speed is ω = s θ. Estimated vectors are represented by the
superscript .̂ The orthogonal rotational matrix is J = [ 0 −1

1 0 ]
and I is the identity matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-axis
is at θ̂ = θ−θ̃, where θ̃ is the position error. The speed error is
symbolized by ω̃ = ω−ω̂. Real space vectors will be used; for

Fig. 1. Control system overview revealing the hybrid flux observer (HFO)
augmented with stator resistance, position and speed adaption



example, the stator current is id̂q = [id̂, iq̂]
T where id̂ and iq̂

are the vector components in estimated rotor reference frame.
Space vectors in stationary reference frame are denoted by
subscript αβ.

A. Mathematical Model of the SyR Machine

The voltage equation of a SyR machine is expressed in (1)
where Rs is the stator resistance and λd̂q is the stator flux
linkage.

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

The stator flux linkage and its time-derivative in terms of the
incremental inductance l and apparent inductance L matrices
are expressed in (2).

λd̂q = eJθ̃ L e−Jθ̃ id̂q (2a)

sλd̂q = (s θ̃) Jλd̂q + eJθ̃ l s
(
e−Jθ̃ id̂q

)
(2b)

The components of the inductance matrices are shown in
(3) where where ld, lq represents the incremental inductance
along direct d and quadrature q axis respectively while ldq
is the cross-saturation term. Apparent inductance are defined
likewise. All quantities are a function of idq

l(idq) =

[
ld ldq
ldq lq

]
L(idq) =

[
Ld 0
0 Lq

]
(3)

The estimated electromagnetic torque is given by (4) where
p is the number of pole pairs.

T̂ =
3p

2
(λd̂q × id̂q) (4)

B. MTPA Law

The analytical expression for the MTPA law [7] is derived
by differentiating (4) w.r.t the current angle γ for a given
current amplitude as in (5).

dλd
dγ

iq + λd
diq
dγ
− dλq

dγ
id − λq

did
dγ

= 0 (5)

Incorporating the inductances defined in (3) at θ̃ = ω̃ = 0, it
simplifies to (6).

i2d
(
Ld − lq

)
+ i2q

(
Lq − ld

)
+ 2 ldq id iq = 0 (6)

The former expression holds significance to the proposed
sensorless control as discussed in the later text.

III. SENSORLESS CONTROL SYSTEM

The block diagram illustrating an overview of the motor
control is shown in the Fig.1.

Fig. 2. Experimentally obtained flux maps lookup table, Λ, of the SyR motor
under test: λdq = Λ(idq) = L · idq

A. Flux Observer

The flux observer in stator reference frame is defined by
(7) where Gαβ is a 2 × 2 gain matrix. The estimated stator
resistance is denoted by R̂s = Rs − R̃s where R̃s is the
resistance error. Let Λ denote the flux maps lookup table of
the machine under test as λdq = Λ(idq), shown in the Fig. 2.
Then, the estimated inductance L̂ is derived as in (8).

sλ̂αβ = v̂αβ − R̂siαβ +Gαβ

(
eJθ̂L̂ e−Jθ̂iαβ − λ̂αβ

)
(7)

L̂(id̂q) · id̂q = Λ(id̂q) (8)

In the estimated rotor reference frame, it takes the form in (9)
where the gain matrix G equivalence is given by (10).

s λ̂d̂q = v̂d̂q − R̂sid̂q − ω̂J λ̂d̂q +G
(
L̂ id̂q − λ̂d̂q

)
(9)

G = e−Jθ̂Gαβ eJθ̂ (10)

For a diagonal matrix G = g I, the equivalence G = Gαβ

holds.

B. Speed and Position Observer

A conventional phase lock loop (PLL) with a proportional-
integral (PI) controller is employed to drive the position error
signal εθ to zero as in (11) where kp and ki are the respective
gains.

ω̂ = kp εθ + ωi ωi =

∫
ki εθ dt θ̂ =

∫
ω̂ dt (11)

The error signal εθ is defined as the projection of the difference
in observed and current model flux estimates on a projection
vector φθ [8] [9].

εθ = φT
θ (λ̂d̂q − L̂ id̂q) (12)

C. Linearized Error Dynamics

In the interest of studying the stability and susceptibility
of observed position to resistance error R̃s, the error dynam-
ics are linearized for the analytical purposes. The operating
point quantities are signified by a subscript 0. The flux error
dynamics (13) is derived from (9) where λ̃d̂q = λd̂q − λ̂d̂q .

s λ̃d̂q = −(G0+ω0J) λ̃d̂q+G0 (λd̂q0−L̂ id̂q0)−R̃sid̂q0 (13)



Examining the term, λd̂q0 − L̂ id̂q0,

λd̂q0 − L̂ id̂q0 = (L− L̂) id̂q0 + θ̃ (JL−L J) id̂q0 (14)

Although accurate flux maps are assumed, the error in the
current model inductance induced by the position error should
be accounted for. Considering invariance in incremental induc-
tance [9] gives

L ≈ L̂+ θ̃ (L̂− l) J (15)

Using the improved inductance model (15) leads to (16a)
where λa

d̂q0
, referred as auxiliary flux linkage vector in [8],

is defined in (16b).

λd̂q0 − L̂ id̂q0 = θ̃λa
d̂q0

(16a)

λa
d̂q0

=
(
J L̂− l J

)
id̂q0 =

[
(ld − L̂q) iq̂0 − ldq id̂0
(L̂d − lq) id̂0 + ldq iq̂0

]
(16b)

Hence, the error dynamics of the system simplifies to

s λ̃d̂q = −(G0 + ω0J) λ̃d̂q + θ̃G0 λ
a
d̂q0
− R̃sid̂q0 (17)

εθ0 = φT
θ0

(
λa
d̂q0

θ̃ − λ̃d̂q
)

(18)

If the system is stable, s λ̃d̂q = εθ0 = ω̃ = 0 holds at steady-
state. Upon manipulation, the steady-state position error θ̃0
owing to the resistance error R̃s is obtained as

θ̃0 = −R̃s
φT
θ0

(
G0 + ω0 J

)−1
id̂q0

φT
θ0

(
G0 + ω0 J

)−1
ω0 Jλa

d̂q0

(19)

IV. ACTIVE FLUX BASED POSITION ESTIMATION

Active flux technique is a state of art flux and position
observer for SyR motor drives. The error signal εθ in the
active flux based sensorless control is proportional to the q
axis component of λaf

d̂q
in (20).

λaf
d̂q

= λ̂d̂q − L̂q id̂q (20)

In accordance with former definitions, projection vector for
active flux based error signal is given by (21).

φθ0 =
1

λaq̂0

[
0
1

]
(21)

For G = gI, the steady-state position error θ̃0 (19) simplifies
to

θ̃0 = R̃s
ω0 id̂0 − g iq̂0

g ω0 λad̂0 + ω2
0 λ

a
q̂0

(22)

Fig. 3 presents the θ̃0 at R̃s = 0.22 p.u (1Ω) for g = 2π ·
10 rad/s. Large position error at low speed braking is observed;
it is emphasized that the result is derived from the linearized
model. Hence, the operating points having |θ̃0| > 10◦ are
likely to be unstable.

Fig. 3. Steady-state position error in (◦) at R̃s = 0.22 p.u (1Ω) for active
flux projection vector at g = 2π · 10 rad/s (0.2 p.u) on MTPA + imind
trajectory. Note that the operating points having error greater than |θ̃0| > 10◦

are likely to be unstable.

V. PROPOSED SENSORLESS TECHNIQUE

A. Adaptive Projection Vector for Position Error Estimation -
APP

The proposed projection vector φθ for position error signal
εθ is

φT
θ0 =

[
0 ω−1

0

] (
λa
d̂0

I + λaq̂0 J
)−1 (

G0 + ω0 J
)

(23)

Substituting in (19), the steady-state position error takes the
form in (24).

θ̃0 =
R̃s

ω0 |λad̂q0|2
(
λaq̂0 id̂0 − λ

a
d̂0
iq̂0
)

(24)

=
R̃s

ω0 |λad̂q0|2
(
i2
d̂0

(
L̂d − lq

)
+ i2q̂0

(
L̂q − ld

)
+ 2 ldq id̂0 iq̂0

)
Examining (24) reveals that it is identical to the MTPA
criteria in (6); hence, it concludes that, as long as the MTPA
is respected, the proposed projection vector based position
observer is immune to errors in stator resistance.

It is worth mentioning that the fundamental component of
the voltage error arising due to inverter dead-time is in phase
with the stator current vector id̂q and is reflected in the resistive
error term R̃s. Consequently, immunity also extends towards
non-ideal compensation of inverter errors.

B. Combined Stator Resistance and Position Estimation

Although the APP technique is immune to R̃s and dead-time
on MTPA trajectory, the control deviates from the MTPA for
small loads due to the imposition of imind for fundamental ex-
citation in sensorless applications. Flux weakening is another
case of deviation from MTPA but at high speeds, R̃s effects
are negligible. Moreover, high performance drives benefit from
accurate flux and torque estimation. Hence, a stator resistance
adaption is desired.

Akin to the speed observer, a resistance adaption law is
defined in (25) where kr is the gain and εr is the resistance
error signal.

R̂s = kr

∫
εr dt εr = φT

r (λ̂d̂q − L̂ id̂q) (25)



Fig. 4. Hybrid flux observer in stator reference frame with Gs = G = gI, augmented with the APP and stator resistance observer

The cumulative error signal vector ε is given by (26) where
the 2×2 projection vector matrix is Φ = [φr φθ]

ε =

[
εr
εθ

]
= ΦT (λ̂d̂q − L̂ id̂q) (26)

The position error projection vector φθ in (23) is retained due
to the aforementioned advantages. It is desired that the error
signals εθ and εr are estimated independently; thus, a natural
choice for the resistance error projection vector, φr, is a vector
orthogonal to φθ as expressed in (27), where κ is a gain.

ΦT
0 =

[
κ0 0
0 ω−1

0

] (
λa
d̂0

I + λaq̂0 J
)−1 (

G0 + ω0 J
)

(27)

Resorting to the linearized error dynamics to determine κ,
using (17) and (18), the cumulative error signal vector ε0
transforms to[

εr0
εθ0

]
= ΦT

0 (s I +G0 + ω0 J)−1(λa
d̂0

I + λaq̂0J) ·([
s
ω0

]
θ̃ +

R̃s
|λa
d̂q0
|2

[
λa
d̂0
id̂0 + λaq̂0 iq̂0

λa
d̂0
iq̂0 − λaq̂0 id̂0

])
(28)

The gain κ is chosen by equating the steady-state (DC)
components of error signal and the resistance error in the
absence of position error, i.e., εr0 = R̃s at s = 0 as R̃s is
a slow time varying term; it results in

κ0 =
|λa
d̂q0
|2

λa
d̂0
id̂0 + λaq̂0 iq̂0

(29)

The steady-state coefficient of R̃s in εr0/κ0 from (28)
is shown in Fig. 5.a; it is observed to diminish for low iq
implying that R̃s is not observable at these regions. In the
contour plot in Fig. 5.b, steady-state coefficient of R̃s in εθ0 ω0

is shown where the magnitude is minimal near the MTPA
trajectory, supporting the claim in (24).

C. Stability Analysis and Gain Selection

Although a comprehensive stability analysis with resistance
and position observers is feasible, the two are analyzed in-
dependently to gain intuition on the movement of poles at
various operating points.

Fig. 5. Effect of R̃s on the cumulative error signal ε by examining the

coefficients: a)
λa
d̂
i
d̂
+λa

q̂ iq̂

|λa
d̂q
|2 ; b)

λa
d̂
iq̂−λa

q̂ id̂
|λa

d̂q
|2 . Red dashed line is the MTPA

trajectory.

The error dynamics of the position observer in (11) are
shown in (30) where the error signal εθ0 is given by (18).

s θ̃ = ω̃i − kp εθ0 s ω̃i = −ki εθ0 (30)

The combined dynamics of position and flux observers at
R̃s = 0 is given by (31). At G = g I, the eigen values of
(31) are a function of ω2 and are independent of λa

d̂q0
; the

observer is stable for all speeds (barring zero speed).

s

λ̃d̂qθ̃
ω̃i

 =

−(G0 + ω0 J) G0 λ
a
d̂q0

0
kp φ

T
θ0 −kp φT

θ0 λ
a
d̂q0

1

ki φ
T
θ0 −ki φT

θ0 λ
a
d̂q0

0


λ̃d̂qθ̃
ω̃i


(31)

The gains of PLL are chosen for a critically damped
response at εθ = θ̃ with the poles at s = −Ωω = −2π · 25
(rad/s).

kp = 2 Ωω ki = Ω2
ω (32)

The flux observer gain is set to g = 2π · 10 (rad/s) (0.2 pu).
Fig. 6.a shows the movement of poles for ω = 0.02 . . . 2 p.u;
the mechanical poles are seen to diverge from the designed
Ωω at low speeds. Hence, Ωω should be sufficiently larger
than the poles of speed controller to be adequate at low speeds.
This could be circumvented by adapting the flux observer gain
matrix G to impose fixed mechanical poles and a desired flux
observer poles trajectory [8].



Fig. 6. Locus of poles for ω = 0.02. . . 2 p.u where the markers ◦ and ∗ denote
the speeds 0.02 and 2 p.u respectively: a) Flux and mechanical observer; it is
independent of torque and the sign of ω. Mechanical poles are identified in
blue and flux observer in red. b) Flux and resistance observer at T = 1 p.u.

The combined error dynamics of resistance and flux ob-
server at θ̃ = 0 and ω̃i = 0 is given by (33). A low bandwidth
of kr = 2π · 0.5 rad/s is chosen.

s

[
λ̃d̂q
R̃s

]
=

[
−(G0 + ω0J) −id̂q0

kr φ
T
r0 0

] [
λ̃d̂q
R̃s

]
(33)

The movement of poles at rated torque is shown in the Fig. 6.b.
In the vicinity of no load (iq̂ ≈ 0), the poles are seen to
delve into the positive plane at low speeds. The condition for
stability is determined using Routh-Hurwitz criterion as

ω2
0 +g20 +

kr g0
2
− kr ω

2
0

2g0
+ω0 kr ·

λaq̂0 id̂0 − λ
a
d̂0
iq̂0

λa
d̂0
id̂0 + λaq̂0 iq̂0

> 0 (34)

Hence, the resistance adaptation is disabled for |T | < 0.2 p.u.
Moreover, owing to poor Signal to Noise Ratio (SNR) at high
speeds, it is disabled for |ω| > 0.75 p.u.

VI. EXPERIMENTAL RESULTS

The proposed sensorless scheme is validated experimentally
with a 1 kW SyR motor on a dspace DS1103 control platform
at a sampling frequency of 10 kHz. A large minimum current
of imind = 0.615 p.u (2A) is imposed to highlight the veracity
of resistance observer at non-MTPA operating points. The
output of PLL is low pass filtered at a bandwidth of Ωω . A PI
speed controller with critically damped poles at s = −2π · 1
rad/s is used for close loop control; load torque is imposed by
the auxiliary drive connected to the shaft. The parameters of
the SyR under test are tabulated in Table I.

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated Power Pn 1.1 kW
Rated Voltage Vn 340 V
Rated Speed ωn 1500 rpm
Rated Current In 2.3 A
Rated Torque Tn 7.1 Nm
Pole pairs p 2 -
Stator Resistance Rs 4.5 Ω
Shaft Inertia J 0.04 kgm2

Fig. 7. Susceptibility of Active Flux control on stator resistance variation at
ω = −0.33 p.u: a) R̃s = 0 Ω; b) R̃s = 0.22 p.u (1 Ω)

A. Instability in Active Flux Control

As highlighted in Fig. 3, the impact of resistance variation
on active flux sensorless control is more prominent in the
low speed braking regions. However, the active flux control
suffers from inherent instability problems in the same region.
Hence, the experimental tests, in Fig. 7, are repeated with and
without the resistance error for the same operating conditions
to ascertain that the loss of control is due to the resistance
error. As seen in Fig. 7.b, an error of R̃s = 1Ω results in
instability at ω = −0.33 p.u.

B. Immuntity of Proposed Technique to R̃s
In order to put in evidence the immunity of proposed

technique to resistance variation, the R̂s, as seen by the
control, is varied by ±100% as shown in the Fig. 8.a at a
load torque TL = 1 p.u. where MTPA is respected. Despite
the variations in observed flux and torque, the position is
undeterred. However, when the MTPA is not respected as in
Fig. 8.b at TL = 0.5 p.u, the observed position is susceptible
to R̃s.

C. Stator Resistance Adaptation

The competency of resistance adaption is studied by impos-
ing deliberate variations on the dead-time compensation which
is equivalent to physical variations in resistance. A dead-time
variation of ±1µs is equivalent to ±3 Ω at T = 0.5 p.u; the
equivalence is a function of peak current and changes with
load. In Fig. 9.a and b, the effect of changes in dead-time
without and with resistance adaption is shown in juxtaposition.
With the adaptation, the R̂s tracks the changes in dead-time



Fig. 8. Immunity of observed position in the APP technique to resistance
variation of R̃s = ±1 p.u (± 4.5Ω): a) TL = 1 p.u, on MTPA trajectory;
b) TL = 0.5 p.u, away from MTPA due to imind .

and thereby alleviates the impact on observed position, stator
flux and torque.

VII. CONCLUSION

A generic framework for the analysis of stator resistance
variation was presented, whereupon the effect on active flux
control was studied and instability regions at low speed brak-
ing were identified. The immunity of proposed projection vec-
tor for MTPA operating points was discussed. In the interest of
extending the immunity to non-MTPA operating points as well
as for accurate estimation of stator flux and torque, a resistance
adaption law was designed wherein the resistance error signal
is orthogonal and independent of position error signal. Stability
analysis was performed to sketch the movement of poles and
to calibrate observer gains. The instability of active flux and
the proposed techniques were experimentally evaluated on a
1.1 kW SyR machine test bench.

REFERENCES

[1] F. Briz and M. W. Degner, “Rotor Position Estimation,” IEEE Industrial
Electronics Magazine, vol. 5, no. 2, pp. 24–36, 2011.

[2] S. C. Agarlita, I. Boldea, and F. Blaabjerg, “High-frequency-injection-
assisted ’active-flux’-based sensorless vector control of reluctance syn-
chronous motors, with experiments from zero speed,” IEEE Transactions
on Industry Applications, vol. 48, no. 6, pp. 1931–1939, 2012.

Fig. 9. Variations on dead-time compensation (± 1µs) to emulate R̃s at
TL = 0.5 p.u and ω = −0.2 p.u: a) Without Rs adaptation; b) With Rs
adaptation.

[3] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A Combined
Position and Stator-Resistance Observer for Salient PMSM Drives: De-
sign and Stability Analysis,” IEEE Transactions on Power Electronics,
vol. 27, no. 2, pp. 601–609, 2012.

[4] D. Liang, J. Li, and R. Qu, “Sensorless Control of Permanent Magnet
Synchronous Machine Based on Second-Order Sliding-Mode Observer
With Online Resistance Estimation,” IEEE Transactions on Industry
Applications, vol. 53, no. 4, pp. 3672–3682, 2017.

[5] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance
Improvement of Sensorless IPMSM Drives in a Low-Speed Region
Using Online Parameter Identification,” IEEE Transactions on Industry
Applications, vol. 47, no. 2, pp. 798–804, 2011.

[6] I. R. Bojoi, E. Armando, G. Pellegrino, and S. G. Rosu, “Self-
commissioning of inverter nonlinear effects in AC drives,” 2012 IEEE
International Energy Conference and Exhibition, ENERGYCON 2012, pp.
213–218, 2012.

[7] A. Varatharajan, S. S. Cruz, H. Hadla, and F. Briz, “Predictive torque
control of SynRM drives with online MTPA trajectory tracking and
inductances estimation,” in Electric Machines and Drives Conference
(IEMDC), 2017 IEEE International, 2017, pp. 1–7.

[8] M. Hinkkanen, S. E. Saarakkala, H. A. A. Awan, E. Molsa, and T. Tuovi-
nen, “Observers for Sensorless Synchronous Motor Drives: Framework
for Design and Analysis,” IEEE Transactions on Industry Applications,
p. 1, 2018.

[9] A. Varatharajan and G. Pellegrino, “Sensorless Control of Synchronous
Reluctance Motor Drives : Improved Modeling and Analysis beyond
Active Flux,” in Electric Machines and Drives Conference (IEMDC),
IEEE International, 2019 (In Press).


