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Abstract Evaluating Network Neutrality requires comparing the quality of ser-
vice experienced by multiple users served by different Internet Service Providers.
Consequently, the issue of guaranteeing privacy-friendly network measurements
has recently gained increasing interest. In this paper we propose a system which
gathers throughput measurements from users of various applications and Internet
services and stores it in a crowdsourced database, which can be queried by the
users themselves to verify if their submitted measurements are compliant with the
hypothesis of a neutral network. Since the crowdsourced data may disclose sen-
sitive information about users and their habits, thus leading to potential privacy
leakages, we adopt a privacy-preserving method based on randomized sampling
and suppression of small clusters. Numerical results show that the proposed solu-
tion ensures a good trade-off between usefulness of the system, in terms of precision
and recall of discriminated users, and privacy, in terms of differential privacy.

Keywords Differential Privacy; k-Anonymity; Network Neutrality

1 Introduction

The role of Network Neutrality (NN) in today’s Internet is a topic of debate in
lawmaker and policy-maker councils. The principle of NN, also referred to as Open
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Internet paradigm [10], affirms that access to legitimate content published online
must be guaranteed by Internet Service Providers (ISPs) without any form of in-
hibition achievable by blocking, impairing or delaying the transmission of certain
categories of data streams through their network infrastructure [3]. Discrimina-
tory treatment of user generated traffic translates into a lower quality of service
experienced by the targeted users and is forbidden by several regulation and gov-
ernmental bodies such as the European Parliament in the EU.

Though the scientific community has yet not reached a general consensus on
metrics and detection approaches to individuate and quantify a potential NN vi-
olation, the establishment of suitable measurement mechanisms is a necessary
requirement and several approaches based either on passive measurements cam-
paigns by large content providers [1], on active measurements by public or private
entities [19][5], or on crowdsourced measurements collected by the users [22][16][21]
have been investigated. The latter approaches require users to submit measure-
ment reports to a central server, which stores the collected data in a database and
runs detection algorithms to identify potential traffic discriminations actuated by
ISPs.

The popularity of such crowdsourced approaches is rapidly growing: they are
used in several contexts, such as public funding and market development, and
also by well-known sites as Wikipedia and Facebook. Unfortunately, the entries
of crowdsourced databases may disclose sensitive information about users’ habits,
interests and preferences, thus raising potential privacy issues. Therefore, privacy-
preserving approaches need to be adopted to limit the amount of additional in-
formation that can be extracted from the gathered measurements, beyond that
directly related to the scope of the collection.

In this paper, we consider a framework in which passive measurements about
the user’s activities are collected by an agent installed on the user’s device and
stored in a local database as tuples of numerical and/or categorical attributes. The
server periodically receives client measurements, aggregates them and calculates
a compliance interval. Then, it is available to answer client queries about the
compliance of their measurements. A client receiving multiple indications that
their service is not compliant might conclude that NN was violated.

Ensuring privacy preservation in NN violation detection requires the applica-
tion of sanitization approaches in two distinct phases: the measurement collection
phase, when user agents submit their measurements, and the query response phase,
in which the result of the NN violation check is elaborated and communicated to
the user. This paper focuses on the latter phase and provides two novel contribu-
tions:

– it proves that the proposed NN compliance test over a clustered database
of subsampled data ensures privacy guarantees under the differential privacy
framework;

– it evaluates the trade-off between privacy level and correct identification of NN
violations.

The remainder of this paper is organized as follows: in Section 2 we review
the recent literature on NN and differential privacy; in Section 3 we introduce
basic definitions and assumptions necessary for the development of our system
and describe the database construction, the sanitization algorithm and the attack
scenario; Sections 4 and 5 evaluate the security, overehad and privacy bounds
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provided by our proposed system; Section 6 discusses the validation system and
the obtained results in terms of precision and recall; Section 7 concludes the paper.

2 Related Work

2.1 Network Neutrality

We now briefly review some recently proposed systems for NN violation detection.
The NANO system [21] aims at establishing a causal relationship between an ISP
traffic policy and the performance degradation experienced by users of a given
service, by using only passively collected data. Though the authors of [21] mention
the existence of privacy issues, they do not provide a theoretical formalization of
the privacy notion nor quantify achievable privacy guarantees. In this paper, we
provide a formal definition of differential privacy in a crowdsourced scenario.

Neubot [5] is an open-source application measuring transmission-related pa-
rameters, which can be installed by the users on voluntary basis. It is not explicitly
aimed at NN violation detection, but simply monitors the network performance
experienced by the users. Neubot ensures confidentiality by means of data encryp-
tion techniques, but does not address privacy issues, whereas in this contribution
we focus on privacy preservation through an anonymization mechanism.

The Glasnost system [6] adopts throughput measurements to detect whether
the user’s ISP applies differentiated treatments to data flows generated by specific
applications. In this paper, we adopt the same type of throughput measurements.
Conversely, DiffProbe [12] applies an active probing method to detect NN viola-
tions based on packet delay and loss measurements. Both systems do not deal with
privacy-related issues.

A crowdsensing-based hybrid active/passive network monitoring framework is
proposed in [11], which leverages measurement agents embedded in the devices
of distributed systems deployed in the wild. However, no discussion on possible
privacy implications of such approach is provided.

A methodology for acquisition, analysis and performance comparison of through-
put statistics by video hosting services aimed at identifying NN violations is dis-
cussed in [4]. Though we also focus on the video-streaming service in our perfor-
mance analysis, our proposed framework is more general and can be applied to
any type of traffic.

Among the recent studies addressing the issues of NN, the authors of [15] show
that network performance measurements can be easily manipulated by defensive
ISPs to hide their non-neutral behavior and propose a stealth neutrality measure-
ment tool which exploits covert channels.

2.2 Differential Privacy

The differential privacy framework was proposed in the seminal work by Dwork et
al. [7], which provides a theoretical approach to quantify the probability of identi-
fying the presence/absence of a single entry within a statistical database. To ensure
differential privacy, adding or removing one database item should not significantly
impact on the result of any query issued on the whole database content.
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Differential privacy provides a semantically-flavoured privacy definition, since
such definition is independent of the adversarial knowledge [13]. Therefore, it over-
comes the inherent limitations of syntactic privacy definitions, which assume a
specific attack model and a limited adversarial knowledge, thus failing in provid-
ing privacy guarantees in case such knowledge exceeds the limits assumed in the
model [2]. Nevertheless, some syntactic privacy definitions such as k-anonymity
[20] have been proven to satisfy differential privacy under specific assumptions: in
particular, the authors of [14] show that a k-anonymity-based sanitization algo-
rithm can satisfy differential privacy when preceded by a random sampling of the
database entries. In this paper, we adopt the same sanitization approach.

3 System Model

3.1 Basic Mechanism

We assume that each user sends to the server a tuple containing the following
attributes: date and time, location, type of application and/or server, ISP, sub-
scribed broadband service tier, and one or more measurements evaluating the
service quality (e.g. throughput, latency, or jitter).

We adopt the basic assumption of NANO [21], i.e. that, all other things being
equal, the majority of ISPs complies with the NN paradigm. Therefore, a NN vio-
lation can be detected by comparing the performance received by the subscribers
of a given ISP to the performance received by the subscribers of all other ISPs,
after taking into account the effect of any confounding factors.

Many factors other than differentiated treatment may affect the performance
of a particular service or application. For example, a service may be slow due
to overload at a particular time of day or it might be supplied in a location
characterized by worse performance. Similarly, the performance might depend on
software or hardware, or other network peculiarities.

Consequently, we consider the ISP as the treatment variable, any performance
measurement, in particular the throughput, as an outcome variable, and any other
parameters such as time, location and network speeds as the confounding variables.
A confounding variable (or simply confounder) is one that correlates both with
the considered treatment variable (i.e., the ISP) and the outcome variable (i.e.,
the performance). Similarly to [21], we use stratification to gather confounding
variables together. Stratification places measurements into clusters such that all
the samples in each cluster have “similar” values of the confounding variables.
Inside each cluster, the treatment and the outcome variables can thus be consid-
ered independent of the confounding variables. The procedure that maps samples
into clusters is called generalization. In this work, we consider data independent
generalization, meaning that the clusters are defined before the data are collected.
In particular, we define upper and lower thresholds for each confounding attribute
and we define a cluster as the set of all instances whose confounding attributes
fall within the same threshold bounds.



Title Suppressed Due to Excessive Length 5

Sanitization
Protocolclient C1

client C2
client Cj

X’

xr·

q

A(q,x’)

xr ∈ X’ ?

X=X1 U X2 U … Xj

X1

X2
Xj

server

snooper

Fig. 1 System Model. The virtual database X is the union of the databases stored at each
node. The Sanitization Protocol is executed for each cluster i. The database can be queried
by client nodes or by malicious snoopers. The test tuple xr may be present or not.

3.2 System Architecture

The system architecture is shown in Figure 1. It comprises a server and a set
of client nodes Cj each holding a database of local measurements Xj . The full
database X is the union of the local databases and is not centrally stored. Each
data row consists of a set of L values taken from a domain D = D1×· · ·×DL. The
clients interact with the database by submitting queries q1, . . . qQ to the server,
whose values are themselves drawn from D. The database answer is a binary value
indicating whether the submitted tuple is compatible or not with the tuples already
in X.

Similarly to [21], the parameters in domain D are divided in three classes:
treatment, confounder, and outcome. For the sake of simplicity, we will consider
the case in which there is a single treatment variable D1 and a single outcome
variable DL. The other variables are the confounders.

A Data Independent Generalization (DIG) function g(x) takes as input a tuple
from X and associates it to a cluster of similar tuples. For the sake of simplicity,
we assume that each cluster can be labeled with a natural number. We consider
a generalization function g(x) that takes into account neither the treatment nor
the outcome variables and whose clustering parameters are given and need not be
extracted from the data. The DIG function is public.

The server runs an instance of the Sanitization Protocol and builds a new
database X ′, which contains, for each cluster, a compliance interval, calculated
from the outcome field of the tuples in X that are part of the same cluster. In
addition to data generalization, the sanitization protocol implements a β-sampling
mechanism, which randomly sumbsamples the database by a factor 1/β, and a k-
suppression mechanism, which eliminates from X ′ all the clusters containing fewer
than k tuples.

What is the most accurate way to calculate a compliance interval is a matter
of study and, in general, it is necessary that a significant number of repeated
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measurements fall outside the compliance interval before one can conclude that
some kind of non-neutral traffic treatment is in place. In this paper we calculate
the compliance interval for cluster i as:[

Mi − κ
√
S2
i ,Mi + κ

√
S2
i

]
where Mi denotes the sample mean of the outcome field of the tuples in X that
fall in cluster i (i.e., with equal values of confounders), S2

i is the sample variance,
and κ is a system parameter controlling the tradeoff between privacy, precision
and recall. For the sake of simplicity, we calculate the compliance interval for each
cluster over the tuples in X that fall inside the cluster, therefore ignoring the
treatment variable.

3.3 Security Assumptions and Goals

We make the following assumptions:

1. Each client reports at most one measurement per cluster.
2. Clients are semihonest: they execute the protocol honestly, but may use any

collected information to infer information about other clients’ databases.
3. The server is semihonest: it executes the protocols honestly, but may use any

collected information to infer information about the clients’ databases.
4. The snooper is semihonest: it executes the protocols honestly, but it can freely

choose its input and may use any collected information to infer information
about the content of the virtual database X.

5. Nodes do not collude with one another.
6. the Diffie-Hellman Key Exchange protocol generates a secure, pseudorandom

shared secret.

The possible attackers in the system are the clients, the server, and the snooper,
which can either be a client or an external entity. With respect to the clients,
the sanitization protocol must guarantee confidentiality of the local measurement
databases: clients should not learn information about other clients’ local databases,
and the server should learn only the information needed to calculate the compliance
intervals. These assumptions leave out the case of a dishonest client that also
behaves as a snooper. Such client could inject into the database a set of bogus
measurements and then cleverly craft queries to infer specific information about
other clients. This is a special case of the more general problem of how to prevent
clients from polluting the database with incorrect measurements. In general, it is
very hard to prevent this from happening; however, the problem can be mitigated
by limiting the number of measurements per cluster conveyed by any single client.

In the following we will consider the concrete security model, in which a feasible
algorithm is defined as any algorithm that can be executed in, at most, a given
number of CPU cycles and a negligible value ε is defined as some very small
number.

Definition 1 (Security against Malicious Clients) The system is secure against
malicious clients if any feasible client has negligible advantage in guessing b′ = b

in Algorithm 1; for any M0 and M1, we have

|Pr(Client Attack(0) = 1)− Pr(Client Attack(1) = 1)| ≤ ε
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Algorithm 1 Client’s Attack Experiment

function Client Attack(b) . b ∈ {0, 1}
M0 and M1 are two sets of possible client measurements such that M0 and M1 have the

same cardinality. The Attacker’s own measurement is present both in M0 and in M1.
The protocol is executed with Mb

The attacker executes any feasible algorithm and calculates b′

return b′ . Attacker’s guess
end function

Definition 2 (Security against Malicious Server) The system is secure against
malicious server if any feasible server has negligible advantage in guessing b′ = b

in Algorithm 2; for any M0 and M1, we have

|Pr(Server Attack(0) = 1)− Pr(Server Attack(1) = 1)| ≤ ε

Algorithm 2 Server’s Attack Experiment

function Server Attack(b) . b ∈ {0, 1}
M0 and M1 are two sets of possible client measurements such that M0 and M1 have the

same cardinality, the same mean and the same variance.
The protocol is executed with Mb

The attacker executes any feasible algorithm and calculates b′

return b′ . Attacker’s guess
end function

With respect to the snooper, the server should protect the privacy of the user
conveying their information the the database. In particular the snooper wants to
ascertain whether an arbitrarily chosen tuple xr is present or not in the database
X. We evaluate privacy in the Differential Privacy model [8].

Definition 3 (Privacy against Snoopers) Let A(q,X) the result of submitting
the query q to X. The system consisting of the database and the sanitization
algorithm provides (ε, δ)-differential privacy if, for all q, xr and b, the following
holds with probability no smaller than (1− δ):

e−ε ≤ Pr[A(q,X) = b]

Pr[A(q,X\xr) = b]
≤ eε (1)

where xr is a tuple from X and X\xr is the database X with the tuple xr removed.

3.4 Sanitization Protocol

The distributed protocol comprises an initialization step, in which the server pub-
lishes public parameters, a first phase, in which the clients commit to send a
measurement, and a second phase in which the clients send the masked measure-
ments. The two phases of the protocol are shown in Figure 2 and are repeated for
each measurement.
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Cj S

Choose aj
pkj = gaj mod p

Build an ordered list L
from the pkj

pkj−1 mod Ni
‖pkj+1 mod Ni

‖h(L)

Derive masking keys

µ
(1)
j , µ

(2)
j xj + µ

(1)
j mod n ‖ x2j + µ

(2)
j mod n

Fig. 2 Message flow of the sanitization protocol executed for cluster i.

3.4.1 Initialization

The server publishes:

– Parameters β, k, and the function DIG, which maps the set of confounding
variables to a cluster, identified with a unique integer number.

– Diffie-Hellmann parameters g and p.
– An integer number n larger than the square of any possible measurement,

times the maximum number of measurements in a cluster. Measurements are
encoded as integer numbers.

– A key derivation function KDF : {0, 1}∗ → Zn.
– A cryptographically secure hash function h.

3.4.2 Phase 1

Suppose a node holds a measurement. It randomly decides whether to proceed
with the protocol, with probability β, or to stop. The same node can later make a
query to the server to verify whether the measurement is compliant or not.

Let j be a client that continues with the protocol. Let xj be the measurement,
which belongs to some cluster i. The node generates a Diffie-Hellmann private key
aj and an ephemeral public key pkj = gaj mod p, which it sends to the server along
with the cluster identifier i.

At some time, the server declares that the cluster i is complete and stops
accepting new submissions for the cluster. If the cluster contains fewer than k

public keys, the protocol stops and the cluster is suppressed and the protocol
stops, otherwise the server publishes the list of received public keys:

L = pk1‖ . . . ‖pkj‖ . . . ‖pkNi

where Ni is the number of collected keys. The order of the keys is arbitrary; for
the sake of simplicity, we will assume that the key of node j is at position j in the
list.

3.4.3 Phase 2

Node j receives from the server the keys preceding and following the node’s key
in the list, as well as a hash of the list itself, h(L). Then it calculates two pairs of
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masking values, by executing DH with the preceding node and with the following
node.

The masking value for the mean is calculated as:

µ
(ν)
j = KDF

[
(pkj+1 mod Ni)

aj mod p‖i‖h(L)‖ν
]

− KDF
[
(pkj−1 mod Ni)

aj mod p‖i‖h(L)‖ν
]

with ν being 1, for masking the sum, or 2, for masking the sum of the squared

values. Finally, it sends the message xj + µ
(1)
j mod n ‖ x2j + µ

(2)
j mod n.

The server calculates the sample mean as

Mi =
1

Ni

Ni∑
j=1

xi + µ
(1)
i =

1

Ni

Ni∑
j=1

xi

Note that the equality holds because all the masking terms µ
(1)
i cancel out in pairs.

The server proceeds similarly for the sum of the squared values M
(2)
i and then

calculates the sample variance of the cluster, S2
i , with the well-known formula:

S2
i =

(∑Ni
j=1 x

2
i + µ

(2)
i

)
−
(∑Ni

j=1 xi + µ
(1)
i

)2
/Ni

Ni − 1

4 Protocol Evaluation

4.1 Security Analysis

Security against client’s attack is trivial. The client receives only a list of DH
public keys, which are independent of the measurements. No algorithm can make
a guess on b better than a random choice. Consequently, the protocol guarantees
security according to Definition 1 with ε = 0.

We prove security against server’s attack under the assumption that function
KDF is a Random Oracle. We discuss the case of the mean; the case for the mean
squared value is similar.

Let call x0,1 . . . x0,Ni the set of measurements in M0 and x1,1 . . . x1,Ni the set
of measurements in M1. We already know from Definition 2 that the two sets have
the same sum. Let call this sum MΣ , it clearly holds that the measurement for
the last client is uniquely determined as xb,Ni = MΣ −

∑Ni−1
j=1 xb,j .

We also know that the masking values for the first Ni − 1 clients µ1 . . . µNi−1

can be considered mutually independent, uniformly distributed random variables.
Instead the masking value for the last client is uniquely determined as µNi =

−
∑Ni−1

j=1 µj mod n.

Phase 2 of the sanitization protocol can be thought as a Vigenère cipher, with
each client sending one “letter” of the ciphertext, cj = xj + µj mod n. From the
above relations, it is clear that the messages from the first Ni − 1 clients are the
same as a one-time pad, thus carrying no information about b. On the other hand,
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the message of last client is uniquely determined given the messages of the other
clients and does not depend on b, in fact:

cNi = xb,Ni + µNi = MΣ −
Ni−1∑
j=1

cj

Consequently, also the message from the last client does not carry information
about b. We can thus say that no algorithm can make any better guess about b
than choosing randomly. Since there is a negligible, but not zero, probability that a
server could find the masking values by breaking the Diffie-Hellman Key Exchange
protocol, we conclude that security is guaranteed according to Definition 2 with
some negligible ε.

4.2 Overhead Evaluation

There are on the market several platforms for the collection of crowdsourced mea-
surements of network performance (Ookla[18], SamKnows –which is also used by
the Measuring Broadband America program of the FCC –[19], or the Misurain-
ternet platform endorsed by the Italian regulatory agency[17]. These platforms
provide applications for various operating systems and already include mecha-
nisms for delivering measurements from clients anywhere on the Internet to a
central collection database. The proposed distributed sanitization protocol could
be integrated in any of those. In this Section, we calculate the expected overhead
w.r.t. simple measurement reporting.

We consider two types of overhead with respect to a protocol that simply
coveys the measurements from the clients to the server: computational overhead,
which increases the amount of operations that the nodes must perform, and the
message overhead, which increases the bandwidth consumed by the protocol.

In term of computational overhead, each client, for each reported measurement,
must:

1. generate a Diffie-Hellman key pair,
2. calculate two Diffie-Hellman secrets,
3. calculate KDF twice,
4. perform one integer squaring and four sums modulo n.

Step (1) can be reused for multiple measurements and its cost can be amor-
tized. Steps (3) and (4) involve simple operations over integer numbers that are
cheap to execute. Consequently, the main protocol cost consists in two modular
exponentiations for every measurement of each client. The server only performs
simple operations and thus bears small costs. Finally, the querying protocol in-
volves simple comparisons and has negligible costs.

In terms of message overhead:

1. each client sends a Diffie-Hellman public key,
2. each client receives a list of Diffie-Hellman public keys,
3. each client sends two masked measurements modulo n.

The Diffie-Hellman modulo should be at least 2048 bits. Additionally, we as-
sume that the maximum reported measurement is 109, for example 1 Tbit/s mea-
sured in steps of 1 kbit/s, and the maximum number of reported measurements
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in a cluster is 105. Therefore, the minimum value for n is 1023, requiring about 80
bits. The hash function h should be at least 256 bit.

Consequently, for each reported measurement, each client sends about 2.2 kilo-
bits and receives about 4.3 kilobits.

5 Privacy Evaluation

This section discusses the conditions guaranteeing (ε, δ)-differential privacy, as-
suming that a single query is submitted to the virtual database X. The case of
multiple queries can be handled by applying the composition theorem proved in
[8], which states that, in presence of Q consecutive queries, the system guarantees
(Qε,Qδ)-differential privacy.

5.1 General Case

The most general assumption is that, for every tuple belonging to each cluster,
the outcome variable is characterized by an unknown probability distribution with
density function fγi(x), being i the cluster label.

We now state the following theorem.

Theorem 1 The system consisting of the virtual database and the sanitization algo-

rithm provides (ε, δ)-differential privacy with

ε ≥ ln
(
Ni(1− β) +K′

)
∀ Ni ≥ k (2)

δ = [1− FBi(Ni, β, k − 1)]FBi(Ni − 1, β, k − 1)+

FBi(Ni, β, k − 1) [1− FBi(Ni − 1, β, k − 1)] (3)

The constant Ni is the size of cluster i and the constant k is the minimum cluster size

set by the suppression algorithm. The constant K′, defined in (12), depends on fγi(x)
and approaches zero as Ni grows. The function FBi(Ni, β, k) is the binomial cumulative

density function for k successes out of Ni trials with success probability β.

Proof The proof is provided in the Appendix, under the slightly simplifying as-
sumption that the variance of the data in the cluster is known and is not calculated
from the data themselves.

Note that, when Ni grows, K′ becomes negligible, which allows ε to be bounded
as:

ε ≥ ln (Ni(1− β)) ∀ Ni ≥ k (4)

In Figure 3 we report the lower bound of ε in (4) for multiple values of β and
Ni, under assumption that the minimum cluster size is k, i.e. Ni ≥ k ∀i.

In Figure 4 we plot the value of δ in (3) for different values of β, assuming cluster
sizes of Ni = 100, Ni = 1000, and Ni = 10000. Results show that the probability δ
depends on the product βNi, i.e. on the expected number of elements that survive
in the cluster after sampling, and is negligible when βNi is either much smaller or
much larger than k. Conversely, when Ni ∼ k/β, δ rises consistently: in this case,
a limit must be imposed on the maximum number of queries Q to guarantee a
sufficient privacy level.
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Fig. 3 Upper bound of the privacy parameter ε in the general case.

10 20 30 40 50
10−14

10−10

10−6

10−2

Minimum Cluster Size k

P
ri

v
a
cy

p
a
ra

m
et

er
δ

Ni = 100, β = 0.5

Ni = 100, β = 0.1

Ni = 100, β = 0.01

Ni = 1000, β = 0.1

Ni = 1000, β = 0.01

Ni = 10000, β = 0.01

Fig. 4 Privacy parameter δ in the general case for various values of the sampling factor β and
for clusters of sizes Ni = 100, Ni = 1000, and Ni = 10000 elements

5.2 Gaussian Model

With Theorem 1 we have proved that our proposed sanitization algorithms ensures
differential privacy, but the bounds on the value of ε obtained with Equation (4)
and reported in Figure 3 are of little practical use, as they are often too loose, espe-
cially for larger clusters (high values of Ni). A tighter and more useful estimation
can be computed under stronger assumptions on the statistical distribution of the
clustered data. Therefore, in the remainder of the section, we re-evaluate equation
(5) assuming that data are normally distributed, i.e., using Gaussian distribution
functions with mean value µ and standard deviation σ. We use realistic parame-
ter values associated to two widely diffused services: file downloading and video
streaming, which will also be considered in the numerical assessment provided in
Section 6.

In order to numerically assess the performance of the sanitization algorithm,
we generate multiple realizations of X and X\xr by randomly subsampling the
available data. Then, we apply the sanitization mechanism with different value of
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β and k in order to obtain the ε bounds in Figure 5, which reports the resulting gain
in privacy level versus increasing anonymization levels. We average the different
simulations and verify the ratio in (1) for several queries q, always choosing the
maximum value over all the queries. Results show that the obtained bounds are at
least three order of magnitude lower than those obtained in the case of unknown
probabilistic distributions of the clustered data.
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Fig. 5 Privacy parameter ε in the case of normally distributed data and cluster size Ni = 100

6 Numerical Assessment

6.1 Validation Method

For the numerical assessment of the privacy-precision trade-off achieved by our
proposed sanitization approach we use the September 2013 measurement dataset
collected by SamKnows in the project Measuring Broadband America [9]. Data had
already been subjected to an anomaly removal procedure (e.g. by eliminating out
of range IP addresses or throughput measurement that were inconsistent with
the service tier provisioned by the ISP). We consider the following services: web
browsing and video streaming. For each service, the tuple of considered attributes
includes service tiers (i.e., ISP, download speed, upload speed). position (i.e., lon-
gitude and latitude), time and total throughput. Based on the above mentioned
attributes, 50 millions database entries are classified in different categories, accord-
ing to the granularities reported in Table 1, where we differentiate the attributes
as treatment, confounder and outcome variables.

For the validation procedure, we randomly select an ISP and simulate the
application of a traffic filtering policy by imposing a 1 Mbit/s threshold on the
maximum throughput. A boolean variable is used as ground truth and set to True if
traffic discrimination is applied (i.e., if the throughput value in the tuple exceeds
the imposed threshold), to False otherwise (i.e., if the throughput value in the
tuple is below the threshold value). The entries of the measurement database
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Table 1 Variables and Generalization Rules

Treatment variable
ISP –

Confounder variables
time hour and week day
longitude areas of five degrees
latitude areas of five degrees
up ten Megabit per second intervals
down ten Megabit per second intervals
service four different services

Outcome variable
throughput –

are randomly partitioned in a training set (which includes 85% of the available
entries) and a test set (including the remaining 15%). The data belonging to the
training set are clustered and sanitized via our proposed method, thus obtaining
the sanitized database X ′. We consider a sampling rate β equal to 0.1% or larger,
resulting in a surviving data set of about 400,000 flows, before the suppression of
small clusters. This is consistent with the work by Tariq et al. [21], which considers
a subsample of 100,000 flows. We expect that our approach is less effective than
Tariq et al. because elimination of small clusters is data-dependent and because we
make decisions for each ISP-client pair, instead of just per-ISP. Numerical results
in the next section show that, in order to obtain results close to the baseline, we
need at a sampling rate β at least 1%.

6.2 Results

We first assess a benchmark performance of the proposed NN violation detec-
tion mechanism by applying it to the full measurement dataset, without previous
sanitization. Results obtained for this scenario are reported as “baseline”in the
following Figures. The obtained precision, computed as the ratio of the correct
NN violation detections to the total number of detections, depends on the type
of service: it reaches 58% for the file download services, whereas it is only 29%
for the video streaming service. The recall, defined as the ratio of the number of
detections to the total number of violations, exceeds 99% for the file downloading
service but only reaches 55% for the video streaming service. This is motivated
by the fact that the latter service includes heterogeneous video contents charac-
terized by different resolutions, and that the streaming speed also depends on the
receiver device. Other confound variables, not available in the Measuring Broad-
band America dataset, should therefore be considered in order to increase the
probability of correct detection for the video streaming service. Note also that the
above reported results, which may appear unsatisfactory, are obtained considering
a single query, whereas real implementations of the detection mechanism should
consider multiple queries over a suitably long time period, to ensure statistical
significance. However, the choice of the observation interval and of the number of
queries is out of the scope of this paper.

We then apply our proposed NN violation detection mechanism after per-
forming database sanitization: the precision obtained for different values of the
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Fig. 7 Precision versus the sanitization parameters for the video streaming service
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Fig. 8 Recall versus the sanitization parameters for the downloading service
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Fig. 9 Recall versus the sanitization parameters for the video streaming service

sanitization parameters β and k is plotted in Figures 6 (for file downloading) and
7 (for video streaming) and compared to the baseline results. The Figures show
that precision increases when the sampling parameter β grows and the cluster size
k diminishes: precision is heavily reduced when β ≤ 0.1% but closely approaches
the baseline values when β ≥ 10%, for all the considered values of k.

Conversely, recall results for different values of the sanitization parameters β
and k are reported in Figures 8 and 9, respectively for the file downloading and
video streaming services. In both cases, the trend is analogous to that of precision.
We conclude that values of β between 1%− 10% and values of k around 30 ensure
the best tradeoff between accuracy of NN violation identifications (in terms of
precision and recall) and privacy bounds (in terms of ε and δ).

It is worth noting that, in our experiment design, we arbitrarily assume that
the violation detection check always returns a negative outcome to queries for
measurements belonging to suppressed clusters. A different choice would have lead
to worse results in terms of precision, especially when β is small or k is large (i.e.,
when the number of suppressed clusters is large).

7 Conclusion

We describe an algorithm for the crowdsourced detection of possible net neutrality
violations and a protocol to collect the necessary data. The protocol applies cryp-
tographic encryption to prevent the server from obtaining per-user measurements
and applies data sanitization to protect sensitive data of users exploiting such a
system.

We formally prove that data independent generalization, subsampling, and sup-
pression of small clusters, make it possible to achieve privacy under the differential
privacy model.

We evaluate the tradeoff between effectiveness of the detection algorithm and
the achieved privacy level by using a large dataset of measurements of broadband
traffic by home users. A little data subsampling along with the elimination of very
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small clusters is capable of providing minimal accuracy loss and, at the same time,
provide a good degree of privacy.

Appendix: Proof of Theorem 1

Let Ni be the number of tuples of X belonging to the same cluster i to which xr
belongs. We assume that these tuples are drawn from an unknown distribution
with probability density function fγi(x). Let Y and Z be the number of tuples
selected by the sampling algorithm over the databases X and X\xr. Clearly Y and
Z are drawn from a binomial distribution with parameters (Ni, β) and (Ni − 1, β)
respectively. Let y1, . . . , yY be the tuples sampled from X and z1, . . . , zZ be the
tuples sampled from X\xr.

We distinguish three different cases:

1. if Y < k and Z < k, then the cluster is removed from both databases X and
X\xr;

2. if Y ≥ k and Z ≥ k, then no cluster is removed;
3. otherwise, the cluster is removed only in one database, either in X or in X\xr.

Case 1. The cluster is removed from both databases Then A(q,X) = A(q,X\xr) = 0
and inequality (1) is always true.

Case 2. No cluster is removed We first prove the case with b = 0; the case with
b = 1 is similar. We have that A(q,X) = 0 and A(q,X\xr) = 0 if and only if

−σ < 1

Y

Y∑
j=k

yj − q < σ ∀q

−σ < 1

Z

Z∑
j=k

zj − q < σ ∀q

Let SNi be the mean of independent random variables with probability density
function fγi(x) sampled with probability β from a population of Ni. Let fSNi (x)
be its probability density function and FSNi (x) be its cumulative distribution
function. We have:

e−ε ≤

∫ q+σ
q−σ fSNi (x)dx∫ q+σ
q−σ fSNi−1

(x)dx
≤ eε ∀q (5)

First, we consider the right inequality of (5), for which we have:

FSNi (q + σ)− FSNi (q − σ)− eεFSNi−1
(q + σ) + eεFSNi−1

(q − σ) ≤ 0 (6)

Let φγi(ω) be the characteristic function of X’s tuples and φSNi (ω) be the
characteristic function of SNi . The latter can be written as:

φSNi (ω) =
Y∑
j=k

[
φγi

(
ω

j

)]j (
Ni
j

)
βj(1− β)Ni−j
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Equation (6) can be rewritten as:

1

2π

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

[
φSNi (ω)− eεφSNi−1

(ω)
]
dω ≤ 0 (7)

Note that we can write:

φSNi (ω)− eεφSNi−1
(ω) = βNiφγi

(
ω

Ni

)Ni
+

Ni−1∑
j=k

φγi

(
ω

j

)j
βj(1− β)Ni−1−j

(
Ni − 1

j

)[
Ni(1− β)

Ni − j
− eε

]
(8)

Substituting (8) into (7), we obtain:

1

2π

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

[
βNiφγi

(
ω

Ni

)Ni
+

Ni−1∑
j=k

φγi

(
ω

j

)j
βj(1− β)Ni−1−j

(
Ni − 1

j

)[
Ni(1− β)

Ni − j
− eε

] ]
dω ≤ 0 (9)

1

2π

{∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω
βNiφγi

(
ω

Ni

)Ni
dω +

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

Ni−1∑
j=k

φγi

(
ω

j

)j
βj(1− β)Ni−1−j ·

(
Ni − 1

j

)[
Ni(1− β)

Ni − j
− eε

]
dω

}
≤ 0 (10)

We set K = 1
2π

∫∞
−∞

e−j(q+σ)ω−e−j(q−σ)ω

jω βNiφγi

(
ω
Ni

)Ni
dω that is always posi-

tive. Then, for the purposes of the inequality less or equal to zero, the last case
j = Ni − 1 of the summation gives the most significant contribution with respect
to the previous terms, which assume lower values.
We can therefore simplify (10) as:

(Ni − 1)
1

2π

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω
βNi−1φγi

(
ω

Ni − 1

)Ni−1

·[
Ni(1− β)− eε

]
dω ≤ −K (11)

We set then the constant K′ as:

K′ = K
(Ni−1)

2π

∫∞
−∞

e−j(q−σ)ω−e−j(q+σ)ω

jω βNi−1φγi

(
ω

Ni−1

)Ni−1

dω

=
β
∫∞
−∞

e−j(q−σ)ω−e−j(q+σ)ω

jω φγi

(
ω
Ni

)Ni
dω

(Ni − 1)
∫∞
−∞

e−j(q−σ)ω−e−j(q+σ)ω

jω φγi

(
ω

Ni−1

)Ni−1

dω

(12)
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So we can obtain the new equation:

eε ≥ Ni(1− β) +K′ ∀ Ni ≥ k (13)

Second, we consider the left inequality of (5), for which we have:

FSNi (q + σ)− FSNi (q − σ)− e−εFSNi−1
(q + σ) + e−εFSNi−1

(q − σ) ≥ 0 (14)

Following the same steps as before, we get:

1

2π

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

[
φSNi (ω)− e−εφSNi−1

(ω)
]
dω ≥ 0 (15)

1

2π

∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

[
βNiφγi

(
ω

Ni

)Ni
+

Ni−1∑
j=k

φγi

(
ω

j

)j
βj(1− β)Ni−1−j

(
Ni − 1

j

)(
Ni(1− β)

Ni − j
− e−ε

)]
dω ≥ 0 (16)

Keeping constants K and K′ as in (12), we obtain:

e−ε ≤ Ni(1− β) +K′ ∀ Ni ≥ k (17)

From (13) and (17) we can finally obtain the ε bounds:

ε ≥ log
(
Ni(1− β) +K′

)
∀Ni ≥ k (18)

ε ≥ − log
(
Ni(1− β) +K′

)
∀Ni ≥ k (19)

The first bound is stricter than the second one, which can be ignored.

Case 3. The cluster is removed only in one database Reminding that the system is
set up to respond False (0) if it is impossible to find the cluster to which the
measure under review belongs, if b = 0 the proof is the same of Case 1.

Instead, the proof is more elaborated when b = 1, i.e., if:

1

Y

Y∑
j=k

yj − q > σ or
1

Y

Y∑
j=k

yj − q < −σ

1

Z

Z∑
j=k

zj − q > σ or
1

Z

Z∑
j=k

zj − q < −σ

In case the cluster is removed in only one of the two databases, we can have either∫ q+σ
q−σ fSNi (x)dx = 1 or

∫ q+σ
q−σ fSNi−1

(x)dx = 1, because the output of the algorithm
will always be False. This results in:

e−ε ≤ 1

1−
∫ q+σ
q−σ fSNi−1

(x)dx
≤ eε

e−ε ≤
1−

∫ q+σ
q−σ fSNi (x)dx

1
≤ eε
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In this scenario the ε-differential privacy cannot be satisfied. It is possible to relax
the privacy definition assuming that with a small probability δ the inequality (1)
can be violated.
The (ε, δ)-differential privacy may be satisfied with the same ε calculated in the
previous cases and with a small value of δ that reflects the probability of dropping
a cluster in one of the two databases, X or X\xr, given the response True.
The probability of dropping a cluster of size Ni is the binomial probability of
taking at most k elements over Ni:

FBi(Ni, β, k) =
k∑
j=0

(
Ni
j

)
βj(1− β)Ni−j

Since the probability of dropping a cluster only in one database and the probability
of getting output True are independent, we can define δ as:

δ = Pr{Y ≥ k, Z < k}+ Pr{Y < k,Z ≥ k} =[
1−

k−1∑
l=0

(
Ni
l

)
βl(1− β)Ni−l

]
k−1∑
j=0

(
Ni − 1

j

)
βj(1− β)Ni−1−j +

k−1∑
l=0

(
Ni
l

)
βl(1− β)Ni−l

1−
k−1∑
j=0

(
Ni − 1

j

)
βj(1− β)Ni−1−j

 =

[1− FBi(Ni, β, k − 1)]FBi(Ni − 1, β, k − 1)+

FBi(Ni, β, k − 1)[1− FBi(Ni − 1, β, k − 1) (20)

References

1. Akamai: Real user monitoring. www.akamai.com/uk/en/resources/real-user-
monitoring.jsp

2. Anjum, A., Anjum, A.: Differentially private k-anonymity. In: Frontiers of Information
Technology (FIT), 2014 12th International Conference on, pp. 153–158 (2014). DOI
10.1109/FIT.2014.37

3. Antonopoulos, A., Kartsakli, E., Perillo, C., Verikoukis, C.: Shedding light on the internet:
Stakeholders and network neutrality. IEEE Communications Magazine 55(7), 216–223
(2017)

4. Botta, A., Avallone, A., Garofalo, M., Ventre, G.: Internet streaming and network neu-
trality: Comparing the performance of video hosting services. In: ICISSP, pp. 514–521
(2016)

5. De Martin, J.C., Glorioso, A.: The neubot project: A collaborative approach to measuring
internet neutrality. In: 2008 IEEE International Symposium on Technology and Society,
pp. 1–4. IEEE (2008)

6. Dischinger, M., Marcon, M., Guha, S., Gummadi, P.K., Mahajan, R., Saroiu, S.: Glasnost:
Enabling end users to detect traffic differentiation. In: NSDI, pp. 405–418 (2010)

7. Dwork, C.: Differential privacy. In: Automata, languages and programming, pp. 1–12.
Springer (2006)

8. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science 9(3-4), 211–407 (2014)

9. FCC: Validated data – Measuring broadband America 2014.
www.fcc.gov/general/validated-data-measuring-broadband-america-2014 (2014)

10. FCC: Open internet. https://www.fcc.gov/general/open-internet (2015)
11. Garrett, T., Dustdar, S., Bona, L.C., Duarte, E.P.: Ensuring network neutrality for fu-

ture distributed systems. In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on, pp. 1780–1786. IEEE (2017)



Title Suppressed Due to Excessive Length 21

12. Kanuparthy, P., Dovrolis, C.: Diffprobe: detecting isp service discrimination. In: INFO-
COM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

13. Kasiviswanathan, S.P., Smith, A.: A note on differential privacy: Defining resistance to
arbitrary side information. CoRR abs/0803.3946 (2008)

14. Li, N., Qardaji, W.H., Su, D.: Provably private data anonymization: Or, k-anonymity
meets differential privacy. Arxiv preprint (2011)

15. Maltinsky, A., Giladi, R., Shavitt, Y.: On network neutrality measurements. ACM Trans.
Intell. Syst. Technol. 8(4), 56:1–56:22 (2017)

16. Miorandi, D., Carreras, I., Gregori, E., Graham, I., Stewart, J.: Measuring net neutrality
in mobile internet: Towards a crowdsensing-based citizen observatory. In: 2013 IEEE
International Conference on Communications Workshops (ICC), pp. 199–203 (2013). DOI
10.1109/ICCW.2013.6649228

17. Misurainternet. Il progetto italiano per la valutazione della qualità dell’accesso a internet
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