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ABSTRACT

Orthology detection is an important task within the context of genome an-
notation, gene nomenclature, and the understanding of gene evolution. With
the rapidly accelerating pace at which new genomes become available, highly
efficient methods are urgently required. As demonstrated in a large body of
literature, reciprocal best match (RBH) methods are reasonably accurate and
scale to large data sets. Nevertheless, they are far from perfect and prone to
both, false positive and false negative, orthology calls.
This work gives a complete characterization of best match as well as reciprocal
best match graphs (BMGs and RBMGs) that arise at the first step of RBH
methods. While BMGs as well as RBMGs with at most three species can be
recognized in polynomial time, RBMGs with more than three species have a
surprisingly complicated structure and it remains an open problem whether
there exist polynomial time algorithms for the recognition of these RBMGs.
In contrast to RBMGs, for which many (often mutually inconsistent) least re-
solved trees may exist, there is a unique least resolved tree for BMGs. This
tree is a homeomorphic image of the true, but typically unknown, gene tree.
Furthermore, in the absence of horizontal gene transfer (HGT), the reciprocal
best match graph contains the orthology relation suggesting that RBMGs can
only contain false positive but no false negative orthology assignments. Simu-
lation scenarios reveal that so-called good quartets, a certain graph pattern on
four vertices in BMGs, can be used to successfully identify almost all false pos-
itive edges in RBMGs. Together with the existence of a unique least resolved
tree, this suggests that BMGs contain a lot of valuable information for orthol-
ogy inference that would be lost by exclusively considering RBMGs. These
insights motivate to include additional BMG and RBMG editing steps in or-
thology detection pipelines based on the presented theoretical insights.
Moreover, a workflow is introduced to infer best matches from sequence data by
retrieving quartet structures from local information instead of reconstructing
the whole gene tree. A crucial prerequisite for this pipeline is the choice of
suitable outgroups.
However, the empirical simulations also reveal that HGT events cause strong
deviations of the orthology relation from the RBMG as well as good quartets
that are no longer associated with false positive orthologs, suggesting the need
for further investigation of the xenology relation.
The directed Fitch’s xenology relation is characterized in terms of forbidden
3-vertex subgraphs and moreover, a polynomial time algorithm for the recog-
nition and the reconstruction of a unique least resolved tree is presented. The
undirected Fitch relation, in contrast, is shown to be a complete multipartite
graph, which does not provide any interesting phylogenetic information.
In summary, the results of this work can be used to develop new methods for
inferring orthology, paralogy, and HGT. They promise major improvements in
the accuracy and the computational performance of RBH-based approaches.
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1
PREFACE

“Nothing in biology makes sense except in the light of evolution.”

This statement by Theodosius Dobzhansky from the early 1970s [51] is one of
the most famous citations in the field of evolutionary biology and embodies the
continuously growing relevance of this field. Losos et al. [152] even claim that
"the next 20 years hold the promise of a golden age for evolutionary biology."
Indeed, as explicitly stated, evolutionary concepts and analyses play a central
role in the four broad challenges for biology identified by the 2009 report A New
Biology for the 21st Century commissioned by the National Research Council
of the National Academies [39]. These four challenges are the development
of sustainably growing plants for efficient food production, understanding and
sustaining ecosystems and biodiversity, the expansion of renewable energies,
and understanding individual’s health.
Phylogenetics is a subfield of evolutionary biology that studies the evolution-

ary relationships and history of biological entities, mainly individuals or groups
of organisms such as populations or species, by comparison of specific heritable
traits. These relationships are typically represented by phylogenetic trees or
networks. Besides some fossil records, however, there is a lack of knowledge
about the past and in particular about extinct species, hence phylogenetics can
infer hypotheses about evolutionary history from extant species only [168].
In early phylogenetics, evolutionary relationships have been mainly deduced

from morphological and physiological traits. This approach succeeded in in-
ferring the major facets of evolutionary history, however, due to the complex-
ity of such traits, often failed in disentangling the details, e.g. on a level of
evolutionary relationship between closely related species [168]. At that time
phylogenetics has been almost exclusively used in systematics and taxonomy
[234]. Nowadays phylogenetics is present in almost every branch of biology
with applications ranging from disentangling evolutionary history of gene fami-
lies, species, or populations [186, 195], analyzing and decelerating the evolution
of antibiotic resistance [11, 180] to language evolution [67, 192]. Moreover, with
the rapidly increasing amount of available genomic data, whose collection be-
comes continuously cheaper and easier due to technological advances, molecular
phylogenetics has become indispensable for comparative genomics, e.g. for the
identification of genes, non-coding RNAs or other regulatory elements in newly
sequences genomes [127, 181], the prediction of structure-function relationship
[223], or the reconstruction of ancestral genomes [166].

While species in molecular phylogenetics are characterized by their genome,
i.e., their complete set of DNA or RNA, a gene is considered as a part of the
genome at a certain position. This might for instance be a protein coding region,
a region of non-coding RNA, or a regulatory region such as a promotor or an
enhancer. Genes from distinct species that share the same ancestry, i.e., have
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emanated from a common origin, form a gene family and are called homologs
[64].
The underlying idea of evolutionary theory is the existence of one origin of

life, i.e., all organisms have emerged from one common ancestor [43]. Although
the genetic variation of today’s living organisms has been caused by many mech-
anisms such as different types of mutations, genome rearrangements, and gene
exchange [146], phylogenetic approaches are mainly concerned with four evolu-
tionary events:
(i) Speciation: divergence of a species into two or more descendant species,
(ii) Gene duplication: a genomic region is copied within the genome,
(iii) Horizontal gene transfer : exchange of genetic material among co-existing
species,
(iv) Gene loss: extinction of a gene.
Two homologous genes are called orthologs if their last common ancestor was a
speciation event. Likewise, if two genes have evolved from a gene duplication
or if horizontal gene transfer occurred, they are called paralogs and xenologs,
respectively [66]. A formal definition of this terminology as well as a mathe-
matical formulation of these concepts in terms of binary relations will be given
in Chapters 2, 6, and 8, respectively.
The evolutionary history of a set of species is considered as a process starting

from the common origin of these species, where genetic material is transferred
from one generation to the next and mutations accumulate over time in the
genome. These mutations increase the genetic variation between different pop-
ulations of a species and eventually lead to species divergence [146]. This results
in a tree-like evolution of species. The evolution of genes clearly follows the
evolution of the corresponding species, i.e., the gene tree can be embedded into
the species tree. More precisely, such an embedding corresponds to a map-
ping between gene and species tree, a so-called reconciliation map or simply
reconciliation (see Chapter 2 for a formal definition).

Providing the theoretical framework and developing algorithms for disentan-
gling and analyzing the evolutionary history of genes and species is the task
of mathematical phylogenetics. The main focus here lies on the reconstruction
of gene and species trees, and a reconciliation between those as well as on the
inference of orthology, paralogy, and xenology events.
The first step of phylogenomic studies that are concerned with the reconcili-

ation of gene and species tree, is typically the reconstruction of a species tree.
Since gene and species trees need not necessarily to be congruent due to gene
duplication coupled with loss or horizontal gene transfer, the reconstruction
of species trees is based on orthologous genes, i.e., gene families that are sus-
pected to contain paralogs or xenologs are excluded from the analysis. Trees
for the single gene trees are then build in the next step and reconciled with the
species tree in order to infer orthology, paralogy, and xenology [153, 194]. As
a by-product, one obtains the assignment of evolutionary events to the inner
nodes of the gene tree. Note in this context that gene loss cannot be directly
inferred from extant genes. There exist approaches to infer gene loss indirectly,
however, most of them being parsimonious [77, 153] (see also Section 2.3). Al-
though having been widely neglected as an evolutionary force in the past, the
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increasing amount of genomic data suggests that gene loss plays an important
role in evolution [5, 121].
This work is a contribution to a second class of more recently developed

methods that first estimate orthology, paralogy, and xenology relations directly
from genomic data and then, in a second step, infer a gene tree, a species trees
as well as a reconciliation map between them from those estimated relations. In
this context, the evolutionary relationships are translated into the mathemat-
ical concept of a graph. Based on the fact that two orthologous genes form a
pair of reciprocally most closely related genes, estimates for orthology are typ-
ically obtained from pairwise sequence comparison by so-called best matches
and reciprocal best matches. Extensive benchmarking has shown that methods
based on (reciprocal) best matches perform at least as well as the classical tree
reconciliation approaches [10, 169]. However, such best match methods are
far from perfect. Besides errors in the initial (reciprocal) best matches, false
orthology assignments can, for instance, be caused by large differences in the
evolutionary rate between paralogs [68]. This raises the question:
What is the mathematical structure of best match graphs and reciprocal best
match graphs and how much information on the gene tree is contained in these
relations?
Before using these insights about the structure of (reciprocal) best match graphs
for correcting the initial erroneous estimates, we need to answer the next ques-
tions:
How are (reciprocal) best match graphs related to the orthology relation and to
what extend can the orthology relation be inferred from those graphs? How can
best match estimates be retrieved from sequence data?
As we shall see, the correct inference of orthology and paralogy as well as the
editing of the initial estimates highly depends on whether horizontal gene trans-
fer is present or not, it is crucial to understand horizontal gene transfer and the
so-called Fitch’s Xenology Relation (see Chapter 3) in more detail, which begs
the question:
What is the mathematical structure of the xenology relation? How much infor-
mation on the gene tree and the position of horizontal transfer events within
the gene tree is contained in the xenology relation? How can this information
be efficiently extracted from the xenology relation?

These questions are answered in this work by developing mathematical char-
acterizations for these binary relations and giving algorithms for the recognition
of these relations as well as for the reconstruction of a corresponding tree that
represents a given relation. Moreover, simulation results are presented to an-
swer the questions about the relationship between reciprocal best match graphs
and the orthology relation.

structure of this thesis

Chapter 2 formally introduces the concepts of homology, orthology, paralogy,
and xenology, and gives an overview of well-known results about the orthology
relation. In particular, it is discussed how evolutionary events can be inferred
from sequence data. State-of-the-art methods for both approaches, i.e., either
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the direct tree-based approach or the indirect graph-based approach are pre-
sented. Basic definitions and some well-known results used in this work are
given in Chapter 3.
Mathematical characterizations of the best match relation and the reciprocal
best match relation are developed in Chapters 4 and 5, respectively. Further-
more, recognition algorithms for these relations as well as reconstruction al-
gorithms for the corresponding tree representations are given. Chapter 5, in
addition, discusses in detail one class of reciprocal best match graphs that has
the structure of an orthology relation. Chapter 6 then connects (reciprocal)
best match graphs to the reconciliation of gene and species tree. Apart from
theoretical findings, this chapter also presents simulation results which show
to what extend the theoretical insights can be used to infer the correct orthol-
ogy relation. The question how and under what conditions best matches can
be correctly inferred from data is tackled in Chapter 7. Finally, the horizon-
tal gene transfer relation is treated in Chapter 8, which gives a mathematical
characterization as well as recognition and tree reconstruction algorithms.
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2
INTRODUCTION

Phylogenetics makes hypotheses about the evolutionary history of biological
entities, such as genes and species, by reconstructing a phylogenetic tree (or
network) that represents the evolutionary history of a subset of genes from a
gene family or a set of species starting from a common ancestor. While the
evolution of gene families is usually assumed to be tree-like, species may also
evolve along a phylogenetic network, which reflects scenarios such as hybridiza-
tion between species [156]. In this thesis, we consider the simplified model of a
tree-like species evolution. We refer to [114] for a detailed survey on phyloge-
netic networks and their inference from sequence data.
The evolution of a set of genes from a common gene family is represented by

a so-called gene tree. The leaves of such a gene tree correspond to the extant
genes, i.e., genes that reside within extant species, while inner vertices of the
tree refer to genes from ancestral species. The root of the gene tree represents
the common origin of all genes under consideration. Note in this context that
many tree inference methods reconstruct unrooted trees, reflecting the fact that
the common origin of a set of homologous genes cannot always be identified with
certainty [146]. The focus of this work, however, lies on rooted trees.

The evolutionary history of a particular extant gene x starting at the common
origin of the gene family under consideration is given by a sequence of divergence
events, more precisely by the unique path from the root of the gene tree to the
leaf x, which consists of a sequence of speciation, duplication, and HGT events.
The progenitor genes along this path are called ancestors of x, whereas x is a
descendant of each its ancestors. More general, a gene y is a direct descendant
of some gene z if any other ancestor of y is also an ancestor of z. Moreover, a
gene y is called a common ancestor of two genes x1 and x2 if y is an ancestor
of both x1 and x2. In particular, y is the last common ancestor of x1 and x2,
denoted by lca(x1,x2), if any other common ancestor of x1 and x2 is likewise an
ancestor of y. The term of the last common ancestor is sometimes also denoted
as most recent common ancestor or lowest common ancestor in the literature.

Similarly to gene trees, the leaves of species trees represent extant species
while inner nodes refer to speciation events, i.e., the divergence of an ancestral
species into two or more descendant species. The length of an edge from some
node x to its descendant y is often interpreted as the life time of the ancestral
species x. In this work, however, we are not primarily interested in specific
branch lengths but mainly restrict our attention to tree topologies.
Furthermore, this thesis is mainly concerned with the reconstruction of gene
trees.
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2.1 homology, orthology, paralogy, and xenology

A group of genes is called homologous if they all share the same ancestry. The
genomic sequences of such genes are often similar to some extent. However,
neither sequence similarity nor functional similarity shall be confused with ho-
mology since both can also be the result of convergent evolution, i.e., the inde-
pendent evolution of similar traits of lineages that have separate evolutionary
origins. In order to account for those differences, Walter M. Fitch in 1970 dis-
tinguished between homology and analogy [64]. He further refined the concept
of homology by subdividing it into orthology and paralogy [64]:

“Where the homology is the result of gene duplication so that both
copies have descended side by side during the history of an organism,
(for example, alpha and beta hemoglobin) the genes should be called
paralogous (para = in parallel). Where the homology is the result
of speciation so that the history of the gene reflects the history of
the species (for example alpha hemoglobin in man and mouse) the
genes should be called orthologous (ortho = exact).”

Although this distinction between orthology and paralogy in terms of evolu-
tionary history is clear and concise, this terminology as well as its proper usage
and its relation to gene function have been intensely debated at the turn of the
millennium [184, 130, 76]. Over the last two decades, however, a strict phylo-
genetic definition seems to have prevailed: Homology, orthology, and paralogy
are clearly and precisely defined by the common evolutionary history of a set
of genes. In a collection of genomes, a gene family consists of all genes that
have evolved from one common ancestor.
This work uses Fitch’s definition, more precisely:

Definition 2.1. Two genes x and y are called homologs if they have evolved
from a common ancestral gene.
They are called orthologs if they have evolved from their last common ancestor
by a speciation event, and paralogs if they have evolved from their last common
ancestor by a duplication event.

In the context of event-labeled gene trees, this means that the last common
ancestor of two orthologous or paralogous genes is labeled as a "speciation" or
"duplication", respectively. Fig. 1 shows an example of a gene family comprising
the genes a1, a2, a3, b1, b2, and c from three distinct species A, B, and C. Gene c
from species C is, for instance, orthologous to any other gene in this gene family.
Gene a1 from species A, on the other hand, is orthologous to gene b2 but not
to b1 from species B. The pair of genes a1 and b1 as well as the pair a1 and a2
are paralogs.
Note that homology as well as orthology and paralogy are symmetric and

irreflexive relations. In contrast to homology, however, which is clearly a transi-
tive relation, orthology and paralogy are non-transitive. In Fig. 1, for instance,
a1 and b2 are both orthologous to c but paralogous to each other. In this work,
orthology and paralogy will therefore be considered as binary relations.
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x x

A B C

Fig. 1. The evolution-
ary history of a gene fam-
ily comprising genes of
the three species A, B,
and C. The event-labeled
gene tree is embedded in
the tube-like species tree.
The gene tree contains
speciations ( ), duplica-
tions (�), HGT events
(4), and gene losses (×).

In addition, Sonnhammer and Koonin [210] further distinguish between par-
alogous genes emerging from lineage-specific or ancestral duplications (with re-
spect to a specific speciation event), which they call in-paralogs and out-paralogs,
respectively. In our example, a1 and b2 are out-paralogs w.r.t. the speciation
event separating the species A and B and in-paralogs w.r.t. the speciation event
separating C from A and B. Moreover, Sonnhammer and Koonin [210] denote
two in-paralogs that are orthologous to the same gene as co-orthologs. Genes
a1 and a2 are, for instance, co-orthologs of gene c in Fig. 1.
Although the notion of homology avoids any reference to functional similar-

ity of genes, orthologous genes usually have equivalent functions in the corre-
sponding organisms [131]. More strictly, the relationship of orthology and gene
function is asymmetric, i.e., one cannot deduce orthology from similar function
while the reverse implication is in most cases true. One-to-one orthologs, in
particular, show functional equivalence more often than not [204]. In contrast,
the functions of two paralogous genes are, albeit often related, clearly distinct
from each other [115, 8, 214] (see also [167]). This is explained by the fact
that redundant copies are not stable under mutational pressure. They need to
diverge in function either by subfunctionalization or neofunctionalization [68],
otherwise one copy will rapidly become dysfunctional and eventually be erased.
Gene duplication, which may be caused for instance by unequal crossover or
whole chromosome/genome duplication during reproduction, is known as a ma-
jor force for evolution [230, 186, 176].
In addition to speciation and duplication events, the history of a gene family

may also involve horizontal (also called lateral) gene transfer (HGT), which is
assumed to play an important role not only in prokaryotic [132] but also in eu-
karyotic evolution [125]. During an HGT event, genetic material is transferred
between different species by means other than the “vertical” transmission from
parent to offspring during reproduction. The result is a horizontally transferred
copy and an original that continues to be vertically transferred. In contrast to
speciation and gene duplication, horizontal transfer is thus inherently asym-
metric. Horizontal gene transfer is captured by the concept of xenology. In
contrast to orthology and paralogy, the formal definition of xenology is much
less consistent in the biological literature. The most commonly used definition
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was introduced by Walter M. Fitch in 2000 who calls two genes xenologs if at
least one horizontal gene transfer event occured along the evolutionary history
since their last common ancestor [66, 120]. More formally:

Definition 2.2. A gene x is called xenologous to gene y if genetic material
has been horizontally transferred between species along the evolutionary history
of x since the last common ancestor of x and y. The genes x and y are called
xenologs if either x is xenologous to y or y is xenologous to x.

In Fig. 1, for instance, gene a3 is xenologous to any other gene in this gene
family.
More often then not, trees that have been inferred from sets of genes consist-

ing of both orthologs and paralogs are inconsistent with the true species tree.
Since the evolution of orthologs is at least roughly clock-like, i.e., the evolution
rate is at least approximately constant [204], and is thus assumed to reflect
the evolution of the species tree, molecular phylogenetics strives to exclude
paralogs from the analysis and exclusively restrict its attention to one-to-one
orthologs. Correct orthology assignment lies at the heart of genome annotation,
functional annotation and gene nomenclature. Moreover, orthologs are often
used as anchors for chromosome alignments, which form the basis for synteny-
based methods [209], such as forward genomics, a computational strategy that
identifies gene loss by associating specific genomic regions with lost phenotypes
[107]. A high-quality data set of orthologs is also an important prerequisite for
the reconstruction of ancestral proteomes.
In the presence of HGT events, different parts of the genome have distinct

evolutionary histories which significantly complicates the inference of evolu-
tionary relatedness in many cases. Several methods have been devised that use
sequence features to detect HGT events [142, 50, 190, 188] (see also Section 2.6).
However, their is a strong tendency for different methods to infer different HGT
events.
One of the major problems in orthology detection is the identification of

orthologous genes among a set of genes comprising all sorts of homologous
genes, including paralogs and xenologs. A huge variety of orthology inference
methods has been developed, which mainly fall into two distinct classes: tree-
based and graph-based methods (see [134] for a detailed survey). This work is
concernced with a new graph-based approach.

2.2 the mathematics of orthology

Somewhat surprisingly, orthology, paralogy, and xenology have only recently
moved into the focus of a systematic formal, i.e., mathematical, analysis. As a
consequence, the problem of estimating orthology directly from (dis-)similarity
data is still not completely understood, although several research groups have
made significant progress (see e.g. [105, 97, 98, 74]). The seminal work on
“symmetric dating maps” and “symbolic ultrametrics” [21] served as the starting
point.
Orthology and paralogy are uniquely determined by (i) a gene tree reflect-

ing the evolutionary history of the gene family under consideration, (ii) the
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species tree of the corresponding set of species, and (iii) the mutual relation,
i.e., the reconciliation, of these two trees. The reconciliation maps the vertices
of the gene tree to the vertices and edges of the species tree by preserving the
ancestor relation of the gene tree. In particular, vertices corresponding to a spe-
ciation event in the gene tree are associated with inner vertices of the species
tree, whereas vertices labeled by "duplication" of "horizontal gene transfer" are
mapped to the edges of the species tree. More formally, let T = (V (T ),E(T ))
with leaf set L(T ) and root 0T , and S = (V (S),E(S)) with leaf set L(S) and
root 0S be the gene and species tree, respectively, where both trees are planted
phylogenetic trees, i.e., their roots have degree 1 and any inner vertex has de-
gree at least 3. Moreover, the ancestor order of a tree T is given by x ≺T y

whenever the vertex y lies on the unique path from x to the root of T , where
x �T y if x = y or x ≺T y. Then, for a given surjective map σ : L(T ) → L(S)

that assigns to each gene the species in which it resides, the reconciliation from
(T ,σ) to S is a map µ : V (T )→ V (S)∪E(S) satisfying the following, natural
axioms [74]:

(R0) Root Constraint. µ(x) = 0S if and only if x = 0T .

(R1) Leaf Constraint. If x ∈ L(T ), then µ(x) = σ(x).

(R2) Ancestor Preservation. x ≺T y implies µ(x) �S µ(y).

(R3) Speciation Constraints. Suppose µ(x) ∈ V (S) \L(S).
(i) µ(x) = lcaS(µ(v′),µ(v′′)) for at least two distinct children v′, v′′ of

x in T .
(ii) µ(v′) and µ(v′′) are incomparable in S for any two distinct children

v′ and v′′ of x in T .

The embedding of a gene tree into a species tree in Fig. 1 serves as an example
of a reconciliation map. Note that there typically exist more than one possible
reconciliation for a given pair of gene and species trees. As will be shown later
in Section 6, the axiom system above is equivalent to another version, which has
been commonly used in the literature (see e.g. Górecki and Tiuryn [79], Vernot
et al. [227], Doyon et al. [57], Rusin et al. [194], Hellmuth [91], Nøjgaard et al.
[173], and the references therein). An extension of these axioms to reconciliation
scenarios containing HGT events can be found e.g. in [224, 18, 173, 74].
Key results obtained in this setting include the following:

• The orthology relation has the structure of a cograph [97, 95].

• A cograph is uniquely represented by its cotree T , that is, a phylogenetic
tree whose interior nodes are labeled by the type of event (speciation,
duplication). Hellmuth et al. [97] showed that the cotree is always a
homeomorphic image (i.e., a not necessarily fully resolved version) of the
gene tree.

• The cograph property remains intact in the presence of horizontal transfer
provided xenologous pairs are treated as neither orthologs nor paralogous
[100], i.e., there exists an event-labeled gene tree for an estimated event-
labeled relation if and only if this relation is a directed cograph.
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• The (possibly incompletely resolved) event-labeled gene trees also imply,
in the absence of HGT, a complete characterization of the possible species
trees with which they can be reconciled [105, 91].

• In the presence of HGT, event-labeled gene trees imply at least necessary
conditions on the structure of possible species trees [91]. With HGT, time-
consistency must be ensured, i.e., no sequence of HGT events can give
raise to a directed cycle in the reconciled tree. First attempts to handle
this issue, including some timing constraints, can be found in [31, 161,
57, 224]. A first characterization and algorithm for determining whether
a given pair of event-labeled gene and species tree can be reconciled in a
time-consistent way has been provided in [173].

It is important to note that there is a crucial distinction between un-
labeled and event-labeled gene trees: In the unlabeled case, the so-called
Last Common Ancestor (LCA) map, which maps any node u of the gene
tree T to the last common ancestral species of all its descendant genes, i.e.,
λ(u) := lcaS(σ(L(T (u)))), is always a valid reconciliation between any gene
tree T and any species tree S, as long as σ(L(T )) = L(S). The LCA map
can be computed in linear time [239]. In the event-labeled case, however, S
must display the set of species triples that is implied by gene triples from three
different species with a speciation event as their last common ancestor [105].
Hellmuth et al. [98] demonstrated that the constraints on the species tree are
sufficiently strong to infer a fully resolved phylogeny, e.g. the phylogeny of the
Aquificiales from an estimate of the orthology relations for the individual gene
families provided by ProteinOrtho [144].

2.3 direct inference of the reconciliation map

The reconciliation map and the event labeling do constrain each other. Since the
distinction of orthology and paralogy is defined in terms of the event labeling,
we see that orthology explicitly depends on the choice of the corresponding
reconciliation map. One can therefore rephrase the problem of orthology as-
signment as the task of approximating the true reconciliation map µ∗. In this
context, a systematic exploration of the space of possible reconciliations [55] is
of interest. A classical approach to estimate µ∗ starts from the observation that
the discordance between gene and species trees are complex histories of gene
duplications [179], typically combined with subsequent gene losses. It is natu-
ral then to search for a parsimonious explanation. This requires a cost model
for scoring the reconciliation maps. The most widely used cost models are the
duplication cost model, pioneered by Goodman et al. [77] and Page [178], and
the duplication-loss-cost (or mutation cost) model, first introduced by Guigo
et al. [85], that minimize the number of duplications, resp., the number of du-
plications and losses. While these costs can be computed in linear time using
the LCA mapping for a given pair of gene and species tree, the problem of
finding a species tree for a given family of gene trees is shown to be NP-hard
in both models [153]. There exist, however, local search heuristics [17, 229]
and more recently, even exact dynamic programming solutions [30, 217] have
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been developed. Moreover, variations of this model have been analyzed that
treat different types of input trees such as unrooted trees [81], non-binary trees
[140, 240], or even erroneous trees [78]. Despite its importance in practice, not
much is known about the mathematical properties of duplication cost mod-
els, but see [82] for recent advances. As an alternative, the loss cost model,
which penalizes the number of inferred gene loss events, has been proposed
in [32]. Yet another scoring scheme assumes that the incongruence between
gene and species tree is caused by incomplete lineage sorting (see for example
[154]), which implies the so-called reconciliation cost model. Complementing
the parsimony-based reconciliation methods, there exist also fully probabilistic
models of reconciliation using essentially equivalent cost models [13, 14, 80].

2.4 inference of the orthology relation

There exist two fundamentally different approaches ("tree-based" and "graph-
based") to estimate orthology from genomic sequence data.
The tree-based approach starts with a pair of gene and species tree and

then computes a reconciliation together with a corresponding event labeling,
from which an orthology relation can be inferred [204]. This indirect method
serves as basis for many algorithms and software tools [133, 207, 112, 1, 113].
Despite being often considered as more accurate than graph-based methods
[134], tree-based methods suffer from all the difficulties of large-scale phyloge-
netic inference, such as high computational complexity, strong dependency on
the accuracy of underlying multiple sequence alignments [222], and sensitiv-
ity to noise in the data due to, for instance, long-branch attraction [20, 175].
Moreover, many tree-based approaches depend on species trees, thus knowledge
about one-to-one orthologs to reconstruct the correct species tree is crucial for
the accuracy of those methods.
Apart from parsimonious reconciliation models, more recently developed

probabilistic models try to co-estimate gene tree, species tree, and reconcili-
ation maps [13, 4, 189, 238, 165], some of them also including horizontal gene
transfer [208]. However, these fully probabilistic approaches are computation-
ally highly complex, limiting their applicability to very large datasets.
The second approach is the one we are concerned with in this thesis. So-

called graph-based methods infer orthology relations directly from sequence
data without constructing gene or species trees in advance. Examples in-
clude COG Database [221], eggNOG [119], OrthoMCL-DB [33], OMA Browser [199],
InParanoid [19], OrthoDB [135], and KEGG [123], and ProteinOrtho/POFF
[144, 145]. Their common starting point are reciprocal best matches, also
known as symmetric best matches [220], bidirectional best hits (BBH) [177],
reciprocal best hits (RBH) [23], or reciprocal smallest distance (RSD) [228].
Usually estimated by a fast method for sequence comparison, the basic idea is
to capture pairs of genes a and b from species A and B, respectively, that are
evolutionarily most closely related. Since orthologs derive from a speciation
event, it is necessary for a and b to be orthologs that a is the closest relative
of b in A, and vice versa. We will return to this key point in more detail in
Section 2.5.
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Many orthology detection methods are based on this simple idea and mainly
differ in two important aspects: (i) best matches can be determined using differ-
ent (dis-)similarity measures (see Section 2.5 for further details), and (ii) recip-
rocal best matches can be assumed to be one-to-one or many-to-many. Many of
those methods summarize orthologous genes as clusters of orthologous groups
(COGs) [220]. However, as already noted in Section 2.1, the orthology relation
is in general non-transitive, thus COGs can only serve as an approximation for
the true orthology relation.
Within the original version of the OMA method [48], COGs are exclusively

extracted from stable pairs, that is estimated one-to-one orthologs, which are
represented as a graph G1−1. Since the one-to-one orthology relation is, by
construction, transitive, orthologous groups are expected to form cliques, that
is complete subgraphs, in G1−1. The true orthology relation thus contains the
COGs from OMA. Those are identified by first looking for maximal cliques and
then partitioning G1−1 into vertex disjoint cliques such that the number of
edges within these cliques is maximal (minimum edge clique partition problem)
[193, 204]. Both problems are in general NP-hard but become very easy if the
input graph corresponds to a mathematically correct orthology relation, i.e., a
cograph [71].

In other frameworks, including more recent versions of OMA [193], reciprocal
best matches are allowed to form many-to-many relations, thus orthologs and
paralogs can be included within the same COG [220]. The initial starting point
is a similarity graph built from all-against-all sequence comparisons that con-
tains an edge between two genes if and only if their sequence similarity exceeds
a pre-defined threshold. COGs are then extracted from this similarity graph
by a wide variety of clustering techniques. The resulting COGs heavily depend
on parameters which determine the trade-off between stringency and size of
those clusters. A wide variety of clustering strategies has been developed to
reconstruct COGs, which constitutes the main difference between the available
software tools. [204]
Several tools, such as InParanoid [191, 19] or OrthoMCL-DB [33], separately

identify recent in-paralogs by assuming that the distance between them must be
smaller than the distance between their corresponding species. Various types of
filters, such as synteny information in PoFF [145], or an extended clustering step
to detect in-paralogs as used in InParanoid, are applied to reduce potential
false positives.
While most of the older tools focused on groups of co-orthologs and con-

ceptually treated orthology identification as clustering algorithms (e.g. COG
Database, eggNOG, OMA), more recent implementations mostly focus on orthol-
ogy as a binary relation. These tools typically employ additional filters to detect
false positives among the initial orthology assignments. An example is a “wit-
nesses of paralogy”, that is, a third species in which both paralogs have survived
to resolve cases as in Fig. 2 [49]: If c1 and c2 are paralogs in species C and the
quartet ac1|bc2 is the only quartet that can be inferred from the additive evolu-
tionary distances, i.e., d(a, c1) + d(b, c2)� d(a, c2) + d(b, c1), d(a, b) + d(c1, c2)

for some candidate orthologs a in A and b ∈ B, then a and b must be paralogs.
Hence, the initially inserted edge ab corresponds to a false positive orthology as-
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Fig. 2. Left: Scenario of an undetectable paralogy, where only one paralog of an an-
cient duplication survived in species A and B, respectively. By only comparing species
A and B, there is no evidence for duplication or gene loss events, hence reciprocal
best hit methods erroneously identify the genes a of species A and b of species B as
potential orthologs.
Right: Both paralogs of the ancient duplication survived in a third species C. Including
C in the analysis yields an orthology relation that is not a cograph and must thus be
edited. In this case, the induced P4 (shown in the middle) can be edited to the cograph
K2 ∪· K2 by deletion of the false positive orthology edge between a and b.

signment and can thus be removed [204]. One of the first tools which is based on
this quartet-based approach for distinguishing between orthologs and paralogs
is QuartetS-DB [236, 237]. A similar approach for evaluating and improving
orthology predictions that relies on phylogenetic distance ratios between three
species, is addressed by the tool Ortholuge [69, 231]. Reviews and benchmarks
of different graph-based orthology detection methods support the efficiency of
best match based approaches [134, 169, 6]. Recently, a web-based service for
standardized orthology benchmarking has been developed [10].
As a consequence of non-clock-like rates of evolution, discrepancies between

specific sequence-based distance measurements and evolutionary divergence
times, and noise in the data, both false positive and false negative orthology
assignments are unavoidable in practice [144, 7, 9, 139, 52, 141, 53, 54]. Empir-
ically determined orthology relations thus usually violate the cograph property.
Cographs, however, are a highly restricted class of graphs. Enforcing the co-
graph property therefore provides a very efficient means of noise reduction [98].
The cograph editing problem has been shown to be NP-hard [149, 150], how-
ever it remains tractable if the estimated orthology relation is not far from the
true orthology relation. The tool ParaPhylo uses ILP-based cograph editing,
which corrects errors in the estimates by looking for tree-representable sets of
relations that are closest to the estimates. This approach has been shown to
sufficiently reduce noise in order to find event-labeled gene trees, even with high
levels of HGT in the data [98].
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2.5 best matches heuristics

The co-orthologs in a species B of a given gene a from species A are by defini-
tion (ignoring horizontal gene transfer) the closest relatives of a in B. Therefore,
reciprocal best matches constitute a natural approximation of the concept of
reciprocal evolutionary closest relatedness of genes. Evolutionary relatedness
is an inherently phylogenetic property. It is therefore most naturally defined
relative to a gene tree T , more precisely gene b from species B is a best match
of a from species A if and only if their last common ancestor is a descendant
of the last common ancestor of b and any other gene from species A. If a is
also a best match of b, then a and b are reciprocal best matches. Best matches
can thus be equivalently expressed in terms of evolutionary (divergence) time.
Divergence times and genetic distances are only equivalent under the assump-
tion of a molecular clock [241, 137]. Although the strong assumption that the
molecular clock is at least reasonably approximated, is frequently violated in
real-life data, best match heuristics still perform surprisingly well in the context
of orthology prediction [233]. In fact, reciprocal best match heuristics perform
at least as good for this task as methods that first estimate the gene phylogeny
[10, 204], although there are practical problems, in particular in applications
to eukaryotic genes [41].
The main reason for the resilience of RBH methods is that the identification

of best matches only requires inequalities between sequence similarities. In
particular, therefore they are invariant under monotonic transformations of the
distance measures, and, in contrast e.g. to distance based phylogenetic methods,
do not require additivity. Even more generally, it suffices that the evolutionary
rates of the different members of a gene family are roughly the same within
each lineage.
Nevertheless, RBH methods are far from perfect. Large differences in evo-

lutionary rates between paralogs, as predicted by the DDC model [68], for
example, may lead to false negatives among co-orthologs and false positive
best matches between members of slowly evolving subfamilies. Recent orthol-
ogy detection methods recognize the sources of error and complement sequence
similarity by additional sources of information. Most notably, synteny is often
used to support or reject reciprocal best matches [145, 116]. Another class of
approaches combines the information of small sets of pairwise best matches to
improve orthology prediction [236, 226].
In order to identify reciprocal best matches, RBH methods typically first

compute and rank for each gene of species A the sequence similarity with every
gene of species B in decreasing order, from which reciprocal best matches are
then extracted. The pairs of genes that are identified as reciprocal best matches,
however, heavily depend on the chosen method for measuring sequence similar-
ity. Because of its lower computational complexity, many methods use BLAST
or BLAT scores for the derivation of reciprocal best matches (e.g. InParanoid
[191, 19], OrthoMCL [33]). However, these methods differ in the thresholds used
for best match assignment, depending for instance on whether one-to-one or
many-to-many best hits are considered, as well as in the exact choice of param-
eters used for the BLAST search. An investigation of different BLAST parameters
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and comparison of reciprocal best hits to reciprocal smallest distances can be
found in [163]. As lower BLAST scores for short sequences are thought to cause
many short sequences not to be assigned to an orthologous group at all, the
more recently developed tool OrthoFinder [63] proposes a modified BLAST score
that derives sequence similarity from BLAST bit scores by taking gene length
into account in order to reduce the impact of gene length on the clustering
accuracy.
Wall et al. [228] proposed reciprocal smallest distances, which are used for

instance in the tool Roundup [46], as a more accurate estimate of evolutionary
distances. To this end, exact pairwise alignments are generated for the top
BLAST hits from a query sequence from species A, from which the maximum
likelihood distances between A and the top BLAST hits are estimated in order
to identify the gene with the smallest evolutionary distance from A. These
estimated distances are thought to perform better than BLAST hits, however
simulation results in [163] suggest that this is not necessarily true.
Another approach is implemented in Orthograph [183] which retrieves recip-

rocal best matches from a profile Hidden Markov Model based search. This
tool builds upon the method HaMStR [59].

Somewhat surprisingly, this evolutionary notion of best matches has received
very little attention in the literature, despite the wide-spread use of pragmatic
RBH heuristics in computational biology. Chapters 4, 5, and 6 thus systemat-
ically investigate the relationships between (reciprocal) best matches and the
underlying gene tree. These results will be further used in Chapter 6 to suc-
cessfully identify a considerable fraction of false positive orthology assignments
among reciprocal best hits.

2.6 xenology

Methods for inferring horizontal gene transfer are less well established and in-
vestigated than orthology inference methods. Current approaches for inferring
HGT events are either based on evolutionary history (“phylogenetic”), which
can be explicit or implicit, or on sequence composition (“parametric”) [190, 16].

Parametric methods use genomic signatures, such as nucleotide composition
[143] or codon usage bias [164, 160], and identify genomic regions deviating
from that specific signature as HGT events [44]. These methods rely on the fact
that the genomic properties of the transferred gene are still those of the donor
genome, which makes the transferred gene distinguishable from the acceptor
genome. For this reason, however, the performance of parametric methods
highly depends on the amount of (dis-)similarity in the evolutionary patterns
of the organisms in question. Moreover, transferred sequences adapt quite
rapidly to their new host genome, hence parametric methods are limited to
recent HGT events. [50]
Explicit phylogenetic methods identify HGT by looking for genes that are

involved in conflicts between gene trees and a reference species tree [203] and
therefore heavily depend on the accuracy of the gene and species trees, whose
reliability is often low [7]. A first attempt to infer horizontal gene transfer
events directly from sequence data are implicit phylogenetic approaches, such as
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DLIGHT [50]. Those methods compare sequence distances, where unexpectedly
short or long distances are suggested to correspond to HGT events.

The mathematics of xenology has attracted very little attention so far. Only
very recently, a first mathematical characterization of xenology in terms of a
binary relation has been explored by Hellmuth et al. [100]. This "lca-xenology"
relation uses directed cographs to capture the directional aspect of HGT, how-
ever, it remains unclear to what extent it can be directly inferred from sequence
similarity data [100].
A formalization of Fitch’s xenology concept is presented in Chapter 8 in the
form of a not necessarily symmetric binary relation.
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3
BAS IC DEF IN IT IONS

3.1 sets and binary relations

Throughout this work, all sets of elements are always assumed to be finite.
Given two sets V and W , we write W ⊆ V (W ⊂ V ) for W being a (proper)
subset of V . Moreover, V ∪W , V ∪· W , V ∩W , V4W , and V \W denote the
union, the disjoint union, the intersection, the symmetric difference, and the set
difference, resp., of V and W . A partition of a set V is a collection of disjoint
non-empty sets V1, ...,Vk, k ≥ 1, such that V = V1 ∪· ...∪· Vk. Two sets V andW
do not overlap if V ∩W ∈ {∅,V ,W}, and they overlap, otherwise. The set of
unordered pairs of elements from V is defined by (V2 ) := {{x, y} | x, y ∈ V ,x 6=
y}, whereas the respective set of ordered pairs is given by V × V := {(x, y) |
x, y ∈ V }. The set V irr

× := {(x, y) | x, y ∈ V ,x 6= y} is the irreflexive part of
V × V . The power set of V is the set of all subsets of V , denoted by 2V .
A set B ⊆ V × V of ordered pairs (x, y) with x, y ∈ V is called a binary

relation. Instead of (x, y) ∈ B, we will often write xBy. Throughout this work,
all relations are binary. If not stated otherwise, we therefore simply speak of
a "relation" without explicitly mentioning "binary". The binary relation B is
irreflexive if x 6= y whenever xBy, and reflexive otherwise. Moreover, a relation
B satisfying xBy if and only if yBx for any pair x, y ∈ V , is called symmetric.
Furthermore, the relation B is called transitive if xBy and yBz implies xBz.
A binary relation B on V that is reflexive, symmetric, and transitive is called
equivalence relation. The equivalence class of an element x ∈ V is the set
[x] := {y ∈ V | xBy}.
Furthermore, given a binary relation B, the set V is a partially ordered set
or poset if, for all x, y, z ∈ V , it holds (i) xBx (reflexivity), (ii) xBy and
yBz implies xBz (transitivity), and (iii) xBy and yBx implies x = y (anti-
symmetry).

3.2 graphs

A graph G = (V ,E) is an ordered pair of sets V and E, where V is a set of
vertices (or nodes) and E a set of edges (or arcs). The vertex and edge set of G
are also often denoted as V (G) and E(G), resp., whenever the reference graph
is not obvious. The graph G is called undirected if E ⊆ (V2 ) and directed (or
digraph) if E ⊆ V irr

× . This definition of a graph explicitly excludes multiple
edges between the same vertices as well as loops, i.e., edges connecting a vertex
with itself. Such graphs are usually called simple in the literature. Throughout
this work, G = (V ,E) and ~G = (V , ~E) denote simple undirected and simple
directed graphs, respectively. Moreover, directed arcs (x, y) in a digraph ~G

will be distinguished from edges xy in an undirected graph G or tree T (see
Section 3.3 for a definition of trees).

18



Two undirected graphs G and G′ are called isomorphic if there exists a bi-
jection φ : V (G) → V (G′) such that, for any two vertices x, y ∈ V (G), it
holds xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(G′). The corresponding defi-
nition for directed graphs is obtained by simply substituting in the definition
for undirected graphs the edges xy and φ(x)φ(y) by (x, y) and (φ(x),φ(y)),
respectively. For the purpose of this work it will not be relevant to distinguish
two isomorphic graphs.
Throughout this work, relations are represented as graphs. The terms graph and
relation are therefore used interchangeably.

3.2.1 Adjacency, Neighborhoods, and Paths

Two vertices of an undirected or directed graph are called incident or adjacent
if they are connected by an edge/arc. The neighborhood N(x) of some vertex
x in a given graph is the set of all its adjacent vertices, the neighbors of x. The
number of neighbors of x is called the degree of x, denoted by deg(x). For
a vertex x ∈ V of a digraph ~G = (V , ~E), the out- and in-neighborhood is
denoted by N+(x) := {y ∈ V | (x, y) ∈ ~E} and N−(x) := {y ∈ V | (y,x) ∈
~E}, respectively. This notation naturally extends to sets of vertices A ⊆ V :
N+(A) =

⋃
x∈AN

+(x) and N−(A) = ⋃
x∈AN

−(x). The number of out- and
in-neighbors, resp., of x in ~G is the out-degree, denoted by deg+(x), and in-
degree, denoted by deg−(x), of x.

A sequence of vertices S = (x1, ...,xn) in an undirected graph G = (V ,E)
is called a path if xixi+1 ∈ E for any 1 ≤ i ≤ n− 1 and all vertices of S are
pairwise distinct. Moreover, S is a cycle if it is a path and xnx1 ∈ E. Similarly,
a sequence of vertices S = (x1, ...,xn) in a digraph ~G = (V , ~E) is called a path
if (xi,xi+1) ∈ ~E for any 1 ≤ i ≤ n− 1 and all vertices of S are pairwise distinct.
Moreover, S is a cycle if it is a path and (xn,x1) ∈ ~E.

3.2.2 Subgraphs and Connectedness

A graph G′ = (V ′,E′) is a subgraph of G = (V ,E), denoted by G′ ⊆ G, where
both graphs may be undirected or not, if V ′ ⊆ V and E′ ⊆ E. If in addition,
in case of undirected graphs, xy ∈ E implies xy ∈ E′ for any x, y ∈ V ′ or, in
case of digraphs, (x, y) ∈ E implies (x, y) ∈ E′ for any x, y ∈ V ′, then the
subgraph G′ is called induced subgraph of G, denoted by G′ := G[V ′]. By abuse
of notation, we will often write G[x, y, z] instead of G[{x, y, z}] for x, y, z ∈ V .
An undirected graph G = (V ,E) is connected if for any two distinct vertices

x, y ∈ V there exists a path connecting x and y. Similarly, a digraph is called
connected in this work whenever its underlying undirected graph (obtained by
ignoring the direction of the arcs) is connected. A connected component of an
undirected or directed graph G is a maximal connected subgraph of G, and G
is disconnected if it contains more than one connected component. Moreover, a
digraph ~G = (V , ~E) is strongly connected if, for any two distinct vertices x and
y in V , it contains a path from x to y. A maximal strongly connected subgraph
of ~G is called a strong connected component.
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3.2.3 Graph Operations

The complement G = (V ,E) of a graph G = (V ,E) has edge set E = (V2 ) \E
if G is undirected and E = (V × V ) \ E if G is directed. The join of two
undirected disjoint graphsG = (V ,E) andG′ = (V ′,E′) is defined byGOG′ =
(V ∪ V ′,E ∪E′ ∪ {xy | x ∈ V , y ∈ V ′}), whereas their disjoint union is given
by G ∪· G′ = (V ∪ V ′,E ∪E′). These definitions can be naturally extended to
directed graphs: For two directed disjoint graphs ~G = (V , ~E) and ~G′ = (V ′, ~E′),
their join is given by ~GO ~G′ = (V ∪V ′, ~E ∪ ~E′ ∪{(x, y), (y,x) | x ∈ V , y ∈ V ′})
and their disjoint union by ~G ∪· ~G′ = (V ∪ V ′, ~E ∪ ~E′). Moreover, the order
composition of ~G and ~G′ is the disjoint union of the two graphs plus all arcs
(x, y) with x ∈ V ( ~G) and y ∈ V ( ~G′).

3.2.4 Special Graphs

A graph consisting of a single isolated vertex without edges is called singleton.
An undirected graph with n vertices is called complete, denoted by Kn, if any
two distinct vertices are adjacent in Kn. Similarly, a directed graph ~G = (V , ~E)
is complete if (x, y) and (y,x) are both edges in ~G for any pair of vertices
x, y ∈ V . A graph with vertex set V , undirected or not, is called k-partite if
its vertex set can be partitioned into k ≥ 2 pairwise disjoint independent sets
V1, ...,Vk, i.e., x ∈ Vi and y ∈ Vj with i 6= j for any two vertices x, y ∈ V

that are connected by an edge. The graph is called bipartite for k = 2 and
multipartite otherwise. Moreover, an undirected graph G is called complete
multipartite, denoted by Kn1,...,nk , if it is k-partite and xy ∈ E(Kn1,...,nk) for
any two distinct vertices x, y satisfying x ∈ Vi, y ∈ Vj with i 6= j, where
V (Kn1,...,nk) = V1 ∪· ...∪· Vk. If G is directed, then it is complete multipartite if
it is k-partite and (x, y), (y,x) ∈ E(G) for any x ∈ Vi, y ∈ Vj with i 6= j.

3.2.5 Vertex-Colored graphs

A graph G = (V ,E), undirected or not, is vertex-colored (or simply colored)
if there is a non-empty set of colors S and a map σ : V → S that assigns a
color to each vertex. Such a graph is denoted by (G,σ). A vertex coloring σ
is proper if σ(x) 6= σ(y) for any two adjacent vertices x, y ∈ V (G). We will
furthermore assume throughout this work that the map σ : L→ S is surjective.
For a subset L′ ⊆ L we write σ(L′) = {σ(x) | x ∈ L′}. Moreover, we use the
notation σ|L′ for the surjective map σ : L′ → σ(L′). In particular, for V ′ ⊆ V ,
the colored induced subgraph of G, whose coloring is obtained by restricting
σ to V ′, is denoted by (G,σ)[V ′] := (G[V ′],σ|V ′). We write V [s] = {x ∈ V |
σ(x) = s} for the set of all vertices with color s in (G,σ). In particular, for
given colors r, s, t ∈ S, we write (Gst,σst) := (G[V [s] ∪ V [t]],σ|V [s]∪V [t]) and
(Grst,σrst) := (G[V [r]∪V [s]∪V [t]],σ|V [r]∪V [s]∪V [t]) for the respective induced
subgraphs.
The neighborhood of some vertex x ∈ V restricted to a color s ∈ S will be de-

noted by Ns(x) := {z | z ∈ N(x) and σ(z) = s}. Similarly, we write N+
s (x) :=
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{z | z ∈ N+(x) and σ(z) = s} and N−s (x) := {z | z ∈ N−(x) and σ(z) = s}
for the in- and out-neighborhoods of x with color s.

Moreover, for an undirected colored graph (G,σ), we write 〈x1 . . . xk〉 ∈ Pk
to denote that the vertices x1, . . . ,xk form an induced path P = 〈x1 . . . xk〉 on k
vertices in G and with edges xixi+1, 1 ≤ i ≤ k−1. Analogously, 〈x1 . . . xk〉 ∈ Ck
denotes the fact that the vertices x1, . . . ,xk induce a cycle C = 〈x1 . . . xk〉 on
k vertices with edges xixi+1, 1 ≤ i ≤ k − 1, and xkx1. An induced cycle on
six vertices is called hexagon. We will write that 〈x1 . . . xk〉 ∈ Pk, resp. Ck is of
the form (σ(x1), . . . ,σ(xk)) to indicate the vertex colors along induced paths,
resp., cycles.
Two colored graphs (G,σ) and (G′,σ′) (undirected or not) are called isomor-

phic if G and G′ are isomorphic and there exists a permutation π : σ(V (G))→
σ′(V (G′)) of the colors. For the purpose of this work it will not be relevant to
distinguish two colored graphs (G,σ) and (G′,σ′) that are isomorphic in the
sense of isomorphic colored graphs, i.e., we do not distinguish permutations of
colors.

3.3 trees

A tree is a connected undirected graph without cycles. A rooted tree T = (V ,E)
is a tree with one distinguished inner vertex ρT ∈ V that is called the root of
T. The leaf set L ⊆ V (or L(T ) in case of ambiguity) consists of all vertices
distinct from the root that have degree 1. Vertices in V 0 := V \ L (including
ρT ) are called inner vertices. A rooted tree T = (V ,E) on L is phylogenetic
if its root has deg(ρT ) ≥ 2 and every other inner vertex v ∈ V 0 \ {ρT } has
deg(v) ≥ 3. If the degree of each vertex v ∈ V 0 \ {ρT } is exactly three and
deg(ρT ) = 2, then the phylogenetic tree is called binary.
Throughout this work we are exclusively concerned with rooted phylogenetic trees
unless explicitly stated otherwise.

Moreover, two rooted trees T and T ′ on the same leaf set L are isomorphic if
there exists a bijection Φ : V (T )→ V (T ′) inducing a graph isomorphism from
T to T ′, which maps the root of T to the root of T ′ and is the identity on L.
In this work we do not distinguish between isomorphic trees (unless explic-
itly stated). In particular, whenever speaking of “unique trees”, this refers to
“uniqueness up to isomorphism”.

3.3.1 Special Trees

The star tree Sn is the complete multipartite graph K1,n, i.e., the tree with
exactly one internal node (the root) and n leaves.
Moreover, a rooted tree T is a caterpillar if every inner vertex has at most one
child that is an inner vertex (see also [88]).
An ordered tree is a rooted tree with a specified ordering for the children of
each vertex.
Furthermore, we extend the notion of a phylogenetic tree to so-called planted

(phylogenetic) trees, which will be extensively used in Chapters 6 and 7. A
planted phylogenetic tree is a rooted tree T with vertex set V (T ) and edge
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set E(T ) such that (i) the root 0T has degree 1 and (ii) all inner vertices
have degree at least 3. We write L(T ) for the leaves (not including 0T ) and
V 0 = V (T ) \ (L(T )∪ {0T }) for the inner vertices (also not including 0T ). The
conventional root ρT of T is the unique neighbor of 0T . It will sometimes be
useful to consider T (u) as planted tree by including the unique parent v of u
and the edge vu.

3.3.2 The Ancestor Relation and the Last Common Ancestor

Given a rooted tree T = (V ,E), a vertex u ∈ V is an ancestor of v ∈ V , in
symbols u �T v, and v is a descendant of u, v �T u, if u lies on the unique
path from v to the root ρT . We write u �T v (v ≺T u) for u �T v (v �T u) and
u 6= v. If v �T u or v �T u, then u and v are comparable, and incomparable
otherwise. For a subset A ⊆ V we write A �T u to mean that x �T u for all
x ∈ A. If uv ∈ E in T and u �T v, we call u the parent of v, denoted by parT (v),
and define the children of u as childT (u) := {w ∈ V | uw ∈ E}. We denote two
leaves v,w ∈ L as siblings if v,w ∈ childT (u) for some u ∈ V . The ancestor
order is extended to edges by defining each edge e = uv to be located between
its incident vertices, i.e., v ≺T e ≺T u. In particular, by writing e = uv, we
assume that u is closer to the root of T than v. Moreover, we say that e is an
outer edge if v ∈ L and an inner edge otherwise. In analogy to inner vertices,
we refer to the set of inner edges of T as E0(T ).
For v ∈ V , we denote by T (v) the subtree rooted at v, that is the induced
subgraph T [V ′] with root v, where V ′ := {w ∈ V | w �T v}. Thus T (v) has
leaf set L(T (v)).

For a non-empty subset L′ ⊆ L of leaves, the last common ancestor of
L′, denoted as lcaT (L′), is the unique �T -minimal vertex of T that is an
ancestor of every vertex in L′. We will make use of the simplified nota-
tion lcaT (x1, . . . ,xk) := lcaT ({x1, . . . ,xk}) for a set A = {x1, . . . ,xk} of ver-
tices. The definition of lcaT (A) is conveniently extended to edges by setting
lcaT (x, e) := lcaT ({x} ∪ e) and lcaT (e, f) := lcaT (e ∪ f), where the edges
e, f ∈ E(T ) are simply treated as sets of vertices. We note for later refer-
ence that lcaT (A ∪B) = lcaT (lcaT (A), lcaT (B)) holds for non-empty vertex
sets A, B of a tree. For simplicity the explicit reference to T is omitted when-
ever it is clear which tree is considered. Analogously, we often write par(v) and
child(v) instead of parT (v) and childT (v) for v ∈ V .

3.3.3 Edge Contraction, Restriction, and Refinement

The contraction of an edge e = uv in a tree T = (V ,E) refers to the removal
of e and identification of u and v. We denote by Te the tree that is obtained
from T by contraction of e. Analogously, TA is obtained by contracting a
sequence of edges A = (e1, . . . , ek) ⊆ E. We say that a rooted tree T on L

displays a rooted tree T ′ on L′, in symbols T ′ ≤ T , if T ′ can be obtained from
T (lcaT (L′)) by a sequence of edge contractions. We write T ′ < T if T ′ ≤ T

and T ′ 6= T . The restriction T|L′ of T to L′ is the rooted tree obtained from
T (lcaT (L′)) by suppressing all vertices of degree 2 with the exception of the
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root ρT if ρT ∈ V (T (lcaT (L′))). By construction, T|L′ is a phylogenetic tree.
The suppression of vertices of degree 2 can be achieved by contraction of one of
the adjacent edges. Moreover, T|L′ ≤ T , i.e., T displays the restrictions T|L′ to
all subsets L′ ⊆ L. Note that T|L = T if and only if T is phylogenetic; otherwise
T|L < T .
Moreover, we define C(T ) := {L(T (v)) | v ∈ V (T )}. A rooted tree is phy-

logenetic if and only if L(T (u)) = L(T (v)) implies u = v for all u, v ∈ V (T ).
We say that a rooted tree T ′ on L refines a rooted tree T on L if T ′ displays T .
In particular, a phylogenetic tree T ′ on L refines a rooted tree T if and only if
C(T ) ⊆ C(T ′).

For a leaf-colored tree T on L with coloring map σ : L → S, in symbols
(T ,σ), we say that (T ,σ) displays or is a refinement of (T ′,σ′) if T ′ ≤ T and
σ′(v) = σ(v) for any v ∈ L(T ′) ⊆ L.

3.3.4 Hierarchies

A set system C ⊆ 2L is called a hierarchy on a finite set L if

(i) either A ⊆ B, B ⊆ A, or A∩B = ∅ for all A,B ∈ C, and

(ii) L ∈ C.

There exists a well-known one-to-one correspondence between rooted trees on
L and hierarchies on L [202]:

Theorem 3.1. Let C be a collection of non-empty subsets of a finite set L.
Then there is a rooted tree T with L(T ) = L such that C = C(T ) if and only if
C is a hierarchy on L. Moreover, if such a tree exists, it is, up to isomorphism,
unique.

3.3.5 Triples, Consistency, and the Closure Operation

Rooted triples are binary rooted phylogenetic trees on three leaves. We write
ab|c for the rooted triple with leaves a, b, and c if the path from its root to
c does not intersect the path from a to b. The definition of “display” implies
that a triple ab|c with a, b, c ∈ L is displayed by a rooted tree T if lca(a, b) ≺T
lca(a, b, c).

The set of all triples that are displayed by T is denoted by r(T ). For a set R
of rooted triples we define Rx ⊆ R as the set of triples in R that contain the leaf
x. A set of rooted triples R is called consistent if there exists a phylogenetic
tree T on LR :=

⋃
ab|c∈R{a, b, c} that displays R, i.e., R ⊆ r(T ). In particular, a

tree can display at most one triple on any set of three leaves. Thus a triple set R
is inconsistent whenever ab|c, ac|b ∈ R. However, triple sets can be inconsistent
even if they do not contain two triples on the same three leaves. Analogously,
we say that a set of trees T is consistent it there is a tree T such that T displays
every tree T ′ ∈ T . Consistency of a set of triples R and more generally trees
T can be decided in polynomial time by explicitly constructing a supertree T
that displays all trees in T (see Section 3.4).
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The requirement that a set R of triples is consistent, and thus, that there
is a tree displaying all triples, makes it possible to infer new triples from the
trees that display R and to define a closure operation for R [84, 26, 200, 25].
Let co(R) be the set of all rooted trees with leaf set LR that display R. The
closure of a consistent set of rooted triples R is defined as

cl(R) =
⋂

T∈co(R)
r(T ).

Hence, a triple r is contained in the closure cl(R) if all trees that display R

also display r. This operation satisfies the usual three properties of a closure
operator [26], namely: (i) R ⊆ cl(R) (expansiveness), (ii) R′ ⊆ R implies that
cl(R′) ⊆ cl(R) (isotony), and (iii) cl(cl(R)) = cl(R) (idempotency). Since
T ∈ co(r(T )), it is easy to see that cl(r(T )) = r(T ) and thus, r(T ) is always
closed.
A set of rooted triples R identifies a tree T with leaf set LR if R is displayed

by T and every other tree T ′ that displays R is a refinement of T . A rooted
triple ab|c ∈ r(T ) distinguishes an edge uv in T if and only if a, b, and c

are descendants of u, v is an ancestor of a and b but not of c, and there
is no descendant v′ of v for which a and b are both descendants. In other
words, ab|c ∈ r(T ) distinguishes the edge uv if and only if lca(a, b) = v and
lca(a, b, c) = u.

3.4 aho graphs, aho trees and the build algorithm

Rooted triples are widely used in the context of supertree reconstruction
because every phylogenetic tree T is identified by its triple set r(T ), and
r(T ) ⊆ r(T ′) if and only if T ′ displays T [202]. As a consequence, supertree
reconstruction can be phrased in terms of triples. As shown in [3] there is a
polynomial time algorithm, usually referred to as BUILD [202, 212], that takes
a set R of triples as input and either returns a particular phylogenetic tree
Aho(R) that displays R, or recognizes R as inconsistent.

BUILD makes use of a simple graph representation of certain subsets of triples:
Given a triple set R and a subset of leaves L′ ⊆ L, the Aho graph [R,L′] has
vertex set L′ and there is an edge between two vertices x, y ∈ L′ if and only
if there exists a triple xy|z ∈ R with z ∈ L′ [3]. It is well known that R
is consistent if and only if [R,L′] is disconnected for every subset L′ ⊆ L

with |L′| > 1 [26]. BUILD uses Aho graphs in a top-down recursion: First,
[R,L] is computed and a tree T consisting only of the root ρT is initialized.
If [R,L] is connected and |L| > 1, then BUILD terminates and returns “R is
not consistent”. Otherwise, BUILD adds the connected components C1, . . . ,Ck
of [R,L] as vertices to T and inserts the edges (ρT ,Ci), 1 ≤ i ≤ k. BUILD
recurses on the Aho graphs [R,Ci] (where vertex Ci in T plays the role of
ρT ) until it arrives at single-vertex components. This workflow is illustrated
in Fig. 3. BUILD either returns the tree T or identifies the triple set R as “not
consistent”. Since the Aho graphs [R,L′] and their connected components are
uniquely defined in each step of BUILD, the tree T is uniquely defined by R

whenever it exists. T is known as the Aho tree and will be denoted by Aho(R).
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Fig. 3. Illustration of
the BUILD Algorithm
for a given set of leaves
L = {a, b, c, d, e, f , g}
and triple set R =
{ab|c, cd|g, de|c, df |a}.
Shown is the Aho graph
(bottom) together with
the corresponding tree
T (top) after each step
of the recursion. The
connected components Ci
are represented as a “bag”
of the vertices which they
contain. The tree on the
right is the final Aho tree.

This tree displays R and is least resolved in the sense that none of the edges in
Aho(R) can be contracted without loosing a triple from R.
We will make use of the following result from [84] that is closely related to the
BUILD Algorithm.

Lemma 3.1. Let T be a phylogenetic tree and let R be a set of rooted triples.
Then, R identifies T if and only if cl(R) = r(T ). Moreover, if R identifies T ,
then Aho(R) = T .

3.5 cographs

Cographs form a class of undirected graphs that play an important in the context
of this contribution. They are defined recursively [38]:

Definition 3.1. An undirected graph G is a cograph if

(1) G = K1,

(2) G = H OH ′, where H and H ′ are cographs, or

(3) G = H ∪· H ′, where H and H ′ are cograph.

A graph is a cograph if and only if it does not contain an induced P4, i.e., an
induced path on four vertices [38].
Each cograph G is associated with cotrees T , that is, phylogenetic trees with

inner vertices labeled by 0 or 1, whose leaves correspond to the vertices of G.
In T , each subtree rooted at an inner vertex u with label 0 corresponds to
the disjoint union of the subgraphs of G induced by the leaf sets L(T (v)) of
the children v ∈ child(u) of u, and each subtree rooted at an inner vertex u

with label 1 corresponds to the join of the subgraphs of G induced by the sets
L(T (v)), v ∈ child(u). In other words (T , t) is a cotree for G if t(lcaT (x, y)) = 1
if and only if xy ∈ E(G). For each cograph G there is a unique discriminating
cotree T with the property that the labels 0 and 1 alternate along each root-leaf
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Fig. 4. The set of forbidden induced subgraphs that characterize di-cographs.

path in T [38]. For later reference, we summarize here some of the results from
Hellmuth et al. [97, Section 3]:

Proposition 3.1. Any cotree of a cograph G is a refinement of the unique
discriminating cotree of G. In particular, (Te, te) is a cotree for a cograph G
if and only if (T , t) is a cotree for G, where e = xy ∈ E(T ) is an edge with
t(x) = t(y) that is contracted to the vertex ve in Te with te(ve) = t(x) and
te(v) = t(v) for all remaining inner vertices v 6= ve.

The concept of cographs can be generalized to directed graphs by adding or-
der compositions. More precisely, a directed graph is a di-cograph if it is either
the K1 or it is obtained from two or more di-cographs by a disjoint union, a join,
or an order composition. Di-cographs are characterized by the eight forbidden
subgraphs shown in Fig. 4 [60, 40].
Similarly to cographs, every di-cograph ~G is explained by a unique discrimi-
nating cotree (T ,~t) [162, 157], that is, an ordered phylogenetic tree T with
leaf set V ( ~G) and a vertex labeling function ~t : V 0(T ) → {0, 1,~1}, such that
~t(u) 6= ~t(v) for all inner edges uv in T , defined by

~t(lca(x, y)) =


0, if (x, y), (y,x) /∈ E( ~G)

1, if (x, y), (y,x) ∈ E( ~G)
~1, else .

Since the vertices in the cotree T are ordered, the label ~1 on some lca(x, y) of
two distinct leaves x, y ∈ L means that there is an edge (x, y) ∈ E( ~G), while
(y,x) /∈ E( ~G), whenever x is placed to the left of y in T [100].
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4
BEST MATCH GRAPHS

Reciprocal best hits (RBH) are the most commonly employed method for infer-
ring orthologs [6, 10]. Practical applications typically produce, for each gene
from species A, a list of genes found in species B, ranked in the order of de-
creasing sequence similarity. From these lists, reciprocal best hits are readily
obtained. Some software tools, such as ProteinOrtho [144, 145], explicitly con-
struct a digraph whose arcs are the (approximately) co-optimal best matches.
Empirically, the pairs of genes that are identified as reciprocal best hits depend
on the details of the computational method for quantifying sequence similarity
(see Section 2.5 for more details). Independent of the computational details,
however, reciprocal best matches are of interest because they approximate the
concept of pairs of reciprocal evolutionarily most closely related genes. It is this
notion that links best matches directly to orthology: Given a gene x in species
a (and disregarding horizontal gene transfer), all its co-orthologous genes y in
species b are by definition closest relatives of x.
The purpose of this chapter is to establish a characterization of BMGs as

an indispensable prerequisite for any method that attempts to directly correct
empirical best match data. We start by formally introducing the best match
relation in Section 4.1 before establishing in Section 4.2 a few simple properties
of BMGs and show that key problems can be broken down to the connected
components of 2-colored BMGs. These are considered in detail in Section 4.3.
The characterization of 2-BMGs is not a trivial task. Although the existence
of at least one out-neighbor for each vertex is an obvious necessary condition,
the example in Fig. 6 shows that it is not sufficient. In Section 4.3 we prove
our main results on 2-BMGs: the existence of a unique least resolved tree
that explains any given 2-BMG (Thm. 4.2), a characterization in terms of
informative triples that can be extracted directly from the input graph (Thm.
4.6), and a characterization in terms of three simple conditions on the out-
neighborhoods (Thm. 4.4). Section 4.4 provides a complete characterization
of a general BMG: It is necessary and sufficient that the subgraph induced by
each pair of colors is a 2-BMG and that the union of the triple sets of their
least resolved tree representations is consistent. This chapter is finally closed
with a brief discussion of algorithmic considerations in Section 4.5.
The results presented here have been previously published in Geiß et al. [73].

4.1 introduction of the best match relation

Evolutionary relatedness is a phylogenetic property and thus is defined relative
to the phylogenetic tree T of the genes under consideration. More precisely, we
consider a set of genes L (the leaves of the phylogenetic tree T ), a set of species
S, and a map σ assigning to each gene x ∈ L the species σ(x) ∈ S within which
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Fig. 5. (A) An evolutionary scenario consisting of a gene tree whose inner vertices
are marked by the event type ( for speciations, � for gene duplications, and × for
gene loss) together with its embedding into a species tree (drawn as tube-like outline).
All events are placed on a time axis. (B) The observable part of the gene tree (T ,σ)
obtained from the gene tree in the full evolutionary scenario by removing all leaves
marked as loss events and suppression of all resulting vertices of degree 2 [105, 99].
(C) The colored best match graph ( ~G,σ) that is explained by (T ,σ). Directed arcs
indicate the best match relation →. Bi-directional best matches (x → y and y → x)
are drawn as solid lines without arrow heads instead of pairs of arrows. Dotted circles
collect sets of leaves that have the same in- and out-neighborhood. The corresponding
arcs are shown only once.

it resides. A gene x is more closely related to some gene y than to another gene
z if lca(x, y) ≺ lca(x, z). We can now make the notion of a best match precise:

Definition 4.1. Consider a tree T with leaf set L and a surjective map σ :
L → S. Then y ∈ L is a best match of x ∈ L, in symbols x → y, if and only
if lca(x, y) � lca(x, y′) holds for all leaves y′ from species σ(y′) = σ(y).

In order to understand how best matches (in the sense of Def. 4.1) are ap-
proximated by best hits computed by mean sequence similarity, we first observe
that best matches can be expressed in terms of the evolutionary time. More
precisely, the evolutionary relatedness of two taxa x and y is most directly ex-
pressed by the divergence time τ (x, y), which is the total time elapsed in both
lineages since the last common ancestor of x and y in the corresponding gene
tree T , as in Fig. 5. Here, we consider only the case that all leaves refer to ex-
tant genes or taxa, i.e., τ (x, y) = 2τ̂ (lca(x, y)), where τ̂ is the age of lca(x, y).
The best match relation→ can thus also be defined in terms of divergence time:
x→ y if and only if

y ∈ arg min
y′∈L[t]

τ (x, y′). (1)

28



a

a'

b

b'

Fig. 6. Not every graph with non-empty out-
neighborhoods is a colored best match graph. The
4-vertex graph ( ~G,σ) with two colors shown here is
the smallest connected counterexample: there is no
leaf-colored tree (T ,σ) that explains ( ~G,σ).

Mathematically, this is equivalent to Def. 4.1 whenever τ is an ultrametric dis-
tance on T . For the divergence time τ this is by definition the case. Best
match heuristics therefore assume (often tacitly) that the molecular clock hy-
pothesis [241, 137] is at least a reasonable approximation. In Section 2.5 it was
already discussed that, although the assumption of a molecular clock is often
violated, best match heuristics still perform equally good or even better than
phylogenetic methods but there also a need for identifying incorrect best match
assignments.
Extending the information used for the correction of initial reciprocal best

hits to a global scale, it is possible to improve orthology prediction by enforcing
the global cograph of the orthology relation [98, 141]. The following three
chapters originated from an analogous question: Can empirical (reciprocal)
best match data be improved just by using the fact that ideally a (reciprocal)
best match relation should derive from a tree T according to Def. 4.1? To
answer this question we first need to understand the structure of best match
relations.
The best match relation is conveniently represented as a colored digraph:

Definition 4.2. Given a tree T with leaf set L and a map σ : L → S, the
colored best match graph (BMG) ~G(T ,σ) has vertex set L and arcs (x, y) ∈
E( ~G) if x 6= y and x→ y. Each vertex x ∈ L obtains the color σ(x).
The rooted tree T explains the vertex-colored graph ( ~G,σ) if ( ~G,σ) is isomorphic
to the BMG ~G(T ,σ).

To emphasize the number of colors used in ~G(T ,σ), that is, the number of
species in S, we will write |S|-BMG. Note in particular that, for |S| = 1, the
edge-less graphs are explained by any tree. Hence, we will assume |S| ≥ 2 in
the following to avoid dealing with trivial cases.
In particular, Def. 4.2 immediately implies

Observation 4.1. If ( ~G,σ) is a BMG, then σ is a proper vertex coloring.

Hence, a colored digraph ( ~G,σ) can only be explained by a leaf-colored tree
if σ is a proper vertex coloring. We may thus assume throughout this chapter
that ( ~G,σ) is a properly vertex-colored graph.

4.2 basic properties of best match relations

The best match relation → is reflexive because lca(x,x) = x ≺ lca(x, y) for
all genes y with σ(x) = σ(y). For any pair of distinct genes x and y with
σ(x) = σ(y) we have lca(x, y) /∈ {x, y}, hence the relation → has off-diagonal
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pairs only between genes from different species. There is still a one-to-one
correspondence between BMGs (Def. 4.2) and best match relations (Def. 4.1):
In the BMG the reflexive loops are omitted, in the relation → they are added.

Note that the tree ( ~G,σ) and the corresponding BMG ~G(T ,σ) employ the
same coloring map σ : L→ S. Recall in this context that we do not distinguish
between isomorphic vertex-colored graphs.

4.2.1 Thinness

In undirected graphs, equivalence classes of vertices that share the same neigh-
borhood are considered in the context of thinness of the graph [159, 215, 27].
The concept naturally extends to digraphs [93]. For our purposes the following
variation on the theme is most useful:

Definition 4.3. Given a digraph ~G, two vertices x, y ∈ V ( ~G) are in relation
R if N+(x) = N+(y) and N−(x) = N−(y).

For each R-class α we have N+(x) = N+(α) and N−(x) = N−(α) for all
x ∈ α. It is obvious, therefore, that R is an equivalence relation on the vertex
set of ~G. Moreover, since we consider loop-free graphs, one can easily see
that ~G[α] is always edge-less. We write N , or N ( ~G), for the corresponding
partition, i.e., the set of R-classes of ~G. Individual R-classes will be denoted by
lowercase Greek letters. Note that for the graphs considered here, we always
have N+

σ(x)(x) = N−
σ(x)(x) = ∅. When considering sets N+

s (x) and N−s (x), we
can therefore always assume s 6= σ(x). Furthermore, Ns denotes the set of
R-classes with color s.
By construction, the function N+ : V ( ~G) → 2V ( ~G) is isotonic, i.e., A ⊆ B

implies N+(A) ⊆ N+(B). In particular, therefore, we have for α,β ∈ N :

(i) α ⊆ N+(β) implies N+(α) ⊆ N+(N+(β))

(ii) N+(α) ⊆ N+(β) implies N+(N+(α)) ⊆ N+(N+(β)).

These observations will be useful in the proofs below.
By construction, every vertex in a BMG has at least one out-neighbor of ev-
ery color except its own, i.e., |N+(x)| ≥ |S| − 1 holds for all x. In contrast,
N−(x) = ∅ is possible.

4.2.2 Some Simple Observations

The color classes L[s] on the leaves L of a leaf-labeled tree (T ,σ) are inde-
pendent sets in ~G(T ,σ) since arcs in ~G(T ,σ) connect only vertices with dif-
ferent colors. For any pair of colors s, t ∈ S, therefore, the induced subgraph
~G[L[s] ∪ L[t]] of ~G(T ,σ) is bipartite. Since the definition of x → y does not
depend on the presence or absence of vertices u with σ(u) /∈ {σ(x),σ(y)}, we
have

Observation 4.2. Let ( ~G,σ) be a BMG explained by (T ,σ) and let L′ :=⋃
s∈S′ L[s] be the subset of vertices with a restricted color set S′ ⊆ S. Then the
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induced subgraph ( ~G[L′],σ|L′) is explained by the restriction TL′ of T to the leaf
set L′.

It follows in particular that ~Gst = ~G[L[s] ∪ L[t]] is explained by the re-
striction Tst = T|L[s]∪L[t] of T to the colors s and t. Furthermore, ~G is the
edge-disjoint union of bipartite subgraphs corresponding to color pairs, i.e.,

E( ~G) =
⋃
·

{s,t}∈(S2)

E( ~Gst).

In order to understand when arbitrary graphs ( ~G,σ) are BMGs, it is sufficient,
therefore, to characterize 2-BMGs. A formal proof will be given later on in
Section 4.4.

u v w x u v w

u

v

w

x

u

v

w u w

v

Fig. 7. T|{u,v,w} is displayed by T but ~G(T|{u,v,w},σ) is not isomorphic to the induced
subgraph ~G(T ,σ)[u, v,w] of ~G(T ,σ), since ~G(T|{u,v,w},σ) contains the additional arc
(w, v).

Note, the condition that “T explains ( ~G,σ)” does not imply that (TL′ ,σ|L′)
explains ( ~G[L′],σ|L′) for arbitrary subsets of L′ ⊆ L. Fig. 7 shows that, indeed,
not every induced subgraph of a BMG is necessarily a BMG. However, we have
the following, weaker property:

Lemma 4.1. Let ( ~G,σ) be a BMG with vertex set L explained by (T ,σ) and
let (T|L′ ,σ|L′) be the restriction of (T ,σ) to L′ ⊆ L. Then the induced subgraph
( ~G[L′],σ|L′) of ( ~G,σ) is a (not necessarily induced) subgraph of ~G(T|L′ ,σ|L′).

Proof. If (u, v) ∈ E( ~G) and u, v ∈ L′, then lcaT (u, v) �T lcaT (u, z) for all
z ∈ L[σ(v)] and thus, the inequality lcaT ′(u, v) �T ′ lcaT ′(u, z) is in particular
true for all z ∈ L′ ∩ L[σ(v)] = L′[σ(v)]. Hence, u, v ∈ L′ and (u, v) ∈ E( ~G)
implies (u, v) ∈ E( ~G[L′]), which concludes the proof.

4.2.3 Connectedness

We briefly present some results concerning the connectedness of BMGs. In
particular, it turns out that connected BMGs have a simple characterization in
terms of their representing trees.

Theorem 4.1. Let (T ,σ) be a leaf-labeled tree and ~G(T ,σ) its BMG. Then
~G(T ,σ) is connected if and only if there is a child v of the root ρ of T such
that σ(L(T (v))) 6= S. Furthermore, if ~G(T ,σ) is not connected, then for every
connected component C of ~G(T ,σ) there is a child v of the root ρ such that
V (C) ⊆ L(T (v)).
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Proof. For convenience we write Lv := L(T (v)). Suppose σ(Lv) = S holds for
all children v of the root. Then for any pair of colors s, t ∈ S we find for a leaf
x ∈ Lv with σ(x) = s a leaf y ∈ Lv with σ(y) = t within T (v); thus lca(x, y) is
in T (v) and therefore lca(x, y) ≺ ρ. Hence, all best matching pairs are confined
to the subtrees below the children of the root. The corresponding leaf sets are
thus mutually disconnected in ~G(T ,σ).

Conversely, suppose that one of the children v of the root ρ satisfies σ(Lv) 6=
S. Therefore there is a color t ∈ S with t /∈ σ(Lv). Then for every x ∈ Lv there
is an arc x → z for all z ∈ L[t] since for all such z we have lca(x, z) = ρ. If
L[t] = L \Lv, we can conclude that ~G(T ,σ) is a connected digraph. Otherwise,
every leaf y ∈ L \Lv with color σ(y) 6= t has an out-arc y → z to some z ∈ L[t]
and thus, there is a path y → z ← x connecting y ∈ L \ Lv to every x ∈ Lv.
Finally, for any two vertices y, y′ ∈ L \ (Lv ∪L[t]) there are vertices z, z′ ∈ L[t]
such that arcs exist that form a path y → z ← x→ z′ ← y′ connecting z with
z′ and both to any x ∈ Lv. In summary, therefore, ~G(T ,σ) is a connected
digraph.
For the last statement, we argue as above and conclude that if σ(Lv) = S for

all children v of the root (or, equivalently, if ~G(T ,σ) is not connected), then all
best matching pairs are confined to the subtrees below the children of the root
ρ. Thus the vertices of every connected component of ~G(T ,σ) must be leaves
of a subtree T (v) for some child v of the root ρ.

The following result shows that BMGs can be characterized by their con-
nected components: the disjoint union of vertex disjoint BMGs is again a BMG
if and only if they all share the same color set. It suffices, therefore, to consider
each connected component separately.

Proposition 4.1. Let ( ~Gi,σi) be vertex disjoint BMGs with vertex sets Li
and color sets Si = σi(Li) for 1 ≤ i ≤ k. Then the disjoint union ( ~G,σ) :=⋃
· ki=1( ~Gi,σi) is a BMG if and only if all color sets are the same, i.e., σi(Li) =
σj(Lj) for 1 ≤ i, j ≤ k.

Proof. The statement is trivially fulfilled for k = 1. For k ≥ 2, the disjoint
union ( ~G,σ) is not connected. Assume that σi(Li) = σj(Lj) for all i, j. Let
(Ti,σi) be trees explaining ( ~Gi,σi) for 1 ≤ i ≤ k. We construct a tree (T ,σ)
as follows: Let ρ be the root of (T ,σ) with children r1, . . . rk. Then we identify
ri with the root of Ti and retain all leaf colors. In order to show that (T ,σ)
explains ( ~G,σ), we recall from Thm. 4.1 that all best matching pairs are con-
fined to the subtrees below the children of the root and hence, each connected
component of ( ~G,σ) forms a subset of one of the leaf sets Li. Since each (Ti,σi)
explains ( ~Gi,σi), we conclude that the BMG explained by (T ,σ) is indeed the
disjoint union of the ( ~Gi,σi), i.e., ( ~G,σ). Thus ( ~G,σ) is a BMG.
Conversely, assume that ( ~G,σ) is a BMG but σi(Li) 6= σk(Lk) for some

k 6= i. By construction, σ(Li) = σi(Li) and σ(Lk) = σk(Lk). In particular, for
every color t /∈ σ(Li) and every vertex x ∈ Li, there is a j 6= i with t ∈ σ(Lj)
such that there exists an outgoing arc form x to some vertex y ∈ Lj with color
σ(y) = t. Thus (x, y) is an arc connecting Li with some Lj , j 6= i, contradicting
the assumption that each Li forms a connected component of ( ~G,σ). Hence,
the color sets cannot differ between connected components.
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The example ~G(T{u,v,w},σ) in Fig. 7 already shows, however, that ~G(T ,σ) is
not necessarily strongly connected.

4.3 two-colored best match graphs (2-bmgs)

As we have already argued in the previous section, understanding 2-BMGs is
crucial for the characterization of BMGs with an arbitrary number of colors.
In this section we derive two characterizations for 2-BMGs: one in terms of
informative triples that can be inferred directly from the directed graph in
question, and one in terms of out-neighborhoods. Moreover, we show that for
any given 2-BMG there exists a unique least resolved tree explaining it. We
start with some basic properties of R-classes in 2-BMGs and so-called roots of
R-classes.
Throughout this section we assume that σ(L) = {s, t} contains exactly
two colors.

4.3.1 Thinness Classes

A connected 2-BMG ( ~G,σ) contains at least two R-classes since all in- and
out-neighbors y of x ∈ V ( ~G), by construction, have a color σ(y) different from
σ(x). Consequently, any 2-BMG is bipartite. Furthermore, if σ(x) 6= σ(y),
then N+(x) ∩N+(y) = ∅. Since N+(x) 6= ∅ and all members of N+(x) have
the same color, we observe that N+(x) = N+(y) implies σ(x) = σ(y). By a
slight abuse of notation we will often write σ(x) = σ(α) for an element x of
some R-class α. Two leaves x and y of the same color that have the same last
common ancestor with all other leaves in T , i.e., that satisfy lca(x,u) = lca(y,u)
for all u ∈ L \ {x, y}, by construction, have the same in-neighbors and the same
out-neighbors in ~G(T ,σ), hence xRy.

Observation 4.3. Let ( ~G,σ) be a connected 2-BMG and α ∈ N an R-class.
Then σ(x) = σ(y) for any x, y ∈ α.

The following result shows that the out-neighborhood of any R-class is a disjoint
union of R-classes.

Lemma 4.2. Let ( ~G,σ) be a connected 2-BMG. Then any two R-classes α,β ∈
N satisfy

(N0) β ⊆ N+(α) or β ∩N+(α) = ∅.

Proof. For any y ∈ β, the definition of R-classes implies that y ∈ N+(α) if and
only if β ⊆ N+(α). Hence, either all or none of the elements of β are contained
in N+(α).

The connection between the R-classes of ~G(T ,σ) and the tree (T ,σ) is captured
by identifying an internal node in T that is, as we shall see, in a certain sense
characteristic for a given equivalence class:
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Fig. 8. Relationship between R-
classes and their roots. A tree
with two colors (blue and red) and
four R-classes α, α′ (blue) and β,
β′ (red) together with their corre-
sponding roots ρα, ρα′ , ρβ , and ρβ′
are shown.

Definition 4.4. For a leaf-labeled tree (T ,σ) and the corresponding BMG
~G(T ,σ), the root ρα of the R-class α is given as

ρα = max
x∈α

y∈N+(α)

lca(x, y).

For an illustration of this concept see Fig. 8.

Corollary 4.1. Let (T ,σ) be a leaf-labeled tree with corresponding BMG
~G(T ,σ) and ρα the root of an R-class α. Then it holds for any y ∈ N+(α):

ρα = max
x∈α

lca(x, y).

In particular, lca(x, y) = lca(x, z) for all y, z ∈ N+(α).

Proof. For any y ∈ N+(α) it holds by definition of N+(α) that lca(x, y) �
lca(x, z) for x ∈ α and any z with σ(z) = σ(y). This together with Observation
4.3 implies lca(x, y) = lca(x, z) for any two y, z ∈ N+(α) and x ∈ α.

The following lemma collects some simple properties of the roots of R-classes
that will be useful for the proofs of the main results.

Lemma 4.3. Let ( ~G,σ) be a connected 2-BMG explained by (T ,σ) and let α,
β be R-classes with roots ρα and ρβ, respectively. Then the following statements
hold:

(i) ρα � lca(α,β) and ρβ � lca(α,β); equality holds for at least one of
them if and only if ρα, ρβ are comparable, i.e., ρα � ρβ or ρβ � ρα.

(ii) The subtree T (ρα) contains leaves of both colors.

(iii) N+(α) � ρα.

(iv) If β ⊆ N+(α), then ρβ � ρα.

(v) If ρα = ρβ and α 6= β, then σ(α) 6= σ(β).

(vi) N+(α) = {y | y ∈ L(T (ρα)) and σ(y) 6= σ(α)}
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(vii) N+(N+(α)) � ρα.

Proof. (i) By Condition (N0) in Lemma 4.2 we have either β ⊆ N+(α) or
β ∩ N+(α) = ∅. By definition of N+(β), we have lca(x′, y) � lca(x, y),
where y ∈ β, x′ ∈ N+(β), and x ∈ α. Therefore, if β ⊆ N+(α), then
ρβ = maxx′∈N+(β) lca(x′,β) � maxx∈α lca(x,β) = lca(α,β). Moreover, Cor.
4.1 implies ρα = maxy∈N+(α) lca(α, y) = maxy∈β lca(α, y) = lca(α,β).

If β ∩ N+(α) = ∅, then lca(α, y) � maxy′∈N+(α) lca(α, y′) = ρα for all
y ∈ β, i.e., lca(α,β) � ρα. Moreover, by definition of ρβ, we have ρβ =

maxx∈N+(β) lca(x,β) � maxx∈α lca(x,β) = lca(α,β).
Now assume that ρα and ρβ are comparable. W.l.o.g. we assume ρα � ρβ.

Since α � ρα and β � ρβ is true by definition, we obtain lca(α,β) = ρα � ρβ.
Conversely, if ρα = lca(α,β) � ρβ, then ρα and ρβ are necessarily comparable.
(ii) As argued above, N+(x) 6= ∅ for all vertices x. Let x ∈ α and y ∈ N+(x)

such that ρα = lca(x, y). By definition, σ(x) 6= σ(y). Since ρα is an ancestor
of both x and y, the statement follows.
(iii) Since T (ρα) contains leaves of both colors, there is in particular a leaf y
with σ(y) 6= σ(x) within T (ρα). It satisfies lca(x, y) � ρα and thus all arcs
going out from x ∈ α are confined to leaves of T (ρα), i.e., N+(α) � ρα.
(iv) is a direct consequence of (i) and (iii).
(v) Assume, for contradiction, that σ(α) = σ(β). As N+(α) 6= ∅, there is
some y ∈ N+(α) with lca(α, y) = ρα. Since ρα = ρβ = lca(α,β) by (i),
we have lca(α, y) � lca(β, y). By definition of ρβ, there is a leaf z ∈ N+(β)

such that lca(β, z) = ρβ. Thus lca(β, y) � lca(β, z), which implies that y
is a best match of β, i.e., y ∈ N+(β). Hence, N+(α) = N+(β). On the
other hand, as lca(α,β) = ρα, we have lca(α, y) = lca(β, y) for any y with
lca(α, y) � ρα. As a consequence, since ρα � lca(α, y′) for all y′ ∈ N−(α), it is
true that lca(y′,β) = lca(y′,α) � lca(y′, z) for all z with σ(z) = σ(α). Hence,
y ∈ N−(α) if and only if y ∈ N−(β). It follows α = β; a contradiction.
(vi) Let y ∈ N+(α). Then σ(y) 6= σ(α) by definition. In addition, we have
y � ρα by (iii). Conversely, suppose that y ∈ L(T (ρα)) and σ(y) 6= σ(α).
Since y ∈ L(T (ρα)), it is true that y,α � ρα and therefore, lca(α, y) � ρα.
By definition of the root of α, there exist x′ ∈ α and y′ ∈ N+(α) such that
ρα = lca(x′, y′) � lca(x′, z) for all z with σ(z) = σ(y′). Since lca(α, y) � ρα,
this implies y ∈ N+(α).
(vii) Lemma 4.2 and Property (iv) imply that N+(α) is a disjoint union
of R-classes γ with ργ � ρα and σ(γ) 6= σ(α). Thus N+(N+(α)) =⋃

γ∈N
γ⊆N+(α)

N+(γ) = N+(
⋃

γ∈N
γ⊆N+(α)

γ). By (iii) and (iv), we have N+(γ) � ρα

for any such γ, thus N+(N+(α)) � ρα.

Property (N0) implies that there are four distinct ways in which two R-classes
α and β with distinct colors can be related to each other. These cases distin-
guish the relative location of their roots ρα and ρβ:
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Lemma 4.4. If ( ~G,σ) is a connected 2-BMG explained by some tree (T ,σ),
and α, β are R-classes with σ(α) 6= σ(β), then exactly one of the following four
cases is true:

(i) α ⊆ N+(β) and β ⊆ N+(α). In this case ρα = ρβ.

(ii) α ⊆ N+(β) and β ∩N+(α) = ∅. In this case ρα ≺ ρβ.

(iii) β ⊆ N+(α) and α∩N+(β) = ∅. In this case ρβ ≺ ρα.

(iv) α ∩ N+(β) = β ∩ N+(α) = ∅. In this case ρα and ρβ are not �-
comparable.

Proof. Set σ(α) = s and σ(β) = t, s 6= t, and consider the roots ρα and ρβ of
the two R-classes. Then there are exactly four cases:
(i) For ρα = ρβ, Lemma 4.3(i) implies ρα = ρβ = lca(α,β). By definition of
ρα, y ∈ N+(α) for all y ∈ L(T (ρα)) with σ(y) 6= σ(α) by Lemma 4.3(vi). A
similar result holds for ρβ. It immediately follows α ⊆ N+(β) and β ⊆ N+(α).
(ii) In the case ρα � ρβ, Lemma 4.3(i) implies ρα = lca(α,β) and thus, similarly
to case (i), β ⊆ N+(α). On the other hand, by Lemma 4.3(ii) and ρα � ρβ,
there is a leaf x′ ∈ L(T (ρβ)) \ α with σ(x′) = s. Hence, lca(x′,β) ≺ ρα =

lca(α,β), which implies α∩N+(β) = ∅.
(iii) The case ρα ≺ ρβ is symmetric to (ii).
(iv) If ρα, ρβ are incomparable, it yields ρα, ρβ 6= ρ and lca(α,β) = ρ, where
ρ denotes the root of T . Since β � ρβ, Lemma 4.2 implies β ∩N+(α) = ∅.
Similarly, α∩N+(β) = ∅.

4.3.2 Least Resolved Trees

In general, there are many trees that explain the same 2-BMG. We next show
that there is always a unique “smallest” tree among them, which we will call
the least resolved tree for ( ~G,σ). Later on, we will derive a hierarchy of leaf
sets from ( ~G,σ) whose tree representation coincides with this least resolved
tree.

Recall that Te is the tree obtained from T by contracting the inner edge
e = uv. Analogously, we write TA for the tree obtained by contracting all edges
in A.

Definition 4.5. Let ( ~G,σ) be a BMG and (T ,σ) a tree explaining ( ~G,σ). An
inner edge e in (T ,σ) is redundant (w.r.t. ( ~G,σ)) if (Te,σ) also explains ( ~G,σ).
Edges that are not redundant are called relevant.

Note that for an outer edge e = uv, we have v /∈ L(Te) and thus, (Te,σ) does
not explain ( ~G,σ). In this chapter all redundant edges are redundant w.r.t.
to some BMG, thus we omit the reference to the explicit graph whenever the
context is clear.
The next two results characterize redundant edges and show that such edges
can be contracted in an arbitrary order.
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Lemma 4.5. Let (T ,σ) be a tree that explains a connected 2-BMG ( ~G,σ).
Then the edge inner e = uv is redundant if and only if there exists no R-class
α such that v = ρα.

Proof. Suppose first that e is a redundant inner edge. Assume, for contradiction,
that there is an R-class α such that v = ρα. Since (T ,σ) is phylogenetic,
L(T (u)) \L(T (v)) has to be non-empty. If there is a leaf y ∈ L(T (u)) \L(T (v))
with σ(y) 6= σ(α) in (T ,σ), then y /∈ N+(α) by Lemma 4.3(vi). But then
contraction of e implies y ∈ T (ρα) and therefore y ∈ N+(α), thus (Te,σ)
does not explain ( ~G,σ). Consequently, L(T (u)) \ L(T (v)) can only contain
leaves x with σ(x) = σ(α). Indeed, for any y′ ∈ L(T (v)) it is true that
v = ρα = lca(α, y′) ≺ lca(x, y′), i.e., N−(x) 6= N−(α) and thus x /∈ α. By
contracting e, we obtain lca(x, z) � uv = ρα which implies N+(x) = N+(α)

and N−(x) = N−(α), and therefore x ∈ α. Hence, (Te,σ) does not explain
( ~G,σ); a contradiction.

Conversely, assume that there is no R-class α such that v = ρα, i.e., for
each α ∈ N it either holds (i) v ≺ ρα, (ii) v � ρα, or (iii) v and ρα are
incomparable. In the first and second case, contraction of e implies either
v � ρα or v � ρα. Thus, since L(T (w)) = L(Te(w)) is clearly satisfied if w and
v are incomparable, we have L(T (w)) = L(Te(w)) for every w 6= v. Moreover,
N+(α) = {y | y ∈ L(T (ρα)),σ(y) 6= σ(α)} by Lemma 4.3(vi). Together these
facts imply for every R-class α with ρα 6= v that N+(α) remains unchanged
in (Te,σ) after contraction of e. Since the out-neighborhoods of all R-classes
are unaffected by contraction of e, all in-neighborhoods also remain the same
in (Te,σ). Therefore (T ,σ) and (Te,σ) explain the same graph ( ~G,σ).

Lemma 4.6. Let (T ,σ) be a tree that explains a connected 2-BMG ( ~G,σ) and
let e be a redundant edge. Then the edge f 6= e is redundant in (Te,σ) if and
only if f is redundant in (T ,σ). Moreover, if two edges e 6= f are redundant in
(T ,σ), then ((Te)f ,σ) also explains ( ~G,σ).

Proof. Let e = uv be a redundant edge in (T ,σ). Then, for any vertex w 6= u, v
in (T ,σ), it is true that w is the root of an R-class α in (Te,σ) if and only if w
is the root of α in (T ,σ). In particular, the vertex uv in (Te,σ) is the root of
an R-class α′ if and only if u = ρα′ in (T ,σ). Consequently, f is redundant in
(T ,σ) if and only if f is redundant in (Te,σ).

As an immediate consequence, contraction of edges is commutative, i.e., the
order of the contractions is irrelevant. We can therefore write TA for the tree
obtained by contracting all edges in A in arbitrary order:

Corollary 4.2. Let (T ,σ) be a tree that explains a 2-BMG ( ~G,σ) and let A be
a set of redundant edges of (T ,σ). Then (TA,σ) explains ( ~G,σ). In particular,
((TA)B,σ) explains ( ~G,σ) if and only if B is a set of redundant edges of (T ,σ).

This leads to the notion of so-called least resolved trees:

Definition 4.6. Let ( ~G,σ) be a BMG explained by (T ,σ). We say that (T ,σ)
is least resolved (w.r.t. ( ~G,σ)) if (TA,σ) does not explain ( ~G,σ) for any non-
empty set A of inner edges of (T ,σ).
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Again, we omit the explicit reference to the underlying BMG whenever the
context is clear.
We are now in the position to formulate the main result of this section:

Theorem 4.2. For any connected 2-BMG ( ~G,σ), there exists a unique least
resolved tree (T ′,σ) that explains ( ~G,σ). (T ′,σ) is obtained by contraction of
all redundant edges in an arbitrary tree (T ,σ) explaining ( ~G,σ). The set of all
redundant edges in (T ,σ) is given by

ET = {e = uv | v /∈ L(T ) and there is no R-class α such that v = ρα}.

Moreover, (T ′,σ) is displayed by (T ,σ).

Proof. Any edge in a least resolved tree (T ′,σ) is relevant and therefore, as a
consequence of Cor. 4.2, (T ′,σ) is obtained from (T ,σ) by contraction of all
redundant edges of (T ,σ). According to Lemma 4.5, the set of redundant edges
is exactly ET . Since the order of contracting the edges in ET is arbitrary, there
is a least resolved tree for every given tree (T ,σ).

Now assume, for contradiction, that there exist colored digraphs that are
explained by two distinct least resolved trees. Let ( ~G,σ) be a minimal graph
(w.r.t. the number of vertices) that is explained by two distinct least resolved
trees (T1,σ) and (T2,σ), and let v ∈ L with σ(v) = s. By construction, the two
trees (T ′1,σ′) and (T ′2,σ′) with T ′1 := T1|L\{v}, T ′2 := T2|L\{v} and leaf labeling
σ′ := σ|L\{v}, each explain a unique graph, which we denote by ( ~G′1,σ′) and
( ~G′2,σ′), respectively. Lemma 4.1 implies that ( ~G′,σ′) := ( ~G[L \ {v}],σ′) is a
subgraph of both ( ~G′1,σ′) and ( ~G′2,σ′).
We next show that ( ~G′1,σ′) and ( ~G′2,σ′) are equal by characterizing the

additional edges that are inserted in both graphs compared to ( ~G′,σ′). Assume
that there is an additional edge (u, y) in one of the graphs, say ( ~G′1,σ). Since
(u, y) is not an edge in ( ~G,σ), we have lcaT (u, y) �T lcaT (u, y′) for some y′ ∈
L(T ) with σ(y) = σ(y′). However, (u, y) ∈ E( ~G′1) implies that lcaT1(u, y) �T1

lcaT1(u, y′′) for all y′′ ∈ L \ {v} with σ(y) = σ(y′). Since T ′1 := T1 \ {v}, we
obtain lcaT (u, y′) ≺T lcaT (u, y) �T lcaT (u, y′′), which implies that y′ = v and,
in particular, (u, v) ∈ E( ~G) and N+(u) = {v}.

In particular, we have σ(u) = t 6= s. In this case, u has no out-neighbors
in ( ~G′,σ′) but it has outgoing arcs in ( ~G′1,σ′) and ( ~G′2,σ′). In order to deter-
mine these outgoing arcs explicitly, we will reconstruct the local structure of
(T1,σ) and (T2,σ) in the vicinity of the leaf v. The following argumentation is
illustrated in Fig. 9.
SinceN+(u) = {v}, there is an R-class α = {v}. Let β be the R-class of ( ~G,σ)

to which u belongs. It satisfies N+(β) = {v}. Therefore L(T1(ρβ)) ∩ L[s] =
{v} and L(T2(ρβ))∩L[s] = {v}. In particular, this implies L(T1(ρα))∩L[s] =
{v} and L(T2(ρα)) ∩ L[s] = {v}. The children of ρα in both T1 and T2 must
be leaves: otherwise, Lemma 4.3(ii) would imply that there are inner vertices
ρα′ and ρβ′ below ρα, which in turn would contradict L(T1(ρα)) ∩L[s] = {v}
and L(T2(ρα)) ∩L[s] = {v}.

Moreover, the subtrees T1(ρα) and T2(ρα) must contain leaves of both colors.
Thus there exists an R-class β′ with color t whose root ρβ′ coincides with ρα in
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Fig. 9. Illustration of the proof of Thm. 4.2 show-
ing the local subtrees of (T1,σ) and (T2,σ), immedi-
ately above α = {v}. The relevant portion extends
to the root ργ of the R-class γ that is located immedi-
ately above α and has the same color as α, here blue.
Clearly, the deletion of α can affect only pairs of ver-
tices x, y with lca(x, y) below ργ . Triangles denote
the subtree that consists of all leaves of the corre-
sponding class which are attached to the root of the
class by an outer edge. Dashed triangles and nodes
denote subtrees which may or may not be present in
(T1,σ) and (T2,σ).

both (T1,σ) and (T2,σ). More precisely, we have child(ρα) = α ∪ β′. We now
distinguish two cases:
(i) If N−(β) ∩ {v} 6= ∅ in ( ~G,σ), we have ρβ = ρα, i.e., β = β′.
(ii) Otherwise if N−(β) ∩ {v} = ∅, then lca(v,β′) ≺ lca(v,β), hence ρβ � ρα.
In particular, since N+(β) = {v}, Lemma 4.3(vi) implies that there cannot be
any other R-class α′ 6= α of ( ~G,σ) with color s and ρβ � ρα′ . Moreover, there
cannot be any other class β′′ of color t such that ρβ′′ is contained in the unique
path from ρβ to ρα, otherwise it holds N+(β′′) = N+(β) and N−(β′′) = N−(β)

by Lemma 4.3(vi), i.e., β′′Rβ. Therefore we conclude that ρβρα ∈ E(T1) as well
as ρβρα ∈ E(T2).
If v is the only leaf of color s in ( ~G,σ), it follows from (i) and (ii) that (T ′1,σ′) =
(T1(ρβ),σ′) = (T2(ρβ),σ′) = (T ′2,σ′); a contradiction. Hence, there is a unique
tree representation for ( ~G,σ) if |L[s]| = 1.
Now suppose L[s] > 1. Then, both in case (i) and case (ii) there is a parent of
par(ρβ) because otherwise ( ~G′1,σ′) and ( ~G′2,σ′) would not contain color s. In
either case the parent of ρβ is an inner node of the least resolved tree (T1,σ′)
and (T2,σ′), respectively. We claim that par(ρβ) is the root of an R-class γ
of color s. Suppose this is not the case, i.e., σ(γ) = t and there is no other
γ′ ∈ N such that σ(γ′) = s and par(ρβ) = ργ′ . Then N+(γ) = N+(β) and
N−(γ) = N−(β) by Lemma 4.3(vi), which implies that βRγ and ρβ is not the
root of β; a contradiction.
We therefore conclude that the local subtrees of (T1,σ′) and (T2,σ′) imme-

diately above α, that is (T1(ργ),σ′|L(T1(ργ ))
) and (T2(ργ),σ′|L(T2(ργ ))

), as indi-
cated in Fig. 9, are identical. Moreover, it follows lca(u, γ) � lca(u,w) for
any w ∈ L[s] \ {v}. Hence, the additionally inserted edges in ( ~G′1,σ) and
( ~G′2,σ) are exactly the edges (u, c) for all c ∈ γ. We therefore conclude that
( ~G′1,σ) = ( ~G′2,σ), which implies (T ′1,σ′) = (T ′2,σ′). Since v has been chosen
arbitrarily, this implies (T1,σ) = (T2,σ); a contradiction.

Finally, we consider a few simple properties of least resolved trees that will be
useful in the following sections.
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Corollary 4.3. Let ( ~G,σ) be a connected 2-BMG that is explained by a least
resolved tree (T ,σ). Then all elements of α ∈ N are attached to ρα, i.e.,
ραa ∈ E(T ) for all a ∈ α.

Proof. Assume ραa /∈ E(T ). Since by definition α ≺ ρα, there exists an inner
node v with ραv ∈ E(T ) such that v lies pn the unique path from ρα to a. In
particular v 6= a. Thm. 4.2 implies that each inner vertex (except possibly the
root) of the least resolved tree (T ,σ) must be the root of some R-class of ( ~G,σ).
Hence, there is an R-class β ∈ N with ρβ = v. According to Lemma 4.3(ii),
the subtree T (v) contains leaves of both colors, i.e., there exists some leaf
c ∈ L(T (v)) with σ(c) 6= σ(a). It follows lca(a, c) ≺ ρα, which contradicts the
definition of ρα.

This result remains true also for 2-BMGs that are not connected.

4.3.3 Characterization of 2-BMGs

We will first establish necessary conditions for a colored digraph to be a 2-
BMG. The key construction for this purpose is the reachable set of an R-class,
that is, the set of all leaves that can be reached from this class via a path of
directed edges in ( ~G,σ). Not unexpectedly, the reachable sets should form a
hierarchical structure. However, this hierarchy does not quite determine a tree
that explains ( ~G,σ). We shall see, however, that the definition of reachable sets
can be modified in such a way that the resulting hierarchy defines the unique
least resolved tree w.r.t. ( ~G,σ).

Necessary Conditions

We start by deriving some graph properties of 2-BMGs. We shall see later that
these are in fact sufficient to characterize 2-BMGs.

Theorem 4.3. Let ( ~G,σ) be a connected 2-BMG. Then it holds for any two
R-classes α and β of ( ~G,σ):

(N1) α∩N+(β) = β ∩N+(α) = ∅ implies
N+(α) ∩N+(N+(β)) = N+(β) ∩N+(N+(α)) = ∅.

(N2) N+(N+(N+(α))) ⊆ N+(α).

(N3) α ∩N+(N+(β)) = β ∩N+(N+(α)) = ∅ and N+(α) ∩N+(β) 6= ∅
implies N−(α) = N−(β) and N+(α) ⊆ N+(β) or N+(β) ⊆ N+(α).

Proof. Let (T ,σ) be a tree explaining ( ~G,σ).
(N1): For σ(α) = σ(β) this is trivial, thus suppose σ(α) 6= σ(β). By
Lemma 4.3(vi), α is not located in the subtree T (ρβ) and β is not located
in the subtree T (ρα). Therefore ρα and ρβ must be incomparable. Since
N+(α),N+(N+(α)) � ρα and N+(β),N+(N+(β)) � ρβ by Lemma 4.3(iii)
and (vii), we conclude that N+(α)∩N+(N+(β)) = N+(β)∩N+(N+(α)) = ∅.
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Fig. 10. A 2-BMG with |W| > 1 and its least resolved tree. The R-class α = {9, 10}
consists of children of the root without in-neighbors. There is a second R-class without
in-neighbors, namely β = {7, 8}. Hence, W = {α,β} and R(α) = {1, . . . , 6} =
L \ (α∪ β), while R(β) = {5, 6}.

(N2): For contradiction, assume that there exists some q ∈ N+(N+(N+(α))) \
N+(α). Since σ(q) = σ(u) 6= σ(x) for all x ∈ α and u ∈ N+(α), any such
q must satisfy lca(x, q) � lca(x,u) for all x ∈ α and u ∈ N+(α). Otherwise
it would be contained in N+(α). Since N+(x) � ρα by Lemma 4.3(iii), the
definition of ρα implies that there is some pair x ∈ α and y ∈ β ⊆ N+(α) with
lca(x, y) = ρα. Therefore lca(x, q) � ρα.

Now consider β ⊆ N+(α). Since σ(β) 6= σ(α) and lca(α,β) � ρα, we infer
that N+(N+(α)) � ρα. Repeating the argument yields N+(N+(N+(α))) �
ρα and thus, there cannot be a pair of leaves x ∈ α and q ∈ N+(N+(N+(α)))

with lca(x, q) � ρα.
(N3): We first note that Property (N3) is trivially true for α = β. Hence,
assume α 6= β and suppose N+(α) ∩ N+(β) 6= ∅. Since T is a tree,
Lemma 4.3(vi) implies that either N+(α) ⊆ N+(β) or N+(β) ⊆ N+(α). As-
sume N+(β) ⊆ N+(α). Hence, ρβ � ρα. Consequently, for any γ ⊆ N−(α)

holds lca(γ,β) � lca(γ,α) � lca(γ,x) for all x with σ(x) = σ(α) and there-
fore, N−(α) ⊆ N−(β). Assume, for contradiction, that there exists γ′ ⊆
N−(β) \N−(α). By definition, we have ρα � lca(γ′,β) � ρβ in this case. But
then Lemma 4.3(vi) implies N+(γ′) ⊆ N+(α) and β ⊆ N+(γ′) ⊆ N+(N+(α));
a contradiction.

Definition 4.7. For any properly colored digraph ( ~G,σ) we define the reachable
set R(α) for an R-class α by

R(α) = N+(α) ∪N+(N+(α)) ∪N+(N+(N+(α))) ∪ ... (2)

Moreover, we writeW := {α ∈ N | N−(α) = ∅} for the set of R-classes without
in-neighbors.

As we shall see below, technical difficulties arise for distinct R-classes that
share the same set of in-neighbors. Hence, we briefly consider the classes in W.
An example is shown Fig. 10.
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Lemma 4.7. Let ( ~G,σ) be a connected 2-BMG explained by a tree (T ,σ) with
leaf set L. Then all R-classes in W have the same color and the cardinality of
W distinguishes three types of roots as follows:

(i) W = ∅ if and only if ρT = ρα = ρβ for two distinct R-classes α and β.

(ii) |W| > 1 if and only if there is a unique R-class α∗ ∈ W that is character-
ized by R(α∗) = L \

⋃
β∈W

β. Furthermore, ρα∗ = ρT .

(iii) If W = {α}, then ρα = ρT and R(α) = L \ α.

Proof. By Thm. 4.1, as ( ~G,σ), is connected, there is at least one child v of
the root ρT of T that itself is the root of a subtree with a single leaf color,
i.e., σ(L(T (v))) = {s}. Assume, for contradiction, that there are two R-classes
α,β ∈ W with s = σ(α) 6= σ(β) = t. Then, by definition, lca(v,x) = ρT for
all x ∈ β, and furthermore, (u,x) ∈ E( ~G) for all u ∈ L(T (v)). Since x ∈ β has
an in-arc, we have β 6∈ W; a contradiction. All leaves in W therefore have the
same color.
For the remainder of the proof we fix such a child v of the root ρT . By

construction, all leaves below it belong to the same R-class, which we denote
by ω = L(T (v)). W.l.o.g. we assume σ(v) = s. Since t /∈ σ(L(T (v))), we have
ρω = ρT and thus, N+(ω) = L[t] by Lemma 4.3(vi).
(i) Suppose W = ∅. Then there exists β ∈ Nt such that β ⊆ N−(ω). For each
b ∈ β we have lca(b,ω) � lca(b,x) for all x ∈ L[s]. Since lca(b,ω) = ρT , we
conclude ρβ = ρT = ρω.
Conversely, suppose α and β are two distinct R-classes such that ρα = ρβ =

ρT . By Lemma 4.3(v), σ(α) 6= σ(β). W.l.o.g. assume σ(α) = s and σ(β) = t.
Since L(T (ρα)) = L(T (ρT )) = L, Lemma 4.3(vi) implies N+(α) = L[t] and
N+(β) = L[s]. Therefore α ∈ N−(γ) for any γ ∈ Nt and β ∈ N−(γ) for any
γ ∈ Ns. Hence, W = ∅.
(ii) If W 6= ∅, Property (i) implies ρβ 6= ρT for all β ∈ Nt and thus, ρβ ≺ ρT .
Hence, there is no β ∈ Nt with ω ⊆ N+(β), i.e., N−(ω) = ∅, which implies
ω ∈ W.
Consider γ ∈ Ns. We have N−(γ) 6= ∅ if and only if there exists ζ ∈ Nt such

that γ ⊆ N+(ζ), i.e., if and only if γ ⊆ N+(L[t]). Since N+(ω) = L[t], we
have γ /∈ W if and only if γ ⊆ N+(N+(ω)). In other words, N+(N+(ω)) =

L[s] \
⋃
β∈W β. Using (N2), we obtain

R(ω) = N+(ω) ∪N+(N+(ω)) = L[t] ∪
⋃
{γ ∈ Ns|N−(γ) 6= ∅} = L \

⋃
γ∈W

γ .

Now suppose there is another α ∈ W with R(α) = L \
⋃
γ∈W γ. We already

know that σ(α) = s since all classes in W must have the same color. Hence,
L[t] ⊆ R(α). Consequently, ζ ∈ N+(ω) if and only if ζ ∈ N+(α) and thus,
N+(α) = N+(ω). Since α,ω ∈ W implies N−(α) = N−(ω) = ∅, α and ω

share both in- and out-neighbors and thus, α = ω. Therefore ω is unique.
(iii) From the proof of Property (ii), we know that |W| = 1 implies that the
unique member of W is ω. We already know that ρω = ρT .
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Sufficient Conditions

We now turn to showing that the properties obtained in Thm. 4.3 are already
sufficient for the characterization of 2-BMGs. To this end, we show that the ex-
tended reachable sets form a hierarchy whenever ( ~G,σ) satisfies the Properties
(N1), (N2), and (N3).
The following simple property we will be used throughout this section:

Lemma 4.8. If ( ~G,σ) is a connected properly 2-colored digraph satisfying (N1),
then it holds for any two R-classes α and β:

N+(α) ∩N+(β) = ∅ implies N+(N+(α)) ∩N+(N+(β)) = ∅ (3)

If ( ~G,σ) satisfies (N2), then R(α) = N+(α) ∪N+(N+(α)).

Proof. For any γ ⊆ N+(α) and any γ′ ⊆ N+(β), (N1) implies N+(γ) ∩
N+(N+(β)) = N+(γ′) ∩N+(N+(α)) = ∅. Recall that (N0) holds by defini-
tion of R-classes. Hence, N+(α) is the disjoint union of R-classes, i.e., N+(α) =⋃
γ⊆N+(α) γ. Thus N+(N+(α)) ∩ N+(N+(β)) = (

⋃
γ⊆N+(α)N

+(γ)) ∩
N+(N+(β)) = ∅. The equation R(α) = N+(α) ∪N+(N+(α)) is an imme-
diate consequence of (N2).

Lemma 4.9. Let ( ~G,σ) be a connected properly 2-colored digraph satisfying
Properties (N1), (N2), and (N3). Then H := {R(α) | α ∈ N} is a hierarchy
on L \⋃α∈W α.

Proof. First we note that R(α) = N+(α) ∪N+(N+(α)) by Property (N2).
Furthermore, using (N0), we observe that β ∩N+(α) 6= ∅ implies β ⊆ N+(α)

for all R-classes α and β. In particular, therefore, N+(α) is a disjoint union of
R-classes, and thus N+(N+(α)) =

⋃
β⊆N+(α)N

+(β) is again a disjoint union
of R-classes. Hence, for any R-class β 6= α, we either have β ⊆ R(α) or
β ∩R(α) = ∅. Note that the case α = β is trivial.
Suppose first β ⊆ R(α). If β ⊆ N+(α), then R(β) = N+(β) ∪

N+(N+(β)) ⊆ N+(N+(α)) ∪ N+(N+(N+(α))) ⊆ N+(N+(α)) ∪ N+(α).
On the other hand, β ⊆ N+(N+(α)) yields R(β) ⊆ N+(N+(N+(α))) ∪
N+(N+(N+(N+(α))) ⊆ N+(α) ∪N+(N+(α)). Thus, R(β) ⊆ R(α).
Exchanging the roles of α and β, the same argument shows that α ⊆ R(β)

implies R(α) ⊆ R(β).
Now suppose that neither α ⊆ R(β) nor β ⊆ R(α) is satisfied and thus, by

the arguments above, that α ∩R(β) = β ∩R(α) = ∅. In particular, therefore,
α∩N+(β) = β ∩N+(α) = ∅ and thus, Property (N1) implies R(α) ∩R(β) =
(N+(α) ∩ N+(β)) ∪ (N+(N+(α)) ∩ N+(N+(β))). If N+(α) ∩ N+(β) = ∅,
then R(α) ∩ R(β) = ∅ by Lemma 4.8. If N+(α) ∩N+(β) 6= ∅, then Prop-
erty (N3) and α ∩R(β) = β ∩R(α) = ∅ implies either N+(α) ⊆ N+(β) or
N+(β) ⊆ N+(α). Isotony of N+ thus implies N+(N+(α)) ⊆ N+(N+(β)) or
N+(N+(β)) ⊆ N+(N+(α)), respectively. Hence, we have either R(α) ⊆ R(β)
or R(β) ⊆ R(α). Therefore H is a hierarchy.

Finally, we proceed to show that there is a unique set R(α∗) that is maximal
w.r.t. inclusion and, in particular, satisfies R(α∗) = L \

⋃
α∈W α.

Assume, for contradiction, that there are two distinct elements R(α),R(α∗) ∈
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(A) (B) (C)

Fig. 11. (A) The properly 2-colored digraph ( ~G,σ) satisfies (N1), (N2), and (N3). All
αi are R-classes of ( ~G,σ) and belong to color “blue”, the R-classes βj form the “red”
color classes. Red (blue) triangles indicate subtrees that only contain red (blue) leaves.
Note that N−(α1) = N−(α5) = N−(α6). (B) The tree obtained from the hierarchy
H = {R(α) | α ∈ N} by attaching to the corresponding tree the elements of α as leaves
to R(α), does not explain ( ~G,σ). It would imply N−(α1) = N−(α5) = N−(α6) and
N+(α1) = N+(α5) = N+(α6), i.e., α1Rα5Rα6. (C) The tree defined by the hierarchy
H′ = {R′(α) | α ∈ N} with elements of α attached as leaves to R′(α) is the unique
least resolved tree that explains ~G (cf. Lemma 4.11).

H that are both maximal w.r.t. inclusion. Thus R(α)∩R(α∗) = ∅ and α 6= α∗.
Moreover, since H is a hierarchy, we must have R(β) ∩ R(α∗) = ∅ for each
β ∈ N with R(β) ⊆ R(α). In particular, this implies β ⊆ R(α) for any β ∈ N
with R(β) ⊆ R(α). As a consequence there is no β ⊆ R(α) and β′ ⊆ R(α∗)

such that β ⊆ N+(α∗) and β′ ⊆ N+(α), respectively. Therefore R(α) and
R(α∗) are not connected; a contradiction to the connectedness of ~G. Hence,
R(α) = R(α∗), i.e., there is a unique set R(α∗) in H that is maximal w.r.t.
inclusion. It contains all R-classes of ~G that have non-empty in-neighborhood.
Since, by definition, all vertices of ~G are assigned to exactly one R-class, we
conclude that R(α∗) = L \

⋃
α∈W α.

Note that while R(α) is unique for a given R-class α, there may exist more
than one R-class that have the same reachable set (see for instance α2 and β2
in Fig. 11(C)). In particular, there may even be R-classes with different color
giving rise to the same element of H. More generally, we have R(α) = R(β)

for α 6= β if and only if α ∈ R(β) and β ∈ R(α).
A hierarchy H corresponds to a unique tree T (H) defined as the Hasse dia-

gram of H, i.e., the vertices of T (H) are sets of H, and R2 is a child of R1 if
and only if R2 ⊂ R1 and there is no R3 such that R2 ⊂ R3 ⊂ R1. In particu-
lar, thus, two R-classes belong to the same inner vertex if R(α) = R(β). It is
tempting to use this tree to construct a tree T explaining ( ~G,σ) by attaching
the elements of α as leaves to the node R(α) in T (H). The example in Fig.
11 shows, however, that this simply does not work. The key issue arises from
groups of distinct R-classes that share the same in-neighborhood because they
will in general be attached to the same node in T (H), i.e., they are indistin-
guishable. We therefore need a modification of the definition of reachable sets
that properly distinguishes such R-classes in order to construct a hierarchy with
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the appropriate resolution for the least resolved tree specified in Thm. 4.2. To
this end, we define for every R-class of a properly 2-colored digraph ( ~G,σ) the
auxiliary leaf set

Q(α) = {x ∈ V ( ~G) | ∃β ∈ N : x ∈ β, N−(β) = N−(α) and N+(β) ⊆ N+(α)}
(4)

Note that α ⊆ Q(α). For later reference we list several simple properties of Q.

Lemma 4.10. Let ( ~G,σ) be a 2-BMG and α,β ∈ N . Then

(i) β ⊆ Q(α) implies σ(β) = σ(α),

(ii) β ⊆ Q(α) implies Q(β) ⊆ Q(α),

(iii) β ⊆ Q(α) implies R(β) ⊆ R(α),

(iv) α∩N+(β) = ∅ implies Q(α) ∩ N+(β) = ∅, and

(v) α∩N+(N+(β)) = ∅ implies Q(α) ∩ N+(N+(β)) = ∅.

Proof. (i) follows directly from the definition.
(ii) Let β ⊆ Q(α), γ ∈ N , and γ ⊆ Q(β). Then N−(γ) = N−(β) = N−(α) and
N+(γ) ⊆ N+(β) ⊆ N+(α). Hence, γ ⊆ Q(α) and therefore, Q(β) ⊆ Q(α).
(iii) By definition, N+(β) ⊆ N+(α). Monotonicity of N+ implies
N+(N+(β)) ⊆ N+(N+(α)) and therefore, R(β) ⊆ R(α).
(iv) Assume that α ∩N+(β) = ∅ but γ ⊆ Q(α) ∩ N+(β) 6= ∅. Thus β ⊆
N−(γ) = N−(α), i.e., α ⊆ N+(β); a contradiction.
(v) Assume that α∩N+(N+(β)) = ∅ but γ ⊆ Q(α)∩ N+(N+(β)) 6= ∅. Thus
there is an R-class ξ ⊆ N+(β) such that ξ ⊆ N−(γ) = N−(α) and therefore,
α ⊆ N+(N+(β)); a contradiction.

Finally we define, for any R-class in a properly 2-colored digraph ( ~G,σ), its
extended reachable set as

R′(α) := R(α) ∪Q(α). (5)

Note that α ∈ R′(α). Furthermore, the extended reachable set R′(α) contains
vertices with both colors for every R-class α. Thus |R′(α)| > 1. We show next
that for any 2-BMG the extended reachable sets form the hierarchy that yields
the desired least resolved tree.

Lemma 4.11. Let ( ~G,σ) be a connected properly 2-colored digraph satisfying
Properties (N1), (N2), and (N3). Then H′ := {R′(α) | α ∈ N} is a hierarchy
on L.

Proof. Consider two distinct R-classes α,β ∈ N . By definition, Q(α) is the
disjoint union of R-classes. The same is true for R(α) as argued in the proof of
Lemma 4.9, hence R′(α) = R(α) ∪Q(α) is also the disjoint union of R-classes.
Thus we have either β ⊆ R′(α) or β ∩R′(α) = ∅.

45



First assume β ⊆ R′(α). Thus we have β ⊆ R(α) or β ⊆ Q(α). If β ⊆
Q(α), i.e., N+(β) ⊆ N+(α) and consequently R(β) ⊆ R(α), then Lemma
4.10(ii)+(iii) implies R′(β) ⊆ R′(α). If β ⊆ R(α), then R(β) ⊆ R(α) ⊆
R′(α), which can be shown as in the proof of Lemma 4.9. It remains to show
Q(β) ⊆ R′(α). By definition, we have N−(γ) = N−(β) for any γ ⊆ Q(β).
Therefore β ⊆ N+(α)∪N+(N+(α)) implies γ ⊆ N+(α)∪N+(N+(α)). Hence,
γ ⊆ R(α) ⊆ R′(α). In summary, we have R′(β) ⊆ R′(α) for all β ⊆ R′(α).

The implication “α ⊆ R′(β) =⇒ R′(α) ⊆ R′(β)” follows by exchanging α
and β in the previous paragraph.

Now suppose β ∩ R′(α) = α ∩ R′(β) = ∅. In particular, it then holds
α ∩N+(β) = β ∩N+(α) = ∅ and α ∩N+(N+(β)) = β ∩N+(N+(α)) = ∅.
Applying Property (N1) and Lemma 4.10(iv)+(v) yields R′(α) ∩ R′(β) =(
N+(α)∩N+(β)

)
∪
(
N+(N+(α))∩N+(N+(β))

)
∪
(
Q(α)∩Q(β)

)
. First, let

N+(α) ∩N+(β) = ∅. This immediately implies Q(α) ∩Q(β) = ∅ and from
Lemma 4.8 follows N+(N+(α))∩N+(N+(β)) = ∅. Hence, R′(α)∩R′(β) = ∅.
Now assume N+(α) ∩N+(β) 6= ∅. By Property (N3), we conclude N−(α) =
N−(β) and either N+(α) ⊆ N+(β) or N+(β) ⊆ N+(α). Consequently, either
N+(N+(α)) ⊆ N+(N+(β)) and Q(α) ⊆ Q(β), or N+(N+(β)) ⊆ N+(N+(α))

and Q(β) ⊆ Q(α). Hence, it must either hold R′(α) ⊆ R′(β) or R′(β) ⊆ R′(α).
It remains to show that L ∈ H′. Similar arguments as in the proof of

Lemma 4.9 can be applied in order to show that there is a unique element
R′(α∗) that is maximal w.r.t. inclusion in H′. Since for any α ∈ N it is true
that α ∈ R′(α), every R-class of ~G is contained in at least one element of
H′. Moreover, any vertex of ( ~G,σ) is contained in exactly one R-class. Hence,
L = R′(α∗) ∈ H′.

Since H′ is a hierarchy, its Hasse diagram is a tree T (H′). Its vertices are
by construction exactly the extended reachable sets R′(α) of ( ~G,σ). Starting
from T (H′), we construct the tree T ∗(H′) by attaching the vertices x ∈ α to
the vertex R′(α) of T (H′). The tree T ∗(H′) has leaf set L. Since |R′(α)| > 1
as noted below Equ. (5), T ∗(H′) is a phylogenetic tree.

Theorem 4.4. Let ( ~G,σ) be a connected properly 2-colored digraph. Then
there exists a tree T explaining ( ~G,σ) if and only if ( ~G,σ) satisfies Properties
(N1), (N2), and (N3). The tree T ∗(H′) is the unique least resolved tree that
explains ( ~G,σ).

Proof. The “only if”-direction is an immediate consequence of Lemma 4.2 and
Thm. 4.3. For the “if”-direction we employ Lemma 4.11 and show that the tree
T ∗(H′) constructed from the hierarchy H′ explains ( ~G,σ).
Let x ∈ V ( ~G) and α be the R-class of ( ~G,σ) to which x belongs. Denote

by Ñ+(x) the out-neighbors of x in the graph explained by T ∗(H′). Therefore
y ∈ Ñ+(x) if and only if σ(y) 6= σ(x) and lcaT ∗(H′)(x, y) is the inner node to
which x is attached in T (H′), i.e., R′(α). Therefore y ∈ Ñ+(x) if and only if
σ(y) 6= σ(x) and y ∈ R′(α). By (N2), this is the case if and only if y ∈ N+(x).
Thus Ñ+(x) = N+(x). Since two digraphs are identical whenever all their
out-neighborhoods are the same, the tree T ∗(H′) indeed explains ( ~G,σ).
By construction and Thm. 4.2, (T ∗(H′),σ) is a least resolved tree.
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4.3.4 Informative Triples

An inspection of induced subgraphs on three vertice of a 2-BMG ( ~G,σ) shows
that several local configurations derive only from specific types of trees. More
precisely, certain induced subgraphs on three vertices are associated with
uniquely defined triples displayed by the least resolved tree (T ,σ) introduced
in the previous section. Other induced subgraphs on three vertices, however,
may derive from two or three distinct triples. The importance of triples derives
from the fact that a phylogenetic tree can be reconstructed from the triples
that it displays by the BUILD algorithm (see Section 3.4).
It is natural to ask whether the triples that can be inferred directly from

( ~G,σ) are sufficient to (a) characterize 2-BMGs and (b) completely determine
the least resolved tree (T ,σ) explaining ( ~G,σ).

Definition 4.8. Let ( ~G,σ) be a properly 2-colored digraph. We say that a
triple ab|c is informative (for ( ~G,σ)) if the three distinct vertices a, b, c ∈ V ( ~G)

induce a colored subgraph ~G[a, b, c] isomorphic to the graphs X1, X2, X3, or X4
shown in Fig. 12. The set of informative triples is denoted by R( ~G,σ).

a b

c

a b

c

a b

c

a b

c

Fig. 12. Each of the three-vertex induced subgraphs X1, X2, X3, and X4 gives a triple
ab|c. If vertex c in the drawing has two colors, then the color σ(c) does not matter.

Lemma 4.12. If ( ~G,σ) is a connected 2-BMG, then each triple in R( ~G,σ) is
displayed by any tree (T ,σ) that explains ( ~G,σ).

Proof. Let (T ,σ) be a tree that explains ( ~G,σ). Assume that there is an
induced subgraph X1 in ( ~G,σ). W.l.o.g. let σ(c) = σ(b). Since there is no arc
(a, c) but an arc (a, b), we have lca(a, b) ≺ lca(a, c), which implies that T must
display the triple ab|c. By the same arguments, if X2, X3, or X4 is an induced
subgraph in ( ~G,σ), then T must display the triple ab|c.

In particular, therefore, if ( ~G,σ) is a 2-BMG, then R( ~G,σ) is consistent. It
is tempting to conjecture that consistency of the set R( ~G,σ) of informative
triples is already sufficient to characterize a 2-BMG. The example in Fig. 13
shows, however, that this is not the case.

Lemma 4.13. Let (T ,σ) be a least resolved tree explaining a connected 2-
BMG ( ~G,σ). Then every inner edge of T is distinguished by at least one triple
in R( ~G,σ).

Proof. Let e = uv be an inner edge of T . Since (T ,σ) is least resolved for
( ~G,σ), Thm. 4.2 implies that the edge e is relevant and hence, there exists a,
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b'ba a'

a b

b' a'

a b

b' a'

Fig. 13. The 4-vertex graph ( ~G,σ) on the l.h.s. cannot be a 2-BMG because there is no
out-arc from a′. The four induced subgraphs are of type X1, X2, X3 (with red and blue
exchanged) and arc-less, respectively, resulting in the set R( ~G,σ) = {ab|b′, ab|a′, ab′|a′}
of informative triples. This set is consistent and displayed by the Aho tree T shown
in the middle. It is not difficult to check that every edge of T is distinguished by
one informative triple. Therefore R( ~G,σ) identifies the leaf-colored tree (T ,σ) [84].
However, the graph ~G(T ,σ) explained by the tree (T ,σ) is not isomorphic to the
graph ( ~G,σ) from which the triples were inferred.

R-class α ∈ N such that v = ρα. By Cor. 4.3, we have a ∈ child(v) for any
a ∈ α. Lemma 4.3(ii) implies that T (v) contains an R-class β with σ(α) 6= σ(β)

and b ∈ β.
Case A: Suppose that ρβ = ρα and therefore, (a, b), (b, a) ∈ E( ~G). If u is

the root of some R-class with c ∈ γ, then Lemma 4.3(vi) implies (c, a) ∈ E( ~G),
(c, b) /∈ E( ~G) for σ(c) = σ(b) and (c, b) ∈ E( ~G), (c, a) /∈ E( ~G) for σ(c) =

σ(a). In all cases, we neither have (b, c) ∈ E( ~G) nor (a, c) ∈ E( ~G) since
(a, b), (b, a) ∈ E( ~G). Therefore we always obtain a 3-vertex induced subgraph
that is isomorphic to X2 (see Fig. 12) and ab|c ∈ R( ~G,σ). On the other hand,
if there is no R-class γ such that u = ργ , then u is the root of (T ,σ) by Cor.
4.3. Since (T ,σ) is phylogenetic and u is not the root of any R-class, there must
be an inner vertex w ∈ child(u) \ {v} such that w = ργ for some γ ∈ N . Since
T (ργ) contains leaves of both colors by Lemma 4.3(ii), for any leaf c ∈ L(T (ργ))
there is no edge between c and b as well as between c and a. Taken together,
we obtain the induced subgraph X1 and the triple ab|c.

Case B: Now assume ρβ ≺ ρα and there is no other β′ ∈ N with σ(β′) = σ(β)

and ρα = ρβ′ . By definition of ρβ, we have lca(b, a′) ≺ lca(b, a) for some a′ with
σ(a) = σ(a′), i.e., (b, a) /∈ E( ~G). Moreover, Lemma 4.3(vi) implies b ∈ N+(a),
thus (a, b) ∈ E( ~G). Similar to Case A, first suppose that u is the root of
some R-class of ( ~G,σ). Since e is relevant, there is a γ ∈ N with u = ργ and
σ(γ) 6= σ(α). Otherwise, if σ(γ) = σ(α) and there is no other γ′ ∈ N with
u = ργ′ , Lemma 4.3(vi) implies N+(α) = N+(γ) and N−(α) = N−(γ), i.e., α
and γ belong to the same R-class with root u. Hence, v is not the root of any R-
class; a contradiction. Consequently, we have σ(γ) 6= σ(α), thus (c, a) ∈ E( ~G)
by Lemma 4.3(vi) but (a, c) /∈ E( ~G). This yields the triple ab|c that is derived
from the subgraph X4. If u is no root of any R-class, analogous arguments
as in Case A show that there is an inner vertex w ∈ child(u) \ {v} such that
the tree T (w) contains leaves of both colors. In particular, there exists a leaf
c ∈ L(T (w)) and since u is not the root of α, β or the R-class that c belongs
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to, there is no arc between c and a or b in ( ~G,σ). Hence, we again obtain the
triple ab|c which in this case is derived from X3.

In every case we have v = lca(a, b) ≺ lca(a, c) = u, i.e., the triple ab|c
distinguishes uv.

Lemma 4.13 suggests that the leaf-colored Aho tree (Aho(R( ~G,σ)),σ) of the
set of informative triples R( ~G,σ) explains a given 2-BMG ( ~G,σ). The following
result shows that this is indeed the case and sets the stage for one of the main
results of this section, a characterization of 2-BMGs in terms of informative
triples.

Theorem 4.5. Let ( ~G,σ) be a connected 2-BMG. Then ( ~G,σ) is explained by
the Aho tree of the set of informative triples, i.e., ( ~G,σ) = ~G(Aho(R( ~G,σ)),σ).

Proof. Let (T̃ ,σ) be the unique least resolved tree that explains ( ~G,σ) and set
L = V ( ~G). For a fixed vertex v ∈ L we write ( ~G′,σ′) = ( ~G[L \ {v}],σ|L\{v}).
Let (T̃ ′,σ′) be the unique least resolved tree that explains ( ~G′,σ′) and let
(T ′,σ′) := (Aho(R( ~G′,σ′)),σ′) be the leaf-colored Aho tree of the informative
triples of ( ~G′,σ′).

First consider the case L = {x, y}. Since ( ~G,σ) is a connected 2-BMG, we
have σ(x) 6= σ(y) and (x, y), (y,x) ∈ E( ~G). It is easy to see that both the least
resolved tree w.r.t. ( ~G,σ) and Aho(R( ~G,σ)) correspond to the path x− ρT − y
with end points x and y. Thus ( ~G,σ) = ~G(Aho(R( ~G,σ)),σ).

Now let |L| > 2 and assume, for contradiction, that the statement of the
proposition is false. Then there is a minimal graph ( ~G,σ) such that ( ~G,σ) 6=
~G(T ,σ) for (T ,σ) = (Aho(R( ~G,σ)),σ), i.e., ( ~G′,σ′) = ~G(T ′,σ′) holds for
every choice of v ∈ V ( ~G). Since ( ~G,σ) is connected, Thm. 4.1 implies that
there is an R-class α of ( ~G,σ) such that ρα = ρT̃ . We fix a vertex v in this class
α and proceed to show that ( ~G,σ) = ~G(T ,σ); a contradiction. Let σ(α) = s

and let (T̃ − v,σ′) be the tree that is obtained by removing the leaf v and its
incident edge from (T̃ ,σ). Clearly, the out-neighborhood of every leaf of color
s is still the same in (T̃ − v,σ′) compared to (T̃ ,σ). Moreover, Lemma 4.3(vi)
implies that N+(x) remains unchanged in (T̃ − v,σ′) for any x ∈ L[t] \ {v}
that belongs to an R-class β with ρβ 6= ρT̃ . If ρβ = ρT̃ , then N+(x) = L[s]

in (T̃ ,σ) by Lemma 4.3(vi) and thus, N+(x) = L[s] \ {v} in (T̃ − v,σ′). We
can therefore conclude that (T̃ − v,σ′) explains the induced subgraph ( ~G′,σ′)
of ( ~G,σ).
Now we distinguish two cases:
Case A: Let |child(ρT̃ ) ∩ L| > 1, which implies |child(ρT̃−v) ∩ L| ≥ 1. Hence,
the root of (T̃ − v,σ′) has at least two children, which in particular implies
that ~G(T̃ − v,σ′) is connected by Thm. 4.1. Since (T̃ ,σ) is least resolved, Thm.
4.2 implies that any inner edge of (T̃ − v,σ′) is relevant and hence, (T̃ ′,σ′) =
(T̃ − v,σ′). Consequently, we can recover (T̃ ,σ) from (T̃ ,σ′) by inserting the
edge ρT̃ ′v. If N−(α) = ∅, then (v,x) ∈ E( ~G) but (x, v) /∈ E( ~G) for any
x ∈ L[t]. Hence, any informative triple that contains v is induced by X2 or
X4, and is thus of the form xy|v with σ(x) 6= σ(y). This implies v ∈ child(ρT ).
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On the other hand, if there is a β ∈ N with σ(β) = t and ρβ = ρT̃ , we have
(v,u) ∈ E( ~G) and (u, v) ∈ E( ~G) with u ∈ L[t] if and only if u ∈ β by Lemma
4.4(i). Then there is no 3-vertex induced subgraph of ( ~G,σ) of the form X1, X2,
X3, or X4 that contains both u and v, and any informative triple that contains
either u or v is again of the form xy|v and xy|v respectively. As before, this
implies v ∈ child(ρT ). Hence, (T ,σ) is obtained from (T ′,σ′) by insertion of the
edge ρT ′v. Since ( ~G′,σ′) = ~G(T ′,σ′), we conclude that (T ,σ) explains ( ~G,σ),
and arrive to the desired contradiction.
Case B: If |child(ρT̃ )∩L| = 1, then (T̃ − v,σ′) is not least resolved since either
(a) the root is of degree 1 or (b) there exists no u ∈ child(ρT̃ ) \ {v} such that
σ(u) 6= {s, t} (see Thm. 4.1). In the latter case, the graph ( ~G′,σ′) is not
connected. To convert (T̃ − v,σ′) into the least resolved tree (T̃ ′,σ′), we need
to contract all edges ρT̃u with u ∈ child(ρT ′) \ {v}. Clearly, we can recover
( ~G,σ) from ( ~G′,σ′) by reverting the prescribed steps. Analogous arguments
as in Case A show that again any informative triple in R( ~G,σ) that contains
v is of the form xy|v with σ(x) 6= σ(y). If ( ~G′σ′) is connected, then any
triple in R( ~G,σ) \R( ~G′,σ′) is of this form and hence, as above, we conclude
that v ∈ child(ρT ) and ( ~G,σ) = ~G(T ,σ). If ( ~G′σ′) is not connected, then
R( ~G,σ) \ R( ~G′,σ′) contains also all triples xy|z induced by X1 and X3 that
emerged from connecting all components of ( ~G′,σ′) by insertion of v. However,
since lca(x, y, z) = ρT̃ , we conclude that v ∈ child(ρT ) and thus, ( ~G,σ) =
~G(T ,σ) again yields the desired contradiction.

We finally arrive at the main result of this section.

Theorem 4.6. A connected properly 2-colored digraph ( ~G,σ) is a 2-BMG if
and only if ( ~G,σ) = ~G(Aho(R( ~G,σ)),σ).

Proof. If ( ~G,σ) is a 2-BMG, then Thm. 4.5 guarantees that ( ~G,σ) =
~G(Aho(R( ~G,σ)),σ). If ( ~G,σ) is not a 2-BMG, then either R( ~G,σ) is inconsis-
tent or its Aho tree Aho(R( ~G,σ)) explains a different graph ~G(T ,σ) 6= ( ~G,σ)
because by assumption ( ~G,σ) cannot be explained by any tree.

If ( ~G,σ) is not connected, then the informative triples of Def. 4.8 are not
sufficient by themselves to infer a tree that explains ( ~G,σ). However, it follows
from Thm. 4.1 and 4.6, that the desired tree (T ,λ) can be obtained by attaching
the Aho trees of the connected components as children of the root of (T ,λ). It
can be understood as the Aho tree of the triple set

R( ~G,σ) =
⋃
i

R( ~Gi,σi) ∪RC( ~G,σ) (6)

where the R( ~Gi,σi) are the sets of informative triples of the connected compo-
nents and RC( ~G,σ) consists of all triples of the form xy|z with x, y ∈ L( ~Gi)
and z ∈ L( ~Gj) for all pairs i 6= j. The triple set RC( ~G,σ) simply specifies the
connected components of ( ~G,σ). Note that with this augmented definition of
R, Thm. 4.6 remains true also for 2-BMGs that are not connected.
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4.4 n -colored best match graphs

In this section we generalize the results about 2-BMGs to an arbitrary num-
ber of colors. As in the 2-color case, we write xRy if and only if x and y

have the same in- and out-neighbors. Recall that, for given colors r, s, t ∈ S,
we write ( ~Gst,σst) := ( ~G[L[s] ∪ L[t]],σ|L[s]∪L[t]) and ( ~Grst,σrst) := ( ~G[L[r] ∪
L[s] ∪ L[t]],σ|L[r]∪L[s]∪L[t]) for the respective induced subgraphs (see Section
3.2). Since ~G is multipartite and every vertex has at least one out-neighbor
of each color except its own, we can conclude also for general BMGs that xRy
implies σ(x) = σ(y). Denote by xRsty the thinness relation of Def. 4.3 on
( ~Gst,σst).

Observation 4.4. If σ(x) = σ(y) = s, then xRy holds if and only if xRsty for
all colors t 6= s.

We can therefore think of the relation R as the common refinement of the
relations Rst based on the induced 2-BMGs for all colors s, t. In particular,
therefore, all elements within an R-class of an n-BMG appear as sibling leaves
in the different least resolved trees, each explaining one of the induced 2-BMGs.
Next we generalize the notion of roots.

Definition 4.9. Let ( ~G,σ) be an n-BMG explained by some tree (T ,σ) and
suppose σ(α) = r 6= s. Then the root ρα of the R-class α w.r.t. color s is

ρα,s = max
x∈α

y∈N+
s (α)

lca(x, y).

Observation 4.5. Consider an n-BMG ( ~G,σ) that is explained by a tree (T ,σ).
By Obs. 4.2, the subgraph ( ~Gst,σst) induced by any two distinct colors s, t ∈ S
is a 2-BMG and thus explained by a corresponding least resolved tree (Tst,σst).
Uniqueness of this least resolved tree implies that the tree (T ,σ) must display
(Tst,σst). In other words, (T ,σ) is a refinement of (Tst,σst).

Observation 4.6. Let ( ~G,σ) be an n-BMG that is explained by a tree
(T ,σ), and a, b, c ∈ V ( ~G) leaves of three distinct colors. Then the 3-BMG
~G(T|{a,b,c},σ|{a,b,c}) is the complete graph on {a, b, c} with bidirectional edges.

Therefore no further refinement can be obtained from triples of three different
colors. Thus the 2-colored triples inferred from the induced 2-BMGs for all color
pairs may already be sufficient to construct (T ,σ). This suggests, furthermore,
that every n-BMG is explained by a unique least resolved tree. An important
tool for addressing this conjecture is the following generalization of Condition
(vi) of Lemma 4.3.

Lemma 4.14. Let ( ~G,σ) be a (not necessarily connected) n-BMG explained
by (T ,σ) and let α be an R-class of ( ~G,σ). Then N+

s (α) = L(T (ρα,s)) ∩L[s]
for all s ∈ S \ {σ(α)}.

Proof. The definition of ρα,s implies N+
s (α) ⊆ L(T (ρα,s)) ∩ L[s]. In par-

ticular, there is a leaf y ∈ N+
s (α) such that lca(y,α) = ρα,s. Now con-

sider an arbitrary leaf x ∈ L(T (ρα,s)) ∩ L[s]. By construction, we have
lca(x,α) � ρα,s = lca(y,α) and therefore x ∈ N+

s (α), which completes the
proof.
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We are now in the position to characterize the redundant edges.

Lemma 4.15. Let ( ~G,σ) be a (not necessarily connected) n-BMG explained
by (T ,σ). Then the inner edge e = uv is redundant in (T ,σ) if and only if for
every color s ∈ σ(L(T (u)) \L(T (v))), there is no R-class α ∈ N with v = ρα,s.

Proof. Let (Te,σ) be the tree that is obtained from (T ,σ) by contraction of
the edge e = uv and assume that (Te,σ) explains ( ~G,σ). Since (T ,σ) is
phylogenetic, there exists a leaf y ∈ L(T (u)) \ L(T (v)) of some color s ∈
σ(L(T (u)) \ L(T (v))). Assume that there is an R-class α of ( ~G,σ) such that
v = ρα,s. Note that s 6= σ(α) by definition of ρα,s. Lemma 4.14 implies
that y /∈ N+(α) in ( ~G,σ). After contraction of e, we have lca(α, y) = ρα,s,
thus y ∈ N+(α) by Lemma 4.14. Hence, (Te,σ) does not explain ( ~G,σ); a
contradiction.
Conversely, assume that for every s ∈ σ(L(T (u)) \ L(T (v))), there is no

α ∈ N such that v = ρα,s, i.e., for every α ∈ N and every color s 6= σ(α)

we either have (i) v � ρα,s, (ii) v ≺ ρα,s, or (iii) v and ρα,s are incomparable.
In the first two cases, contraction of e implies v � ρα,s or v � ρα,s in (Te,σ),
respectively. Therefore, and since L(T (w)) = L(Te(w)) for any w incomparable
to v, we have L(T (w)) = L(Te(w)) for any node w 6= v. Moreover, it follows
from Lemma 4.14 that N+

s (α) = {y | y ∈ L(T (ρα,s)),σ(y) = s}. This implies
that the set N+

s (α) remains unchanged after contraction of e for all R-classes
α and all color s ∈ S. In other words, the in- and out-neighborhood of any leaf
remain the same in (Te,σ). Hence, we conclude that (T ,σ) and (Te,σ) explain
the same graph ( ~G,σ).

Before we consider the general case, we show that 3-BMGs like 2-BMGs are
explained by unique least resolved trees.

Lemma 4.16. Let ( ~G,σ) be a connected 3-BMG. Then there exists a unique
least resolved tree (T ,σ) that explains ( ~G,σ).

Proof. This proof uses arguments very similar to those in the proof of the
uniqueness result for 2-BMGs. In particular, as in the proof of Thm. 4.2, we
assume for contradiction that there exist 3-colored digraphs that are explained
by two distinct least resolved trees. Let ( ~G,σ) be a minimal graph (w.r.t. the
number of vertices) that is explained by the two distinct least resolved trees
(T1,σ) and (T2,σ). W.l.o.g. we can choose a vertex v and assume that its color
is r ∈ S, i.e., v ∈ L[r]. Using the same notation as in the proof of Thm. 4.2,
we write (T ′1,σ′) and (T ′2,σ′) for the trees that are obtained by deleting v from
(T ,σ). These trees explain the uniquely defined graphs ( ~G′1,σ′) and ( ~G′2,σ′),
respectively. Again, Lemma 4.1 implies that ( ~G′,σ′) := ( ~G[L \ {v}],σ′) is a
subgraph of both ( ~G′1,σ′) and ( ~G′2,σ′). Similar to the case of 2-BMGs, we
characterize the additional edges that are inserted into ( ~G′1,σ′) and ( ~G′2,σ′)
compared to ( ~G′,σ′) in order to show that ( ~G′1,σ′) = ( ~G′2,σ′). Assume that
(u, y) is an edge in ( ~G′1,σ′) but not in ( ~G′,σ′). By analogous arguments as in the
proof of Thm. 4.2, we find that (u, v) ∈ E( ~G) and in particular N+

r (u) = {v},
i.e., u has no out-neighbors of color r in ( ~G′,σ′).
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Moreover, we have u ∈ L[s], where s ∈ S \ {r}. Similar to the 2-color case, we
now determine the outgoing arcs of u in ( ~G′1,σ′) and ( ~G′2,σ′) by reconstructing
the local structure of (T1,σ) and (T2,σ) in the vicinity of v.
Obs. 4.2 implies that the least resolved tree (Trs,σrs) explaining ( ~Grs,σrs) is

displayed by both (T1,σ) and (T2,σ). The local structure of (Trs,σrs) around
v is depicted in Fig. 9. Using the notation in the figure, {v} is an R-class
by itself, α = {v}, there is an R-class β′ ⊆ L[s] with N+

r (β
′) = {α} and

N+
s (α) = {β′}, and there may or may not exist an R-class β ⊆ L[s] with

N+
r (β) = N+

r (β
′) = {α} and N+

s (α) ∩ β′ = ∅. In addition, we have γ ⊆ L[r],
which is the �-minimal R-class of color r such that ργ � ρβ, ρβ′ . Recall that
(u, c) with c ∈ γ are all the edges on L[r]× L[s] that have been additionally
inserted in both ( ~G′1,σ′) and ( ~G′2,σ′). Since every R-class has at least one out-
neighbor of each color and given the relationship between α and β′, there exists
an R-class δ ⊆ L[t], where t ∈ S \ {r, s}, with α ⊆ N+

r (δ) and β′ ⊆ N+
s (δ)

such that there is no other δ′ ⊆ L[t] with ρδ′ ≺ ρδ. If N+
r (δ) \ {α} 6= ∅,

then ρδ � ργ by Lemma 4.14, and in particular there is no additional edge
of the form (w, a) with w ∈ L[t] and a ∈ L[r] that is contained in ( ~G′1,σ′)
and/or ( ~G′2,σ′) but not in ( ~G′,σ′). Therefore only edges of the form (u, c)
with c ∈ γ are additionally inserted into ( ~G′1,σ′) and ( ~G′2,σ′), and we conclude
that ( ~G′1,σ′) = ( ~G′2,σ′), which implies (T ′1,σ′) = (T ′2,σ′) and therefore, since
v was arbitrary, (T1,σ′) = (T2,σ′); a contradiction.

Now consider the case N+
r (δ) \ {α} = ∅. Since γ /∈ N+

r (δ), Lemma 4.14
ensures that ρδ 6� ργ . The roots ργ and ρδ are comparable since α is an
out-neighbor of both γ and δ. Thus ρδ ≺ ργ and hence, N+

r (δ) = {γ} in
(T ′1,σ′) as well as in (T ′2,σ′) after deletion of v. We still need to distinguish
two cases: either we have N+

s (δ) = {β′} or N+
s (δ) = {β′,β}. In the first case,

we have ρδ = ρβ′ = ρα in (T ′1,σ′) as well as in (T ′2,σ′). In the second case,
we obtain ρδ = ρβ, again this holds for both (T ′1,σ′) and (T ′2,σ′). As before,
we can conclude that (T ′1,σ′) = (T ′2,σ′) and therefore (T1,σ′) = (T2,σ′); a
contradiction.

If a 3-BMG ( ~G,σ) is not connected, we can build a least resolved tree (T ,σ)
analogously to the case of 2-BMGs: we first construct the unique least resolved
tree (Ti,σi) for each component ( ~Gi,σi). Using Thm. 4.1 we then insert an
additional root for (T ,σ) to which the roots of the ( ~Gi,σi) are attached as
children. We proceed by showing that this construction corresponds to the
unique least resolved tree.

Theorem 4.7. Let ( ~G,σ) be a (not necessarily connected) n-BMG with n ∈
{2, 3}. Then there exists a unique least resolved tree (T ,σ) that explains ( ~G,σ).

Proof. Denote by ( ~Gi,σi) the connected components of ( ~G,σ). By Thm. 4.2
and Lemma 4.16 there is a unique least resolved tree (Ti,σi) that explains
( ~Gi,σi). Hence, if ( ~G,σ) is connected, we are done.

Now assume that there are at least two connected components. Let (T ,σ)
be a least resolved tree that explains ( ~G,σ). Thm. 4.1 implies that there is a
vertex u ∈ child(ρT ) such that L( ~Gi) ⊆ L(T (u)) for each connected component
( ~Gi,σi). Hence, the subtree (T (u),σ|L(T (u))) displays the least resolved tree
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(Ti,σi) explaining ( ~Gi,σi). Moreover, since (T ,σ) is least resolved, ρTu is a
relevant edge, i.e., there must be a color s ∈ σ(L(T ) \L(T (u))) and an R-class
α such that u = ρα,s by Lemma 4.15.
This implies in particular that there exists a leaf x ∈ L(T (u)) ∩ L[s].

Lemma 4.14 now implies that the elements of α are connected to any element
of color s in the subtree (T (u),σ|L(T (u))). Furthermore, any leaf y ∈ L(T (u))
of color different from s has at least one out-neighbor of color s in L(T (u)).
Hence, we can conclude that the graph ~G(T (u),σ|L(T (u))) induced by the sub-
tree (T (u),σ|L(T (u))) is connected.

Since L( ~Gi) ⊆ L(T (u)) and (T (u),σ|L(T (u))) explains the maximal connected
subgraph ( ~Gi,σi), we conclude that ~G(T (u),σ|L(T (u))) = ( ~Gi,σi). By construc-
tion, both (T (u),σ|L(T (u))) and (Ti,σi) are least resolved trees explaining the
same graph, hence Thm. 4.2 and Lemma 4.16 imply (T (u),σ|L(T (u))) = (Ti,σi).
In particular, thus, ρTi = u.
As a consequence, any least resolved tree (T ,σ) that explains ( ~G,σ) must

be composed of the disjoint trees (Ti,σi) that are linked to the root via the
relevant edge ρTρTi . Since every (Ti,σi) and the construction of the edges
ρTρTi is unique, (T ,σ) is unique.

The characterization of redundant edges in trees explaining 2-BMGs together
with the uniqueness of the least resolved trees for 2-BMGs and 3-BMGs can be
used to characterize redundant edges in the general case, thereby establishing
the existence of a unique least resolved tree for n-BMGs.

Theorem 4.8. For any connected n-BMG ( ~G,σ), there exists a unique least
resolved tree (T ′,σ) that explains ( ~G,σ). The tree (T ′,σ) is obtained by con-
traction of all redundant edges in an arbitrary tree (T ,σ) with leaf set L that
explains ( ~G,σ). The set of all redundant edges in (T ,σ) is given by

ET = {e = uv | v /∈ L, v 6= ρα,s for all s ∈ σ(L(T (u)) \L(T (v))) and α ∈ N} .

Moreover, (T ′,σ) is displayed by (T ,σ).

Proof. Using arguments analogous to the 2-color case one shows that there
is a least resolved tree (T ′,σ) that can be obtained from (T ,σ) by contrac-
tion of all redundant edges. The set of redundant edges is given by ET (cf.
Lemma 4.15). By construction, (T ′,σ) is displayed by (T ,σ). It remains to
show that (T ′,σ) is unique. Obs. 4.2 implies that for any pair of distinct colors
s and t the corresponding unique least resolved tree (Tst,σst) is displayed by
(T ′,σ). The same is true for the least resolved tree (Trst,σrst) for any three
distinct colors r, s, t ∈ S. Since for any 2-BMG as well as for any 3-BMG, the
corresponding least resolved tree is unique (see Thm. 4.2 and Lemma 4.16),
it follows for any three distinct leaves x, y, z ∈ L[r] ∪ L[s] ∪ L[t] that there is
either a unique triple that is displayed by (Trst,σrst) or the least resolved tree
(Trst,σrst) contains no triple on x, y, z. Note that we do not require that the
colors r, s, t are pairwise distinct. Instead, we use the notation (Trst,σrst) to
also include the trees explaining the induced 2-BMGs. Obs. 4.2 then implies
that R∗ :=

⋃
r,s,t∈S r(Trst) ⊆ r(T ′). Now assume that there are two distinct

least resolved trees (T1,σ) and (T2,σ) that explain ( ~G,σ). In the following
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we show that any triple displayed by T1 must be displayed by T2 and thus,
r(T1) = r(T2).
Fig. 14 shows that there may be triples xy|z ∈ r(T1) \ R∗. Assume, for

contradiction, that xy|z /∈ r(T2) \R∗. Fix the notation such that z ∈ α, σ(x) =
r, σ(y) = s, and σ(z) = t. We do not assume here that the colors r, s, t are
necessarily pairwise distinct.
In the remainder of the proof, we will make frequent use of the following:
Observation: If the tree T is a refinement of T ′, then we have u �T ′ v if and
only if u �T v for all u, v ∈ V (T ′).
In particular, u ≺T ′ v implies u ≺T v. The converse of the latter statement is
still true if u is a leaf in T ′ but not necessarily for arbitrary inner vertices u
and v.

Let u = lcaT1(x, y, z). The assumption xy|z ∈ r(T1) implies that there
is a vertex v ∈ childT1(u) such that v � lcaT1(x, y). Since (T1,σ) is least
resolved, the characterization of relevant edges ensures that there is a color
p ∈ σ(L(T1(u)) \L(T1(v))) and an R-class β with σ(β) = q such that v = ρβ,p.
In particular, there must be leaves a ∈ L(T1(v)) and a∗ ∈ L(T1(u)) \L(T1(v))

with σ(a) = σ(a∗) = p. As a consequence we know that a∗ /∈ N+
p (b) for any

b ∈ β.
We continue to show that the edge uv must also be contained in the least

resolved tree (Tpq,σpq) that explains the (not necessarily connected) graph
( ~Gpq,σpq). By Thm. 4.7, (Tpq,σpq) is unique. Assume, for contradiction, that
uv is not an edge in Tpq. Recalling the arguments in Obs. 4.5, the tree (T1,σ)
must display (Tpq,σpq). Thus, if uv is not an edge in Tpq, then v∗ := u = v

in Tpq. By construction, we therefore have v∗ = ρβ,p in (Tpq,σpq). Since
(Tpq,σpq) is least resolved, it follows from Cor. 4.3 that b ∈ child(v∗) for all
b ∈ β in (Tpq,σpq). The latter, together with a, a∗ �Tpq v∗, implies that
lcaTpq (a,β) = lcaTpq (a∗,β) = v∗. However, this implies a∗ ∈ N+

p (β); a contra-
diction.
To summarize, the edge uv must be contained in the least resolved tree

(Tpq,σpq). Moreover, by Obs. 4.5, (Tpqo,σpqo) is a refinement of (Tpq,σpq) for
every color o ∈ S. Hence, we have v ≺Tpqo u, which is in particular true for the
color o ∈ {r, s, t}. Moreover, we know that x ≺Tpqr v and y ≺Tpqs v because
(T1,σ) is a refinement of both (Tpqr,σpqr) and (Tpqs,σpqs).

Since (T2,σ) is also a refinement of both (Tpqr,σpqr) and (Tpqs,σpqs), we
have x, y ≺T2 v ≺T2 u. Furthermore, v ≺T1 lcaT1(v, z) = u and z 6�T1 implies
that z ≺Tpqt u and z 6�Tpqt v. Therefore, z ≺T2 u and z 6�T2 v. Combining
these facts about partial order of the vertices v, u, x, y, and z in T2, we obtain
xy|z ∈ r(T2); a contradiction.

Hence, r(T1) = r(T2). Since r(T1) uniquely identifies the structure of T1 (cf.
Semple and Steel [202, Thm. 6.4.1]), we conclude that (T1,σ) = (T2,σ). The
least resolved tree explaining ( ~G,σ) is therefore unique.

Corollary 4.4. Every n-BMG ( ~G,σ) is explained by the unique least resolved
tree (T ,σ) consisting of the least resolved trees (Ti,Gi) explaining the connected
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Fig. 14. A connected graph ( ~G,σ) and the
corresponding least resolved tree (T ,σ) on
five vertices of four colors: blue (a and a′),
red (b), yellow (c), and green (d). The triple
bc|d is displayed by (T ,σ) but it is not dis-
played by the least resolved tree (T ′,σ′) that
explains the induced subgraph ( ~G′,σ′) with
V ( ~G′) = {b, c, d} since (T ′,σ′) is simply the
star tree on {b, c, d}. Hence, bc|d /∈ R∗ =⋃
r,s,t∈S r(Trst).

components ( ~Gi,σi) and an additional root ρT to which the roots of the (Ti,Gi)
are attached as children.

Proof. It is clear from the construction that (T ,σ) explains ( ~G,σ). The proof
that this is the only least resolved tree parallels the arguments in the proof of
Thm. 4.7 for 2-BMGs and 3-BMGs.

As a tree is determined by all its triples, it is now clear that the construction
of a tree that explains a connected n-BMG is essentially a supertree problem: it
suffices to find a tree, if it exists, that displays the least resolved trees explaining
the induced subgraphs on 3 colors. In the following, we write

R :=
⋃
s,t∈S

r(T ∗st) (7)

for the union of all triples in the least resolved trees (T ∗st,σst) explaining the
2-colored subgraphs ( ~Gst,σst) of ( ~G,σ). In contrast, the set of all informa-
tive triples of ( ~G,σ), as specified in Def. 4.8, is denoted by R( ~G,σ). As an
immediate consequence of Lemma 4.12 we have

R( ~G,σ) ⊆ R. (8)

Theorem 4.9. A connected properly n-colored digraph ( ~G,σ) is an n-BMG if
and only if (i) all induced subgraphs ( ~Gst,σst) on two colors are 2-BMGs and
(ii) the union R of all triples obtained from their least resolved trees (Tst,σst)
forms a consistent set. In particular, (Aho(R),σ) is the unique least resolved
tree that explains ( ~G,σ).

Proof. Let ( ~G,σ) be an n-BMG that is explained by a tree (T ,σ). Moreover,
let s and t be two distinct colors of ( ~G,σ) and L′ := L[s] ∪ L[t] the subset
of vertices with color s and t, respectively. Obs. 4.2 states that the induced
subgraph ( ~G[L′],σ|L′) is a 2-BMG that is explained by (T|L′ ,σ|L′). In particular,
the least resolved tree (T ∗|L′ ,σ|L′) of (T|L′ ,σ|L′) also explains ( ~G[L′],σ|L′) and
T ∗|L′ ≤ T|L′ ≤ T by Thm. 4.8, i.e., r(T ∗|L′) ⊆ r(T ). Since this holds for all
pairs of two distinct colors, the union of the triples obtained from the set of all
least resolved 2-BMG trees R is displayed by T . In particular, therefore, R is
consistent.
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Conversely, suppose that ( ~G[L′],σ|L′) is a 2-BMG for any two distinct colors
s, t and R is consistent. Let (Aho(R),σ) be the tree that is constructed by
BUILD for the input set R with leaf coloring as in ( ~G,σ). This tree displays R
and is a least resolved tree [3] in the sense that we cannot contract any edge
in Aho(R) without loosing a triple from R. By construction, any triple that
is displayed by (Tst,σst) is also displayed by (Aho(R),σ), i.e. Tst ≤ Aho(R).
Hence, for any α ∈ N and any color s 6= σ(α), the out-neighborhood N+

s (α)

is the same w.r.t. (Tst,σst) and w.r.t. (Aho(R),σ). Since this is true for any
R-class of ( ~G,σ), also all in-neighborhoods are the same in (Aho(R),σ) and
the corresponding (Tst,σst). Therefore we conclude that (Aho(R),σ) explains
( ~G,σ), i.e., ( ~G,σ) is an n-BMG.

In order to see that (Aho(R),σ) is a least resolved tree explaining ( ~G,σ),
we recall that the contraction of an edge leaves at least one triple unexplained,
see Semple [201, Prop. 4.1]. Since R consists of all the triples r(Tst) that in
turn uniquely identify the structure of (Tst,σst) (cf. Semple and Steel [202,
Thm. 6.4.1]), none of these triples is dispensable. The contraction of an edge in
Aho(R) therefore yields a tree that no longer displays (Tst,σst) for some pair
of colors s, t and thus, no longer explains ( ~G,σ). Thus (Aho(R),σ) contains
no redundant edges and we can apply Thm. 4.8 to conclude that (Aho(R),σ)
is the unique least resolved tree that explains ( ~G,σ).

Fig. 15 summarizes the construction of the least resolved tree from the 3-
colored digraph ( ~G,σ) shown in Fig. 15(B). For simplicity we assume that we
already know that ( ~G,σ) is indeed a 3-BMG. For each of the three colors the
example has four genes. In addition to singletons there are three non-trivial
R-classes α = {a2, a3, a4}, β = {b3, b4} and γ = {c3, c4}. Following Thm.
4.9, we extract for each of the three pairs of colors the induced subgraphs
( ~Gst,σst) and construct the least resolved trees that explain them (Fig. 15(C)).
Extracting all triples from these least resolved trees on two colors yields the
triple set R( ~G,σ), which in this case is consistent. Thm. 4.9 implies that the
tree (Aho(R( ~G,σ)),σ) (shown in the lower right corner) explains ( ~G,σ) and is
in particular the unique least resolved tree w.r.t. ( ~G,σ).
We close this section by showing that in fact the informative triples of all

( ~Gst,σst) are already sufficient to decide whether ( ~G,σ) is an n-BMG or not.
More precisely, we show

Lemma 4.17. If ( ~G,σ) is an n-BMG, then Aho(R( ~G,σ)) = Aho(R).

Proof. We first observe that the two triple sets R and R := R( ~G,σ) have the
same Aho tree Aho(R) = Aho(R) if, in each step of BUILD, the respective Aho
graphs [R,L′] and [R,L′], as defined in Chapter 3, have the same connected
components. It is not necessary, however, that [R,L′] and [R,L′] are isomorphic.
In the following we set T = Aho(R).

If T is the star tree on L, then R ⊆ R = ∅, thus [R,L] = [R,L] is the edgeless
graph on L. Hence, in particular, Aho(R) = Aho(R).

Now suppose T is not the star tree. Then there is a vertex w ∈ V 0(T ) such
that L(T (w)) = child(w). For simplicity, we write Lw := L(T (w)). Since
(T (w),σ|Lw) is a star tree, we can apply the same argument again to conclude
that [R|Lw ,Lw] = [R|Lw ,Lw], hence both Aho graphs have the same connected
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(A)

(B)

(C)

(D)

Fig. 15. Construction of the least resolved tree explaining the colored best match
graph. Panel (A) recalls the event-labeled gene tree of the evolutionary scenario shown
in Fig. 5. There are three R-classes with more than one element: α = {a2, a3, a4},
β = {b3, b4} and γ = {c3, c4} in the 3-BMG graph ( ~G,σ), which is shown in Panel (B).
For simplicity of presentation, the R-classes are already collapsed into single vertices
and bidirectional edges are represented as solid lines without arrow heads. Panel (C)
lists the three induced subgraphs of ( ~G,σ) on two colors together with their least
resolved trees. By construction, ( ~G,σ) is the union of the three subgraphs on two
colors. (D) The leaf-labeled Aho tree for the set of all triples obtained from the least
resolved trees shown in (C). This tree explains the graph ( ~G,σ) and is the unique least
resolved tree w.r.t. ( ~G,σ).

components. Now let u = ρT and assume by induction that [R|Lu′ ,Lu′ ] and
[R|Lu′ ,Lu′ ] have the same connected components for every u′ ≺T u and thus,
in particular, for v ∈ child(u). Consequently, for any vi ∈ child(v) the set Lvi is
connected in [R|Lv ,Lv]. Since R|Lv ⊆ R|Lu , the set Lvi must also be connected
in [R|Lu ,Lu] for every vi ∈ child(v) (cf. Prop. 8 in [26]). It remains to show
that all Lvi are connected in [R|Lu ,Lu].
Since (T ,σ) is least resolved w.r.t. ( ~G,σ), it follows from Thm. 4.8 that v =

ρα,s for some color s ∈ σ(L(T (u)) \L(T (v))) and an R-class α with σ(α) 6= s.
In particular, therefore, s /∈ σ(Lvi) if α ∈ Lvi (say i = 1). By definition of
s, there must be a vj ∈ child(v) \ {v1} (say j = 2) such that s ∈ σ(Lv2). Let
y ∈ Lv2 ∩L[s]. Lemma 4.14 implies y ∈ N+

s (α), i.e., (α, y) ∈ E( ~G). Moreover,
by definition of s, there must be a leaf y′ ∈ L(T (u)) \L(T (v)) of color s. Since
lca(α, y) ≺T lca(α, y′), we have (α, y′) /∈ E( ~G), whereas (y′,α) may or may
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not be contained in ( ~G,σ). Therefore, the induced subgraph on {α, y, y′} is
of the form X1, X2, X3, or X4 and thus provides the informative triple αy|y′.
It follows that Lv1 and Lv2 are connected in [R|Lu ,Lu]. In particular, this
implies that any Lvj with σ(Lvj ) ⊆ σ(Lv) containing s is connected to any
Lvi that does not contain s. Since ( ~G,σ) is connected, such a set Lvi always
exists by Thm. 4.1. Now let L1 := {Lvj | vj ∈ child(v), s ∈ σ(Lvj )} and
L2 := {Lvi | vi ∈ child(v), s /∈ σ(Lvi)}. It then follows from the arguments
above that L1 and L2 form a complete bipartite graph, hence [R|Lu ,Lu] is
connected.

As an immediate consequence, Thm. 4.9 can be rephrased as:

Corollary 4.5. A connected properly n-colored digraph ( ~G,σ) is an n-BMG if
and only if (i) all induced subgraphs ( ~Gst,σst) on two colors are 2-BMGs and
(ii) the union R of informative triples R( ~Gst,σst) obtained from the induced
subgraphs ( ~Gst,σst) forms a consistent set. In particular, (Aho(R),σ) is the
unique least resolved tree that explains ( ~G,σ).

4.5 algorithmic considerations

The material in the previous two sections can be translated into practical algo-
rithms that decide for a given colored graph ( ~G,σ) whether it is an n-BMG and,
if this is the case, compute the unique least resolved tree that explains ( ~G,σ).
The correctness of Algorithm 1 follows directly from Thm. 4.9 (for a single
connected component) and Thm. 4.1 regarding the composition of connected
components. It depends on the construction of the unique least resolved tree
for the connected components of the induced 2-BMGs, called LRTfrom2BMG()
in the pseudocode of Algorithm 1. There are two distinct ways of comput-
ing these trees: either by constructing the hierarchy T (H) from the extended
reachable sets R′ (Algorithm 2) or via constructing the Aho tree from the set
of informative triples (Algorithm 3). While the latter approach seems simpler,
we shall see below that it is in general slightly less efficient. Furthermore, we
use a function BuildST() to construct the supertree from a collection of input
trees. Together with the computation of Aho() from a set of triples, it will be
briefly discussed later in this section.
Let us now turn to analyzing the computational complexity of Algorithms 1,

2, and 3. We start with the building blocks necessary to process the 2-BMG
( ~G = (L, ~E),σ) and consider performance bounds on individual tasks.

from (T ,σ) to ( ~G,σ). Given a leaf-labeled tree (T ,σ) with leaf set L
we first consider the construction of the corresponding BMG. The necessary
lowest common ancestor queries can be answered in constant time after linear
time preprocessing, see e.g. [89, 198]. The lca() function can also be used to
express the partial orders among vertices since we have x � y if and only if
lca(x, y) = y. In particular, therefore, lca(x, y) � lca(x, y′) is true if and only
if lca(lca(x, y), lca(x, y′)) = lca(lca(x, y), y′) = lca(x, y′). Thus ( ~G,σ) can
be constructed from (T ,σ) by computing lca(x, y) in constant time for each
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Algorithm 1 Unique least resolved tree of n-BMG
Require: Vertex-colored digraph ( ~G = (L, ~E),σ).
if there is (x, y) ∈ ~E with σ(x) = σ(y) then
exit(“not a BMG”)

determine connected components ( ~Gi = (Li, ~Ei),σi)
if σ(Li) 6= σ(Lj) for some components i, j then
exit(“not a BMG”)

for all connected components ( ~Gi,σi) do
for all colors s, t ∈ S, s 6= t do
determine the induced subgraph ( ~Gst = (Lst, ~Est),σst) with colors s, t
determine connected components ( ~Gst,i,σst,i)
for all connected components ( ~Gst,i,σst,i) do
(Tst,i,σst,i)← LRTfrom2BMG(Gst,i,σst,i)
if (Tst,i,σst,i) = ∅ then
exit(“not a BMG”)

(Tst,σst)← root rst with children (Tst,i,σst,i)
(Ti,σi)← BuildST(

⋃
s,t(Tst,σst))

if (Ti,σi) = ∅ then
exit(“not a BMG”)

(T ,σ)← root r with children (Ti,σi)
return (T ,σ)

Algorithm 2 Unique least resolved tree of connected 2-BMG
Require: Two-colored connected bipartite digraph ( ~G(L, ~E),σ).
compute R-classes
compute N+(α) and N+(N+(α)) for all α
if (N2) does not hold for all α then
return ∅

if (N3) does not hold for all α,β then
return ∅

compute table Yαβ = 1 if and only if N+(α) ∩N+(N+(β)) 6= ∅
if (N1) does not hold for all α,β then
return ∅

compute R(α), Q(α), and R′(α) = R(α) ∪Q(α) for all α
tabulate Pα,β = 1 if and only if R′(α) ⊆ R′(β).
compute Hasse T (H) diagram by transitive reduction
if T (H) is not a tree then
return ∅

if there are siblings R′(α) and R′(β) in T (H) with non-empty intersection
then
return ∅

construct T ∗(H) by attaching the leaves to T (H)
return T ∗(H)
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Algorithm 3 Unique least resolved tree of connected 2-BMG via triples
Require: Two-colored connected bipartite digraph ( ~G = (L, ~E),σ).

extract informative triple set R from ( ~G,σ)
(T ,σ)← (Aho(R),σ)
compute ~G(T ,σ)
if ~G(T ,σ) = ( ~G,σ) then
return (T ,σ)

else
return ∅

leaf x and each y ∈ L[s]. Since the last common ancestors for fixed x are
comparable, their unique minimum can be determined in O(|L[s]|) time. Thus
we can construct all best matches in O(|L|+ |L|∑s |L[s]|) = O(|L|2) time.

thinness classes. Recall that each connected component of a BMG
( ~G,σ) has vertices with all |S| ≥ 2 colors (we disregard the trivial case of the
edge-less graph with |S| = 1) and thus, every x ∈ V has a non-zero out-degree.
Therefore | ~E| ≥ |L|, i.e., O(|L|+ | ~E|) = O(| ~E|) = O(|L|2).

Consider a collection F of n = |F| subsets on L with a total size of m =∑
A∈F |A|. Then the set inclusion poset of F can be computed in O(nm) time

and O(n2) space as follows: For each A ∈ F run through all elements x of
all other sets B ∈ F and mark B 6⊆ A if x /∈ A, resulting in an n× n table
PF storing the set inclusion relation. More sophisticated algorithms that are
slightly more efficient under particular circumstances are described in [185, 62].
In order to compute the thinness classes, we observe that the symmetric part

of PF corresponds to equal sets. The classes of equal sets can be obtained
as connected components by Breadth-first search (BFS) [36] on the symmetric
part of PF with an effort of O(n2). This procedure is separately applied to
the in- and out-neighborhoods of the BMG. Using an auxiliary graph in which
x, y ∈ L are connected if they are in the same component for both the in- and
out- neighbors, the thinness classes can now be obtained by another BFS in
O(n2). Since we have n = |L| and m = | ~E|, the sets of vertices with equal in-
and out-neighborhoods can be identified in O(|L| | ~E|) total time.

recognizing 2-bmgs. Since Property (N0) holds for all 2-BMGs, it will
be useful to construct the table X with entries Xα,β = 1 if α ⊆ N+(β) and
Xα,β = 0 otherwise. This table can be constructed in O(| ~E|) time by iterat-
ing over all edges and retrieving (in constant time) the R-classes to which its
endpoints belong. The N+(N+(α)) can now be obtained in O(| ~E| |L|) by iter-
ating over all edges αβ and adding the classes in N+(β) to N+(N+(α)). We
store this information in a table with entries Qα,β = 1 if α ∈ N+(N+(β)) and
Qα,β = 0 otherwise, in order to be able to decide membership in constant time
later on.
A table Yαβ with Yαβ = 0 if N+(α) ∩N+(N+(β)) = ∅ and Yαβ = 1 if there

is an overlap between N+(α) and N+(N+(β)) can be computed in O(|L|3)
time from the membership tables X and Q for neighborhoods N+( . ) and next-
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nearest neighborhoods N+(N+( . )), respectively. From the membership table
for N+(N+(α)) and N+(γ) we obtain N+(N+(N+(α))) in O(| ~E| |L|) time,
making use of the fact that ∑α |N+(α)| = | ~E|. For fixed α,β ∈ N it only
takes constant time to check the conditions in (N1) and (N3) since all set
inclusions and intersections can be tested in constant time using the auxiliary
data derived above. The inclusion (N2) can be tested directly in O(|L|) time
for each α. We can summarize the considerations above as

Lemma 4.18. A 2-BMG can be recognized in O(|L|2) space and O(|L|3) time
with Algorithm 2.

reconstruction of T ∗(H). For each α ∈ N , the reachable set R(α)
can be found by a BFS in O(| ~E|) time and hence, with total complexity
O(| ~E| |L|). For each α, we can find all β ∈ N with N−(β) = N−(α) and
N+(β) ⊆ N+(α) in O(|L|) time by simple look-ups in the set inclusion table
for the in- and out-neighborhoods, respectively. Thus we can find all auxiliary
leaf setsQ(α) in O(|L2|) time and the collection of the R′(α) can be constructed
in O(| ~E| |L|).

The construction of the set inclusion poset is also useful to check whether
the {R′(α)} form a hierarchy. In the worst case we have a tree of depth |L|
and thus, m = O(|L|2). Since the number of R-classes is bounded by O(|L|),
the inclusion poset of the reachable sets can be constructed in O(|L|3). The
Hasse diagram of the partial order is the unique transitive reduction of the
corresponding digraph. In our setting, this also takes O(|L|3) time [83, 2] since
the inclusion poset of the {R′(α)} may have O(|L|2) edges. It is now easy to
check whether the Hasse diagram is a tree or not. If the number of edges is at
least the number of vertices, the answer is negative. Otherwise, the presence of
a cycle can be verified e.g. using BFS in O(|L|) time. It remains to check that
the non-nested sets R(α) are indeed disjoint. It suffices to check this for the
children of each vertex in the Hasse tree. Traversing the tree top-down this can
be verified in O(|L|2) time since there are O(|L|) vertices in the Hasse diagram
and the total number of elements in the subtrees is O(|L|).
Summarizing the discussion so far, and using the fact that the vertices x ∈ α

can be attached to the corresponding vertices R′(α) in total time O(|L|) we
obtain

Lemma 4.19. The unique least resolved tree T ∗(H′) of a connected 2-BMG
( ~G,σ) can be constructed in O(|L|3) time and O(|L|2) space with Algorithm 2.

informative triples. Since all informative triples R( ~G,σ) come from
an induced subgraph that contains at least one edge, it is possible to extract
R( ~G,σ) for a connected 2-BMG ( ~G = (L, ~E),σ) in O(| ~E| |L|) time. Further-
more, the total number of vertices and edges in R( ~G,σ) is also bounded by
O(| ~E| |L|), hence the algorithm of Deng and Fernández-Baca can be used to con-
struct the tree Aho(R( ~G,σ)) for a connected 2-BMG in O(| ~E| |L| log2(| ~E| |L|))
time [47]. The graph ( ~G′,σ) explained by this tree can be generated in O(|L|3)
time, and checking whether ( ~G,σ) = ( ~G′,σ) requires O(|L|2) time. Asymptot-
ically, the approach via informative triples (Algorithm 3) is therefore at best
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as good as the direct construction of the least resolved tree T ∗(H′) with Algo-
rithm 2.

effort in the n-color case. For n-BMGs it is first of all neces-
sary to check all pairs of induced 2-BMGs. The total effort for processing
all induced 2-BMGs is O(∑s<t(|L[s]|+ |L[t]|)3) ≤ O(|S| |L| `2 + |L|2`) with
` := maxs∈S |L[s]|, as shown by a short computation 1.

The 2-BMG for colors s and t is of size O(L[s] + L[t]) hence the total size
of all |S|(|S| − 1)/2 2-BMGs is O(|S| |L|). The total effort to construct a
supertree from these 2-BMGs is therefore only O(|L| |S| log2(|L| |S|)) [47], and
thus negligible compared to the effort of building the 2-BMGs.
Using Lemma 4.5 it is also possible to use the set of all informative triples

directly. Its size is bounded by O(|L| | ~E|), hence the algorithm of Henzinger
et al. [104] can be used to construct the supertree in O(|L| | ~E| log2(|L| | ~E|).
This bound is in fact worse than for the strategy of constructing all 2-BMGs
first.

We note, finally, that for practical applications the number of genes between
different species will be comparable, hence O(`) = O(|L|/|S|). The total effort
of recognizing an n-BMG in a biologically realistic application scenario amounts
to O(|L|3/|S|). In the worst case scenario with O(`) = O(|L|), the total effort
is O(|S| |L|3).

4.6 summary

The main result of this chapter is a complete characterization of colored best
match graphs (BMGs), a class of digraphs that arises naturally at the first stage
of many of the widely used computational methods for orthology assignment.
It has been shown that the problem of characterizing n-BMGs can be reduced
to the less complex problem of characterizing 2-BMGs, and least resolved trees
explaining a given n-BMG can be reconstructed by finding a supertree for the
unique least resolved trees of all its induced 2-BMGs. In particular, any BMG
( ~G,σ) is explained by a unique least resolved tree (T ,σ), which is displayed
by the true underlying tree. We have seen here that BMGs can be recognized
in cubic time (in the number of genes) and with the same complexity it is
possible to reconstruct the unique least resolved tree (T ,σ). Related graph
classes, for instance directed cographs [40], which appear in generalizations
of orthology relations [100], or the Fitch graphs associated with horizontal
gene transfer presented later in Chapter 8, have characterizations in terms of
forbidden induced subgraphs. It seems quite likely that this not the case for
best match graphs because they are not hereditary.

1 O(
∑

s<t(|L[s]|+ |L[t]|)
3) ≤ O( 1

2
∑

s,t(|L[s]|+ |L[t]|)
3)

= O(
∑

s,t |L[s]
3|+ 3

∑
s,t |L[s]|

2|L[t]|) ≤ O(|S|
∑

s |L[s]|
3 + 3|L|

∑
s |L[s]|

2)

≤ O(|S| |L| `2 + |L|2`)
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5
RECIPROCAL BEST MATCH GRAPHS

Reciprocal best match graphs (RBMGs), i.e., the symmetric subgraphs of best
match graphs, form the link between BMGs and orthology relations. While
orthology is well-known to have a cograph structure [97, 96], this is in general
not true for RBMGs (see e.g. Fig. 16). In fact, empirical observations (e.g. by
Hellmuth et al. [98]) indicate that reciprocal best hit heuristics typically yield
graphs with fairly large edit distances from cographs and thus from orthology
relations. A complete characterization of RBMGs is therefore an indispensable
prerequisite for the development of algorithms for the “RBMG-editing prob-
lem”, i.e., the task to correct an empirically determined reciprocal best hit
graph to a mathematically correct RBMG. Somewhat surprisingly, it turns out
that this characterization is not a simple consequence of the results on BMGs.
This chapter is organized as follows: Section 5.1 formally introduces the

reciprocal best match relation and gives a short motivation why the character-
ization of RBMGs cannot be derived in a straightforward manner from that of
BMGs. In Section 5.2 the notion of least resolved trees is extended to RBMGs.
However, as it turns out, such least resolved trees are not unique, in general.
Complementary, Section 5.3 introduces a color-aware thinness relation S and
shows that it suffices to characterize S-thin RBMGs. Combining these ideas, it
is demonstrated in Section 5.4 that (G,σ) is an RBMG if and only if each of
its connected components is an RBMG and at least one of them contains all
colors, and give a simple construction for a tree explaining (G,σ) from trees for
the connected components. In order to characterize connected, S-thin RBMGs,
we first consider the case of three colors (Section 5.5). As we shall see, there
are three distinct classes of 3-RBMGs that can be recognized in polynomial
time. One of these classes does not contain induced paths on four vertices,
while the other two classes do. In order to gain a better understanding of the
two classes that contain induced P4s, the influence of such P4s is investigated
in more detail in Section 5.6. This leads to three distinct types: the good,
bad, and ugly P4s. In Section 5.7 it will be proven that trees explaining an
n-RBMG can be composed from tree-sets explaining the induced 3-RBMGs for
all three-color subsets. However, the computational complexity for recognizing
n-RBMGs is left as an open problem. Because of their practical relevance in
orthology detection, this chapter is closed with a characterization of n-RBMGs
that are cographs. As we shall see, the recognition of cograph n-RBMGs and
the construction of trees that explain them can be done in polynomial time.
The results of this chapter have been published in Geiß et al. [75].

5.1 introduction of the reciprocal best match relation

In this introductory section we formally define the reciprocal best match re-
lation and its corresponding representation as an RBMG. Moreover, a short
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wvu x

u v

x w

Fig. 16. Colored Reciprocal Best Match Graphs are not necessarily cographs. This
simple counterexample shows a gene tree (T ,σ), its corresponding BMG ~G(T ,σ), and
a species tree. The BMG contains the path (u, v,w,x) as symmetric part. The cor-
responding species tree (not shown here) is of the form ( (  )) with a duplication
pre-dating the two speciations, with the speciation of  and  being followed by com-
plementary loss of one of the t

motivation why the characterization of RBMGs is not a direct consequence of
the properties of BMGs although both graphs are closely related, is given at
the end of the section.
Reciprocal best matches naturally arise from the definition of best matches:

Definition 5.1. If the leaf y is a best match of the leaf x in the gene tree T
and x is also a best match of y, we call x and y reciprocal best matches.

The reciprocal best match relation is symmetric by definition. As the best
match relation, it is reflexive because every gene x in species s is its own (unique)
best match within s.
The reciprocal best match relation is conveniently represented as a vertex-
colored undirected graph (G,σ) with vertex set L whose edges represent re-
ciprocal best matches. Similarly to best match graphs, we can again consider
(G,σ) as loop-less. The relationship between RBMGs and the trees from which
they are derived is captured by

Definition 5.2. Given a tree T and a map σ : L → S, the colored reciprocal
best match graph (RBMG) G(T ,σ) has vertex set L and edges xy ∈ E(G) if
x and y are reciprocal best matches and x 6= y. Each vertex x ∈ L obtains the
color σ(x).
The rooted tree T explains the vertex-colored graph (G,σ) if (G,σ) is isomorphic
to the RBMG G(T ,σ).

In analogy to BMGs, we will often speak of |S|-RBMGs to refer to the number
if |S| colors. Moreover, Def. 5.2 immediately implies

Observation 5.1. If (G,σ) is an RBMG, then σ is a proper vertex coloring.

As a consequence, (G,σ) cannot be explained by a leaf-colored tree unless σ
is a proper vertex coloring. As in the context of BMGs, we therefore assume
throughout this chapter that (G,σ) is properly colored.
By definition (G = (V ,E),σ) is an RBMG if and only if there is a BMG

( ~G′,σ) with vertex set V such that xy ∈ E(G) if and only if both (x, y) and

65



a b

a'

c b

c'

a c'

a' c

a

a'

c'

c

b

(A) (B)

Fig. 17. (A) A symmetric graph on three colors. (B) Each induced subgraph on
two colors is a reciprocal best match graph and a disjoint union of complete bipartite
graphs. However, the corresponding symmetric graph on three colors shown in (A)
does not have a tree representation.

(y,x) are arcs in ( ~G′,σ). In particular, therefore, an RBMG is the edge-disjoint
union of the edge sets of the induced RBMGs by pairs of distinct colors s, t ∈ S.

Corollary 5.1. Every 2-RBMG is the disjoint union of complete bipartite
graphs.

Proof. Let (G,σ) be a 2-RBMG that is contained as symmetric part in some
2-BMG ( ~G,σ). By Lemma 4.4, there are arcs (x, y) and (y,x) in ~G if and only
if x ∈ α ⊆ N+(β) and y ∈ β ⊆ N+(α) for distinct R-classes α,β. In this case
ρα = ρβ. By Lemma 4.3(v), it then holds σ(α) 6= σ(β). The same results
also implies that in a 2-RBMG there are at most two R-classes with the same
root. Thus the connected components of a 2-RBMG are the complete bipartite
graphs formed by pairs of R-classes with a common root, as well as isolated
vertices corresponding to all other leaves of T .

The converse, however, is not true, as shown by the counterexample in Fig. 17.
This example in particular suggests that, in contrast to BMGs, the characteri-
zation of an RBMG cannot be broken down to its 2-colored induced subgraphs.
In fact, the complete characterization of RBMGs does not seem to follow in a
straightforward manner from the properties of the underlying BMGs.

5.2 least resolved trees

Before deriving a complete characterization of RBMGs, we derive in this section
the notion of least resolved trees in the context of RBMGs. As we shall see
below, the characterization of these trees is closely related to the one of best
matches but cannot be expressed in terms of reciprocal best matches alone.

Given a leaf-colored tree (T ,σ), one can easily derive the respective BMG
~G(T ,σ) and RBMG G(T ,σ) that are explained by (T ,σ). Conversely, if (G,σ)
is an RBMG, then there is a tree (T ,σ) that explains (G,σ). This tree also
explains the digraph ~G(T ,σ) with the property that xy ∈ E(G) if and only if
both (x, y) and (y,x) are arcs in ~G(T ,σ). A colored graph (G,σ) therefore is
an RBMG if and only if it is the symmetric part of some BMG.
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Fig. 18. The reciprocal best match graph (G,σ) on two colors (red and blue) is
explained by (T ,σ) which contains the redundant edges e and f . Contraction of one
of these edges gives (Te,σ) and (Tf ,σ), respectively, which are both least resolved but
distinct from each other, i.e., there exists no unique least resolved tree w.r.t. (G,σ).
In particular, none of the trees (Tef ,σ) and (Tfe,σ) explains (G,σ).

It is important to note that there can be distinct trees (T ′,σ) and (T ′′,σ) that
explain the same RBMG, i.e., G(T ′,σ) = G(T ′′,σ), albeit the leaf set L and the
leaf coloring σ of course must be the same. In general the BMGs ~G(T ′,σ) and
~G(T ′′,σ) can also be different, even if G(T ′,σ) = G(T ′′,σ). For an example,
consider the RBMG (G,σ) and the two distinct trees (Te,σ) and (Tf ,σ) in Fig.
18. We have (G,σ) = G(Te,σ) = G(Tf ,σ). However, ~G(Te,σ) contains the
arc (a, b′) which is not contained in ~G(Tf ,σ). Hence, ~G(Te,σ) 6= ~G(Tf ,σ).
Although there are in general many different trees that explain the same

BMG or RBMG, we have already seen in Chapter 4 that every best match
graph ( ~G,σ) is explained by a uniquely defined “smallest” tree, its so-called
least resolved tree. Recall that least resolved trees in the BMG setting are
intimately related to roots of R-classes. The notion of least resolved trees is
also of interest for RBMGs even though we shall see below that they are not
unique in the reciprocal setting.

Definition 5.3. Let (G,σ) be an RBMG that is explained by a tree (T ,σ). An
inner edge e is called redundant if (Te,σ) also explains (G,σ), otherwise e is
called relevant.

The next result gives a characterization of redundant edges:

Lemma 5.1. Let (G,σ) be an RBMG explained by (T ,σ). An inner edge
e = uv in T is redundant if and only if it satisfies

(LR) For all colors s ∈ σ(L(T (v))) ∩ σ(L(T (u)) \ L(T (v))), it holds that if
v = ρα,s for some R-class α ∈ N ( ~G(T ,σ)), then ρβ,σ(α) ≺ u for every
R-class β ⊆ L(T (u)) \L(T (v)) of ~G(T ,σ) with σ(β) = s.

Proof. The R-classes appearing throughout this proof refer to the directed
graph ( ~G,σ) = ~G(T ,σ) and hence, are completely determined by (T ,σ). By
definition, any redundant edge of (T ,σ) is an inner edge, thus we can assume
that e = uv is an inner edge of (T ,σ) throughout the whole proof.

Suppose that Property (LR) is satisfied. We show (with the help of
Lemma 4.14) that most neighborhoods in the BMG ( ~G,σ) := ~G(T ,σ) remain
unchanged by the contraction of e, while those neighborhoods that change do
so in such a way that (Te,σ) still explains the RBMG (G,σ).
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We denote the inner vertex in Te obtained by contracting e = uv again by u.
Recall that by convention u �T v in T . By construction, we have L(T (w)) =
L(Te(w)) for all w 6= v and lcaT (x, y) = lcaTe(x, y) unless lcaT (x, y) = v.
Hence, a root ρα,s 6= v of (T ,σ) is also a root in (Te,σ). Lemma 4.14 thus
implies that N+

s (α) remains unchanged upon contraction of e whenever ρα,s 6=
v.
Now let α and s be such that v = ρα,s, thus N+

s (α) = L(T (v)) ∩ L[s] by
Lemma 4.14 and in particular s ∈ σ(L(T (v))). We distinguish two cases:
(1) If s /∈ σ(L(T (u)) \L(T (v))), then there is no R-class β ⊆ L(T (u)) \L(T (v))
of color s, which implies L(T (u)) ∩ L[s] = L(T (v)) ∩ L[s]. Hence, the set
N+
s (α) remains unaffected by contraction of e.

(2) Assume s ∈ σ(L(T (u)) \L(T (v))) and let β ⊆ L(T (u)) \L(T (v)) be an R-
class of color σ(β) = s. Moreover, let σ(α) = r 6= s. We thus have ρβ,r ≺T u by
Property (LR). Now, N+

s (α) = L(T (v))∩L[s] and β ⊆ L(T (u)) \L(T (v)) im-
ply β∩N+

s (α) = ∅. Moreover, Lemma 4.14 and ρβ,r ≺T u imply α∩N+
r (β) = ∅

in (T ,σ), i.e., xy /∈ E(G) for any x ∈ α and y ∈ β since neither (x, y) nor (y,x)
is an arc in ~G. After contraction of e, we have ρβ,r ≺ ρα,s, i.e., β ⊆ N+

s (α), but
α ∩N+

r (β) = ∅ in (Te,σ) by Lemma 4.14. Thus we have (x, y) ∈ E( ~G) and
(y,x) /∈ E( ~G), which implies xy /∈ E(G(Te,σ)). In summary, we can therefore
conclude that (Te,σ) still explains (G,σ).
Conversely, suppose that e is a redundant edge. If there is no R-class α with

v = ρα,s, then Lemma 4.14 again implies that contraction of e does not affect the
out-neighborhoods of any R-classes, thus (Te,σ) explains (G,σ). Hence, assume
for contradiction that there is a color s ∈ σ(L(T (v))) ∩ σ(L(T (u)) \L(T (v)))
and an R-class β ⊆ L(T (u)) \ L(T (v)) of color s with ρβ,r � u, where r ∈
S \ {s} such that there exists an R-class α of color σ(α) = r with v = ρα,s.
Note that this in particular means that there is no leaf z of color r in L(T (u)) \
L(T (v)) as otherwise lca(β, z) ≺T u = ρβ,r = lca(β,α); a contradiction since
α ∈ N+

r (β) by Lemma 4.14. As α ≺ v by construction, we have u = lca(α,β)
and therefore ρβ,r = u. In particular, it holds ρβ,r � ρα,s. As a consequence, we
have β ∩N+

s (α) = ∅ and α ⊆ N+
r (β) in (T ,σ), again by Lemma 4.14. Thus, for

any x ∈ α and y ∈ β, we have (x, y) /∈ E( ~G) and (y,x) ∈ E( ~G) and therefore,
xy /∈ E(G). Since ρβ,r = u, contraction of e implies ρβ,r = ρα,s in (Te,σ).
Therefore (x, y) ∈ E( ~G) and (y,x) ∈ E( ~G), which implies xy ∈ E(G(Te,σ)).
Thus (Te,σ) does not explain (G,σ); a contradiction.

It is interesting to note that the characterization of redundancy (w.r.t. an
RBMG) of edges in (T ,σ) requires information on (directed) best matches and
apparently cannot be expressed entirely in terms of the reciprocal best match
relation. In particular, Property (LR) requires R-classes.

The next result provides alternative sufficient conditions for least resolved
trees. In particular, it shows whether inner edges uv can be contracted based
on the particular colors of leaves below the children of u. We will show in the
last section that the conditions in Lemma 5.2 are also necessary for RBMGs
that are cographs (cf. Lemma 5.45). These conditions are thus designed to
fit in well within the framework of RBMGs that are cographs, which will be
introduced in more detail later, although these conditions may be relaxed for
the general case.
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Lemma 5.2. Let (G,σ) be an RBMG explained by (T ,σ) and let e = uv be
an inner edge of T . Moreover, for two vertices x, y in T , we define Sx,¬y :=
σ(L(T (x))) \ σ(L(T (y))). Then (Te,σ) explains (G,σ) if one of the following
conditions is satisfied:

(1) σ(L(T (v′))) ∩ σ(L(T (v))) = ∅ for all v′ ∈ childT (u), or

(2) σ(L(T (v′))) ∩ σ(L(T (v))) ∈ {σ(L(T (v))),σ(L(T (v′)))} for all v′ ∈
childT (u), and either
(i) σ(L(T (v))) ⊆ σ(L(T (v′))) for all v′ ∈ childT (u), or
(ii) if σ(L(T (v′))) ( σ(L(T (v))) for some v′ ∈ childT (u), then,

for every w ∈ childT (v) that satisfies Sw,¬v′ 6= ∅, it holds
that σ(L(T (v′))) and σ(L(T (w))) do not overlap and thus,
σ(L(T (v′))) ⊆ σ(L(T (w))).

Proof. Suppose that e = uv satisfies one of the Properties (1) or (2). If Property
(1) is satisfied, we clearly have σ(L(T (v)))∩ σ(L(T (u)) \L(T (v))) = ∅, which
implies that Condition (LR) of Lemma 5.1 is trivially satisfied. Therefore e is
redundant in (T ,σ) and, by Def. 5.3, (Te,σ) explains (G,σ).
Now let σ(L(T (v′))) ∩ σ(L(T (v))) ∈ {σ(L(T (v))),σ(L(T (v′)))} for all

v′ ∈ childT (u) and assume that either Property (2.i) or (2.ii) is satisfied.
In order to see that (Te,σ) explains (G,σ), we show that e is redundant in
(T ,σ) by application of Lemma 5.1. Thus suppose v = ρα,s for some R-class
α ∈ N ( ~G(T ,σ)). If there exists no R-class β ⊆ L(T (u)) \L(T (v)) of ~G(T ,σ)
with σ(β) = s, then Lemma 5.1 is again trivially satisfied and (Te,σ) explains
(G,σ). Hence, suppose that there is an R-class β ⊆ L(T (u)) \ L(T (v)) of
~G(T ,σ) with σ(β) = s. Clearly, if β �T x ≺T u for some x ∈ childT (u) \ {v}
with σ(L(T (v))) ⊆ σ(L(T (x))), then ρβ,σ(α) �T x ≺T u.

Hence, if Property (2.i) holds, i.e., σ(L(T (v))) ⊆ σ(L(T (v′))) for all v′ ∈
childT (u), we easily see that for all R-classes β ⊆ L(T (u)) \ L(T (v)) with
σ(β) = s we have ρβ,σ(α) �T x ≺T u for some x ∈ childT (u) \ {v}. Therefore e
is redundant in (T ,σ) and (Te,σ) explains (G,σ).
Now suppose that Property (2.ii) holds. If σ(α) ∈ σ(L(T (v′))) for each

v′ ∈ childT (u), we easily see that ρβ,σ(α) �T x ≺T u for some x ∈ childT (u) \{x}.
Otherwise, there exists some ṽ ∈ childT (u) \ {v} such that σ(α) /∈ σ(L(T (ṽ))).
By Property (2), σ(L(T (ṽ))) and σ(L(T (v))) do not overlap. Therefore
σ(L(T (ṽ))) ( σ(L(T (v))). In order to show that (LR) is satisfied, we thus
need to show that s /∈ σ(L(T (ṽ))), otherwise ρβ′,s = u for some R-class
β′ ⊆ L(T (u)) \ L(T (v)) of ~G(T ,σ). Let w ∈ childT (v) such that a �T w for
some a ∈ α. Since σ(α) /∈ σ(L(T (ṽ))), it follows Sw,¬ṽ 6= ∅. Hence, by Property
(2.ii), it must hold σ(L(T (ṽ))) ⊆ σ(L(T (w))). Since ρα,s = v by assumption,
we necessarily have s /∈ σ(L(T (w))) and thus, as σ(L(T (ṽ))) ⊆ σ(L(T (w))),
we can conclude s /∈ σ(L(T (ṽ))). Thus, for all children v′ ∈ childT (u), we either
have σ(α) ∈ σ(L(T (v′))) or σ(α),σ(β) 6∈ σ(L(T (v′))). Now, one can easily
see that ρβ,σ(α) �T x ≺T u for some x ∈ childT (u) \ {x}. Hence, Condition
(LR) from Lemma 5.1 is always satisfied. Therefore the edge e is redundant in
(T ,σ), i.e., (Te,σ) explains (G,σ).
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Definition 5.4. Let (G,σ) be an RBMG explained by (T ,σ). Then (T ,σ) is
least resolved w.r.t. (G,σ) if (TA,σ) does not explain (G,σ) for any non-empty
series of edges A of (T ,σ).

Again, the reference to the explicit reference graph (G,σ) will be dropped
whenever the context is clear. In particular, least resolved trees in this chapter
are always considered w.r.t. an RBMG unless explicitly stated otherwise.

Given two distinct redundant edges e 6= f of (T ,σ), the edge f is not necessar-
ily redundant in (Te,σ), i.e., the tree (Tef ,σ) obtained by sequential contraction
of e and f does not necessarily explain (G,σ). This in particular implies that
the contraction of all redundant edges of (T ,σ) does not necessarily result in
a least resolved tree for the same RBMG. Moreover, there may be more than
one least resolved tree that explains a given n-RBMG (G,σ). Fig. 18 gives an
example of least resolved trees that are not unique.
The results about least resolved trees are summarized in the following

Theorem 5.1. Let (G,σ) be an RBMG explained by (T ,σ). Then there exists a
(not necessarily unique) least resolved tree (Te1...ek ,σ) explaining (G,σ) obtained
from (T ,σ) by a series of edge contractions e1e2 . . . ek such that the edge e1 is
redundant in (T ,σ) and ei+1 is redundant in (Te1...ei ,σ) for i ∈ {1, . . . , k− 1}.
In particular, (T ,σ) displays (Te1...ek ,σ).

Proof. The Theorem follows directly from the definition of least resolved trees
and the observation that for any two redundant edges e 6= f of (T ,σ), the tree
(Tef ,σ) does not necessarily explain (G,σ). Clearly, by definition, (Te1...ek ,σ)
is displayed by (T ,σ).

5.3 S-thinness

The R relation introduced in the previous chapter is the natural generalization
of thinness in undirected graphs [159]. As already argued in Chapter 4, all
vertices within an R-class of a BMG have the same color. However, a corre-
sponding result does not hold for RBMGs. Fig. 19 shows a counterexample,
where N(a) = N(b) holds for vertices with different colors σ(a) 6= σ(b). Since
color plays a key role in our context, we introduce a color-preserving thinness
relation:

Definition 5.5. Let (G,σ) be an undirected colored graph. Then two vertices
a and b are in relation S, in symbols aSb, if N(a) = N(b) and σ(a) = σ(b).
An undirected colored graph (G,σ) is S-thin if no two distinct vertices are in
relation S. We denote the S-class that contains the vertex x by [x].

As all elements within an R-class have the same color in a BMG and every
RBMG (G,σ) is the symmetric part of some BMG ~G(T ,σ), we obtain

Lemma 5.3. Let (G,σ) be an RBMG, (T ,σ) a tree explaining (G,σ), and
~G(T ,σ) the corresponding BMG. Then xRy in ~G(T ,σ) implies that xSy in
(G,σ).
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Fig. 19. The leaf-colored tree (T ,σ) on the left explains the RBMG G(T ,σ) (middle)
and the BMG ~G(T ,σ) (right). The colored graph ~G(T ,σ) is R-thin. Thus all leaves
within an R-class are trivially of the same color. However, in the RBMG we have
N(a2) = N(b3) = ∅ but a2 and b3 are of different color. Note, by definition, a2 and b3
are not within the same S-class.

The converse of Lemma 5.3 is not true, however. In Fig. 19, for instance,
changing the color of the leaf b3 from blue to red in the tree (T ,σ) implies
N(a2) = N(b3) in the RBMG (G,σ) and the set {a2, b3} forms an S-class. On
the other hand, we have N+(a2) 6= N+(b3) in the corresponding BMG ~G(T ,σ),
thus a2 and b3 do not belong to the same R-class of ~G(T ,σ).

For an undirected colored graph (G,σ), we denote by G/S the graph whose
vertex set are exactly the S-classes of (G,σ), and two distinct classes [x] and
[y] are connected by an edge in G/S if there is an x′ ∈ [x] and y′ ∈ [y] with
x′y′ ∈ E(G). Moreover, since the vertices within each S-class have the same
color, the map σ/S : V (G/S)→ S with σ/S([x]) = σ(x) is well-defined.

Lemma 5.4. (G/S,σ/S) is S-thin for every undirected colored graph (G,σ).
Moreover, xy ∈ E(G) if and only if [x][y] ∈ E(G/S). Thus G is connected if
and only if G/S is connected.

Proof. First, we show that xy ∈ E(G) if and only if [x][y] ∈ E(G/S). Assume
xy ∈ E(G). Since G does not contain loops, we have x /∈ N(x). However,
x ∈ N(y). Therefore N(x) 6= N(y) and thus, [x] 6= [y]. By definition, thus,
[x][y] ∈ E(G/S).
Now assume [x][y] ∈ E(G/S). By construction, there exists x′ ∈ [x] and

y′ ∈ [y] such that x′y′ ∈ E(G) and thus x′ ∈ N(y′) = N(y) and y′ ∈ N(x′) =

N(x). In particular, x′y′ ∈ E(G) implies σ(x′) 6= σ(y′) and thus σ(x) 6= σ(y)

since by definition all vertices within an S-class are of the same color. Therefore
xy ∈ E(G) by definition of S-thinness.

Now suppose, for contradiction, that (G/S,σ/S) is not S-thin. Then there are
two distinct vertices [x], [y] in G/S that have the same neighbors [v1], . . . , [vk]
in G/S and σ/S([x]) = σ/S([y]) and, in particular, σ(x) = σ(y). From “xy ∈
E(G) if and only if [x][y] ∈ E(G/S)” we infer NG(x) =

⋃k
i=1

⋃
v∈[vi]{v} =

NG(y) and thus [x] = [y]; a contradiction. Thus (G/S,σ/S)must be S-thin.

The map γS : V (G)→ V (G/S) : x 7→ [x] collapses all elements of an S-class
in (G,σ) to a single node in (G/S,σ/S). Hence, the γS-image of a connected
component of (G,σ) is a connected component in (G/S,σ/S). Conversely, the
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pre-image of a connected component of (G/S,σ/S) that contains an edge is
a single connected component of (G,σ). Furthermore, (G/S,σ/S) contains at
most one isolated vertex of each color r ∈ S. If it exists, then its pre-image is the
set of all isolated vertices of color r in (G,σ); otherwise (G,σ) has no isolated
vertex of color r. The next lemma shows how a tree (T ,σ) that explains an
RBMG (G,σ) can be modified to a tree that still explains (G,σ) by replacing
edges that are connected to vertices within the same S-class. Although this
lemma is quite intuitive, one needs to be careful in the proof since changing
edges in (T ,σ) may also change the neighborhoods NG(x) of vertices x ∈ V (G)

and may result in a tree that does not explain (G,σ) anymore.

Lemma 5.5. Let (G,σ) be an RBMG that is explained by (T ,σ) on L. Let
x,x′ ∈ [x] be two distinct vertices in an S-class [x] of (G,σ). Suppose that x
and x′ have distinct parents vx and vx′ in T , respectively. Denote by Tx′,vx the
tree on L obtained from T by (i) removing the edge (vx′ ,x′), (ii) suppressing
the vertex vx′ if it now has degree 2, and (iii) inserting the edge (vx,x′). Then,
(Tx′,vx ,σ) explains (G,σ).

Proof. Let [x] be an S-class with vertices x,x′ ∈ [x] that have distinct parents
vx and vx′ in T , respectively. Put T ′ = Tx′,vx and let (G′,σ) be the RBMG
explained by (T ′,σ). We proceed with showing that (G′,σ) = (G,σ). To see
this, we observe that x,x′ ∈ [x] implies thatNG(x) = NG(x′) and σ(x) = σ(x′).
By construction, we also have NG′(x) = NG′(x

′) and x′ /∈ NG′(x). Moving x′
in T does not affect the last common ancestors of x and any y 6= x′, hence
NG′(x) = NG(x) and thus, also NG′(x

′) = NG(x). Now consider NG′(y) and
NG(y) for some y 6= x,x′ and assume, for contradiction, that NG′(y) 6= NG(y).
Then there exists a vertex z ∈ NG(y) \NG′(y) or z ∈ NG′(y) \NG(y), which
in particular implies NG(z) 6= NG′(z). As shown above, NG′(x) = NG(x) =

NG(x′) = NG′(x
′). Hence, NG(z) 6= NG′(z) implies z 6= x,x′. Moreover,

since z is adjacent to y in either G or G′, we have σ(z) 6= σ(y). However,
replacing x′ in T cannot influence the adjacencies between vertices u and v

with σ(u) 6= σ(x′) and σ(v) 6= σ(x′). Taken the latter arguments together, we
can conclude that σ(z) = σ(x) 6= σ(y).
First assume z ∈ NG(y) \NG′(y). Then

lcaT (z, y) �T lcaT (z′, y) for all z′ with σ(z′) = σ(z) and (9)
lcaT (z, y) �T lcaT (z, y′) for all y′ with σ(y′) = σ(y). (10)

Since z /∈ NG′(y), we additionally have

lcaT ′(z, y) �T ′ lcaT ′(z′, y) for some z′ with σ(z′) = σ(z) or (11)
lcaT ′(z, y) �T ′ lcaT ′(z, y′) for some y′ with σ(y′) = σ(y). (12)

The fact that T and T ′ are identical up to the location of x′ together with
σ(z′) = σ(x′) 6= σ(y) and x′ 6= z implies that in T ′ we still have lcaT ′(z, y) �T ′
lcaT ′(z, y′) for all y′ with σ(y′) = σ(y). Hence, Equ. (11) must be satisfied. Equ.
(9) and (11) together imply that x′ = z′ and that x′ is the only vertex that
satisfies Equ. (11). In T ′ the vertices x and x′ have the same parent. Together
with x′ = z′ and Equ. (11) this implies lcaT ′(x, y) = lcaT ′(x′, y) ≺T ′ lcaT ′(z, y).

72



Since T and T ′ are identical up to the location of x′, we also have lcaT ′(x, y) =
lcaT (x, y) and lcaT ′(y, z) = lcaT (y, z). Combining these arguments, we obtain
lcaT (x, y) ≺T lcaT (y, z), which contradicts Equ. (9) because σ(z) = σ(x).
Assuming z ∈ NG′(y) \NG(y) and interchanging the role of T and T ′ in the
argument above, we obtain

lcaT (z, y) �T lcaT (x′, y) and (13)
lcaT (z, y) �T lcaT (z, y′) for all y′ with σ(y′) = σ(y) (14)

and that there is no other vertex z∗ 6= x′ with σ(z∗) = σ(x′) and lcaT (z, y) �T
lcaT (z∗, y). Since x and x′ have the same parent in T ′, we have lcaT (x, y) =
lcaT ′(x, y) = lcaT ′(x′, y) �T ′ lcaT ′(z, y) = lcaT (z, y) �T lcaT (x′, y). The fact
that T and T ′ are identical up to the location of x′ now implies that for all
inner vertices v,w of T ′ we have v ≺T ′ w if and only if v ≺T w. Hence, we have

lcaT (x, y) �T lcaT (z, y) �T lcaT (x′, y)

implying that T displays the triple x′y|x. Therefore xy is not an edge in (G,σ),
whence y /∈ NG(x) = NG(x′).
Since there is no other vertex z∗ 6= x′ with σ(z∗) = σ(x′) and lcaT (z, y) �T
lcaT (z∗, y), we have lcaT (z∗, y) �T lcaT (x′, y) for all z∗ 6= x′ with σ(z∗) =

σ(z) = σ(x′). Since y /∈ NG(x′), there must be a vertex y′ with σ(y′) = σ(y)

such that lcaT (x′, y) �T lcaT (x′, y′). We can choose y′ such that there is no
other vertex y∗ 6= y′ satisfying σ(y∗) = σ(y′) and lcaT (x′, y′) �T lcaT (x′, y∗).
Thus we have

lcaT (x′, y′) ≺T lcaT (x′, y) ≺T lcaT (x, y),

which implies y′ 6∈ NG(x). However, since x′ is unique w.r.t. Equ. (13), we
must have y′ ∈ NG(x′); a contradiction to NG(x) = NG(x′).
Therefore we have NG(v) = NG′(v) for all v ∈ V (G) and thus, (G,σ) = (G′,σ)
as claimed.

The following result sheds some more light on the relationship of an RBMG
(G,σ) and its corresponding S-thin version (G/S,σ/S). It in particular shows
how a tree explaining (G,σ) can be obtained from a tree explaining (G/S,σ/S).

Lemma 5.6. (G,σ) is an RBMG if and only if (G/S,σ/S) is an RBMG.
Moreover, every RBMG (G,σ) is explained by a tree (T̂ ,σ) in which any two
vertices x,x′ ∈ [x] of each S-class [x] of (G,σ) have the same parent.

Proof. Consider an RBMG (G,σ) explained by the tree (T ,σ), and let [x] be
an S-class of (G,σ). If all the vertices within [x] have the same parent v in
T , then we can identify the edges vx′ for all x′ ∈ [x] to obtain the edge v[x].
If all children of v are leaves of the same color, we additionally suppress v
in order to obtain a phylogenetic tree T/[x]. Note that in this case, par(v)
cannot be incident to any leaf y of color σ(x) in (T ,σ) as this would imply
N(x) = N(y) and therefore xSy. Hence, suppression of v has no effect on
any of the neighborhoods and thus, does not affect any of the reciprocal best
matches in T . If all S-classes are of this form, then the tree (T/S,σ/S) obtained
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Fig. 20. The leaf-colored tree (T ,σ) on the left explains the RBMG (G,σ), however
a2, a4 ∈ [a2] but they do not have the same parent in T . The tree (T̂ ,σ) is obtained
from (T ,σ) by re-attaching the leaf a2 to par(a4) and suppressing the 2-degree vertex
par(a2). The resulting tree still explains (G,σ) and a2 and a4 are now siblings. Retain-
ing only one representative of each S-class finally gives the tree (T̃ ,σ/S) on the right
that explains the S graph (G/S ,σ/S).

by collapsing each class [x] to a single leaf and potential suppression of 2-degree
nodes still explains (G/S,σ/S).
The construction of Tx′,vx as in Lemma 5.5 can be repeated until all vertices

x′ of each S-class [x] have been re-attached to have the same parent vx. After
each re-attachment step, the tree still explains (G,σ). The procedure stops
when all x′ ∈ [x] are siblings of x in the tree, i.e., a tree (T̂ ,σ) of the desired
form is reached. The tree obtained by retaining only one representative of each
S-class [x] (relabeled as [x]), explains (G/S,σ/S).
Conversely, assume that (G/S,σ/S) is an RBMG explained by the tree

(T̃ ,σ/S). Each leaf in T̃ is an S-class [x]. Consider the tree (T ,σ) obtained by
replacing, for all S-classes [x] the edge par([x])[x] in T by the edges par([x])x′
and setting σ(x′) = σ/S([x]) for all x′ ∈ [x]. By construction, (T ,σ) explains
(G,σ) and thus, (G,σ) is an RBMG.

Lemma 5.6 is illustrated in Fig. 20, where the two leaves a2 and a4 belong
to the same S-class [a2]. However, in the tree representation on the l.h.s., a2
and a4 are attached to different parents. Substituting the edge par(a4)a4 by
par(a2)a4 and suppressing the vertex par(a4), which now has degree 2, yields
a tree (T̂ ,σ) with par(a2) = par(a4) that still explains (G,σ). Next, we can
remove the edges par(a2)a2 and par(a2)a4 as well as the leaves a2 and a4 from
(T̂ ,σ) and add the edge par(a2)[a2]. Finally, we replace any vertex y 6= a2, a4
by [y] and set σ(x) = σ/S([x]) for all x ∈ V (T̂ ). The resulting tree explains
the S-thin RBMG (G/S,σ/S).

Lemma 5.7. Let (G,σ) be an S-thin n-RBMG explained by (T ,σ) with n ≥ 2.
Then |σ(L(T (v)))| ≥ 2 holds for every inner vertex v ∈ V 0(T ).

Proof. Let S = σ(V (G)). Assume, for contradiction, that there exists an inner
vertex v ∈ V 0(T ) such that σ(L(T (v))) = {r} with r ∈ S. Since (T ,σ) is
phylogenetic, there must be two distinct leaves a, b ∈ L(T (v)) with σ(a) =

σ(b) = r. Since (G,σ) is S-thin, a and b do not belong to the same S-class.
Hence, σ(a) = σ(b) implies N(a) 6= N(b). Since |S| ≥ 2, there is a leaf
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c ∈ V (G) with σ(c) = s ∈ S \ {r}. On the other hand, σ(L(T (v))) = {r}
implies lca(a, c) = lca(b, c) � v.

Now consider the corresponding BMG ~G(T ,σ). Since σ(L(T (v))) = {r}, we
have c ∈ N−(a) if and only if c ∈ N−(b), and c ∈ N+(a) if and only if c ∈
N+(b). Together this implies N(a) = N(b) in G(T ,σ) ; a contradiction.

Any two leaves x, y in (T ,σ) with σ(x) = σ(y) and par(x) = par(y) obviously
belong to the same S-equivalence class of G(T ,σ). The absence of such pairs
of vertices in (T ,σ) is thus a necessary condition for G(T ,σ) to be S-thin, it is
not sufficient, however. The characterization of leaf-colored trees that explain
S-thin RBMGs is left as an open question for future research.

5.4 connected components, forks, and color-complete
subtrees

This section aims at simplifying the problem of finding a characterization for
RBMGs by showing that an undirected colored graph is an RBMG if and only if
each of its connected components is an RBMG and one of those components con-
tains all colors (cf. Theorem 5.3). This, in turn, allows us to consider connected
graphs only. To this end, we will introduce so-called forks and color-complete
subtrees and start by deriving some interesting and helpful results about those
structures.
BMGs are not hereditary, hence we cannot expect RBMGs to be hereditary.

They do satisfy a somewhat weaker property, however:

Lemma 5.8. Let (G,σ) be an RBMG with vertex set L explained by (T ,σ) and
let (T|L′ ,σ|L′) be the restriction of (T ,σ) to L′ ⊆ L. Then the induced subgraph
( ~G[L′],σ|L′) of ( ~G,σ) is a (not necessarily induced) subgraph of ~G(T|L′ ,σ|L′).

Proof. Lemma 4.1 states the analogous result for BMGs. It obviously remains
true for the symmetric part.

The next result is a direct consequence of Lemma 5.8 that will be quite useful
for proving some of the following results.

Corollary 5.2. Let (G,σ) be an RBMG that is explained by (T ,σ). Moreover,
let v ∈ V (T ) be an arbitrary vertex and (G∗v,σ∗v) be a connected component
of G(T (v),σ|L(T (v))). Then (G∗v,σ∗v) is contained in a connected component
(G∗,σ∗) of (G,σ).

The following technical results ensures the existence of certain types of edges
in any RBMG.

Lemma 5.9. Let (T ,σ) be a leaf-colored tree on L and let v ∈ V (T ). Then,
for any two distinct colors r, s ∈ σ(L(T (v))), there is an edge xy ∈ E(G(T ,σ))
with x ∈ L[r] ∩ L(T (v)) and y ∈ L[s] ∩ L(T (v)). In particular, all edges in
G(T (v),σ|L(T (v))) are contained in G(T ,σ).

Proof. Let v be a vertex of (T ,σ) such that r, s ∈ σ(L(T (v))), r 6= s. Then
there is always an inner vertex w �T v such that (i) {r, s} ⊆ σ(L(T (w))) and
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(ii) none of its children wi ∈ child(w) satisfies {r, s} ⊆ σ(L(T (wi))). Any such
w has children wr,ws ∈ child(w) such that r ∈ σ(L(T (wr))), s /∈ σ(L(T (wr)))
and s ∈ σ(L(T (ws))), r /∈ σ(L(T (ws))). Thus lcaT (x, y) �T w for every
x ∈ L(T (wr)) ∩L[r] 6= ∅ and y ∈ L[s], with equality whenever y ∈ L(T (ws)).
Analogously, lcaT (y,x) �T w for every y ∈ L(T (ws)) ∩L[s] 6= ∅ and x ∈ L[r],
with equality whenever x ∈ L(T (wr)). Hence, xy is a reciprocal best match
mediated by lcaT (x, y) = w whenever x ∈ L(T (wr))∩L[r] and y ∈ L(T (ws))∩
L[s]. Therefore xy ∈ E(G(T ,σ)).

In particular, the latter construction shows that the chosen leaves x ∈
L(T (wr)) ∩ L[r] and y ∈ L(T (ws)) ∩ L[s] are reciprocal best matches in
(T (v),σ|L(T (v))). Hence, every edge in G(T (v),σ|L(T (v))) is also contained in
G(T ,σ).

As a direct consequence of Lemma 5.9, we obtain

Corollary 5.3. If (G,σ) is an RBMG with |S| ≥ 2 colors, then there is at
least one edge xy ∈ E(G[L[r] ∪L[s]]) for any two distinct colors r, s ∈ S.

As noted above, the property of being an RBMG is not hereditary. Thm.
5.2 below shows that the connected components of an RBMG are again RB-
MGs that can be explained by corresponding restrictions of a leaf-colored tree,
although there is no similar result for BMGs.

Theorem 5.2. Let (G∗,σ∗) with vertex set L∗ be a connected component of
some RBMG (G,σ) and let (T ,σ) be a leaf-colored tree explaining (G,σ). Then
(G∗,σ∗) is again an RBMG and is explained by the restriction (T|L∗ ,σ|L∗) of
(T ,σ) to L∗.

Proof. Throughout this proof, all N+-neighborhoods are taken w.r.t. the un-
derlying BMG ~G(T ,σ). It suffices to show that G(T|L∗ ,σ|L∗) = (G∗,σ∗).
Lemma 5.8 implies that (G∗,σ∗) is a (not necessarily induced) subgraph of
G(T|L∗ ,σ|L∗), i.e., E(G∗) ⊆ E(G(T|L∗ ,σ|L∗)). By assumption, (G∗,σ∗) is an
induced subgraph of (G,σ). Thus we only need to prove E(G(T|L∗ ,σ|L∗)) ⊆
E(G∗).
Assume, for contradiction, that there exists an edge xy in G(T|L∗ ,σ|L∗) that

is not contained in (G∗,σ∗). By definition, r := σ(x) 6= s := σ(y) and, in
particular, x, y ∈ L∗. Let u := lcaT (x, y). By construction, any two vertices
within L∗ have the same last common ancestor in (T ,σ) and (T|L∗ ,σ|L∗). Since
the edge xy is not contained in (G∗,σ∗), the edge xy is not contained in (G,σ)
either. Hence, x and y do not form reciprocal best matches in (T ,σ). Thus there
must exist some x′ ∈ L[r] with lcaT (x′, y) ≺T lcaT (x, y), or a leaf y′ ∈ L[s]

with lcaT (x, y′) ≺T lcaT (x, y).
W.l.o.g. we assume that the first case is satisfied. Since lcaT (x′, y) ≺T

lcaT (x, y), we must have x′ ∈ L \ L∗, as otherwise, lcaT|L∗ (x′, y) ≺T|L∗
lcaT|L∗ (x, y) and hence, x cannot be a best match of y, which in turn would im-
ply that xy is not an edge in G(T|L∗ ,σ|L∗). We will re-use the latter argument
and refer to it as Argument-1.
In the following, w.l.o.g. we choose x′ ∈ L[r] such that lcaT (x′, y) ≺T

lcaT (x, y) and lca(x′, y) is �T -minimal among all least common ancestors that
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satisfy the latter condition. We write v := lcaT (x′, y). By construction, we
have v ≺T u. By contraposition of Argument-1, it must hold for all x′′ ∈ L∗
with σ(x′′) = r that lcaT (x′′, y) �T lcaT (x, y) and thus, x′′ /∈ L(T (v)). In
other words, we have

x′′ /∈ L∗ for all x′′ ∈ L(T (v)) ∩L[r]. (15)

Let vx′ , vy ∈ child(v) with x′ �T vx′ and y �T vy. The choice of x′ and
the resulting �T -minimality of lca(x′, y) implies that σ(x) = r /∈ σ(L(T (vy))).
Therefore x′ ∈ N+

r (y). We observe that x′y /∈ E(G) since x′ ∈ L∗ otherwise; a
contradiction. From x′y /∈ E(G) we conclude y /∈ N+

s (x
′) and thus, there exists

a leaf y′ ∈ L[s] such that lcaT (x′, y′) ≺T lcaT (x′, y) = v and hence, y′ ≺T vx′ .
The latter, in particular, implies r, s ∈ σ(L(T (vx′))). Hence, we can apply

Lemma 5.9 to conclude that there are two vertices x̃ ∈ L[r] ∩ L(T (vx′)) and
ỹ ∈ L[s] ∩ L(T (vx′)) such that x̃ỹ ∈ E(G). Equ. (15) now implies x̃ /∈ L∗.
Therefore x̃ỹ ∈ E(G) now allows us to conclude that ỹ ∈ L \L∗.

Now, let Pxy = (x = a0a1a2 . . . ak−1ak = y) be a shortest path in (G∗,σ∗)
connecting x and y. Since x and y reside within the same connected component
(G∗,σ∗) of (G,σ) and xy /∈ E(G∗), such a path exists and, in particular, it
must contain at least one ai 6= x, y, i.e., k > 1. By definition of a shortest path,
aiaj /∈ E(G) for all i, j ∈ {0, 1, . . . , k} that satisfy |i− j| > 1. Since ai ∈ L∗ for
any 0 ≤ i ≤ k but x̃, ỹ ∈ L \L∗, we have

x̃ai, ỹai /∈ E(G) (16)

for any 0 ≤ i ≤ k, since otherwise, x̃ and ỹ would be contained in the connected
component (G∗,σ∗) and thus, also in L∗; a contradiction.
We proceed to show by induction that

(I1) ai ∈ L(T (v)), 1 ≤ i ≤ k, and

(I2) there exists a vertex ãi ∈ L(T (v))∩L[σ(ai)] such that ãi /∈ L∗, 1 ≤ i ≤ k.

We start with i = k. By construction, y = ak ∈ L(T (v)) satisfies Property (I1).
Moreover, ãk := ỹ satisfies Property (I2). For the induction step assume that,
for a fixed m ≤ k, Property (I1) and (I2) is satisfied for all i with m < i ≤ k.

Now consider the case i = m. For better readability we put b := am+1 and
b̃ := ãm+1. By induction hypothesis, b and b̃ satisfy Property (I1) and (I2),
respectively. Since amb ∈ E(G), we know that σ(am) 6= σ(b). In the following,
we consider the two exclusive cases: either σ(am) = σ(x) = r or σ(am) 6= r.
If σ(am) = r, then we put ãm = x̃. Hence, Property (I2) is trivially satisfied
for ãm. Moreover, am must then be contained in L(T (v)), otherwise v �T
lcaT (b, x̃) implies that lcaT (b, x̃) ≺T lca(b, am), which contradicts amb ∈ E(G),
i.e., Property (I1) is satisfied as well.
In case σ(am) 6= r assume first, for contradiction, that am /∈ L(T (v)). Since

b, b̃ ∈ L(T (v)) we observe that lcaT (b, am) = lcaT (b̃, am) �T v. Note that we
have b ∈ N+

σ(b)(am) since bam ∈ E(G) by definition of Pxy. Thus lcaT (b, am) =
lcaT (b̃, am) implies b̃ ∈ N+

σ(b)(am). Since am ∈ L∗ (by definition) and b̃ /∈
L∗ (by Property (I2)), we can conclude that amb̃ /∈ E(G). The latter two
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arguments imply am /∈ N+
σ(am)(b̃). Hence, there exists a leaf a′m with σ(am) =

σ(a′m) such that lcaT (b̃, a′m) ≺T lcaT (b̃, am). There are two cases, either a′m ∈
L(T (vb̃)) or a′m /∈ L(T (vb̃)), where vb̃ ∈ child(v) with b̃ �T vb̃. If a′m ∈
L(T (vb̃)), then lcaT (b, a′m) �T v and we can re-use the fact lcaT (b, am) �T v

from above to conclude that lcaT (b, a′m) ≺T lcaT (b, am). If a′m /∈ L(T (vb̃)),
then lcaT (b, a′m) �T lcaT (b̃, a′m). Thus we have lcaT (b, a′m) �T lcaT (b̃, a′m) ≺T
lcaT (b̃, am) = lcaT (b, am). Hence, in either case we obtain lcaT (b, a′m) ≺T
lcaT (b, am), thus amb /∈ E(G); a contradiction. Therefore am ∈ L(T (v)), i.e.,
Property (I1) is satisfied by am.

To summarize the argument so far, Property (I1) is always satisfied for am,
independent of the particular color σ(am). Moreover, Property (I2) is satisfied,
in case σ(am) = r. Thus it remains to show that Property (I2) is also satisfied
in case σ(am) 6= r. To this end, let vm ∈ child(v) such that am �T vm.
If r ∈ σ(L(T (vm))), then Lemma 5.9 implies that there must exist leaves
x̃m, ãm ∈ L(T (vm)) with σ(x̃m) = r and σ(ãm) = σ(am) such that x̃mãm ∈
E(G). By Equ. (15), no vertex in L(T (v)) ∩L[r] is contained in L∗, and thus,
we have x̃m /∈ L∗ and, since x̃mãm ∈ E(G), it must also hold ãm /∈ L∗.

Otherwise, if r /∈ σ(L(T (vm))), then σ(x̃) = r and x̃ �T vx′ implies vm 6= vx′ .
Hence, lca(am, x̃) = v. In particular, there is no vertex x′′ ∈ L[r] such that
lcaT (am,x′′) ≺T lca(am, x̃) = v, thus x̃ ∈ N+

r (am). Since am ∈ L∗ and x̃ /∈ L∗,
it must hold amx̃ /∈ E(G). Thus there must exist a leaf ãm ∈ L[σ(am)] such
that lcaT (x̃, ãm) ≺T lcaT (x̃, am) = v, i.e., σ(am) ∈ σ(L(T (vx′))). We can
therefore apply Lemma 5.9 to conclude that there must exist x̃m ∈ L(T (vx′))∩
L[r] and ãm ∈ L(T (vx′)) ∩ L[σ(am)] such that x̃mãm ∈ E(G). Analogous
argumentation as in the case r ∈ σ(L(T (vm))) shows x̃m, ãm /∈ L∗. Hence,
Property (I2) is satisfied, which completes the induction proof.
Property (I1) finally implies that a1 ∈ L(T (v)). Moreover, by construction

of Pxy we have xa1 ∈ E(G∗). Property (16), on the other hand, implies x̃a1 /∈
E(G∗). Consequently, we have lcaT (a1,x) ≺T lcaT (a1, x̃). This, however,
contradicts lcaT (a1,x) = u �T v = lcaT (a1, x̃). The shortest path Pxy can,
therefore, consist only of the single edge xy and hence, E(G(T|L∗ ,σ|L∗)) ⊆
E(G∗). Therefore G(T|L∗ ,σ|L∗) = (G∗,σ∗) and (T|L∗ ,σ|L∗) explains (G∗,σ∗).
In particular, the connected component (G∗,σ∗) is again an RBMG.

Every connected component of an n-RBMG is therefore a k-RBMG possibly
with a strictly smaller number k of colors. Our aim in the remainder of this
section is to show that the disjoint union of RBMGs is again an RBMG. We
start by identifying certain vertices in the leaf-colored tree (T ,σ) that, as we
shall see below, are related to the decomposition of G(T ,σ) into connected
components.

Definition 5.6. Let (T ,σ) be a leaf-colored tree with leaf set L. An inner vertex
u of T is color-complete if σ(L(T (u))) = σ(L). Otherwise, it is color-deficient.
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Fig. 21. The 3-RBMG (G,σ)
on the left hand side can be ex-
plained by the tree (T ,σ) shown
on the right. In (T ,σ), the in-
ner vertex v is a fork. The color-
deficient children of v are c1, a3
and w, thus L(v) = {a1, b1, c1, a3}.
Also, v′ is a fork and L(v′) =
{a2, b2, c2}. The set of forks is
ζ(T ,σ) = {v, v′}.

We will also refer to a subtree (T (u),σ|L(T (u))) of (T ,σ) as color-complete if its
root is color-complete.
We write A(u) for the set of color-deficient children of u, i.e.,

A(u) := {v | v ∈ child(u),σ(L(T (v))) ( σ(L)} (17)

and set

L(u) :=
⋃

v∈A(u)
L(T (v)). (18)

Definition 5.7. Let (T ,σ) be a leaf-colored tree. An inner vertex u ∈ V 0(T )

is a fork if σ(L(u)) = σ(L). We write ζ(T ,σ) for the set of forks in (T ,σ).

For an illustration see Fig. 21. As an immediate consequence of the definition
we have

Lemma 5.10. Every fork in a leaf-colored tree (T ,σ) is color-complete, but
not every color-complete vertex is a fork.

Proof. For a fork u, we have σ(L(T )) = σ(L(u)) ⊆
⋃
v∈child(u) σ(L(T (v))) =

σ(L(T (u))). Thus every fork must be color-complete. In order to see that
not every color-complete vertex is a fork, consider a leaf-colored tree (T ,σ),
where ρT has exactly two children both of which are color-complete. Then ρT
is color-complete but A(ρT ) = ∅. Hence, ρT is not a fork.

Clearly, there are no forks in a leaf-labeled tree (T ,σ) with |σ(L(T ))| = 1.
We will therefore in the following restrict our attention to trees and graphs with
at least two colors, omitting the trivial case of 1-RBMGs which correspond to
the edge-less graph and are explained by any leaf-colored tree with the same
leaf set. Next, we derive some useful technical results about forks and color-
complete trees, which will be needed to prove the main result of this section.

Lemma 5.11. Let (T ,σ) be a leaf-colored tree. Then ζ(T ,σ) 6= ∅.

Proof. Let L = L(T ). Assume, for contradiction, that ζ(T ,σ) = ∅. Thus, in
particular, ρT /∈ ζ(T ,σ). Since the root ρT is always color-complete, we have
σ(L(ρT )) 6= σ(L(T (ρT ))) = σ(L), which implies A(ρT ) ( child(ρT ). Hence,
Equ. (17) implies that there is a child u1 of the root with σ(L(T (u1))) = σ(L).
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Since ζ(T ,σ) = ∅, the vertex u1 is not a fork. Repeating the argument, u1 must
have a child u2 with σ(L(T (u2))) = σ(L), and so on. Hence, there is a sequence
of inner vertices ρT := u0 �T u1 �T u2 �T · · · �T uk such that uj has only
color-complete children for 0 ≤ j < k. Since T is finite, all maximal paths of
this form a finite, i.e., the final vertex uk in every maximal path has only color-
deficient children, i.e., A(u) = child(u). Since uk itself is color-complete by
construction, σ(L(u)) = σ(L(T (u))) = σ(L), i.e., uk is fork, a contradiction.

Lemma 5.12. Let (G,σ) be an n-RBMG, n ≥ 2, (T ,σ) a tree with leaf set
L that explains (G,σ), and (T (u),σ|L(T (u))) a color-complete subtree of (T ,σ)
for some u ∈ V 0(T ). Then xy /∈ E(G) for any two vertices x, y ∈ L with
x ∈ L(T (u)) and y ∈ L \L(T (u)).

Proof. If u = ρT , then L \L(T (u)) = ∅ and the lemma is trivially true. Thus
suppose u 6= ρT . Let x ∈ L(T (u)) and assume, for contradiction, xy ∈ E(G)
for some y ∈ L \L(T (u)), i.e., x and y are reciprocal best matches. By choice
of x and y, lca(x, y) � u and σ(x) 6= σ(y). Since (T (u),σ|L(T (u))) is color-
complete, there exists a leaf y′ ∈ L(T (u)) with σ(y′) = σ(y). Hence, in
particular, σ(y′) 6= σ(x) and thus, y′ 6= x. Since y′ ∈ L(T (u)), we have
lca(x, y′) � u ≺ lca(x, y); a contradiction to the assumption that x and y are
reciprocal best matches.

Lemma 5.13. Let (T ,σ) be a leaf-colored tree with leaf set L that explains the
n-RBMG (G,σ), and let u ∈ ζ(T ,σ) be a fork in (T ,σ). Then the following
statements are true:

(i) If L∗ is the vertex set of a connected component (G∗,σ∗) of (G,σ), then
either L∗ ⊆ L(u) or L∗ ∩L(u) = ∅.

(ii) If n ≥ 2, then there is a connected component (G∗,σ∗) of (G,σ) with leaf
set L∗ ⊆ L(u) and σ(L∗) = σ(L).

(iii) Let (G∗,σ∗) be a connected component of (G,σ) with vertex set L∗ and
σ(L∗) = σ(L). If n ≥ 2, then u′ := lca(L∗) is a fork and L∗ ⊆ L(u′).

Proof. AllN+-neighborhoods in this proof are taken w.r.t. the underlying BMG
~G(T ,σ). By Lemma 5.11, we have ζ(T ,σ) 6= ∅ and thus, there exists a fork in
(T ,σ). In the following, let u ∈ ζ(T ,σ) be chosen arbitrarily.
(i) Let (G∗,σ∗) be a connected component of (G,σ) and L∗ its vertex set. The
statement is trivially true if |L∗| = 1. Hence, assume |L∗| ≥ 2. By Lemma 5.10,
(T (u),σ|L(T (u))) is color-complete. Lemma 5.12 implies xy /∈ E(G) for any pair
of leaves x ∈ L(T (u)) and y ∈ L \L(T (u)). Therefore either L∗ ⊆ L(T (u)) or
L∗ ∩L(T (u)) = ∅. In the latter case, we have L∗ ∩L(u) ⊆ L∗ ∩L(T (u)) = ∅.
Now suppose L∗ ⊆ L(T (u)). Consider a vertex x ∈ L∗ and let z ∈ L∗ \ {x} be
a neighbor of x, i.e., xz ∈ E(G). Such a vertex z exists since |L∗| ≥ 2 and G∗
is connected. If x ∈ L(T (u)) \ L(u), then there exists a color-complete inner
vertex v ∈ child(u) that satisfies x ≺ v. Since v is color-complete, Lemma 5.12
implies that there is no edge between L(T (v)) and L(T (u)) \ L(T (v)) and
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thus, we have z ∈ L(T (v)). Therefore z /∈ L(u). Now suppose x ∈ L(u). If
z /∈ L(u), then z ∈ L(T (u)) \ L(u). Thus we can apply analogous arguments
and Lemma 5.12 to conclude that there cannot be an edge between x and z;
a contradiction. Hence, z ∈ L(u). In summary, we have either L∗ ⊆ L(u) or
L∗ ∩L(u) = ∅.
(ii) Let S := σ(L) with |S| = n > 1. We proceed by induction. For n = 2, the
statement is a direct consequence of Lemma 5.9.
For the induction step, suppose the statement is correct for RBMGs with a
color set of less than n colors. Recall that for any vi ∈ A(u) the color set of any
subtree (T (vi),σ|L(T (vi))) contains less than n colors, i.e., Svi := σ(L(T (vi))) 6=
S. By Lemma 5.11, there must exist a fork w ∈ ζ(T (vi),σ|L(T (vi))) within the
tree (T (vi),σ|L(T (vi))). Since w is a fork in (T (vi),σ|L(T (vi))), it is therefore also
color-complete in (T (vi),σ|L(T (vi))). However, by definition, we have w � vi ∈
A(u) and thus, w is not color-complete in (T ,σ). Nevertheless, we can apply the
induction hypothesis to the RBMG (Gvi ,σvi) := G(T (vi),σ|L(T (vi))) to ensure
that there exists a connected component (G∗vi ,σ

∗
vi) with leaf set L∗vi ⊆ L(w)

and σ(L∗vi) = Svi . Now fix this index i. By Cor. 5.2, there is a connected
component (G∗,σ∗) with leaf set L∗ of (G,σ) that contains (G∗vi ,σ

∗
vi).

Assume for contradiction |σ(L∗)| < n. Suppose first |Svi | = n− 1. Thus
S \ Svi = {r} and for each color s ∈ S \ {r} there is a vertex z ∈ V (G∗vi) with
color σ(z) = s. By construction, u ∈ ζ(T ,σ) implies that there exists a vertex
vj ∈ A(u) (i 6= j) such that r ∈ Svj . In particular, it follows from Lemma 4.14
that L(T (vj)) ∩ L[r] ⊆ N+

r (x) for all x ∈ L(T (vi)). Since Svi ⊆ σ(L∗) but
|σ(L∗)| < n, we have |σ(L∗)| = n− 1, and we conclude that xy /∈ E(G) for
every y ∈ L(T (vj)) ∩ L[r] and x ∈ V (G∗vi). The latter two arguments imply
that x /∈ N+

σ(x)(y) for all y ∈ L(T (vj)) ∩L[r] and x ∈ V (G∗vi). This, however,
is only possible if L(T (vj)) contains leaves of all colors s 6= r, i.e., Svi ( Svj
and thus, |Svj | = n; a contradiction to vj ∈ A(u).

Now suppose |Svi | < n− 1, i.e., S \ Svi = {r1, ..., rm}. Again, for any rj
(1 ≤ j ≤ m), there is a vertex vj ∈ A(u) (i 6= j) such that rj ∈ Svj . Note that
vj = vk may be possible for two different colors rj and rk. If there exists a color
sj ∈ Svi that is not contained in Svj , then, for any x ∈ L(T (vj)) ∩ L[rj ] and
y ∈ L(T (vi)) ∩ L[sj ], we have lcaT (x, y) = u ≺T lcaT (x, y′) and lcaT (x, y) =
u ≺T lcaT (x′, y) for all x′ ∈ L[rj ], y′ ∈ L[sj ] and hence, xy ∈ E(G). Thus there
is a connected component in G(T (u),σ|L(T (u))) that contains at least all colors
Svi ∪ {rj}. Consequently, if for any j ∈ {1, . . . ,m} there exists such a color
sj ∈ Svi \Svj , then there must be a connected component in G(T (u),σ|L(T (u)))
that contains all colors in S. By Cor. 5.2, every connected component of
G(T (u),σ|L(T (u))) is contained in a connected component of (G,σ) and state-
ment (ii) is true for this case.
On the other hand, if there is at least one j for which this property is not

true, similar argumentation as in the case |Svi | = n− 1 shows that Svi ⊂ Svj ,
hence in particular |Svj | > |Svi |. We can then apply the same argumentation
to the RBMG (Gvj ,σvj ) := G(T (vj),σ|L(T (vj))) and either obtain a connected
component on n colors in G(T (u),σ|L(T (u))) or some inner vertex vk ∈ A(u)

with |Svi | < |Svj | < |Svk |. Repeating this argumentation, in each step we ei-
ther obtain an n-colored connected component or further increase the sequence
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|Svi | < |Svj | < |Svk | < . . . . Since L is finite, this sequence must eventually
terminate with |Svl | = n, contradicting vl ∈ A(u). In summary, we have
shown that |σ(L∗)| 6= n is not possible and hence, σ(L∗) = σ(L). Finally,
∅ 6= L∗ ∩ L(T (vi)) and vi ∈ A(u) implies L∗ ∩ L(u) 6= ∅. Thus we can apply
Statement (i) to conclude that L∗ ⊆ L(u).
(iii) By Statement (ii), there is a connected component (G∗,σ∗) with vertex set
L∗ and σ(L∗) = σ(L). Put u′ := lca(L∗). We start by showing L∗ ⊆ L(u′).
Assume, for contradiction, that there exists a leaf a ∈ L∗ such that a /∈ L(u′).
Let v′ ∈ child(u′) be the (unique) child of u′ with a �T v′. Since a /∈ L(u′),
we can conclude that v′ /∈ A(u′). Thus v′ is color-complete and therefore,
(T (v′),σ|L(T (v′))) is color-complete. By Lemma 5.12, we thus have b ≺T v′ for
any b ∈ L with ab ∈ E(G). Repeating this argument for any b ∈ N(a) and
c ∈ N(b) and so on, this finally implies L∗ ⊆T L(T (v′)). Therefore lca(L∗) �T
v′ ≺T u′; a contradiction to u′ = lca(L∗). Thus we have L∗ ⊆ L(u′). As a
consequence, σ(L(u′)) = σ(L), i.e., u′ is a fork.

Corollary 5.4. Let (G,σ) be an n-RBMG, n ≥ 2, that is explained by a tree
(T ,σ) with root ρT .

(i) There exists an n-colored connected component (G∗,σ∗) of (G,σ).

(ii) If (G,σ) is connected, then ζ(T ,σ) = {ρT }.

Proof. (i) Since ζ(T ,σ) 6= ∅ (see Lemma 5.11), the existence of an n-colored
connected component of (G,σ) is a direct consequence of Lemma 5.13(ii).
(ii) Lemma 5.13(iii) implies ρT ∈ ζ(T ,σ). By (i) and Lemma 5.13(ii), we have
L(T ) ⊆ L(u) ⊆ L(T ) for all u ∈ ζ(T ,σ), hence L(u) = L(T ). Since this is
true only if u = ρT , Assertion (ii) follows.

The following result helps to gain some understanding of the ambiguities
among the leaf-colored trees that explain the same RBMG.

Lemma 5.14. Let (G,σ) be an n-RBMG, n ≥ 2, explained by (T ,σ) and
u ∈ ζ(T ,σ) with u 6= ρT . Moreover, let v ∈ child(u), where v is color-complete,
and (T ′,σ) the tree obtained from (T ,σ) by replacing the edge uv by par(u)v.
Then (T ′,σ) explains (G,σ).

Proof. First note that, since u is a fork in (T ,σ), there must exist at least
two color-deficient nodes w1,w2 ∈ A(u). Since v is color-complete, we have
v 6= w1,w2, thus degT ′(u) > 2, i.e., (T ′,σ) is phylogenetic. We first show
(G,σ) = G(T ′,σ). Put L := V (G).

First, let x, y ∈ L \ L(T (u)). Then, by construction of (T ′,σ), we have
lcaT (x, y) = lcaT ′(x, y), and lcaT (x, y) ≺T z implies lcaT ′(x, y) ≺T ′ z for all
z ∈ V (T ). In other words, reciprocal best matches xy with x, y /∈ L(T (u))

remain reciprocal best matches in (T ′,σ). Moreover, if x and y are not recipro-
cal best matches in (T ,σ), then we have w.l.o.g. lcaT (x, y) �T lcaT (x′, y) for
some (fixed) x′ ∈ L[σ(x)]. Clearly, if x′ ∈ L \ L(T (v)), then we still have, by
construction, lcaT ′(x, y) = lcaT (x, y) �T ′ lcaT ′(x′, y) = lcaT (x′, y). Thus, if
x′ ∈ L \L(T (v)), then x and y do not form reciprocal best matches in (T ′,σ).
If x′ ∈ L(T (v)), then lcaT (x′, y) �T par(u). Now, lcaT (x, y) �T lcaT (x′, y)
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implies lcaT (x, y) �T par(u). In other words, lcaT (x′, y) and lcaT (x, y) lie on
the path from the root to par(u). This and the construction of (T ′,σ) implies
lcaT (x, y) = lcaT ′(x, y) �T ′ lcaT (x′, y) = lcaT ′(x′, y). Thus x and y do not
form reciprocal best matches in (T ′,σ). In summary, xy ∈ E(G) if and only if
xy ∈ E(G(T ,σ)) for all x, y ∈ L \L(T (u)).

Moreover, since v is color-complete in both trees, we can apply Lemma 5.12
to conclude that neither (G,σ) nor G(T ′,σ) contains edges between L(T (v))

and L \ L(T (v)). Since T ′(v) = T (v) by construction, we additionally have
G(T ′(v),σ|L(T (v))) = G(T (v),σ|L(T (v))) = (G[L(T (v))],σ|L(T (v))).

It remains to show the case x ∈ L′ := L(T (u)) \L(T (v)), and either y ∈ L′
or y ∈ L \L(T (u)). Suppose first y ∈ L \L(T (u)). Since u is a fork, Lemma
5.13(ii) implies that there exists a connected component (G∗,σ∗) of (G,σ) with
leaf set L∗ such that L∗ ⊆ L(u). In particular, as v is color-complete, it is
not contained in A(u). We therefore conclude that L∗ ⊆ L′, i.e., the subtree
(T|L′ ,σ|L′) is color-complete as well. Since, by construction, T ′(u) = T|L′ ,
Lemma 5.12 implies that there are no edges between L(T (u)) and L \L(T (u))
in both (G,σ) and G(T ′,σ). In other words, x and y do not form reciprocal best
matches, neither in (T ,σ) nor in (T ′,σ) whenever x ∈ L′ := L(T (u)) \L(T (v))
and y ∈ L \L(T (u)).

Now suppose y ∈ L′. If x and y do not form reciprocal best matches in
(T ,σ), then we have w.l.o.g. lcaT (x, y) �T lcaT (x′, y) for some (fixed) x′ ∈
L[σ(x)]. This immediately implies that x′ ∈ L′. Again, since T ′(u) = T|L′ ,
we have lcaT (x, y) = lcaT ′(x, y) �T ′ lcaT (x′, y) = lcaT ′(x′, y). Hence, x and
y do not form reciprocal best matches in x and y in (T ′,σ). Finally, if x and
y are reciprocal best matches in (T ,σ), then lcaT (x, y) �T lcaT (x′, y) and
lcaT (x, y) �T lcaT (x, y′) for all x′ ∈ L[σ(x)] and y′ ∈ L[σ(y)]. We first fix a
leaf x′ ∈ L[σ(x)] for which the latter inequality is satisfied. By construction,
lcaT (x, y) = lcaT ′(x, y) �T ′ u. Clearly, if x′ ∈ L′, then the fact T ′(u) = T|L′

implies that lcaT ′(x, y) �T ′ lcaT ′(x′, y). On the other hand, if x′ /∈ L′, then
lcaT ′(x′, y) �T ′ u by construction of (T ′,σ). We thus have lcaT ′(x, y) �T ′
u ≺T ′ lcaT ′(x′, y). Hence, lcaT (x, y) �T lcaT (x′, y) implies lcaT ′(x, y) �T ′
lcaT ′(x′, y) for all x′ ∈ L[σ(x)]. Analogous arguments hold for y′ ∈ L[σ(y)].
Hence, x and y remain reciprocal best matches in (T ′,σ).
In summary, xy ∈ E(G) if and only xy ∈ E(G(T ′,σ)).

Let (G,σ) be an undirected, vertex-colored graph with vertex set L and
|σ(L)| = n. We denote the connected components of (G,σ) by (Gni ,σni ), 1 ≤
i ≤ k, with vertex sets Lni if σ(Lni ) = σ(L) and (G<nj ,σ<nj ), 1 ≤ j ≤ l,
with vertex sets L<nj if σ(L<nj ) ( σ(L). That is, the upper index distinguishes
components with all colors present from those that contain only a proper subset.
Suppose that each (Gni ,σni ) and (G<nj ,σ<nj ) is an RBMG. Then there are trees
(Tni ,σni ) and (T<nj ,σ<nj ) explaining (Gni ,σni ) and (G<nj ,σ<nj ), respectively. The
roots of these trees are ui and vj , respectively. We construct a tree (T ∗G,σ) with
leaf set L in two steps:

(1) Let (T ′,σn) be the tree obtained by attaching the trees (Tni ,σni ) with
their roots ui to a common root ρ′.
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Fig. 22. Shown is a tree (T ∗G,σ) with fork set ζ(T ∗G,σ) = {u1,u2, . . . ,uk}, that
explains the graph (G,σ) =

⋃
1≤i≤k G((T

n
i ,σni )) ∪

⋃
1≤j≤lG((T

<n
j ,σ<nj )) such that

each of the subtrees (Tni ,σni ) and (T<nj ,σ<nj ) induces one connected component of
(G,σ). The subtree (Tni ,σni ) with fork ui is color-complete and explains the n-colored
connected component (Gni ,σni ) of (G,σ). Each connected component (G<nj ,σ<nj ) that
does not contain all colors of S, is explained by a subtree (T<nj ,σ<nj ). Any n-RBMG
(G,σ) with n ≥ 2 can be explained by a tree of such form (cf. Lemma 5.15). See Fig.
23 for an explicit example of such a tree (T ∗G,σ).

(2) First, construct a path P = v1v2 . . . vl−1vlρ
′, where ρ′ is omitted whenever

T ′ is empty. Now attach the trees (T<nj ,σ<nj ), 1 ≤ j ≤ l, to P by
identifying the root of each T<nj with the vertex vj in P . Finally, if
(T ′,σn) exists, attach it to P by identifying the root of T ′ with the vertex
ρ′ in P . The coloring of L is the one given for (G,σ).

This construction is illustrated in Fig. 22 for n ≥ 2. For n = 1, the resulting
tree is simply the star tree on L.

Our goal for the remainder of this section is to show that every RBMG is
explained by a tree of the form (T ∗G,σ). We start by collecting some useful
properties of (T ∗G,σ).

Observation 5.2. Let (G,σ) be an undirected vertex-colored graph with
|σ(V (G))| ≥ 2 whose connected components are RBMGs and let (T ∗G,σ) be
the tree described above. Then

(i) ζ(T ∗G,σ) = {u1, . . . ,uk},

(ii) Every subtree (Tni ,σni ), 1 ≤ i ≤ k and (T ∗(vj),σ|L(T ∗G(vj))) and 1 ≤ j ≤ l,
resp., is color-complete.

Proof. Statement (i) is an immediate consequence of Cor. 5.4(ii). For Statement
(ii) observe that, by construction, σ(Lni ) = σ(L) and thus, (Tni ,σni ) is a color-
complete subtree of (T ∗G,σ), 1 ≤ i ≤ k. By Step (2) of the construction of
(T ∗G,σ), we have u1 ≺T ∗G ρ′ ≺T ∗G vl ≺T ∗G · · · ≺T ∗G v1. Since u1 is color-complete
by assumption, so is each of its ancestors.

Lemma 5.15. Let (G,σ) be an undirected vertex-colored graph on n colors
whose connected components are RBMGs and there is at least one n-colored

84



a3

c1

b1

a1
a4c3

c2
b2

a2
b3c4

b4

a4 c3

c4b3

b2

c1a2

c2 a3

b4

a1 b1

a4 c3

c4b3

b4

b2

a2 c2

c1

a3

a1 b1

Fig. 23. The trees (T ∗1 ,σ) and (T ∗2 ,σ) both explain the 3-RBMG (G,σ) with five
connected components and are both of the form (T ∗G,σ).

connected component, and let (T ∗G,σ) be the tree described above. Then (T ∗G,σ)
explains (G,σ).

Proof. For n = 1, (T ∗G,σ) is simply the star tree on V (G). Clearly, (G,σ)
must be the edge-less graph, which is explained by (T ∗G,σ). Now suppose
n > 1. Let (Gni ,σni ) be an n-colored connected component of (G,σ), i ∈
{1, . . . , k} and k ≥ 1. It has vertex set Lni = L(T ∗G(ui)). By construction,
(T ∗G(ui),σ|Lni ) = (Tni ,σni ) explains (Gni ,σni ) and (G[Lni ],σ|Lni ) = (Gni ,σni ).
Moreover, (T ∗G(ui),σni ) is a color-complete subtree of (T ∗G,σ) that is rooted
at ui. Hence, Lemma 5.12 implies that there are no edges in G(T ∗G,σ) be-
tween Lni and any other vertex in L \Lni . In other words, (Gni ,σni ) remains a
connected component in G(T ∗G,σ), i ∈ {1, . . . , k}.
Now suppose that there is a connected component (G<nj ,σ<nj ), j ∈ {1, . . . , l}

and l ≥ 1, which contains less than n colors. Again, by construction,
(T ∗G(vj)|L<nj

,σ|L<nj ) = (T<nj ,σ<nj ) explains (G<nj ,σ<nj ) and (G[L<nj ],σ|L<nj ) =

(G<nj ,σ<nj ). Furthermore, we have L<nj′ ∩ L(T ∗G(vj)) = ∅ if and only if j′ < j

by construction of the path v1v2 . . . vl in T ∗G. By Observation 5.2(ii), vj is color-
complete and Lemma 5.12 implies that there is no edge between L<nj and any
L<nj′ whenever j′ < j. In other words, (G<nj ,σ<nj ), j ∈ {1, . . . , l} remains a
connected component in G(T ∗G,σ).
To summarize, all connected components of (G,σ) remain connected compo-

nents in G(T ∗G,σ) and are explained by restricting (T ∗G,σ) to the corresponding
leaf set, which completes the proof.

Theorem 5.3. An undirected leaf-colored graph (G,σ) is an n-RBMG if and
only if each of its connected components is an RBMG and at least one connected
component contains all colors.

Proof. For n = 1, the statement trivially follows from the fact that an RBMG
must be properly colored and thus, be the edge-less graph for n = 1. Now sup-
pose n > 1. By Thm. 5.2 every connected component of an RBMG is again an
RBMG. Cor. 5.4(i) ensures the existence of a connected component containing
all colors. Conversely, if (G,σ) is an undirected graph whose connected compo-
nents are RBMGs and at least one of them contains all colors, then Lemma 5.15
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guarantees that it is explained by a tree of the form (T ∗G,σ) and hence, it is an
RBMG.

The existence of an n-colored connected component is crucial for the state-
ment above. Consider, for instance, an edge-less graph on two vertices, where
both vertices have different color. Each of the two connected components is
clearly an RBMG, however, one easily checks that their disjoint union is not.

Corollary 5.5. Every RBMG can be explained by a tree of the form (T ∗G,σ).

By Thm. 5.3, it suffices to consider each connected component of an RBMG
separately. In the following section, therefore, we will consider the characteri-
zation of connected RBMGs.

5.5 three classes of connected 3-rbmgs

In contrast to 2-BMGs, reciprocal best match graphs on two colors convey very
little structural information. Their connected components are either single ver-
tices or complete bipartite graphs (cf. Cor. 5.1), which reduce to a K2 with two
distinctly colored vertices under S-thinness. Connected 3-RBMGs, in contrast,
can be quite complex. This section aims at giving a complete characterization
of 3-RBMGs, which will be later used in Section 5.7 to characterize general n-
RBMGs. Moreover, algorithmic results about the recognition and classification
of 3-RBMGs as well as the reconstruction of a corresponding tree explaining
the RBMG in question will be presented at the end of this section.

5.5.1 Three Special Classes of Trees

We start by investigating transformations of trees such that the original tree
and the transformed tree both explain the same 3-RBMG. This leads to three
types if trees that have a relatively simple structure and we show that any
3-RBMG can be explained by a tree of such type. In the next subsection, this
finally results in three disjoint classes of 3-RBMGs that completely cover all
possible 3-RBMGs.
The following result shows the possible relocation of a 2-colored subtree (il-

lustrated in Fig. 24) that does not affect the underlying RBMG explained by
the original tree:

Lemma 5.16. Let (G,σ) be an S-thin 3-RBMG that is explained by a tree
(T ,σ). Moreover, let u ∈ V 0(T ) be a vertex that has two distinct children
v1, v2 ∈ child(u) such that σ(L(T (v1))) = σ(L(T (v2))) ( σ(L(T )) and v1 ∈
V 0(T ), and denote by (T ′,σ) the tree obtained by replacing the edge uv2 in
(T ,σ) by v1v2 and possible suppression of u, in case u has exactly two children
in (T ,σ) or removal of u and its incident edge, in case u = ρT ′. Then (T ′,σ)
explains (G,σ).

Proof. It is easy to see that the resulting tree (T ′,σ) is phylogenetic. We
emphasize that this proof does not depend on whether u has been suppressed
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Fig. 24. Assume that the tree (T ′,σ) is the 2-colored restricted version of some tree
that explains a 3-RBMG. According to the transformation of Lemma 5.16, (T ′′,σ) is
obtained from (T ′,σ) by deletion of the edge uv2, inserting v1v2 and removal of u and
its single incident edge. Similarly, (T ,σ) is obtained from (T ′′,σ) by deleting v1v2 and
inserting v3v2. The final tree (T ,σ) is a caterpillar. It is easy to verify that all three
trees (T ′,σ), (T ′′,σ), and (T ,σ) explain the same 2-RBMG (G,σ).

or removed. Put L := L(T ). Moreover, Lemma 5.7 implies that L(T (v1))

contains leaves of more than one color, hence |σ(L(T (v1)))| = 2.
Let S = {r, s, t} be the color set of (G,σ) and σ(L(T (v1))) = {r, s}.

Since L(T (v1)) and L(T (v2)) do not contain leaves of color t, we have
lcaT (y, z) = lcaT ′(y, z) for every y ∈ L[r] ∪ L[s] and z ∈ L[t]. Hence,
yz ∈ E(G) if and only if yz ∈ E(G(T ′,σ)) for every y ∈ L[r] ∪ L[s] and
z ∈ L[t]. It therefore suffices to consider (Trs,σrs) := (T|L[r]∪L[s],σ|L[r]∪L[s])
and (T ′rs,σrs) := (T ′|L[r]∪L[s],σ|L[r]∪L[s]).

First note that, since T ′(v2) = T (v2), vertex v2 is color-complete in both
(Trs,σrs) and (T ′rs,σrs). Hence, Lemma 5.12 implies that neither G(Trs,σrs)
nor G(T ′rs,σrs) contains edges of the form xy, where x ∈ L(T (v2)) and y /∈
L(T (v2)). Moreover, since T ′(v2) = T (v2), we have G(Trs(v2),σ|L(T (v2))) =

G(T ′rs(v2),σ|L(T (v2))). Since v1 is also color-complete in (Trs,σrs) and (T ′rs,σrs),
we can similarly conclude that both graphs G(Trs,σrs) and G(T ′rs,σrs) contain
no edges xy, where x ∈ L(T (v1)) and y /∈ L(T (v1)). Hence, it suffices to con-
sider edges between leaves in L(T (v1)). If v1 is a fork in (Trs,σrs), one can easily
see that (T ,σ) is obtained from (T ′,σ) by the same operation used in Lemma
5.14. Hence, Lemma 5.14 implies that G(Trs,σrs) = (G[L[r]∪L[s]],σrs). Sup-
pose that v1 is not a fork. Note that any w ∈ childT (v1) with |σ(L(T (w)))| = 1
must be a leaf as, otherwise, all leaves in L(T (w)) would be in a common
S-class and (G,σ) would not be S-thin. Therefore, any w ∈ childT (v1) is ei-
ther color-complete or a leaf in (Trs,σrs). Therefore, by Lemma 5.12, there
are no edges between G(Trs(w1),σ|L(T (w1))) and G(Trs(w2),σ|L(T (w2))) as soon
as one of the children w1 and w2 is a non-leaf vertex. In other words, if
there are edges between G(Trs(w1),σ|L(T (w1))) and G(Trs(w2),σ|L(T (w2))), then
both vertices w1,w2 ∈ childT (v1) are also contained in L. Since, by construc-
tion, childT (v1) ∩ L = childT ′(v1) ∩ L, we have w1w2 ∈ E(G(Trs,σrs)) if and
only if w1w2 ∈ E(G(T ′rs,σrs)) for any w1,w2 ∈ childT (v1). Moreover, by con-
struction, we have (T (w),σ|L(T (w))) = (T ′(w),σ|L(T (w))) for any inner vertex
w ∈ childT (v1), hence G(T (w),σ|L(T (w))) = G(T ′(w),σ|L(T (w))), which con-
cludes the proof.
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Repeated application of the transformation as in Lemma 5.16 implies the fol-
lowing result, which is illustrated in Fig. 24.

Corollary 5.6. Let (G,σ) be an S-thin 3-RBMG. Then there exists a tree
(T ,σ) explaining (G,σ) for which every 2-colored subtree (T (u),σ|L(T (u))) with
|σ(L(T (u)))| = 2 is a caterpillar and σ(L(T (v1))) 6= σ(L(T (v2))) for any
distinct v1, v2 ∈ child(u).

Proof. Let (T ′,σ) explain (G,σ) and let u ∈ V 0(T ′) be such that
(T ′(u),σ|L(T ′(u))) is a 2-colored subtree of (T ′,σ). Suppose there exists an
inner vertex v ∈ V 0(T ′(u)) with two distinct children that are again inner
vertices, i.e., w1,w2 ∈ childT ′(v)∩V 0(T ′(u)). Since (G,σ) is S-thin, we can ap-
ply Lemma 5.7 to conclude that (T ′(w1),σ|L(T ′(w1))) and (T ′(w2),σ|L(T ′(w2)))

are both 2-colored subtrees, thus σ(L(T ′(w1))) = σ(L(T ′(w2))) ( σ(L). By
Lemma 5.16, the tree (T ′′,σ) that is obtained from (T ′,σ) by deleting vw2 and
inserting w1w2, still explains (G,σ) and satisfies |childT ′(v) ∩ V 0(T ′′(u))| =
|childT ′(v)∩V 0(T ′(u))|− 1. Repeating this transformation until each inner ver-
tex v ∈ V 0(T ) satisfies σ(L(T (v1))) 6= σ(L(T (v2))) for any v1, v2 ∈ childT (v),
finally yields a tree (T ,σ) for which |child(v)∩V 0(T (u))| ≤ 1, i.e., a caterpillar,
that explains (G,σ). In particular, we have |σ(L(T (v1)))| = 1 if and only if
v1 ∈ L (cf. Lemma 5.7), and v cannot have two leaves of the same color as
children because (G,σ) is S-thin.

The restriction to connected S-thin graphs with 3 colors together with the
fact that all 2-colored subtrees can be chosen to be caterpillars according to
Cor. 5.6 identifies three distinct classes of trees.

Definition 5.8. Let (T ,σ) be a 3-colored tree with color set S = {r, s, t}. The
tree (T ,σ) is of

Type (I) if there exists v ∈ child(ρT ) such that |σ(L(T (v)))| = 2 and
child(ρT ) \ {v} ( L.

Type (II) if there exists v1, v2 ∈ child(ρT ) such that |σ(L(T (v1)))| =

|σ(L(T (v2)))| = 2, σ(L(T (v1))) 6= σ(L(T (v2))) and child(ρT ) \
{v1, v2} ( L,

Type (III) if there exists v1, v2, v3 ∈ child(ρT ) such that σ(L(T (v1))) =

{r, s}, σ(L(T (v2))) = {r, t}, σ(L(T (v3))) = {s, t}, and child(ρT ) \
{v1, v2, v3} ( L.

An illustration of these three tree types can be found in Fig. 25.

Lemma 5.17. Let (G,σ) be an S-thin connected 3-RBMG with vertex set L
and color set σ(L) = {r, s, t}. Then there is a tree (T ,σ) with root ρT explaining
(G,σ) that satisfies the properties in Cor. 5.6 and is of Type (I), (II), or (III).
In particular, all leaves that are incident to the root of (T ,σ) must have pairwise
distinct colors.
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Proof. Since (G,σ) is an RBMG, there is a tree (T ,σ) that explains (G,σ).
Denote its root by ρT . Note, |σ(L)| = 3 implies that |L| ≥ 3.

If |L| = 3, then it is easy to see that G must be a complete graph on three
vertices. In this case, any tree (T ,σ) where T is a triple explains (G,σ) and
satisfies Type (I) and Cor. 5.6.
Now suppose |L| > 3. Since (G,σ) is connected, Cor. 5.4(ii) implies ζ(T ,σ) =
{ρT }. Lemma 5.13(i) then implies L ⊆ L(ρT ) ⊆ L, i.e., A(ρT ) = child(ρT )
and thus, |σ(L(T (v)))| < 3 for every v ∈ child(ρT ). That is, every proper
subtree of (T ,σ) contains at most two colors. As a consequence of Cor. 5.6,
the tree (T ,σ) can be chosen such that there is no pair of distinct vertices
v1, v2 ∈ child(ρT ) for which σ(L(T (v1))) = σ(L(T (v2))). Moreover, as |L| > 3
and |σ(L)| = 3, it follows directly from Cor. 5.6 that |σ(L(T (v)))| = 1 for every
child v ∈ child(ρT ) is not possible. Thus there is at least one child v ∈ child(ρT )
with |σ(L(T (v)))| 6= 1 and thus, |σ(L(T (v)))| = 2.

In summary, there are only six possible subtrees (T (v),σL(T (v))) with v ∈
child(ρT ), three containing two colors and three containing only a single color,
and each of these six types of subtrees can appear at most once, while there is,
in addition, at least one child v ∈ child(ρT ) where (T (v),σL(T (v))) contains two
colors.
Therefore we end up with the three cases (I), (II), and (III): If there is

exactly one vertex v ∈ child(ρT ) such that the subtree (T (v),σL(T (v))) contains
two colors, any other leaf in L \ L(T (v)) must be directly attached to ρT ,
thus Condition (I) is satisfied. Similarly, Condition (II) and (III), respectively,
correspond to the case where there exist two and three 2-colored subtrees below
the root. Since the three types of trees (I), (II), and (III) differ by the number
of two-colored subtrees of the root, no tree can belong to more than one type.
By the choice of (T ,σ), it satisfies Cor. 5.6.
Finally, if the root of a tree is incident to two leaves of the same color, then

the graph explained by this tree cannot be S-thin. Thus the last statement
must be satisfied.

The fact that every connected 3-RBMG can be explained by a tree with a
very peculiar structure can now be used to infer stringent structural constraints
on the 3-RBMGs themselves.

Lemma 5.18. Let (G,σ) with vertex set L be an S-thin connected 3-RBMG
with σ(L) = {r, s, t} and (T ,σ) a tree of Type (I), (II), or (III) explaining
(G,σ). Consider v ∈ child(ρT ) such that σ(L(T (v))) = {r, s}. Then:

(i) If x ∈ L(T (v)) ∩ L[r], then xy ∈ E(G) for σ(y) = s if and only if
par(x) = par(y) and thus, y ∈ L(T (v)).

If, in addition, there is a vertex w ∈ child(ρT ) \ {v} with σ(L(T (w))) = {r, t},
i.e., (T ,σ) is of either Type (II) or (III), then the following statements hold:

(ii) For any y ∈ L(T (v)), z ∈ L(T (w)), we have yz ∈ E(G) if and only if
y ∈ L[s] and z ∈ L[t].

(iii) If (T ,σ) is of Type (II), then yz ∈ E(G) for every y ∈ L[s] and z ∈ L[t].
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(iv) For any a ∈ L(T (v)), b ∈ child(ρT ) ∩ L with σ(b) 6= σ(a), we have
ab ∈ E(G) if and only if σ(b) /∈ σ(L(T (v))).

Proof. (i) Assume y ∈ L[s] and xy ∈ E(G). For contradiction, suppose y /∈
L(T (v)). Since L(T (v)) contains at least one leaf y′ 6= y of color s, we have
lca(x, y′) � v ≺ lca(x, y), which implies xy /∈ E(G); the desired contradiction.
Hence, y ∈ L(T (v)). Now assume, again for contradiction, par(x) 6= par(y).
There are three cases: (a) par(x) and par(y) are incomparable in (T ,σ), (b)
par(x) ≺T par(y), or (c) par(y) ≺T par(x). In Case (a), Lemma 5.7 implies
that there is a leaf y′ ∈ L(T (par(x))∩L[s] and therefore, lca(x, y′) ≺ lca(x, y);
again a contradiction to xy ∈ E(G). Similar argumentation can be applied to
the Cases (b) and (c). Hence, we conclude that par(x) = par(y).
Conversely, assume par(x) = par(y) and y ∈ L(T (v)). By construction, we
have par(x) = lca(x, y) � lca(x, y′) for all y′ ∈ L[s], thus xy ∈ E(G).
(ii) Let y ∈ L(T (v)), z ∈ L(T (w)), and yz ∈ E(G). Assume, for contradiction,
σ(y) = r. Since (G,σ) does not contain edges between vertices of the same
color, we have z ∈ L[t]. By construction of (T ,σ), there must be some x ∈
L(T (w)) of color r. Hence, lca(z,x) � w ≺ lca(z, y) = ρT ; a contradiction
to yz ∈ E(G). Thus σ(y) = s. An analogous argument yields σ(z) = t.
Conversely, let y ∈ L(T (v)) and z ∈ L(T (w)) such that σ(y) = s and σ(z) = t.
Since neither t ∈ σ(L(T (v))) nor s ∈ σ(L(T (w))) and (T ,σ) is of Type (II) or
(III), we can immediately conclude that lca(y, z) = ρT = lca(y, z′) = lca(y′, z)
for all y′ ∈ L[s] and all z′ ∈ L[t]. Thus yz ∈ E(G).
(iii) Since, s /∈ σ(L(T (w))), t /∈ σ(L(T (v))), and (T ,σ) is of Type (II), we
have lcaT (y, z) = ρT for any pair y ∈ L[s], z ∈ L[t]. Thus yz ∈ E(G).
(iv) Let σ(a) = r and suppose first σ(b) = s. Then there is some y ≺ v with
σ(y) = s, thus lca(a, y) ≺ lca(a, b). Therefore a and b cannot be reciprocal
best matches, i.e., ab /∈ E(G). Now assume σ(b) = t. Since t /∈ σ(L(T (v))), we
have lca(a, z) = ρT for every z ∈ L[t]. In particular, we have lca(b,L[r]) = ρT
and therefore, ab ∈ E(G).

Note that Lemma 5.18(iv) is also satisfied by Type (I) trees. In the following
we additionally need a special form of Type (II) trees:
Definition 5.9. A tree (T ,σ) of Type (II) with color set S = {r, s1, s2} and root
ρT , where v1, v2 ∈ child(ρT ) with σ(L(T (v1))) = {r, s1} and σ(L(T (v2))) =

{r, s2}, is of Type (II∗) if, for i ∈ {1, 2}, it satisfies:
(?) If there is a vertex w ∈ V 0(T (vi)) such that child(w) ∩L = {x} for some

x ∈ L[r], then there is a leaf v ∈ child(ρT ) such that σ(v) = si.
Thus, for leaf-colored trees explaining an S-thin graph, the latter defini-

tion, in particular, implies that if there is some vertex w ∈ V 0(T (vi)) with
σ(child(w) ∩L) = {r} in a tree (T ,σ) of Type (II∗), then L[si] \L(T (vi)) 6= ∅.
Furthermore, note that, in a leaf-colored tree explaining an S-thin graph, the
property σ(child(w) ∩L) = {r} always implies |child(w) ∩L| = 1.

Given an arbitrary tree (T ,σ) of Type (II) with colors and subtrees as in Def.
5.9, one can easily construct a corresponding tree (T ′,σ) of Type (II∗) using
the following rule for i ∈ {1, 2}:
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(R) If there is no leaf v ∈ childT (ρT ) such that σ(v) = si, then re-attach
all vertices x ∈ L[r] with childT (parT (x)) ∩L = {x} to ρT and suppress
par(x) in case par(x) has degree 2 after removal of the edge par(x)x.

By construction, the tree (T ′,σ) has no vertices w ∈ V 0(T (vi)) with
σ(child(w) ∩L) = {r} and thus, (T ′,σ) trivially satisfies (?). Hence, (T ′,σ) is
of Type (II∗).
We proceed by showing that Rule (R) must be applied to at most one leaf in
order to obtain a tree (T ′,σ) of Type (II∗).

Lemma 5.19. Let (T ,σ) be a Type (II) tree that is not of Type (II∗) and
that explains a connected S-thin 3-RBMG. Let ρT be the root of (T ,σ) and
S = {r, s1, s2} its color set. Moreover, let v1, v2 ∈ child(ρT ) such that
σ(L(T (vi))) = {r, si}, i ∈ {1, 2}. Then

(i) no leaf of color r is incident to ρT , and

(ii) if Rule (R) is applied to some vertex x ∈ L(T (vi)), then x is the only leaf
in L[r] ∩L(T (vi)) with child(par(x)) ∩L = {x} and all inner vertices in
L(T (vj)), j 6= i satisfy Property (?) in Def. 5.9.

Proof. First note that, since (T ,σ) is of Type (II), it satisfies child(ρT ) \
{v1, v2} ⊂ L. Since (T ,σ) is not of Type (II∗), there must be a leaf x ∈ L[r]
with w := par(x) �T vi and σ(child(w) ∩ L) = {r} and there is no leaf of
color si incident to ρT , i.e., L[si] ⊆ L(T (vi)), for some i ∈ {1, 2}. W.l.o.g. we
can assume i = 1. Now, L[s1] ⊆ L(T (v1)) and Lemma 5.18(i) implies that
Ns1(x) = ∅ in (G,σ). However, since (G,σ) is connected, there must exist
some z ∈ L[s2] such that xz ∈ E(G). Lemma 5.18(i)+(iv) then implies that
every z ∈ L[s2] with xz ∈ E(G) must be incident to ρT . However, Lemma
5.17 implies that z is the only leaf of color s2 that is incident to the root. As
Ns1(x) = ∅, it holds that z is the only vertex in L that is adjacent to x in G
and thus, N(x) = {z} in (G,σ).

In order to show Statement (i), we now assume, for contradiction, that there
exists another leaf x′ 6= x of color r such that x′ ∈ child(ρT ). Then, as a con-
sequence of Lemma 5.17 and since L[s1] ⊆ L(T (v1)), we have child(ρT ) ∩L =

{x′, z}. Thus Lemma 5.18(i)+(iv) implies that x′ is not adjacent to any vertex
in L(T (v1)) ∪ L(T (v2)). Moreover, we have lcaT (x′, z) = ρT = lcaT (x′′, z) =
lcaT (x′, z′) for all x′′ ∈ L[r] and z′ ∈ L[s2], hence x′z ∈ E(G). Taking the
latter two arguments together with the observation that there is no leaf with
color s1 incident to the root ρT , we obtain N(x′) = N(x) = {z} in (G,σ); a
contradiction to the S-thinness of (G,σ).
We proceed with showing Statement (ii). Repeating the latter arguments,

one easily checks that N(x1) = {z} for any vertex x1 ∈ L(T (v1)) with
σ(child(par(x1)) ∩ L) = {r}. However, since (G,σ) is S-thin, we cannot have
another vertex x1 ∈ L(T (v1)) with N(x1) = {z} = N(x). Hence, there is ex-
actly one x ∈ L[r] ∩L(T (v1)) with child(par(x)) ∩L = {x} to which Rule (R)
can be applied. Moreover, the existence of z ∈ child(ρT ) ∩ L[s2] immediately
implies that Property (?) in Def. 5.9 is satisfied for every w ∈ V 0(T (v2)) with
σ(child(w) ∩L) = {r}. Thus Statement (ii) is satisfied.
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As a consequence, we can now state the following result:

Lemma 5.20. If a connected S-thin 3-RBMG can be explained by tree of Type
(II), then it can be explained by a tree of Type (II∗).

Proof. Assume that (T ,σ) is of Type (II) and thatG(T ,σ) is a connected S-thin
3-RBMG. Let S = {r, s, t} be the color set of L := L(T ) and v1, v2 ∈ child(ρT )
with σ(L(T (v1))) = {r, s} and σ(L(T (v2))) = {r, t}. If (T ,σ) is already of
Type (II∗), then the statement is trivially true.

Now suppose that (T ,σ) is not of Type (II∗). Lemma 5.19 implies that there
is exactly one leaf x ∈ L[r] to which Rule (R) can be applied. Hence, by using
Rule (R) and thus re-attaching x to the root, one obtains a tree (T ′,σ) of
Type (II∗). In particular, Lemma 5.19 implies that x is the only vertex with
color r in (T ′,σ) incident to the root. W.l.o.g. assume that x ∈ L(T (v1)).
Note, in particular, that the necessity of relocating x implies L[s] \L(T (v1)) =

∅ (cf. Rule (R)), i.e., L[s] ⊆ L(T (v1)). Thus child(par(x)) ∩ L = {x} and
Lemma 5.18(i)+(iv) implies that Ns(x) = ∅ in G(T ,σ).

Since L = L(T ′), it suffices to show that E(G(T ′,σ)) = E(G(T ,σ)) to prove
that (T ′,σ) explains G(T ,σ). One easily checks that the only edges that may
be different between both sets are those containing the leaf x.
We start by showing Ns(x) = ∅ in G(T ′,σ). Observe first that, as we have

only changed the position of vertex x ∈ L[r] to obtain (T ′,σ), L[s] ⊆ L(T (v1))

implies L[s] ⊆ L(T ′(v1)). By Lemma 5.7, we have σ(L(T (w))) = {r, s} for all
inner vertices w �T v1 in T . Thus there must be a vertex w ∈ (L(T (v1))) that
is incident to two leaves x′ and y with σ(x′) = r and σ(y) = s. Since {x′, y} ⊆
child(par(y)), it follows x′ 6= x and thus, x′ has not been re-attached. The latter
implies that σ(L(T ′(v1))) = {r, s} and, by construction, lcaT ′(x, y′) = ρT ′ �T ′
v1 �T ′ lcaT ′(x′, y′) for all x′ ∈ L(T ′(v1)) ∩ L[r] and y′ ∈ L[s] ∩ L(T ′(v1)) =

L[s]. Therefore there is no edge between x and any y′ ∈ L[s] in G(T ′,σ).
Hence, Ns(x) = ∅ in G(T ′,σ).

It remains to show that xz ∈ E(G(T ,σ)) if and only if xz ∈ E(G(T ′,σ)) for
this particular re-located vertex x and all z ∈ L[t]. Since G(T ,σ) is connected
and Ns(x) = ∅, there must exist some vertex z with color t such that xz ∈
E(G(T ,σ)). Note, Lemma 5.18(ii) implies that there are no edges xz for all z ∈
L[t]∩L(T (v2)). That is, x and z ∈ L[t] form an edge xz in G(T ,σ) if and only
if z is incident to the root ρT (cf. Lemma 5.18(ii)+(iv)). In particular, we have
by construction of (T ′,σ) that lcaT ′(x, z) = ρT ′ = lcaT ′(x′, z) = lcaT ′(x, z′)
for all x′ ∈ L[r] and all z′ ∈ L[t] and hence, xz ∈ E(G(T ′,σ)).
Now assume that xz ∈ E(G(T ′,σ)) for this particular re-located vertex x

and some z ∈ L[t]. Since x has been re-attached, we have lcaT ′(x, z) = ρT ′ .
By Lemma 5.19, none of the vertices in L(T (v2)) has been re-attached. Hence,
L(T ′(v2)) = L(T (v2)) and thus, σ(L(T (v2))) = {r, t}. Moreover, we have
xz′ /∈ E(G(T ′,σ)) for all z′ ∈ L[t] ∩ L(T (v2)) since lcaT ′(x, z′) = ρT ′ �T ′
lcaT ′(x′, z′) for all x′ ∈ L[r] ∩ L(T (v2)). Thus z must be adjacent to ρT ′ . By
construction, z must be adjacent to ρT . As argued above, xz in G(T ,σ) if and
only if z is incident to the root ρT . Therefore xz ∈ E(G(T ,σ)).
In summary, E(G(T ′,σ)) = E(G(T ,σ)) and hence, (T ′,σ) explains G(T ,σ).
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Fig. 25. The three categories of three-colored connected 3-RBMGs are shown on the
bottom: (A) Contains a K3 on three colors but no induced Cn, n ≥ 5, or Pn, n ≥ 4,
(B) contains an induced P4, whose endpoints have the same color, but no induced Cn,
n ≥ 5, (C) contains a C6 of the form (r, s, t, r, s, t). The corresponding tree Types (I),
(II), and (III) are shown on top. Solid lines represent edges and vertices that must
necessarily be contained in the graph, dashed elements may be missing.

5.5.2 Three classes of S-thin 3-RBMGs

We are now in the position to use these results to show that connected com-
ponents of 3-RBMGs can be grouped into three disjoint graph classes that
correspond to the three tree Types (I), (II), and (III). These three classes are
shown in Fig. 25.

Definition 5.10. An undirected, connected graph (G,σ) on three colors is of

Type (A) if (G,σ) contains a K3 on three colors but no induced Pn for n ≥ 4,
and thus also no induced Cn for n ≥ 5.

Type (B) if (G,σ) contains an induced P4 on three colors whose endpoints
have the same color, but no induced Cn for n ≥ 5.

Type (C) if (G,σ) contains an induced C6 along which the three colors appear
twice in the same permutation, i.e., (r, s, t, r, s, t).

Theorem 5.4. Let (G,σ) be an S-thin connected 3-RBMG. Then (G,σ) is
either of Type (A), (B), or (C). An RBMG of Type (A), (B), and (C), resp.,
can be explained by a tree of Type (I), (II), and (III), respectively.

Proof. Let (G,σ) be an S-thin connected 3-RBMG. If |L| = 3, then |σ(L)| = 3
implies that (G,σ) is the complete graph K3 on three colors, i.e., a graph of
Type (A). Every phylogenetic tree on three leaves explains (G,σ), and all of
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them except the star are of Type (I). From here on we assume |L| > 3. By
Lemma 5.17 every connected S-thin 3-RBMG (G,σ) is explained by a tree
(T ,σ) of either Type (I), (II), or (III).
Claim 1. If (T ,σ) is of Type (I), then (G,σ)is of Type (A).
Proof of Claim 1. Let (T ,σ) be a Type (I) tree, i.e., the root ρT has one child v
such that σ(L(T (v))) = {r, s} and all other children of ρT are leaves. This and
|σ(L)| = 3 implies that there must be a leaf z ∈ child(ρT )∩L[t]. Since (G,σ) is
S-thin, z is the only leaf of color t in (T ,σ), thus xz ∈ E(G) for every x ∈ L[r]
and yz ∈ E(G) every y ∈ L[s]. In particular, Lemma 5.7 implies that there
exists an inner vertex u �T v such that child(u) = {x∗, y∗} with x∗ ∈ L[r] and
y∗ ∈ L[s], thus we have x∗y∗ ∈ E(G). Hence, the induced subgraph G[x∗y∗z]
forms a K3.
It remains to show that (G,σ) contains no induced Cn with n ≥ 5 or Pn

with n ≥ 4. Since L[t] = {z} and xz, yz ∈ E(G) for any x ∈ L[r] and y ∈ L[s],
we can conclude that there cannot be any induced Pn, n ≥ 4, and thus no
induced Cn, n ≥ 5, either, that contains color t. Now assume, for contradiction,
that there is an induced P4 that contains the two colors r, s. By construction,
this P4 must have subsequent coloring (r, s, r, s), thus it contains three distinct
vertices x, y1, y2 such that x ∈ L[r], y1, y2 ∈ L[s], and x is adjacent to y1 and y2.
Lemma 5.18(i) implies that par(y1) = par(y2). Hence, N(y1) = N(y2), which
contradicts the S-thinness of (G,σ). Thus there exists no induced P4, and thus
no induced Pn, n ≥ 4, containing only two colors.
Hence, (G,σ) is of Type (A). /

Claim 2. If (T ,σ) is of Type (II), then (G,σ) is of Type (B).
Proof of Claim 2. Let (T ,σ) be a Type (II) tree, i.e., the root has two distinct
children v1, v2 ∈ child(ρT ) such that σ(L(T (v1))) = {r, s} and σ(L(T (v2))) =

{r, t}, and all other children of the root are leaves.
We start by showing that (G,σ) contains the particular colored induced P4.

Lemma 5.7 implies that there must be a leaf y1 ∈ L(T (v1)) ∩ L[s] such that
par(y1) = par(x1) for some x1 ∈ L(T (v1)) ∩ L[r] and therefore, x1y1 ∈ E(G).
Similarly, there exist two leaves z1 ∈ L(T (v2))∩L[t] and x2 ∈ L(T (v2))∩L[r]
such that x2z1 ∈ E(G). Lemma 5.18(ii) implies x1z1 /∈ E(G) and x2y1 /∈ E(G).
Clearly, x1x2 /∈ E(G) since the two vertices have the same color. Moreover,
Lemma 5.18(iii) implies y1z1 ∈ E(G). Hence, 〈x1y1z1x2〉 forms an induced P4
in (G,σ) on three colors whose endpoints have the same color.

We proceed by showing that (G,σ) does not contain an induced Cn with
n ≥ 5. First note that Lemma 5.18(iii) implies yz ∈ E(G) for any two leaves
y ∈ L[s], z ∈ L[t]. Thus (G,σ) cannot contain an induced Cn for some n ≥ 5
on colors s and t only. Therefore assume, for contradiction, that there exists
an induced Cn for some fixed n ≥ 5 in G(T ,σ) that contains a leaf x of color
r. Note that this necessarily implies |N(x)| > 1 in G. Suppose first that x ∈
child(ρT ). Since (T (v1),σ|L(T (v1))) and (T (v2),σ|L(T (v2))) both contain leaves
of color r, any vertex that is adjacent to x in G must be incident to ρT in T .
Hence, as (G,σ) is S-thin, |N(x)| > 1 inG implies that child(ρT )∩L = {x, y, z},
where y ∈ L[s] and z ∈ L[t], i.e., we have N(x) = {y, z}. Thus any induced
Cn, n ≥ 5 containing x must also contain both y and z. However, as x, y, and
z have the same parent in T , they clearly form a K3 in G; a contradiction to
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x, y, and z being part of an induced Cn. Now suppose x ∈ L(T (v1)) ∩ L[r].
Since (T (v2),σ|L(T (v2))) contains the colors r and t, (G,σ) cannot contain an
edge xz with z ∈ L(T (v2)) (cf. Lemma 5.18(ii)). Hence, Nt(x) 6= ∅ if and only
if there exists a leaf z of color t that is directly attached to the root ρT . Since
G(T ,σ) is S-thin, there can be at most one leaf of color t that is attached to ρT ,
thus |Nt(x)| ≤ 1. This and |N(x)| > 1 in G implies that there must be a leaf
y ∈ L[s] such that y ∈ Ns(x). By Lemma 5.18(i), this is the case if and only if
y ∈ L(T (v1)) ∩L[s] and par(x) = par(y). Since G(T ,σ) is S-thin, there exists
at most one leaf of color s with this property, hence in particular N(x) = {y, z}.
Using Lemma 5.18(iv), we can conclude that yz ∈ E(G). Thus x, y, and z form
a K3. Therefore these three leaves cannot be contained together in an induced
Cn, n ≥ 5. Since an analogous argumentation holds if x ∈ L(T (v2)), we
conclude that there cannot be an induced Cn, n ≥ 5, containing a leaf of color
r.
In summary, G cannot contain an induced Cn for n ≥ 5 at all and thus,

(G,σ) is of Type (B). /

Claim 3. If (T ,σ) is of Type (III), then (G,σ) is of Type (C).
Proof of Claim 3. Let (T ,σ) be a Type (III) tree, i.e., the root ρT has three
children v1, v2, v3 ∈ child(ρT ) such that σ(L(T (v1))) = {r, s}, σ(L(T (v2))) =

{r, t}, and σ(L(T (v3))) = {s, t}, and all remaining children are leaves. Again,
Lemma 5.7 and Lemma 5.18(i) imply that there exist x1, y1 ∈ L(T (v1)) with
x1y1 ∈ E(G), x2, z1 ∈ L(T (v2)) with x2z1 ∈ E(G) and y2, z2 ∈ L(T (v3))

with y2z2 ∈ E(G), where xi ∈ L[r], yi ∈ L[s] and zi ∈ L[t]. Applying
Lemma 5.18(ii), we can in addition conclude that y1z1,x2y2,x1z2 ∈ E(G),
and (G,σ) contains none of the edges x1z1, x1y2, y1x2, y1z2, z1y2, or x2z2.
Moreover, (G,σ) does not contain edges between vertices of the same color.
Hence, (G[C],σ|C) with C = {x1, y1, z1,x2, y2, z2} forms the desired induced
C6. Therefore (G,σ) is of Type (C). /

By definition, the three classes of 3-RBMGs (A), (B), and (C) are disjoint.
Lemma 5.17 states that the three classes of trees (I), (II), and (III) are disjoint,
hence there is a one-to-one correspondence between the tree Types (I), (II), and
(III) and the graph classes (A), (B), and (C).

An undirected, colored graph (G,σ) contains an induced K3, P4, or C6,
respectively, if and only if (G/S,σ/S) contains an induced K3, P4, or C6, resp.,
on the same colors (cf. Lemma 5.4). An immediate consequence of this fact is

Theorem 5.5. A connected (not necessarily S-thin) 3-RBMG (G,σ) is either
of Type (A), (B), or (C).

In the following subsections we characterize the three classes of 3-RBMGs, start-
ing with Type (A).

5.5.3 Characterization of Type (A) 3-RBMGs

As an immediate consequence of Thm. 5.4 and the well-known property that
cographs are exactly those undirected graphs without induced P4s, we immedi-
ately obtain an characterization of 3-RBMGs that are of Type (A):
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Observation 5.3. Let (G,σ) be a connected, S-thin 3-RBMG. Then it is of
Type (A) if and only if it is a cograph.

However, this characterization requires the prior knowledge if a given graph
(G,σ) is an 3-RBMG or not. Another, more general, characterization can be
obtained by means of a so-called hub-vertex.

Definition 5.11. Let G = (V ,E) be an undirected graph. A vertex x ∈ V (G)

such that N(x) = V \ {x} is a hub-vertex.

Lemma 5.21. A properly vertex-colored, connected, S-thin graph (G,σ) on
three colors with vertex set L is a 3-RBMG of Type (A) if and only if G /∈ P3
and it satisfies the following conditions:

(A1) G contains a hub-vertex x, i.e., N(x) = V (G) \ {x}

(A2) |N(y)| < 3 for every y ∈ V (G) \ {x}.

Proof. By definition, a 3-RBMG is properly colored and has |L| ≥ 3 vertices.
If |L| = 3 there are only two connected graphs: K3 and P3. Both satisfy (A1)
and (A2) since the three vertices have distinct colors. However, only K3 is
a 3-RBMG: it is explained by any tree on three leaves with pairwise distinct
colors. From here on we assume |L| ≥ 4.
We start with the “only-if-direction” and show that every 3-RBMG of Type

(A) satisfies (A1) and (A2). We set S = {r, s, t} and assume that (G,σ) is a
3-RBMG of Type (A). Thm. 5.4 implies that there exists a tree (T ,σ) with
root ρT explaining (G,σ) that is of Type (I), i.e., there is a vertex v ∈ child(ρT )
such that σ(L(T (v))) = {s, t} and child(ρT ) \ {v} ⊂ L. Thus every leaf x with
color σ(x) = r is a child of ρT . Since (G,σ) is S-thin, this implies |L[r]| = 1
and therefore, xy ∈ E(G) for every y 6= x. Hence, (A1) is satisfied. In order
to show (A2), consider y ∈ V (G) \ {x}, where x is again the unique vertex
with color r. Since (G,σ) is properly colored, we have σ(y) 6= r. W.l.o.g., let
σ(y) = s. Assume, for contradiction, that |N(y)| ≥ 3. Then there are at least
two distinct vertices z, z′ ∈ Nt(y). Assume first that y ∈ L(T (v)). Thus there
exists z∗ ∈ L[t] with lca(y, z∗) � v ≺ ρT . Hence, we must have z, z′ ∈ L(T (v)).
However, Lemma 5.18(i) implies that z and z′ must be siblings and therefore
N(z) = N(z′); a contradiction since (G,σ) was assumed to be S-thin. Now
assume that y ∈ child(ρT ). Then Lemma 5.18(iv) and z, z′ ∈ Nt(y) imply that
z and z′ both have to be adjacent to ρT ; again this contradicts the assumption
that (G,σ) is S-thin. Thus (A2) is satisfied.

We proceed with showing the “if-direction”. Suppose (G,σ) is a properly
vertex-colored, connected, S-thin graph satisfying (A1) and (A2). In order to
show that (G,σ) is a Type (A) RBMG it suffices, by Thm. 5.4, to construct
a Type (I) tree that explains (G,σ). Let x be a vertex that is adjacent to all
others, which exists by (A1). Assume w.l.o.g. that σ(x) = r. Since (G,σ) is
S-thin and it does not contain edges between vertices of the same color, x must
be the only vertex of color r. We define L2 := {y | y 6= x, |N(y)| = 2}. Since
|L| > 3 and thus |N(x)| ≥ 3, we have x ∈ L \ L2. Note that each vertex is
adjacent to x and thus, N(y) = {x, z} for all y ∈ L2 and some vertex z ∈ L[t],
t 6= σ(y). Property (A2) implies that there are |L \L2| − 1 vertices with degree
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1, all incident to x. Since (G,σ) is S-thin and |S| = 3, there are at most two
vertices with degree 1, at most one of each color different from σ(x), and thus
|L \L2| ≤ 3.
We first construct a caterpillar (T2,σ|L2) with leaf set L2 and root ρT2 such

that par(y) = par(z) for any y, z ∈ L2 with σ(y) 6= σ(z) if only if yz ∈ E(G).
As N(y) = {x, z} for all y ∈ L2 and some vertex z ∈ L[t], t 6= σ(y), we can
conclude that each connected component of (G[L2],σ|L2) is a single edge yz.
Thus it is easy to see that (T2,σ|L2) explains (G[L2],σ|L2).

For the construction of (T ,σ), we then distinguish two cases: (i) If L \L2 =

{x,w1}, then (T ,σ) is obtained by attaching the vertices x and w1 as well as
ρT2 as children of the root ρT . (ii) If L \L2 = {x,w1,w2} for distinct vertices x,
w1, and w2 in (G,σ), we first build an auxiliary tree (T ′,σ|L2∪{w2}) with root
ρT ′ by attaching ρT2 and vertex w2 to ρT ′ . The tree (T ,σ) is then constructed
from (T ′,σ|L2∪{w2}) by attaching x, the other vertex w1 and ρT ′ as children of
ρT . It remains to show that (T ,σ) explains (G,σ). By construction, (T ,σ)
is a tree of Type (I) where the vertices ρT2 and ρT ′ play the role of v in Def.
5.9 in Case (i) and (ii), respectively. In the following let v = ρT2 or v = ρT ′

depending on whether we have Case (i) and (ii).
Thm. 5.4 implies that G(T ,σ) is 3-RBMG of Type (A). It is easy to see that

G(T ,σ)[L2] = (G[L2],σ|L2). Any remaining edges in G(T ,σ) are thus adjacent
to vertices in L \L2. We first consider edges that may be incident to vertex x in
G(T ,σ). Since lcaT (z,x) = ρT and r /∈ σ(L(T (v))), we have xz ∈ E(G(T ,σ))
for all z ∈ L \ {x}. Hence, (A1) is satisfied by x in G(T ,σ).

Now consider edges that may be incident to vertex w1 in G(T ,σ). First
note that in both Cases (i) and (ii) the vertex w1 is adjacent to the root ρT
in (T ,σ). Since (T ,σ) is a tree of Type (I), we can apply Lemma 5.18(i) to
conclude that there are no edges in G(T ,σ) between w1 and any vertex in
L(T (v)). This and the arguments above show that N(w1) = {x}. In other
words, w1z ∈ E(G(T ,σ)) if and only if w1z ∈ E(G) for all z ∈ L. This in
particular shows (G,σ) = G(T ,σ), which conforms to Case (i).
Finally, assume Case (ii) and consider edges that are incident to vertex w2 in

(G,σ). By construction, s, t ∈ σ(L2). Since lca(w2, z) = v �T ρT2 � lca(w′, z)
for all w′, z ∈ L2 with σ(w2) = σ(w) 6= σ(z), we can conclude that w2 is not
adjacent to any other vertex in L2. This and the arguments above show that
N(w2) = {x}. Therefore w2z ∈ E(G(T ,σ)) if and only if w1z ∈ E(G) for all
z ∈ L.
In summary, G(T ,σ) = (G,σ). Therefore (G,σ) is of Type (A).

The next result is an immediate consequence of Observation 5.3 and
Lemma 5.21. We still present a short alternative proof which sheds some more
light on the explicit structure of S graphs satisfying (A1) and (A2).

Lemma 5.22. Let (G,σ) be an S-thin graph satisfying (A1) and (A2). Then
G is a cograph.

Proof. Since (G,σ) contains a hub-vertex by (A1), it can be written as join
G′OK1, where K1 corresponds to the hub-vertex. As a consequence of (A2),
G′ is a 2-colored graph with vertex degree at most 1. The number of isolated
vertices in G′ cannot exceed 2, one of each color, since otherwise two vertices
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that are isolated in G′ would have the same color and thus, share the hub-vertex
as their only neighbor in G, contradicting S-thinness of (G,σ). Hence, G′ is
the disjoint union of an arbitrary number of K2 and at most two copies of K1:
G = ((

⋃
· n1 K1) ∪ (

⋃
· n2 K2))OK1 with 0 ≤ n1 ≤ 2 and n2 ≥ 0. Thus G is a

cograph [38].

For later reference, we close this section with a simple property of hub-vertices.

Corollary 5.7. Let x be a hub-vertex of some connected S-thin 3-RBMG (G,σ)
of Type (A) with vertex set L and |L| > 3. Then x is the only vertex of its color
in (G,σ), i.e., L[σ(x)] = {x}. Moreover, for any (T ,σ) explaining (G,σ), x
must be incident to the root of T .

Proof. Since (G,σ) does not contain edges between vertices of the same color,
the first statement immediately follows from Property (A1) and S-thinness of
(G,σ).

For the second statement, let (T ,σ) be an arbitrary tree with root ρT that
explains (G,σ). Let v ∈ child(ρT ) with x �T v. Assume, for contradiction,
v 6= x. Thus Lemma 5.7 implies that there exists a leaf y ∈ L with σ(y) 6=
σ(x) such that y �T v. Then, since x is connected to any vertex in L \ {x},
all vertices of color σ(y) must be contained in the subtree T (v); otherwise
lcaT (x, y) ≺T lcaT (x, y′) = ρT for some vertex y′ ∈ L[σ(y)], y′ 6= y, which
yields a contradiction to xy′ ∈ E(G). As (T ,σ) is phylogenetic, the root ρT
has at least two different children, i.e., there is some w ∈ child(ρT ), w 6= v. Let
r 6= σ(x),σ(y) be the third color in (G,σ). We already argued σ(x),σ(y) /∈
σ(L(T (w))), thus σ(L(T (w))) = {r}. In particular, since (G,σ) is S-thin,
Lemma 5.7 implies that w must be a leaf. Since (G,σ) is connected, we can
apply the same arguments as for L[σ(y)] to conclude that r /∈ σ(L(T (v))),
thus |L[r]| = 1. Since x is the only leaf of its color in (T ,σ) and σ(L(T (v))) =
{σ(x),σ(y)}, we can again apply Lemma 5.7 to conclude that |L[σ(y)]| = 1.
In summary, we have therefore shown |L| = 3; a contradiction. Hence, x must
be incident to ρT .

5.5.4 Characterization of Type (B) 3-RBMGs

This subsection disentangles the structure of (B) 3-RBMGs, which turns out
to be more complex than that of Type (A) 3-RBMGs. We start by introducing
the notion of B-like colored graphs:

Definition 5.12. Let (G,σ) be an undirected, connected, properly colored, S-
thin graph with vertex set L and color set σ(L) = {r, s, t}, and assume that
(G,σ) contains the induced path P := 〈x̂1ŷẑx̂2〉 with σ(x̂1) = σ(x̂2) = r,
σ(ŷ) = s, and σ(ẑ) = t. Then (G,σ) is B-like w.r.t. P if (i) Nr(ŷ)∩Nr(ẑ) = ∅,
and (ii) G does not contain an induced cycle Cn, n ≥ 5.
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For a 3-colored, S-thin graph (G,σ) that is B-like w.r.t. the induced path
P := 〈x̂1ŷẑx̂2〉, we define the following subsets of vertices:

LPt,s :={y | 〈xyẑ〉 ∈ P3 for any x ∈ Nr(y)}
LPt,r :={x | Nr(y) = {x} and 〈xyẑ〉 ∈ P3}∪

{x | x ∈ L[r], Ns(x) = ∅, L[s] \LPt,s 6= ∅}
LPs,t :={z | 〈xzŷ〉 ∈ P3 for any x ∈ Nr(z)}
LPs,r :={x | Nr(z) = {x} and xzŷ ∈ P3}∪

{x | x ∈ L[r],Nt(x) = ∅,L[t] \LPs,t 6= ∅}

The first subscripts t and s refer to the color of the vertices ẑ and ŷ, respectively,
that “anchor” the P3s within the defining path P . The second index identifies
the color of the vertices in the respective set since, by definition, we have
LPt,s ⊆ L[s], LPt,r ⊆ L[r], LPs,t ⊆ L[t] and LPs,r ⊆ L[r]. Furthermore, we set

LPt :=LPt,s ∪LPt,r
LPs :=LPs,t ∪LPs,r
LP∗ :=L \ (LPt ∪LPs ).

By definition, LPs,r = LPs ∩L[r], LPt,r = LPt ∩L[r], LPs,t = LPs ∩L[t], and LPt,s =
LPt ∩L[s]. For simplicity we will often write LP∗ [i] := LP∗ ∩L[i] for i ∈ {s, t}.
These vertex sets arise naturally from trees of Type (II∗):

Lemma 5.23. Let (G,σ) be a connected, S-thin 3-RBMG of Type (B) with
vertex set L and color set S = {r, s, t}. Then the colors can be permuted such
that there are x̂1, x̂2 ∈ L[r], ŷ ∈ L[s], ẑ ∈ L[t] such that (G,σ) is B-like w.r.t.
P = 〈x̂1ŷẑx̂2〉. Moreover, there exists a tree (T ,σ) of Type (II∗) explaining
(G,σ) such that

(i) LPt = L(T (v1)) and LPs = L(T (v2)) for v1, v2 ∈ child(ρT ) \L, and

(ii) LP∗ = child(ρT ) ∩L.

Proof. Let (G,σ) be a connected, S-thin 3-RBMG of Type (B). Then, by
Lemmas 5.17 and 5.20, there is a tree (T ,σ) with root ρT explaining (G,σ)
that is of Type (II∗). In particular, the colors can be chosen such that there
are v1, v2 ∈ child(ρT ) with σ(L(T (v1))) = {r, s}, σ(L(T (v2))) = {r, t}, and
child(ρT ) \ {v1, v2} ⊂ L. Applying the same argumentation as in the proof
of Thm. 5.4 (Claim 2), we conclude that there are leaves x̂1, ŷ ≺T v1 and
x̂2, ẑ ≺T v2, where x̂1, x̂2 ∈ L[r], ŷ ∈ L[s], ẑ ∈ L[t], such that 〈x̂1ŷẑx̂2〉
is an induced P4 in G. By S-thinness of (G,σ) and Lemma 5.18(i), we have
Nr(ŷ) = {x̂1} and Nr(ẑ) = {x̂2} and thus, Nr(ŷ)∩Nr(ẑ) = ∅. Since 3-RBMGs
of Type (B) do not contain induced cycles on more than five vertices, (G,σ) is
B-like w.r.t. 〈x̂1ŷẑx̂2〉. It remains to show Properties (i) and (ii).
In the following, we put for simplicity L1 := LPt . To establish Property (i) we

treat vertices of colors s and r separately. Consider y ∈ L[s]. We first show that
y ∈ L(T (v1)) implies y ∈ L1. Clearly, since L(T (v1)) contains leaves of color
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r, any x ∈ Nr(y) must satisfy x ≺T v1. Lemma 5.18(i) implies that x ∈ Nr(y)

if and only if par(x) = par(y). Therefore |Nr(y)| ≤ 1 because (G,σ) is S-thin.
If Nr(y) = ∅, then y ∈ L1 by definition. Otherwise, Nr(y) = {x} with x ≺T v1.
By construction of (T ,σ), there is a leaf x′ ≺T v2 of color r; this implies
lca(ẑ,x) �T lca(ẑ,x′) and hence, xẑ /∈ E(G). Since yẑ ∈ E(G) by Lemma
5.18(iii), we have 〈xyẑ〉 ∈ P3 and thus, y ∈ L1. Hence, L(T (v1)) ∩ L[s] ⊆
L1 ∩ L[s] as claimed. We now show that y ∈ L1 implies y ∈ L(T (v1)). To
this end, consider y ∈ L1 ∩ L[s], i.e., either Nr(y) = ∅ or 〈xyẑ〉 ∈ P3 for
every x ∈ Nr(y). Assume, for contradiction, that y /∈ L(T (v1)). Then y

must be incident to the root ρT . Since L(T (v2)) contains no leaf of color s,
Lemma 5.18(iv) implies yx̂2, yẑ ∈ E(G). Since x̂2ẑ ∈ E(G), the vertices x̂2, y, ẑ
induce a K3, thus 〈x̂2yẑ〉 /∈ P3 and therefore, y /∈ L1; a contradiction. Hence,
we can conclude L1 ∩ L[s] ⊆ L(T (v1)) ∩ L[s]. In summary, we therefore have
L(T (v1)) ∩L[s] = L1 ∩L[s].

Consider x ∈ L[r]. We first show that x ∈ L(T (v1)) implies x ∈ L1. If there
exists a leaf y ∈ L[s] incident to par(x), then Nr(y) = {x} by Lemma 5.18(i)
and 〈xyẑ〉 ∈ P3 by Lemma 5.18(ii)+(iii), implying x ∈ L1. Otherwise, S-
thinness of G implies that child(par(x)) ∩L = {x}. In this case, Ns(x) = ∅ by
Lemma 5.18(i). Moreover, since (T ,σ) is of Type (II∗) and child(par(x))∩L =

{x}, we can apply Condition (?) in Def. 5.9 to conclude L[s] \ LPt,s = L[s] \
L(T (v1)) 6= ∅, where equality holds because L(T (v1))∩L[s] = L1∩L[s] = LPt,s.
In summary, we have thus shown that x ∈ L1. Hence, L(T (v1)) ∩ L[r] ⊆
L1 ∩ L[r] as claimed. Conversely, we show that x ∈ L1 implies x ∈ L(T (v1)).
Assume that x ∈ L1 ∩L[r]. Then, by definition of L1, we have x ∈ LPt,r. Thus
either (a) there is a leaf y ∈ L[s] such that Nr(y) = {x} and 〈xyẑ〉 ∈ P3, or
(b) Ns(x) = ∅ and L[s] \LPt,s = L[s] \L(T (v1)) 6= ∅. In Case (a), assume first,
for contradiction, that y is adjacent to the root ρT . Lemma 5.18(iv) implies
that x′y ∈ E(G) for any x′ ∈ L(T (v2)) ∩ L[r]. Since L(T (v2)) ∩ L[r] 6= ∅
and |Nr(y)| = 1, we have L(T (v2)) ∩ L[r] = {x} and thus, as x̂2 ∈ L(T (v2)),
it follows x = x̂2. However, since x = x̂2 and ẑ are adjacent in (G,σ), xyẑ
cannot form an induced P3. We therefore conclude that y cannot be adjacent
to the root ρT . Since s /∈ σ(L(T (v2))), it must thus hold y ∈ L(T (v1)).
Lemma 5.18(ii)+(iv) then implies x ∈ L(T (v1)). In Case (b), L[s] \ LPt,s =

L[s] \L(T (v1)) 6= ∅ implies that there exists a leaf y∗ ∈ L[s] \L(T (v1)). Since
s /∈ σ(L(T (v2))), this vertex y∗ must be incident to the root ρT . On the
other hand, we have xy∗ /∈ E(G) because Ns(x) = ∅, hence x cannot be
incident to ρT . Applying Lemma 5.18(iv) thus implies x ∈ L(T (v1)). Therefore,
L1 ∩L[r] = L(T (v1)) ∩L[r].
In summary we have shown L1 = L(T (v1)). By symmetry of the definitions,

analogous arguments imply LPs = L(T (v2)), completing the proof of statement
(i). Property (ii) now immediately follows from child(ρT )∩L = L \ (L(T (v1))∪
L(T (v2))) = L \ (LPt ∪LPs ).

The following remark will be useful for the design of algorithms to recognize
Type (B) RBMGs. It implies, in particular, that testing whether (G,σ) is
B-like w.r.t. some induced P4 strongly depends on the reference P4, i.e., it is
necessary to identify all P4s in (G,σ).
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Fig. 26. The graph (G,σ) is a 3-RBMG since it is explained by (T ,σ). Moreover,
(G,σ) does not contain an induced Cn, n ≥ 5, but induced P4s, thus it is of Type (B).
It is easy to see that (G,σ) is B-like w.r.t. 〈x1yzx2〉. However, (G,σ) is not B-like
w.r.t. 〈x1z′y′x2〉 since x′ ∈ Nr(y′) ∩Nr(z′).

Observation 5.4. A connected, S-thin 3-RBMG (G,σ) of Type (B) may con-
tain distinct induced P4s P and P ′, both of the form (r, s, t, r) for distinct colors
r, s, t such that (G,σ) is B-like w.r.t. P but not B-like w.r.t. P ′. An example
is given in Fig. 26.

Using the previous result, we obtain the following characterization for 3-colored
RBMGs of Type (B).

Lemma 5.24. Let (G,σ) be an undirected, connected, S-thin, and properly
3-colored graph with color set S = {r, s, t} and let x ∈ L[r], y ∈ L[s], and
z ∈ L[t]. Then (G,σ) is a 3-RBMG of Type (B) if and only if the following
conditions are satisfied, after possible permutation of the colors:

(B1) (G,σ) is B-like w.r.t. P = 〈x̂1ŷẑx̂2〉 for some x̂1, x̂2 ∈ L[r], ŷ ∈ L[s],
ẑ ∈ L[t],

(B2.a) If x ∈ LP∗ , then N(x) = LP∗ \ {x},

(B2.b) If x ∈ LPt , then Ns(x) ⊂ LPt and |Ns(x)| ≤ 1, and Nt(x) = LP∗ [t],

(B2.c) If x ∈ LPs , then Nt(x) ⊂ LPs and |Nt(x)| ≤ 1, and Ns(x) = LP∗ [s]

(B3.a) If y ∈ LP∗ , then N(y) = LPs ∪ (LP∗ \ {y}),

(B3.b) If y ∈ LPt , then Nr(y) ⊂ LPt and |Nr(y)| ≤ 1, and Nt(y) = L[t],

(B4.a) If z ∈ LP∗ , then N(z) = LPt ∪ (LP∗ \ {z}),

(B4.b) If z ∈ LPs , then Nr(z) ⊂ LPs and |Nr(z)| ≤ 1, and Ns(z) = L[s].

In particular, LPt , LPs , and LP∗ are pairwise disjoint and x̂1, ŷ ∈ LPt , x̂2, ẑ ∈ LPs .

Proof. Suppose first that (G,σ) satisfies Conditions (B1) - (B4.b). By Condi-
tion (B1), (G,σ) is B-like, thus in particular it contains no induced Cn with
n ≥ 5. Therefore, if (G,σ) is an RBMG, then it must be of Type (B).
In order to prove that (G,σ) is indeed an RBMG, we construct a tree (T ,σ)

based on the sets LPt , LPs , and LP∗ and show that it explains (G,σ). To this end,
we show first that the sets LPt , LPs , and LP∗ are pairwise disjoint. By definition,
LP∗ is disjoint from LPt and LPs . Moreover, by definition, σ(LPt )∩ σ(LPs ) = {r}.
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Thus it suffices to show that any vertex x ∈ L[r] \LP∗ is is contained in exactly
one of the sets LPt or LPs . Assume, for contradiction, that there exists a leaf
x that is contained in both LPt and LPs . Hence, x ∈ LPt,r ∩ LPs,r. Then, by
definition of LPt,r, either (a) Ns(x) = ∅ and L[s] \LPt,s 6= ∅, or (b) Nr(y) = {x}
and 〈xyẑ〉 ∈ P3 for some y ∈ L[s]. Suppose first Case (a). Since Ns(x) = ∅
and (G,σ) is connected, there must be a vertex z ∈ L[t] such that xz ∈ E(G).
As x ∈ LPs , Condition (B2.c) implies Nt(x) = {z}. Furthermore, by Condition
(B2.c), Nt(x) ⊂ LPs and thus, z ∈ LPs . On the other hand, x ∈ LPt and (B2.b)
imply z ∈ LP∗ ; a contradiction since LPs and LP∗ are disjoint. Analogously, in
Case (b), Condition (B2.b) implies y ∈ LPt , whereas y ∈ LP∗ by Condition
(B2.c), which again yields a contradiction. We therefore conclude that LPt , LPs ,
and LP∗ are disjoint.

Moreover, for the construction of (T ,σ), we show that G[LPi ] is the disjoint
union of an arbitrary number of K1s and K2s with i ∈ {s, t}. By definition of
LPt , we have σ(LPt ) ⊆ {r, s}. In addition, we have Ns(x) ⊂ LPt and |Ns(x)| ≤ 1
for any x ∈ LPt,r by (B2.b) as well as Nr(y) ⊂ LPt and |Nr(y)| ≤ 1 for any
y ∈ LPt,s by (B3.b). Therefore any vertex of LPt has at most one neighbor in LPt .
Similar arguments and application of Properties (B2.c), resp., (B4.b) show that
any vertex of LPs has at most one neighbor in LPs . Thus G[LPi ] is the disjoint
union of an arbitrary number of K1s and K2s with i ∈ {s, t}.
We are now in the position to construct a tree (T ,σ) based on the sets LPt , LPs ,

and LP∗ and to show that it explains (G,σ). First, for i ∈ {s, t}, we construct a
caterpillar (Ti,σi), with root ρTi , on the leaf set LPi such that par(a) = par(b)
for any a, b ∈ LPi with σ(a) 6= σ(b) if and only if ab ∈ E(G). Since G[LPi ]
is the disjoint union of an arbitrary number of K1s and K2s, the tree Ti is
well-defined. It is, however, not unique as the order of inner vertices in Ti is
arbitrary. Then (T ,σ) is given by attaching ρTt , ρTs , and LP∗ to the root ρT .
Since LPt , LPs , and LP∗ are pairwise disjoint, the tree (T ,σ) is well-defined.
We now show that (T ,σ) is of Type (II) by verifying that σ(LPt ) = {r, s} and

σ(LPs ) = {r, t}. It is easy to see that ẑ ∈ LPs,t and ŷ ∈ LPt,s and thus, s ∈ σ(LPt )
and t ∈ σ(LPs ). Since ẑ ∈ LPs , we can apply Property (B4.b) to conclude that
x̂2 ∈ Nr(ẑ) ⊂ LPs . Hence, r ∈ σ(LPs ). Applying (B3.b), one similarly shows
x̂1 ∈ LPt and thus, r ∈ σ(LPt ). By construction, t /∈ σ(LPt ) and s /∈ σ(LPs ).
Thus σ(LPt ) = {r, s} and σ(LPs ) = {r, t} and hence, (T ,σ) is of Type (II).

It remains to show that G(T ,σ) = (G,σ). To this end, we put L1 := LPt
and L2 := LPs as well as v1 := ρTt and v2 := ρTs . Therefore L1 = L(T (v1)) and
σ(L1) = {r, s} as well as L2 = L(T (v2)) and σ(L1) = {r, t}.
In order to show G(T ,σ) = (G,σ), we first consider the adjacencies between

vertices L[s] and L[t]. By Conditions (B3.a) and (B3.b), we have yz ∈ E(G)
for any y ∈ L[s], z ∈ L[t]. The same is true for G(T ,σ) by Lemma 5.18(iii).
Thus the edges between vertices of color s and t in G(T ,σ) and (G,σ) coincide.

Next, we show that the neighborhood w.r.t. r of any vertex of color s and t,
respectively, coincide in (G,σ) and G(T ,σ). For each y ∈ L1 with σ(y) = s,
we have lca(y,x) ≺T lca(y,x′) for any x ∈ L(T (v1)), x′ /∈ L(T (v1)) with
σ(x) = σ(x′) = r. Therefore Nr(y) ⊂ L1 in G(T ,σ) for all y ∈ L1 ∩ L[s].
By Condition (B3.b), we also have Nr(y) ⊂ L1 in (G,σ) for all y ∈ L1 ∩L[s].
Clearly, for any x ∈ L(T (v1)), we have xy ∈ E(G(T ,σ)) if and only if par(x) =

102



par(y). Moreover we constructed (T ,σ) such that par(x) = par(y) if and only
if xy ∈ E(G). Hence, the neighborhoods Nr(y) in G(T ,σ) and (G,σ) coincide
for all y ∈ L1 ∩ L[s]. By similar arguments and application of (B4.b) one
can show that the neighborhoods Nr(z) in G(T ,σ) and (G,σ) coincide for all
z ∈ L2 ∩L[t].
Now suppose that y ∈ L[s] is not contained in L1, thus y ∈ LP∗ , and let x ∈

L[r]. By construction of (T ,σ), we have lca(x, y) = ρT and thus, lca(x, y) �T
lca(x, y′) for any y′ of color s if and only if x ∈ L2 ∪LP∗ , hence Nr(y) = (L2 ∪
LP∗ )∩L[r] in G(T ,σ). By Condition (B3.a), we have Nr(y) = (L2 ∪LP∗ )∩L[r]
in (G,σ) as well. Hence, the neighborhoods Nr(y) coincide in G(T ,σ) and
(G,σ) for all y ∈ LP∗ . Similar arguments and application of (B4.a) shows that
the neighborhoods Nr(z) in G(T ,σ) and (G,σ) coincide for all z ∈ LP∗ .
So far, we have shown that the neighborhoods N(y) and N(z) of all y ∈ L[s],

resp., z ∈ L[t] are the same in both, G(T ,σ) and (G,σ). It remains to show
that this is also true for vertices x ∈ L[r]. Since y ∈ N(x) ∩ L[s] if and only
if x ∈ N(y) ∩ L[r] and the N(y) neighborhoods for all y ∈ L[s] coincide in
both graphs, we can conclude that Ns(x) w.r.t. G(T ,σ) coincides with Ns(x)

w.r.t. (G,σ). The same is true for the Nt(x) neighborhoods. Hence, the N(x)

neighborhoods in G(T ,σ) and (G,σ), resp., are identical. In summary, we have
shown that G(T ,σ) = (G,σ), i.e., (T ,σ) explains (G,σ). Hence, (G,σ) is a
3-RBMG.

Now let (G,σ) be a 3-RBMG of Type (B). By Lemma 5.23, (G,σ) is B-
like w.r.t. 〈x̂1ŷẑx̂2〉 for some x̂1, x̂2 ∈ L[r], ŷ ∈ L[s], ẑ ∈ L[t], which proves
(B1). Moreover, again by Lemma 5.23, the tree (T ,σ) that explains (G,σ)
can be chosen in a way that it is of Type (II∗) and satisfies L1 = L(T (v1)),
L2 = L(T (v2)) for v1, v2 ∈ child(ρT ) \L, and LP∗ = child(ρT ) ∩L. Now careful
application of Lemma 5.18(i)-(iv), which is left to the reader, easily shows that
Conditions (B2.a) to (B4.b) are satisfied.

Note that some conditions in Lemma 5.24 are redundant. For instance, (B4.a)
and (B4.b) are a consequence of (B2.a)-(B3.b). They are convenient, however,
to describe the structure of Type (B) 3-RBMGs since they emphasize the sym-
metric structure of the conditions and somewhat simplify the arguments. A
non-redundant set of conditions will be given in Thm. 5.6 at the end of this
section.
As a direct consequence of the previous result and Lemma 5.4, we obtain the
following:

Corollary 5.8. Any (not necessarily S-thin) Type (B) 3-RBMG (G,σ) con-
tains an induced path 〈xyzx′〉 with σ(x) = σ(x′) = r, σ(y) = s, and σ(z) = t

for distinct colors r, s, t such that Nr(y) ∩Nr(z) = ∅.

We give here an alternative receipt to reconstruct a 3-RBMG (G,σ) of
Type (B) that is B-like w.r.t. some P as in Def. 5.12, based on its in-
duced subgraphs (G∗,σ∗) := (G[LP∗ ],σ|LP∗ ), (G1,σ1) := (G[LPt ],σ|LPt ), and
(G2,σ2) := (G[LPs ],σ|LPs ). This particular reconstruction and the knowledge
about the structure of Type (B) RBMGs may be potentially useful for or-
thology detection, more precisely for the identification of false positive and
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false negative orthology assignments (see Chapter 6). By (B2.a) and (B2.b),
(G1,σ1) and (G2,σ2) are both disjoint unions of an arbitrary number of K1s
and K2s. By Lemma 5.23, there exists a tree of Type (II∗) that explains (G,σ)
and satisfies L(T (v1)) = LPt , L(T (v2)) = LPs for v1, v2 ∈ child(ρT ) \ L, and
LP∗ = child(ρT )∩L. Hence, by Lemma 5.18, (G,σ) can be obtained by inserting
all edges ab with

(i) a ∈ LPt , b ∈ LPs , and σ(a),σ(b) ∈ σ(LPt )4σ(LPs ), and

(ii) a ∈ LPi , b ∈ LP∗ , and σ(b) /∈ σ(LPi ) for i ∈ {s, t}

into the disjoint union of (G1,σ1), (G2,σ2), and (G∗,σ∗).
However, the assignment of leaves to one of the sets LPt , LPs , or LP∗ strongly

depends on the choice of the corresponding induced P4. We refer to Fig. 27
(Section 5.6) for an example. The 3-RBMG (G,σ) contains the induced P4s
〈a1b1c1a2〉 and 〈a1c2b2a2〉, where a1, a2 ∈ L[r], b1, b2 ∈ L[s] and c1, c2 ∈ L[t].
If LPt , LPs , or LP∗ are defined w.r.t. P = 〈a1b1c1a2〉, then one obtains LPt =

{a1, b1}, LPs = {a2, c1}, and LP∗ = {b2, c2}, from which one constructs the tree
(T1,σ). On the other hand, if P = 〈a1c2b2a2〉 is chosen as the corresponding
P4, it yields LPt = {a1, c2}, LPs = {a2, b2}, LP∗ = {b1, c1}, and the tree (T2,σ).
We will return to the induced P4s with endpoints of the same color in Sec-

tion 5.6 below. We shall see that they fall into two distinct classes, which we
call good and bad. All good P4s in (G,σ) imply the same vertex sets LPt , LPs ,
and LP∗ . In contrast, different bad P4s results in different vertex sets.

5.5.5 Characterization of Type (C) 3-RBMGs

We continue with a characterization of Type (C) 3-RBMGs. To this end, the
construction of Type (B) 3-RBMGs can be extended to a similar character-
ization of Type (C) 3-RBMGs. Similarly to the last subsection we start by
introducing C-like graphs:

Definition 5.13. Let (G,σ) be an undirected, connected, properly colored,
S-thin graph. Moreover, assume that (G,σ) contains the hexagon H :=
〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 such that σ(x̂1) = σ(x̂2) = r, σ(ŷ1) = σ(ŷ2) = s, and
σ(ẑ1) = σ(ẑ2) = t. Then (G,σ) is C-like w.r.t. H if there is a vertex
v ∈ {x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2} such that |Nc(v)| > 1 for some color c 6= σ(v). Sup-
pose that (G,σ) is C-like w.r.t. H = 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 and assume w.l.o.g. that
v = x̂1 and c = t, i.e., |Nt(x̂1)| > 1. Then we define the following sets:

LHt := {x | 〈xẑ2ŷ2〉 ∈ P3} ∪ {y | 〈yẑ1x̂2〉 ∈ P3}
LHs := {x | 〈xŷ2ẑ2〉 ∈ P3} ∪ {z | 〈zŷ1x̂1 ∈〉P3}
LHr := {y | 〈yx̂2ẑ1〉 ∈ P3} ∪ {z | 〈zx̂1ŷ1〉 ∈ P3}
LH∗ := V (G) \ (LHr ∪LHs ∪LHt ).

Again, there is a close connection between these vertex sets and trees of Type
(III).
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Lemma 5.25. Let (G,σ) be an S-thin 3-RBMG of Type (C) with |L| > 6 and
color set S = {r, s, t}. Then, up to permutation of colors, (G,σ) is C-like w.r.t.
the hexagon H = 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 for some x̂i ∈ L[r], ŷi ∈ L[s], ẑi ∈ L[t] and
there exists a tree (T ,σ) of Type (III) explaining (G,σ) such that

(i) LHt = L(T (v1)), LHs = L(T (v2)), and LHr = L(T (v3)) where v1, v2, v3 ∈
child(ρT ), and

(ii) LH∗ = child(ρT ) ∩L.

Proof. We argue along the lines of the proof of Lemma 5.23. Let (G,σ) be a
3-RBMG of Type (C). Then Lemma 5.17 implies that there exists a tree (T ,σ)
with root ρT explaining (G,σ) that is of Type (III), thus in particular there
are vertices v1, v2, v3 ∈ child(ρT ) with σ(L(T (v1))) = {r, s}, σ(L(T (v2))) =

{r, t}, and σ(L(T (v3))) = {s, t}, and child(ρT ) \ {v1, v2, v3} ⊂ L. Similar
argumentation as in the proof of Thm. 5.4 (Claim 3) shows that there are
leaves x̂1, ŷ1 ≺T v1, x̂2, ẑ1 ≺T v2, and ŷ2, ẑ2 ≺T v3, where x̂1, x̂2 ∈ L[r], ŷ1, ŷ2 ∈
L[s], ẑ1, ẑ2 ∈ L[t], such that 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 is a hexagon. Since |L| > 6, there
exists an additional leaf z′. W.l.o.g. we can assume that this additional vertex
has color σ(z′) = t. Since (T ,σ) is of Type (III), there are three mutually
exclusive cases: z′ ≺T v2 or z′ ≺T v3 or z′ is incident to the root ρT .

Suppose first that z′ ≺T v2. Lemma 5.18(ii) implies z′ŷ1 ∈ E(G). Since in
addition ẑ1ŷ1 ∈ E(G), we can conclude |Nt(ŷ1)| > 1. Similarly, if z′ ≺T v3,
then Lemma 5.18(ii) implies z′x̂1 ∈ E(G) and thus, as ẑ2x̂1 ∈ E(G), we have
|Nt(x̂1)| > 1. Finally, if z′ is incident to the root ρT , then Lemma 5.18(iv)
implies z′x̂1 ∈ E(G) and we again obtain |Nt(x̂1)| > 1. In summary, if |L| > 6
and (G,σ) is of Type (C), then there is always a hexagon H and a vertex v in
H such that |Nc(v)| > 1 for some color c 6= σ(v). Therefore (G,σ) is C-like
w.r.t. some hexagon in (G,σ).

It remains to show Properties (i) and (ii). Since (G,σ) is C-like w.r.t. some
hexagon H in (G,σ) and one can always shift the vertex labels along H =

〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 as well as permuting the colors in (G,σ), we can w.l.o.g. assume
v = x̂1 and c = t, i.e., |Nt(x̂1)| > 1. Let x ∈ L[r] and assume first x ∈ L(T (v1)).
We show that this implies x ∈ LHt . Lemma 5.18(ii) implies xẑ2 ∈ E(G) and
xŷ2 /∈ E(G). Since ŷ2ẑ2 ∈ E(G) by definition of H, we can conclude 〈xẑ2ŷ2〉 ∈
P3. Thus x ∈ LHt . Hence, we have L(T (v1)) ∩ L[r] ⊆ LHt ∩ L[r]. Now let
x ∈ LHt , i.e., 〈xẑ2ŷ2〉 forms an induced P3. Since xŷ2 /∈ E(G), Lemma 5.18(ii)
implies x /∈ L(T (v2)). In addition, xŷ2 /∈ E(G) and Lemma 5.18(iv) imply
that x cannot be incident to the root ρT . Moreover, x /∈ L(T (v3)) because r /∈
σ(L(T (v3))) by construction of (T ,σ). Hence, xmust be contained in L(T (v1)).
Therefore we have L(T (v1)) ∩ L[r] ⊇ LHt ∩ L[r], which implies L(T (v1)) ∩
L[r] = LHt ∩L[r].
Analogously, one shows L(T (v1)) ∩ L[s] = LHt ∩ L[s], from which it

can be inferred that L(T (v1)) = LHt . By symmetry, one similarly ob-
tains L(T (v2)) = LHs and L(T (v3)) = LHr , which finally shows Property
(i). Property (ii) is a direct consequence of Property (i) because LH∗ =

L \ (LHt ∪LHs ∪LHr ) = L \ (L(T (v1)) ∪L(T (v2)) ∪L(T (v3))) = child(ρT ) ∩L.
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Lemma 5.26. Let (G,σ) be an undirected, connected, S-thin, and properly
3-colored graph with color set S = {r, s, t} and let x ∈ L[r], y ∈ L[s], and
z ∈ L[t]. Then (G,σ) is a 3-RBMG of Type (C) if and only if (G,σ) is either
a hexagon or |L| > 6 and, up to permutation of colors, the following conditions
are satisfied:

(C1) (G,σ) is C-like w.r.t. the hexagon H = 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 for some x̂i ∈
L[r], ŷi ∈ L[s], ẑi ∈ L[t] with |Nt(x̂1)| > 1,

(C2.a) If x ∈ LH∗ , then N(x) = LHr ∪ (LH∗ \ {x}),

(C2.b) If x ∈ LHt , then Ns(x) ⊂ LHt and |Ns(x)| ≤ 1, and Nt(x) = LH∗ [t] ∪
LHr [t],

(C2.c) If x ∈ LHs , then Nt(x) ⊂ LHs and |Nt(x)| ≤ 1, and Ns(x) = LH∗ [s] ∪
LHr [s]

(C3.a) If y ∈ LH∗ , then N(y) = LHs ∪ (LH∗ \ {y}),

(C3.b) If y ∈ LHt , then Nr(y) ⊂ LHt and |Nr(y)| ≤ 1, and Nt(y) = LH∗ [t] ∪
LHs [t],

(C3.c) If y ∈ LHr , then Nt(y) ⊂ LHr and |Nt(y)| ≤ 1, and Nr(y) = LH∗ [r] ∪
LHs [r],

(C4.a) If z ∈ LH∗ , then N(z) = LHt ∪ (LH∗ \ {z}),

(C4.b) If z ∈ LHs , then Nr(z) ⊂ LHs and |Nr(z)| ≤ 1, and Ns(z) = LH∗ [s] ∪
LHt [s],

(C4.c) If z ∈ LHr , then Ns(z) ⊂ LHr and |Ns(z)| ≤ 1, and Nr(z) = LH∗ [r] ∪
LHt [r].

In particular, LHt , LHs , LHr , and LH∗ are pairwise disjoint and x̂1, ŷ1 ∈ LHt ,
x̂2, ẑ1 ∈ LHs , ŷ2, ẑ2 ∈ LHr .

Proof. If |L| ≤ 6, it follows from Thm. 5.4 that (G,σ) is a 3-RBMG of Type
(C) if and only if |L| = 6 and (G,σ) is a hexagon. Hence, we assume that
|L| > 6 and (G,σ) satisfies conditions (C1) - (C4.c). As a consequence of (C1),
if (G,σ) is an RBMG, then it must be of Type (C). In order to prove that
(G,σ) is indeed an RBMG, we construct a tree (T ,σ) based on the sets LHt ,
LHs , LHr , and LH∗ and show that (T ,σ) explains (G,σ).
To this end, we first show that the sets LHt , LHs , LHr , and LH∗ are pairwise

disjoint. By definition, LH∗ is disjoint from LHt , LHs , and LHr . Now, let x ∈ L[r]
and assume that x ∈ LHt . Hence, 〈xẑ2ŷ2〉 ∈ P3 which in particular implies
xẑ2 ∈ E(G). Therefore 〈xŷ2ẑ2〉 /∈ P3 and thus, x /∈ LHs . Repeated analogous
argumentation shows that LHt , LHs , and LHr are pairwise disjoint.
Moreover, for the construction of (T ,σ), we show that G[LHi ] is the disjoint

union of an arbitrary number of K1s and K2s with i ∈ {r, s, t}. By definition
of LHt , we have σ(LHt ) ⊆ {r, s}. Since Ns(x) ⊂ LHt and |Ns(x)| ≤ 1 for any
x ∈ LHt by (C2.b) as well as Nr(y) ⊂ LHt and |Nr(y)| ≤ 1 for any y ∈ LHt
by (C3.b), any vertex of LHt has at most one neighbor in LHt . Thus G[LHt ] is
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the disjoint union of an arbitrary number of K1s and K2s. Similar arguments
and application of Properties (C2.c) and (C4.b), resp., (C3.c) and (C4.c), show
that G[LHs ], resp., G[LHr ], is the disjoint union of an arbitrary number of K1s
and K2s.
We are now in the position to construct a tree (T ,σ) based on the sets LHt ,

LHs , LHr , and LH∗ . First, for i ∈ {r, s, t}, we construct a caterpillar (Ti,σi), with
root ρTi , on the leaf set LHi such that par(a) = par(b) for any a, b ∈ LHi with
σ(a) 6= σ(b) if and only if ab ∈ E(G). Since G[LHi ] is the disjoint union of an
arbitrary number of K1s and K2s, the tree Ti is well-defined. It is, however,
not unique as the order of inner vertices in Ti is arbitrary. Then (T ,σ) is given
by attaching ρTt , ρTs , ρTr , and LH∗ to the root ρT . Since LHt , LHs , LHr , and
LH∗ are pairwise disjoint, the tree (T ,σ) is well-defined. It is easy to verify
that x̂1, ŷ1 ∈ LHt , x̂2, ẑ1 ∈ LHs , and ŷ2, ẑ2 ∈ LHr . Therefore σ(LHt ) = {r, s},
σ(LHs ) = {r, t}, and σ(LHr ) = {s, t}. This implies that (T ,σ) is of Type (III).
To this end, let v1 := ρTt , v2 := ρTs and v3 := ρTr and thus, L(T (v1)) = LHt ,
L(T (v2)) = LHs , and L(T (v3)) = LHr , respectively.

It remains to show that G(T ,σ) = (G,σ). We first consider the adjacencies
of the vertices with color r. Let x ∈ L[r]. Suppose first x ∈ child(ρT ), i.e.,
x ∈ LH∗ in (G,σ). Clearly, any leaf (with color different from σ(x)) that is
incident to the root ρT is a neighbor of x in G(T ,σ), i.e., LH∗ \ {x} ⊆ N(x).
Moreover, since there is no leaf of color r in L(T (v3)), we have LHr ⊆ N(x)

in G(T ,σ) by Lemma 5.18(iv). Hence, LHr ∪ (LH∗ \ {x}) ⊆ N(x) in G(T ,σ).
Furthermore, since r is contained in σ(L(T (v1))) as well as in σ(L(T (v2))), we
can apply Lemma 5.18(iv) to conclude that x is not adjacent to any vertex in
L(T (v1)) = LHt and L(T (v2)) = LHs in G(T ,σ). ThusN(x) ⊆ LHr ∪ (LH∗ \{x})
and therefore, N(x) = LHr ∪ (LH∗ \ {x}) in G(T ,σ) for all x ∈ L[r] ∩ LH∗ . By
Property (C2.a), the latter is also satisfied in (G,σ) for all x ∈ L[r] ∩ LH∗ .
Hence, the respective neighborhoods of all x ∈ L[r]∩LH∗ in G(T ,σ) and (G,σ)
coincide.
Now let x ∈ L(T (v1)) = LHt . By construction and Lemma 5.18(i), we have

xy ∈ E(G(T ,σ)), resp., xy ∈ E(G) for y ∈ L[s] if and only if par(x) = par(y).
Hence, the respective neighborhoods Ns(x) of all x ∈ L(T (v1)) ∩L[r] = LHt ∩
L[r] in G(T ,σ) and (G,σ) coincide. Now consider the neighborhood Nt(x) in
G(T ,σ). Since r ∈ σ(L(T (v2))) = LHs , Lemma 5.18(ii) implies that x is not
adjacent to any vertex in LHs . Hence, as t /∈ σ(LHt ), if follows Nt(x) ⊆ LH∗ [t]∪
LHr [t]. Since there is no leaf of color t in L(T (v1)), we have LH∗ [t] ⊆ Nt(x)

by Lemma 5.18(iv). Moreover, as r /∈ σ(L(T (v3))), Lemma 5.18(ii) implies
LHr [t] = L(T (v3)) ∩ L[t] ⊆ Nt(x). Hence, LH∗ [t] ∪ LHr [t] ⊆ Nt(x) and we
therefore conclude Nt(x) = LH∗ [t] ∪ LHr [t]. By Property (C2.b), the latter is
also satisfied in (G,σ) for all x ∈ L(T (v1)) = LHt . Hence, the respective
neighborhoods Nt(x) of all x ∈ LHt ∩ L[r] are identical in G(T ,σ) and (G,σ).
Since Nt(x)∪Ns(x) = N(x), the neighborhoods N(x) coincide in G(T ,σ) and
(G,σ) for every x ∈ LHt ∩ L[r]. By similar arguments, one can show that the
same is true for any x ∈ LHs ∩L[r].
By symmetry, analogous arguments show that the neighborhoods of leaves

with color s or t are the same in (G,σ) and G(T ,σ). We therefore conclude
(G,σ) = G(T ,σ), i.e., (T ,σ) explains (G,σ).
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Conversely, let (G,σ) be a connected, S-thin 3-RBMG of Type (C). By Thm.
5.4, (G,σ) is either a hexagon, or |L| > 6 and (G,σ) contains a hexagon H of
the form (r, s, t, r, s, t). In the latter case, Lemma 5.25 implies that (G,σ) is
always C-like w.r.t. some hexagonH = 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 with x̂i ∈ L[r], ŷi ∈ L[s],
ẑi ∈ L[t]. Similar arguments as in the proof of Lemma 5.25 show that w.l.o.g.
we can assume |Nt(x̂1)| > 1. Hence, (G,σ) satisfies Property (C1). Moreover,
Lemma 5.25 implies that there exists a tree (T ,σ) of Type (III) that explains
(G,σ) and such that L(T (v1)) = LHt , L(T (v2)) = LHs , L(T (v3)) = LHr , and
LH∗ = child(ρT ) ∩ L. Now, careful application of Lemma 5.18(i)-(iv), which is
left to the reader, shows that Conditions (C2.a) to (C4.c) are satisfied.

Together with Lemma 5.4, the latter result immediately implies:

Corollary 5.9. Any (not necessarily S-thin) Type (C) 3-RBMG (G,σ) con-
tains a hexagon 〈xyzx′y′z′〉 with σ(x) = σ(x′) = r, σ(y) = σ(y′) = s, and
σ(z) = σ(z′) = t for distinct colors r, s, t such that |Nc(v)| > 1 for some
v ∈ {x,x′, y, y′, z, z′} and c 6= σ(v).

If (G,σ) is a 3-RBMG of Type (C), an analogous construction as in the case
of Type (B) 3-RBMGs can be used to obtain (G,σ) from the sets LHt , LHs , LHr ,
and LH∗ . Again, this information is useful for correcting the orthology graph.
If |L| = 6, then (G,σ) is already a hexagon H = 〈x1y1z1x2y2z2〉 such

that, up to permutation of the colors, σ(xi) = r, σ(yi) = s, and σ(zi) = t,
i ∈ {1, 2}. This 3-colored graph is explained by the two distinct trees
T1 := ((x1, y1), (z1,x2), (y2, z2)) and T2 := ((y1, z1), (x2, y2), (z2,x1)), given
in standard Newick tree format. These two trees induce different leaf sets
L(T (vi)), where vi ∈ child(ρT ) ∩ V 0(T ) in the corresponding tree. One can
show, however, that for |L| > 6, every hexagon defines the same sets LHi ,
i ∈ {t, s, r}, and LH∗ . To this end, we will need the following technical result:

Lemma 5.27. Let (T ,σ) be a tree of Type (III) with root ρT explaining a
connected, S-thin 3-RBMG (G,σ) and let H := 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 be a hexagon in
(G,σ) such that x̂i ∈ L[r], ŷi ∈ L[s], and ẑi ∈ L[t] for distinct colors r, s, t and
1 ≤ i ≤ 2. Then x̂i, ŷi, ẑi /∈ child(ρT ), 1 ≤ i ≤ 2.

Proof. By definition of (T ,σ), there exist distinct v1, v2, v3 ∈ child(ρT ) such
that σ(L(T (v1))) = {r, s}, σ(L(T (v2))) = {r, t}, σ(L(T (v3))) = {s, t}, and
child(ρT ) \ {v1, v2, v3} ⊂ L. Assume, for contradiction, that x̂1 ∈ child(ρT ).
Then either ŷ1 ∈ child(ρT ) or, by Lemma 5.18(iv), ŷ1 �T v3. In the latter case,
Lemma 5.18(i) implies ẑ1 �T v3 and thus, x̂1ẑ1 ∈ E(G) by Lemma 5.18(iv);
contradicting that H is a hexagon. Hence, x̂1 /∈ child(ρT ). Due to symmetry,
we can apply similar arguments to the remaining vertices x̂2, ŷi, ẑi, 1 ≤ i ≤ 2,
to show that none of them is contained in child(ρT ).

We are now in the position to prove the uniqueness of LHi , i ∈ {r, s, t}, and LH∗ .

Lemma 5.28. Let (G,σ) be a connected, S-thin 3-RBMG of Type (C) with
leaf set |L| > 6. Moreover, let the sets LHt , LHs , LHr , and LH∗ be defined w.r.t.
an induced hexagon H := 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉 with |Nt(x̂1)| > 1, where x̂i ∈ L[r],
ŷi ∈ L[s] and ẑi ∈ L[t] for distinct colors r, s, t. Then, for any hexagon H ′
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of the form (r, s, t, r, s, t), we have LH′t = LHt , LH
′

s = LHs , LH
′

r = LHr , and
LH

′
∗ = LH∗ .

Proof. Let (T ,σ) be a leaf-colored tree explaining (G,σ), which, by Thm. 5.4
can be chosen to be of Type (III), i.e., there are distinct v1, v2, v3 ∈ child(ρT )
such that σ(L(T (v1))) = {r, s}, σ(L(T (v2))) = {r, t}, σ(L(T (v3))) = {s, t},
and child(ρT ) \ {v1, v2, v3} ⊂ L. In particular, Lemma 5.25 implies that (T ,σ)
can be chosen such that LHt = L(T (v1)), LHs = L(T (v2)), LHr = L(T (v3)),
and LH∗ = child(ρT ) ∩L. Lemma 5.27 implies V (H) ∩ child(ρT ) = ∅. Since x̂1
has more than one neighbor of color t, Lemma 5.18(i) and S-thinness of (G,σ)
imply that x̂1 cannot be contained in L(T (v2)) as otherwise |Nt(x̂1)| ≤ 1.
Hence, x̂1 � v1. Applying Lemma 5.18(i)+(ii), we then conclude that ŷ1 �T v1,
x̂2, ẑ1 �T v2, and ŷ2, ẑ2 �T v3. In other words, x̂1, ŷ1 ∈ LHt , x̂2, ẑ1 ∈ LHs , and
ŷ2, ẑ2 ∈ LHr .
We proceed to show that the leaf sets LHt , LHs , LHr , and LH∗ remain unchanged

if they are taken w.r.t. some other vertex v ∈ V (H) \ {x̂1} with |Nc(v)| > 1 for
some color c 6= σ(v). Note that, as (G,σ) is explained by (T ,σ) and x̂1 ∈ LHt ,
we can apply Property (C2.b) to conclude |Ns(x̂1)| ≤ 1. Suppose first v = ŷ1
and |Nc(ŷ1)| > 1. Since ŷ1 ∈ LHt , we can apply Property (C3.b) and obtain
|Nr(ŷ1)| ≤ 1. Hence, we have c = t. The definition of Lt with v = ŷ1 and c = t

implies that LH′t = {y | 〈yẑ1x̂2〉 ∈ P3} ∪ {x | 〈xẑ2ŷ2〉 ∈ P3} = LHt . Similarly,
one obtains LH′s = LHs and LH′r = LHr . Now let v = ẑ1 and |Nc(ẑ1)| > 1. Then
as (T ,σ) explains (G,σ) and ẑ1 ∈ LHs , Property (C4.b) implies |Nr(ẑ1)| ≤ 1.
Hence, c = s. Again, the definition of LHt with v = ẑ1 and c = s implies that
LH

′
t = LHt . Similarly, the definition of LHs and LHr with v = ẑ1 and c = s shows

that LH′s = LHs , and LH
′

r = LHr . Applying similar arguments to v = ŷ2, v = ẑ2,
and v = x̂2 under the assumption that |Nc(v)| > 1 for some color c 6= σ(v),
shows that v and c always induce the same leaf sets LHt , LHs , LHr . The latter
implies that also the set LH∗ is independent from the particular choice of the
vertices v in H.

Now let H ′ := 〈x1y1z1x2y2z2〉 6= H with xi ∈ L[r], yi ∈ L[s], zi ∈ L[t].
Lemma 5.27 implies that x1 and x2 are not incident to the root of (T ,σ),
hence x1,x2 ∈ L(T (v1)) ∪L(T (v2)). Assume, for contradiction, that they are
contained in the same subtree, say x1,x2 ∈ L(T (v1)). Then, as x2z1 ∈ E(G)
and σ(L(T (v1))) = {r, s}, Lemma 5.18(ii) implies that z1 cannot reside within
a subtree that contains leaves of color r, thus z1 ∈ L(T (v3)). Therefore we can
again apply Lemma 5.18(ii) to conclude that x1z1 ∈ E(G); a contradiction since
H ′ is a hexagon. Analogously one shows that x1 and x2 cannot be both located
in the subtree T (v2). Hence, we can w.l.o.g. assume x1 ∈ L(T (v1)). Then,
by construction of (T ,σ), we have lcaT (x1, z) = lcaT (x̂1, z) for any z ∈ L[t],
thus Nt(x1) = Nt(x̂1) and in particular |Nt(x1)| > 1. Applying Lemma 5.27
and analogous argumentation as for H yields x1, y1 �T v1, x2, z1 �T v2, and
y2, z2 �T v3. Thus, in other words, x1, y1 ∈ LHt , x2, z1 ∈ LHs , and y2, z2 ∈ LHr .
Consider first LHt and let x ∈ L[r]. By definition, x ∈ LHt if and only if
〈xẑ2ŷ2〉 is an induced P3. Since σ(L(T (v1))) = {r, s} and σ(L(T (v3))) =

{s, t}, Lemma 5.18(ii) implies 〈xz2y2〉 ∈ P3, i.e., x ∈ LH
′

t . Conversely, suppose
x ∈ LH

′
t , thus 〈xz2y2〉 ∈ P3. Since (T ,σ) explains (G,σ) and y2, z2 �T v3,

Lemma 5.18(ii)+(iv) implies x ∈ L(T (v1)) = LHt . Hence, LHt ∩ L[r] = LH
′

t ∩
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L[r]. Similar arguments show LHt ∩ L[s] = LH
′

t ∩ L[s] and thus, LHt = LH
′

t .
By symmetry, analogous arguments yield LHs = LH

′
s and LHr = LH

′
r . Taken

together, this implies LH∗ = LH
′
∗ . Analogous argumentation as used for H

shows that any vertex v ∈ V (H ′) with |Nc(v)| > 1 with c 6= σ(v), induces the
same leaf sets LH′t , LH′s , LH′r , and LH′∗ , which finally completes the proof.

In contrast to Observation 5.4 for Type (B) 3-RBMGs, we thus obtain the
following uniqueness result.

Corollary 5.10. Let (G,σ) be a connected S-thin 3-RBMG of Type (C). If
(G,σ) is C-like w.r.t. a hexagon H, then (G,σ) is C-like w.r.t. every hexagon
of the form (r, s, t, r, s, t).

5.5.6 Characterization of 3-RBMGs and Algorithmic Results

For later reference, finally, we summarize the main results of this section, i.e.,
Thm. 5.4 and the characterizations of the three types in Lemmas 5.21, 5.24,
and 5.26:

Theorem 5.6. An undirected, connected, properly 3-colored, S-thin graph
(G,σ) is a 3-RBMG if and only if it satisfies either conditions (A1) and (A2),
(B1)-(B3.b), or (C1)-(C3.c) and thus, is of Type (A), (B), or (C).

Proof. By Thm. 5.4, any S-thin connected 3-RBMG (G,σ) must be either of
Type (A), (B), or (C). Lemma 5.21 implies that (G,σ) is a 3-RBMG of Type (A)
if and only if it satisfies (A1) and (A2). By Lemma 5.24, (G,σ) is a 3-RBMG
of Type (B) if and only if Properties (B1)-(B4.b) are satisfied. However, as
the neighborhoods of all vertices of one color can clearly be recovered from the
neighborhoods of all vertices of different color, Properties (B4.a) and (B4.b) are
redundant, i.e., (G,σ) is a Type (B) 3-RBMG if and only if (B1) to (B3.b) are
satisfied. One analogously argues that Properties (C4.a)-(C4.c) are redundant.

Let us now consider the question how difficult it is to decide whether a given
graph is a 3-RBMG or not. It easy to see that all conditions in Thm. 5.6 can be
tested in polynomial time. In case (G,σ) is a 3-RBMG, we are also interested in
a tree that can explain (G,σ). Unless (G,σ) is of Type (A), we have to construct
the leaf sets LPs , LPt , LP∗ , or LHr , LHs , LHt , LH∗ , respectively. Instead of checking
each of the conditions for Type (B) or Type (C) graphs in Thm. 5.6, we can
construct the tree (T ,σ) directly from the sets LXi , i ∈ {r, s, t}, X ∈ {P ,H}
(cf. Lemma 5.23, resp., 5.25) and test whether or not (T ,σ) explains (G,σ).
The overall structure of this algorithm is summarized in Algorithm 4. We first
show in Lemma 5.29 that Algorithm 4 indeed recognizes 3-RBMGs and, in the
positive case, returns a tree. The proof of Lemma 5.29 provides at the same
time a description of the single steps of Algorithm 4. We then continue to show
in Lemma 5.30 that Algorithm 4 runs in O(|V (G/S)|2|E(G/S)|+ |E(G)|) time
for a given input graph (G,σ).
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Algorithm 4 3-RBMG Recognition and Construction of Tree
Require: Properly 3-colored, connected graph (G′,σ′).
1: (G,σ)← (G′/S,σ′/S)

2: if Test_Type_A(G,σ) = true then
3: (T ,σ)← Build-Tree(G,σ)
4: goto Line 18
5: else
6: Find one hexagon H of the form (r, s, t, r, s, t)
7: if (G,σ) is C-like w.r.t. H then
8: compute LHr , LHs , LHt , LH∗
9: (T ,σ)← Build-Tree((G,σ),LHr ,LHs ,LHt ,LH∗ ) � cf. Lemma 5.25

10: if (T ,σ) explains (G,σ) then
11: goto Line 18
12: else if (G,σ) satisfies Def. 5.12(i) for some P = 〈xyzx′〉 ∈ P4 with σ(x) =

σ(x′) then
13: compute LPs , LPt , LP∗
14: (T ,σ)← Build-Tree((G,σ),LPs ,LPt ,LP∗ ) � cf. Lemma 5.23
15: if (T ,σ) explains (G,σ) then
16: goto Line 18
17: return “(G,σ) is not a 3-RBMG”
18: construct final tree (T ′,σ′) for (G′,σ′) based on (T ,σ)
19: return (T ,σ) and (T ′,σ′)

Lemma 5.29. Algorithm 4 determines if a given properly 3-colored, connected
graph (G′,σ′) is a 3-RBMG and, in the positive case, returns a tree (T ′,σ′)
that explains (G′,σ′)

Proof. Given a properly 3-colored, connected graph (G′,σ′), we first compute
(G,σ) = (G′/S,σ′/S). By construction, (G,σ) remains properly 3-colored and,
by Lemma 5.4, (G,σ) is S-thin and connected.

In Line 2, if (G,σ) is of Type (A), then we can compute the tree (T ,σ) that
explains (G,σ) as constructed for the “if-direction” in the proof of Lemma 5.21,
and jump to Line 18.

If (G,σ) is not of Type (A), then we proceed by testing if (G,σ) is of Type
(C). To this end, we search first for one hexagon H of the form (r, s, t, r, s, t)
in Line 6. If such a hexagon H exists, we check if (G,σ) is C-like w.r.t. H.
By Cor. 5.10, it is indeed sufficient to test C-likeness for one hexagon only. If
(G,σ) is C-like w.r.t. H, then we compute the sets LHr , LHs , LHt , LH∗ (Line 8).
We proceed in Line 9 to construct a tree (T ,σ) based on the set LHr , LHs , LHt ,
LH∗ according to Lemma 5.25. Now, to test if (G,σ) is of Type (C), we can
again apply Lemma 5.25 which implies that it suffices show that (T ,σ) explains
(G,σ). If this is the case, we again jump to Line 18 and, if not, proceed to
check if (G,σ) is of Type (B).

If (G,σ) is neither of Type (A) nor (C), then either (G,σ) is not a 3-RBMG
or it must be of Type (B). Thus we continue in Line 12-15 to test if (G,σ) can
be explained by some tree (T ,σ). To this end, Observation 5.4 implies that we
must check for every P ∈ P4 (for which the two endpoints have the same color),
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whether (G,σ) satisfies Def. 5.12(i). If this is not the case for any such induced
P4, then Lemma 5.23 implies that (G,σ) is not of Type (B). Together with
the preceding tests, we can conclude that (G,σ) is not a 3-RBMG. Hence, the
algorithm stops in Line 17 and returns “(G,σ) is not a 3-RBMG”. Otherwise,
if (G,σ) satisfies Def. 5.12(i) w.r.t. P , we construct a tree (T ,σ) based on
the set LPs , LPt , LP∗ according to Lemma 5.23. Again by Lemma 5.23, it is
now sufficient to show that (T ,σ) explains (G,σ) in order to test if (G,σ) is
a 3-RBMG. Since the preceding tests already have established that (G,σ) is
neither of Type (A) nor (C), we can conclude that (G,σ) is of Type (B). If
(G,σ) is a 3-RBMG, then we jump to Line 18, otherwise we stop again in Line
17 and the algorithm returns “(G,σ) is not a 3-RBMG”.

Finally, after having verified that (G,σ) is indeed a 3-RBMG and constructed
(T ,σ), the algorithm reaches Line 18. Lemma 5.6 implies that (G′,σ′) is a 3-
RBMG. Moreover, the construction in the last part of the proof of Lemma 5.6
shows how to obtain a tree (T ′,σ′) that explains (G′,σ′) from (T ,σ). In Line
19, the respective trees (T ′,σ′) and (T ,σ) are returned.

Lemma 5.30. Let (G′,σ′) is an undirected, properly 3-colored, connected graph
and let n = |V (G/S)|, m = |E(G/S)|, and m′ = |E(G′)|. Algorithm 4 pro-
cesses (G′,σ′) in O(mn2 +m′) time.

Proof. In a worst case, Observation 5.4 implies that we need to list all induced
P4s 〈x̂1ŷẑx̂2〉 with σ(x̂1) = σ(x̂2). Since for any edge yz in G, there exist
at most (n− 2)(n− 3) possible combinations of vertices x and x′ such that
〈xyzx′〉 forms an induced P4, there are at most O(mn2) such paths. Hence,
the global runtime of the algorithm cannot be better than O(mn2). Thus only
rough upper bounds for all other subtask are provided to show that they stay
within O(mn2) time.

The computation of the relation S, its equivalence classes and (G =

(V ,E),σ) = (G′/S,σ′/S) in Line 1 can be done in a similar fashion as out-
lined by Hammack et al. [87, Section 24.4] in O(|E(G′)|) time (cf. [87, Lemma
24.10]).

To test whether (G,σ) is of Type (A), we first apply Cor. 5.7 and check for
which colors i ∈ {r, s, t} we have |L[i]| = 1, which can be done in O(n) time.
We then apply Lemma 5.21 and verify if G /∈ P3. Note that the latter task
can be done in constant time since we can check if n = 3 and, in the positive
case, if the three vertices of G are pairwisely connected by an edge in constant
time O(3). We apply Lemma 5.21 again, and check for all colors i ∈ {r, s, t}
with L[i] = {x}, if x is a hub-vertex and if |N(y)| < 3 for every y ∈ V \ {x}.
Both of the latter tasks can be done in O(n) time. If such a color and vertex
exists, then (G,σ) is of Type (A) and we can build the tree (T ,σ) that explains
(G,σ). To this end, we apply the construction as in the “if-direction” of the
proof of Lemma 5.21. We first construct the caterpillar (T2,σ|L2) with leaf
set L2 = {y | y 6= x, |N(y)| = 2} and root ρT2 . It is easy to see that L2
can be constructed in O(n) time. For the tree T2 we add vertices such that
par(y) = par(z) for any y, z ∈ L2 with σ(y) 6= σ(z) if and only if yz ∈ E(G).
Clearly, this task can be done in O(m) time. To construct the final tree (T ,σ)
we need to check if |V \L2| = 2 or |V \L2| = 3, which can be done trivially in
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O(n2) time. All remaining steps to construct (T ,σ) can be done in constant
time. Hence, for the construction of (T ,σ) we need O(m+ n2) = O(n2) time.
In summary, Line 2 and 3 have overall time complexity O(n2).

We continue by testing if (G,σ) is of Type (C) in Line 6-10. In Line 6, we
first check if (G,σ) is C-like w.r.t. some hexagon H. Note that all candidate
hexagons must be of the form (r, s, t, r, s, t). In order to find such hexagons, we
first compute the pairwise distances between all vertices in O(n3) ⊆ O(n2m)

time (Floyd-Warshall [36]). Then we fix one of the colors, say r. Clearly, two
vertices in L[r] that have distance larger or smaller than 3, cannot be both
located on such a hexagon. Thus, for all vertices x,x′ ∈ L[r] with distance
d(x,x′) = 3, we proceed as follows: We check for all edges yz with y ∈ L[s],
z ∈ L[t], if x ∈ Nr(y), x′ ∈ Nr(z), x′ /∈ Nr(y), x /∈ Nr(z). If this is the case,
〈xyzx′〉 ∈ P4 and we store 〈xyzx′〉 in the list P(x,x′)[s, t]. Similarly, if for the
edge yz with y ∈ L[s], z ∈ L[t] we have x ∈ Nr(z), x′ ∈ Nr(y), x′ /∈ Nr(z),
x /∈ Nr(y), then we put 〈xzyx′〉 in the list P(x,x′)[t, s]. For each edge the
latter tests can be done in constant time, e.g. by using the adjacency matrix
representation of (G,σ). As soon as we have found two vertices x,x′ ∈ L[r]

such that each list P(x,x′)[s, t] and P(x,x′)[t, s] contains at least one element
〈xyzx′〉 and 〈xz′y′x′〉 such that yz′ and zy′ do not form an edge, we have found
a hexagon H = 〈xyzx′y′z′〉 of the form (r, s, t, r, s, t). Thus, for a given pair
x,x′ ∈ L[r], finding a hexagon that contains x and x′ can be done in O(m) time.
As the latter may be repeated for all x,x′ ∈ L[r], we can conclude that finding
a hexagon of the form (r, s, t, r, s, t) in Line 6, can be done O(|L[r]|2m) =

O(n2m) time. Clearly, the test if (G,σ) is C-like w.r.t. H in Line 7 can be
done in constant time. Now the sets LHr , LHs , LHt , LH∗ are computed in Line
8. To determine these sets, we compute for each edge uv in H all vertices
w ∈ V \ (L[σ(u)] ∪L[σ(v)]) such that 〈wuv〉 ∈ P3. The latter can be done in
O(n) for each edge in H. Since H has only a constant number of edges, all
sets LHr , LHs , LHt can be constructed in O(n) time. The set LH∗ can then be
trivially constructed in O(n2) time. Now we continue in Line 9 to construct
a tree (T ,σ) as in Lemma 5.25. Similar arguments as in the Type (A) case
show that (T ,σ) can be constructed in O(m) time. Finally, we check in Line
10 if (T ,σ) explains (G,σ). To this end, we note that T has O(n) vertices.
Moreover it was shown in [198], that the last common ancestor of x and y can
be accessed in constant time after an O(|V (T )|) = O(n) time preprocessing
step. Hence, for each edge xy ∈ E(G), we check if lca(x, y) �T lca(x, y′) and
lca(x, y) �T lca(x′, y) for all x′ ∈ L[σ(x)] and y′ ∈ L[σ(y)] in O(n2). As this
has to repeated for all edges of G, Line 10 takes O(mn2) time. In summary,
testing if (G,σ) is of Type (C) in Line 6-10 can be done in O(mn2) time.
In Line 12, we verify if (G,σ) satisfies Def. 5.12(i) w.r.t. some P ∈ P4. Note

that there are at most mn2 P4s 〈abcd〉 with σ(a) = σ(d) in (G,σ). Listing
all such induced P4s can therefore trivially be done O(mn2) time by reusing
the list P(x,x′)[s, t] from the Type (C) case. For each induced P4 〈abcd〉 with
σ(a) = σ(d) we can verify the condition in Def. 5.12(i) in at most O(n) time.
Thus Line 12 requires O(mn2) time.

In Line 13, we need to construct the sets LPs , LPt , and LP∗ . Assume that
P = 〈x̂1ŷẑx̂2〉 is of the form (r, s, t, r). To construct the set LPt,s, we have
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y ∈ LPt,s if the edge yẑ and every x ∈ Nr(y) form an induced P3. For each edge
yẑ the latter can be tested in O(n) time. To obtain LPt,s the latter test must be
repeated for all edges yẑ with y ∈ L[s]. Thus LPt,s can be constructed in O(mn)
time. The set LPt,r is the disjoint union of two sets L′ and L′′, where the first set
L′ contains all x ∈ L[r] for which x, y, ẑ induce a P3 with Nr(y) = {x} and the
second set L′′ contains all x ∈ L[r] with Ns(x) = ∅ whenever L[s] \ LPt,s 6= ∅.
By similar arguments as for LPt,s, the set L′ can be constructed in O(mn) time.
For the set L′′, observe that L[s] \LPt,s 6= ∅ can be trivially verified in at most
O(n2) time and Ns(x) = ∅ can be verified in O(n) time for a given x ∈ L[r].
To obtain L′′ we must repeat the latter for all x ∈ L[r] and hence, end up with
a time complexity O(n3) ⊆ O(n2m). In summary, the set LPt,s and LPt,r can
be constructed in O(mn) and O(n2m) time, respectively. Therefore LPt can
be constructed in O(n2m) time. By symmetry, the construction of LPs can be
done in O(n2m) time as well. The set LP∗ = V \ (LPt ∪LPs ) can then trivially
be constructed in O(n2) time. Now we continue in Line 14 to construct a tree
(T ,σ) as in Lemma 5.23. Similar arguments as in the Type (A) case show that
(T ,σ) can be constructed in O(m) time. Finally, we check in Line 15 if (T ,σ)
explains (G,σ). By similar arguments as in the Type (C) case, the latter task
can be done in O(mn2) time. In summary, Lines 12-15 require O(mn2) time.
Finally we construct, in Line 18 the tree (T ′,σ′) for (G′,σ′) based on the

tree (T ,σ). Given the equivalence classes as computed in the first step (Line
1), one can construct (T ′,σ′) as in the last part of the proof of Lemma 5.6.
Thus, for each of the n leaves x, we can check in O(n) time in which class it
is contained and then expand the leaf x by |[x]| vertices. As there are at most
O(n′) vertices that we may additionally add to (T ,σ), we can construct (T ′,σ′)
in O(n+ n′) = O(n′) ⊆ O(m′) time. Since the task of computing the quotient
graph (G,σ) already takes O(m′) time, we end up with an overall runtime of
O(mn2 +m′).

5.6 the good, the bad, and the ugly: induced P4s

In order to gain a better understanding of Type (B) 3-RBMGs, we consider
here in more detail the influence of the choice of the “reference” P4 on the
definition of the vertex sets LPs , LPt , and LP∗ that determine the structure of
(G,σ). Those P4s can be classified as so-called good, bad, and ugly quartets.
Quartets will play an essential role for the characterization of 3-RBMGs as we
shall see later. In particular, the sets LPs , LPt , and LP∗ can be determined by
good quartets and are independent of the choice of the respective good quartet.
Moreover, a we will see in Chapter 6, good quartets play an important role for
the detection of false positive and false negative orthology assignments.

Observation 5.5. An n-RBMG does not contain an induced P4 on two colors.
Moreover, any induced P4 with three distinct colors is either of the Type 〈xyzx′〉
or 〈xyx′z〉 with σ(x) = σ(x′).

Proof. As shown by Cor. 5.1, there is no induced P4 with only two colors
since all 2-RBMGs are complete bipartite graphs. Hence, if we have three
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distinct colors, then exactly two vertices have the same color. Since RBMGs
are properly colored, these vertices cannot be adjacent, leaving only the two
alternatives 〈xyzx′〉 and 〈xyx′z〉.

Nevertheless, an RBMG on more than three colors may also contain
induced P4s with four distinct colors. Consider, for instance, the tree
((a1, b1, c), (a2, b2, d)), given in Newick format, where σ(ai) = A, σ(bi) = B,
σ(c) = C, and σ(d) = D, i ∈ {1, 2}, and A, B, C, and D are pairwise distinct
colors. Then the RBMG G(T ,σ) contains the 4-colored induced P4 〈a1cdb2〉.
A characterization for n-RBMGs that are cographs will be given later in Thm.
5.8. For now we will restrict our attention to P4s with three colors only.

Definition 5.14 (good, bad, and ugly quartets1). Let ( ~G,σ) be a BMG with
symmetric part (G,σ) and let Q := {x,x′, y, z} ⊆ L with x,x′ ∈ L[r], y ∈ L[s],
and z ∈ L[t]. The set Q, resp., the induced subgraph ( ~G[Q],σ|Q) is

• a good quartet if (i) 〈xyzx′〉 is an induced P4 in (G,σ) and (ii)
(x, z), (x′, y) ∈ E( ~G) and (z,x), (y,x′) /∈ E( ~G),

• a bad quartet if (i) 〈xyzx′〉 is an induced P4 in (G,σ) and (ii)
(z,x), (y,x′) ∈ E( ~G) and (x, z), (x′, y) /∈ E( ~G),

• an ugly quartet if 〈xyx′z〉 is an induced P4 in (G,σ).

Fig. 27 shows an example of an RBMG containing a good quartet. Note
that good, bad, and ugly quartets cannot appear in RBMGs whose induced
3-colored subgraphs are all Type (A) 3-RBMGs: By definition, these do not
contain induced P4s.
The next result shows that any induced P4 is a quartet of one of those three
types:

Lemma 5.31. Let (G,σ) be an RBMG, Q a set of four vertices with three
colors, G[Q] ∈ P4, and ( ~G,σ) a BMG containing (G,σ). Then Q is either a
good, a bad, or an ugly quartet.

Proof. By Obs. 5.5, any induced P4 is either of the form 〈xyx′z〉 or 〈xyzx′〉.
In the first case Q is an ugly quartet. For the remainder of the proof we thus
assume 〈xyzx′〉, and w.l.o.g. suppose that the vertex colors are σ(x) = σ(x′) =

r, σ(y) = s, and σ(z) = t.
Let (T ,σ) be a leaf-colored tree that explains ( ~G,σ), and thus, by assumption,

also (G,σ). Since 〈xyzx′〉 is an induced P4 in (G,σ), the edge xz cannot be
contained in E(G). Hence, we are left with three cases: (i) (x, z) ∈ E( ~G) and
(z,x) /∈ E( ~G), (ii) (z,x) ∈ E( ~G) and (x, z) /∈ E( ~G), and (iii) (x, z), (z,x) /∈
E( ~G).
Case (i). We have x′ ∈ N+

r (z) and x /∈ N+
r (z), i.e., lcaT (x′, z) ≺T lcaT (x, z) =:

u. This implies lcaT (x,x′) = u. Moreover, (x, y) ∈ E(G) implies lcaT (x, y) �T
lcaT (x′, y). In case of equality, we have lcaT (x, y) = lcaT (x′, y) �T u. Thus

1 Best enjoyed with proper soundtrack at https://www.youtube.com/watch?v=XjehlT1VjiU
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Fig. 27. The S-thin 3-RBMG (G,σ) is explained by two trees (T1,σ) and (T2,σ)
that induce distinct BMGs ~G(T1,σ) and ~G(T2,σ). In ~G(T1,σ), P 1 = 〈a1b1c1a2〉
defines a good quartet, while P 2 = 〈a1c2b2a2〉 induces a bad quartet. In ~G(T2,σ)
the situation is reversed. Moreover, the quartets for P 1 and P 2 induce different leaf
sets. Denoting the leaf colors “blue”, “red”, and “green” by r, s, and t, respectively,
we obtain LP 1

t = {a1, b1}, LP
1

s = {a2, c1}, and LP
1
∗ = {b2, c2}, while LP

2
s = {a1, c2},

LP
2

t = {a2, b2}, and LP
2
∗ = {b1.c1}. The good quartets in ~G(T1,σ) and ~G(T2,σ) are

indicated by red edges. The induced paths 〈a1b1c1b2〉 and 〈a2c1b1c2〉 are examples of
ugly quartets.

x ∈ N+
r (y) implies x′ ∈ N+

r (y). Hence, since x′y /∈ E(G), there must exist
a leaf y′ ∈ L[s] such that lcaT (x′, y′) ≺T lcaT (x′, y). Then lcaT (x′, z) ≺T u

implies either lcaT (z, y′) ≺T u �T lcaT (x′, y) or lcaT (z, y′) = lcaT (x′, y′) ≺T
lcaT (x′, y). Either alternative contradicts yz ∈ E(G). Therefore lcaT (x, y) ≺T
lcaT (x′, y). Together with lcaT (x,x′) = u this implies lcaT (x, y) ≺T u. Now
let uy �T lcaT (x, y) and uz �T lcaT (x′, z), where uy,uz ∈ child(u). Then yz ∈
E(G) implies t /∈ σ(L(T (uy))) and s /∈ σ(L(T (uz))). Hence, (x, z), (x′, y) ∈
E( ~G) and (z,x), (y,x′) /∈ E( ~G), i.e., {x, y, z,x′} forms a good quartet.
Case (ii). We have x,x′ ∈ N+

r (z), thus u := lcaT (x, z) = lcaT (x′, z). On
the other hand, (x, z) /∈ E( ~G) implies that there exists a leaf z′ ∈ L[t]

such that lcaT (x, z′) ≺T lcaT (x, z). Hence, as z ∈ N+
t (x

′), we have distinct
ux,ux′ ,uz ∈ child(u) such that x, z′ ≺T ux, x′ �T ux′ , and z �T uz. More-
over, yz ∈ E(G) implies lcaT (y, z) �T lcaT (y, z′), thus we either have (a)
lcaT (y, z) ≺T lcaT (y, z′) or (b) lcaT (y, z) = lcaT (y, z′). In both cases, we
have ux ≺T lca(x, y), thus, since xy ∈ E(G), it follows s /∈ σ(L(T (ux))).
This in particular implies lcaT (x′, y) �T lcaT (x, y). Similarly, since zx′ ∈
E(G), we have r /∈ σ(L(T (uz))) and t /∈ σ(L(T (ux′))). Moreover, as
x′y /∈ E(G) and lcaT (x′, y) �T lcaT (x, y), there must exist a leaf y′ ∈ L[s]

with lcaT (x′, y′) ≺T lcaT (x′, y). In Case (a), we have y ∈ L(T (vz)) and thus
lcaT (x′, y) = u, which implies y′ �T ux′ . In summary, this implies for Case
(a) x, z′ ≺T ux, x′, y′ ≺T ux′ , and y, z ≺T uz as well as σ(L(T (ux))) = {r, t},
σ(L(T (ux′))) = {r, s}, and σ(L(T (uz))) = {s, t}. Hence, (z,x), (y,x′) ∈ E( ~G)
and (x, z), (x′, y) /∈ E( ~G), i.e., {x, y, z,x′} is a bad quartet in ( ~G,σ). In Case
(b), if lcaT (x′, y′) � u, then lcaT (x, y′) = lcaT (x′, y′) ≺T lcaT (x′, y), contra-
dicting xy ∈ E(G). Hence, y′ �T ux′ . This implies lcaT (x, y) = u since
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otherwise lcaT (x, y′) = u ≺T lcaT (x, y); again a contradiction to xy ∈ E(G).
Let uy ∈ child(u) be such that y �T uy. Since xy, yz ∈ E(G), we conclude
σ(L(T (uy))) = {s}. Moreover, yz ∈ E(G) then implies s /∈ σ(L(T (uz))). Sum-
marizing Case (b), we thus have x, z′ ≺T ux, x′, y′ ≺T ux′ , y �T uy, and z ≺T uz
as well as σ(L(T (ux))) = {r, t}, σ(L(T (ux′))) = {r, s}, σ(L(T (uy))) = {s},
and σ(L(T (uz))) = {t}. One now easily checks that {x, y, z,x′} again forms a
bad quartet in ( ~G,σ).
Case (iii). Let u := lcaT (x,x′). Then (x, z), (z,x) /∈ E( ~G) implies
lcaT (x′, z) ≺T lcaT (x, z) and there must exist some leaf z′ ∈ L[t] such
that lcaT (x, z′) ≺T lcaT (x, z). Hence, there are ux,ux′ ∈ child(u) with
lcaT (x, z′) �T ux and lcaT (x′, z) �T ux′ . By construction, we therefore have
either lcaT (x, y) ≺T lcaT (x′, y) or lcaT (x, y) = lcaT (x′, y) �T u. The first case
implies lcaT (y, z′) ≺T u = lcaT (y, z), which contradicts yz ∈ E(G). Hence,
it must hold lcaT (x, y) = lcaT (x′, y) �T u and thus, x′ ∈ N+

r (y) because
x ∈ N+

r (y). Consequently, since x′y /∈ E(G), there must be some y′ ∈ L[s]

such that lcaT (x′, y′) ≺T lcaT (x′, y). The same argumentation as in Case (i)
shows that lcaT (x′, z) ≺T u implies either lcaT (z, y′) ≺T u �T lcaT (x′, y)
or lcaT (z, y′) = lcaT (x′, y′) ≺T lcaT (x′, y), which in either case contradicts
yz ∈ E(G). We therefore conclude that Case (iii) is impossible.

We immediately find the following result that links good quartets to 3-RBMGs
of Type (B):

Lemma 5.32. Let (G,σ) be an undirected, connected, S-thin, and properly 3-
colored graph that contains an induced path P on four vertices. If (G,σ) satisfies
(B1) to (B4.b) w.r.t. P , then there exists a tree (T ,σ) explaining (G,σ) such
that P is a good quartet in ~G(T ,σ).

Proof. If P satisfies (B1) to (B4.b), then, by Lemma 5.24, (G,σ) is a 3-RBMG
of Type (B). Thus, according to Lemma 5.23, there exists a Type (II∗) tree
(T ,σ) with root ρT such that LPt = L(T (v1)), LPs = L(T (v2)) for distinct
v1, v2 ∈ childT (ρT ) \ L, and LP∗ = childT (ρT ) ∩ L, that explains (G,σ). In
particular, by Property (B1), we have P := 〈xyzx′〉 with σ(x) = σ(x′) = r,
σ(y) = s and σ(z) = t for distinct colors r, s, and t. Now, as x, y ∈ LPt and
x′, z ∈ LPs by Lemma 5.24 and, by definition, σ(LPt ) = {r, s}, σ(LPs ) = {r, t},
one easily checks that P is indeed a good quartet in ~G(T ,σ).

We continue with some basic result about ugly quartets before analyzing good
and bad quartets in more details.

Lemma 5.33. Let 〈xyx′z〉 be an ugly quartet in some connected, S-thin 3-
RBMG (G,σ) and (T ,σ) with root ρT a tree of Type (II) or (III) that explains
(G,σ). Then the children va ∈ child(ρT ) with a ∈ {x,x′, y, z} and a �T va
satisfy exactly one of the following conditions:

(i) vx = x, vx′ = vz, vy 6= y, and vx, vy, vz are pairwise distinct,

(ii) vx = vx′ = vz 6= vy and vy 6= y,

(iii) vx 6= x, vx′ = x′, vy = vz, and vx, vx′, vy are pairwise distinct,
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(iv) vx 6= x, vx′ = x′, vy 6= y, vz = z, and vx, vx′, vy, vz are pairwise distinct,

(v) vx 6= x, vx′ = x′, vy = y, vz 6= z, and vx, vx′, vy, vz are pairwise distinct.

In particular, x, x′, and y can never reside within the same subtree T (vx).
Indeed, all cases may appear.

Proof. Let L be the vertex set of G and r, s, t be three distinct colors in (G,σ),
where σ(x) = σ(x′) = r, σ(y) = s, and σ(z) = t. We start by considering the
two cases (a) vx = x, i.e., x ∈ child(ρT ), and (b) vx 6= x.
We first assume Case (a), that is, x ∈ child(ρT ). Note first that this im-

mediately implies x′ /∈ child(ρT ), i.e., vx′ 6= x′, because (G,σ) is S-thin (cf.
Lemma 5.17). Moreover, xy,x′y ∈ E(G) implies lcaT (x, y) = lcaT (x′, y) = ρT
and consequently, we have s /∈ σ(L(T (vx′))) because x′y ∈ E(G). Thus, since
vx′ 6= x′, Lemma 5.7 implies t ∈ σ(L(T (vx′))). Consequently, z ∈ L(T (vx′))
as otherwise, there is some z′ ∈ L(T (vx′)) such that lca(x′, z′) ≺T lca(x′, z),
which contradicts x′z ∈ E(G). Since xy ∈ E(G), x ∈ child(ρT ) implies ei-
ther y ∈ child(ρT ) or σ(L(T (vy))) = {s, t} as otherwise lca(x′′, y) ≺T lca(x, y)
for some x′′ ∈ L(T (vy)) ∩ L[r], contradicting xy ∈ E(G). If the first case is
true, we have lca(y, z) �T lca(y, z′) by construction and, as s /∈ σ(L(T (vx′))),
lca(y, z) �T lca(y′, z) for any y′ ∈ L[s] and z′ ∈ L[t], i.e., yz ∈ E(G); a con-
tradiction since 〈xyx′z〉 is an induced P4. Hence, it must hold σ(L(T (vy))) =
{s, t}, which in particular implies vy 6= y and vy 6= vx′ , vx. Using Lemma 5.18,
one easily checks that, if par(x′) = par(z), 〈xyx′z〉 is indeed an induced P4 in
(G,σ), which finally shows Statement (i).

Now assume that Case (b) is true, i.e., vx 6= x. Then, by Lemma 5.7, the
subtree (T (vx),σ|L(T (vx))) must contain at least two colors. Assume first, for
contradiction, that s ∈ σ(L(T (vx))). Then, as xy,x′y ∈ E(G), Lemma 5.18
implies that x′ ∈ L(T (vx)) and par(x) = par(x′) = par(y), which contradicts
the S-thinness of (G,σ). Hence, σ(L(T (vx))) = {r, t}, and in particular vx 6=
vy.
If vx = vx′ , it follows from x′z ∈ E(G) that z �T vx (cf. Lemma 5.18), i.e.,
vx = vz. Moreover, since s /∈ σ(L(T (vx))) and yz /∈ E(G), Lemma 5.18(iv)
implies vy 6= y. Hence, by Lemma 5.7, it must hold σ(L(T (vy))) = {s, t}.
Choosing par(x′) = par(z) 6= par(x), one can again use Lemma 5.18 in order
to show that 〈xyx′z〉 forms an induced P4, which proves (ii).
On the other hand, if vx 6= vx′ , then xy,x′y ∈ E(G) requires lca(x, y) =

lca(x′, y), hence vy 6= vx, vx′ . Again, x′y ∈ E(G) then implies s /∈ σ(L(T (vx′))).
Since σ(L(T (vx′))) = σ(L(T (vx))) = {r, t} is not possible by construction of a
tree of Type (II) or (III), σ(L(T (vx′))) contains only color r, hence vx′ = x′ by
Lemma 5.7. It finally remains to distinguish the two cases vy = vz and vy 6= vz.
In the first case, if par(y) 6= par(z) in (T ,σ), we can apply Lemma 5.18 to show
yz /∈ E(G) and furthermore, that 〈xyx′z〉 is again an induced P4. This yields
Statement (iii).
If the latter case is true, i.e., vy 6= vz, then, as xy,x′y,x′z ∈ E(G), we have
in particular r /∈ σ(L(T (vy))),σ(L(T (vz))). Furthermore, since yz /∈ E(G),
there is either some z′ ∈ L(T (vy)) ∩ L[t] such that lca(y, z′) ≺T lca(y, z), or
some y′ ∈ L(T (vz)) ∩ L[s] such that lca(y′, z) ≺T lca(y, z). Note that, since
vy 6= vz, σ(L(T (vy))) = σ(L(T (vz))) = {s, t} is not possible by construction

118



of (T ,σ). Hence, by applying Lemma 5.7 to these two cases, we either obtain
(iv) or (v). Again, Lemma 5.18 easily shows that 〈xyx′z〉 is an induced P4 in
(G,σ), which concludes the proof.

We will from now on focus on good and bad quartets only as they are of
particular interest for the characterization of Type (B) 3-RBMGs. We start
with some basic result.

Lemma 5.34. Let (G,σ) be an RBMG and P := 〈xyzx′〉 an induced P4 in
(G,σ) with σ(x) = σ(x′), let (T ,σ) be a tree explaining (G,σ), and let v :=
lcaT (x,x′, y, z). Then the distinct children vi ∈ child(v) satisfy exactly one of
the three alternatives

(i) x, y �T v1 and x′, z �T v2,

(ii) x �T v1, y, z �T v2, and x′ �T v3,

(iii) x �T v1, y �T v2, x′ �T v3, and z �T v4.

Indeed, all three cases may appear.

Proof. Let σ(x) = σ(x′) = r, σ(y) = s, and σ(z) = t.
Suppose first x, y ∈ L(T (v1)) for some v1 ∈ child(v). If z �T v1, then x′ ∈
L(T (v1)) since otherwise lcaT (x, z) ≺T lcaT (x′, z), contradicting zx′ ∈ E(G).
Thus lcaT (x,x′, y, z) ≺T v; a contradiction to the definition of v. Hence, z /∈
L(T (v1)). Then yz ∈ E(G) implies t /∈ σ(L(T (v1))), hence in particular v =

lcaT (x, z) �T lcaT (x, z′) for any z′ ∈ L[t], i.e., z ∈ N+
t (x). Since xz /∈ E(G),

it must therefore hold lcaT (x′, z) ≺T lcaT (x, z) = v, thus x′, z ∈ L(T (v2)) for
some v2 ∈ child(v) \ {v1}. This implies Case (i).
Now suppose x and y are located in different subtrees below v, i.e., x �T v1

and y �T v2 for distinct children v1, v2 ∈ child(v). Since xy ∈ E(G) and
lcaT (x, y) = v, we conclude that r /∈ σ(L(T (v2))) and s /∈ σ(L(T (v1))). This
immediately implies x′ /∈ L(T (v1)) as otherwise (a) lcaT (x, y) = lcaT (x′, y)
results in x′ ∈ N+

r (y), and (b) lcaT (x′, y) �T lcaT (x′, y′) for any y′ ∈ L[s],
hence x′y ∈ E(G); a contradiction. Therefore there must be a child v3 6= v1, v2
of v such that x′ �T v3. As a consequence, z cannot be contained in L(T (v1))

since this would imply lcaT (x, z) ≺T lcaT (x′, z), contradicting x′z ∈ E(G).
Suppose z ∈ L(T (v3)). Then, since yz ∈ E(G), we have t /∈ σ(L(T (v2)))

and s /∈ σ(L(T (v3))). As r /∈ σ(L(T (v2))), we conclude σ(L(T (v2))) = {s}
and σ(L(T (v3))) = {r, t}. Clearly, this implies yx′ ∈ E(G); a contradiction.
Therefore z /∈ L(T (v3)), and we thus either have z �T v2 or there exists another
child v4 of v (v4 6= v1, v2, v3) such that z �T v4. The latter shows that one of the
Cases (ii) and (iii) may occur. However, we need to ensure that both can happen
given the existence of the induced P4 〈xyzx′〉. Let us first assume z ∈ L(T (v2)),
thus σ(L(T (v2))) = {s, t}. If σ(L(T (v1))) = {r, t} and σ(L(T (v3))) = {r, s},
then one easily checks that 〈xyzx′〉 is an induced P4 in (G,σ), which implies
Statement (ii). On the other hand, if z �T v4 and σ(L(T (v1))) = {r, t},
σ(L(T (v2))) = {s}, σ(L(T (v3))) = {r, s} σ(L(T (v4))) = {t}, then 〈xyzx′〉
also forms an induced P4 in (G,σ), i.e., Case (iii) is true.

It turns out that the location of good quartets in any tree is strictly constrained:
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Lemma 5.35. Let ( ~G,σ) be a BMG containing a good quartet 〈xyzx′〉, (T ,σ) a
tree explaining ( ~G,σ), and v := lca(x,x′, y, z). Then x, y �T v1 and x′, z �T v2
for some distinct v1, v2 ∈ child(v).

Proof. Let v := lcaT (x,x′, y, z) and v1 ∈ child(v) such that x �T v1. Suppose
first y /∈ L(T (v1)), hence in particular lcaT (y,x′) �T v = lcaT (y,x). Since
xy ∈ E(G(T ,σ)), this implies x′ ∈ N+

σ(x)(y) in ( ~G,σ); a contradiction to
〈xyzx′〉 forming a good quartet. Hence, y �T v1. As (T ,σ) must satisfy one
of the three cases of Lemma 5.34 and the only possible case is (i), we can now
conclude x, y �T v1 and x′, z �T v2.

Note that the latter result in addition shows that the Cases (ii) and (iii) in
Lemma 5.34 must correspond to bad quartets. Lemma 5.35 can now be used to
show that the any good quartet in an BMG is endowed with the same coloring.

Corollary 5.11. Let (G,σ) be a connected, S-thin 3-RBMG of Type (B), ( ~G,σ)
a BMG containing (G,σ) as symmetric part, and Q = 〈xyzx′〉 with σ(x) =

σ(x′) a good quartet in ( ~G,σ). Then every good quartet with 〈x1y1z1x
′
1〉 ∈ P4

has colors σ(x1) = σ(x′1) = σ(x), σ(y1) = σ(y), and σ(z1) = σ(z).

Proof. Since (G,σ) a of Type (B), any leaf-colored tree (T ,σ) with root ρT
explaining (G,σ) is of Type (II) (cf. Thm. 5.4). Hence, there are distinct
v1, v2 ∈ child(ρT ) with |σ(L(T (v1)))| = |σ(L(T (v2)))| = 2 and child(ρT ) \
{v1, v2} ⊂ L. By Lemma 5.35, we have x, y �T v1 and x′, z �T v2, hence
σ(L(T (v1))) = {σ(x),σ(y)} and σ(L(T (v2))) = {σ(x),σ(z)}. Therefore, the
statement follows directly from Lemma 5.35.

We are now in the position to formulate one of the main results of this section:

Lemma 5.36. Let (G,σ) be a connected, S-thin 3-RBMG of Type (B) and
( ~G,σ) a BMG containing (G,σ) as its symmetric part. Moreover, let LQs , L

Q
t ,

and LQ∗ be defined w.r.t. a good quartet Q := 〈x1y1z1x
′
1〉, where x1,x′1 ∈ L[r],

y1 ∈ L[s], and z1 ∈ L[t] for distinct colors r, s, t. Then, for any good quartet
Q′, it holds LQ′s = LQs , L

Q′

t = LQt , and L
Q′
∗ = LQ∗ .

Proof. Let (T ,σ) with root ρT be a leaf-colored tree that explains ( ~G,σ) and
thus, also (G,σ). Since (G,σ) is of Type (B), we can choose (T ,σ) to be of
Type (II) by Theorem 5.4, i.e., there are distinct children v1, v2 ∈ child(ρT ) with
|σ(L(T (v1)))| = |σ(L(T (v2)))| = 2 such that these two subtrees have exactly
one color in common, and child(ρT ) \ {v1, v2} ⊂ L. Applying Lemma 5.23, we
can choose (T ,σ) such that it is of Type (II∗) and satisfies LQt = L(T (v1)),
LQs = L(T (v2)), and LQ∗ = child(ρT ) ∩ L. On the other hand, Lemma 5.35
implies x1, y1 �T v1 and x′1, z1 �T v2.
Now let Q′ := 〈x2y2z2x

′
2〉, Q′ 6= Q, be another good quartet in ( ~G,σ). By

Cor. 5.11, we have x2,x′2 ∈ L[r], y2 ∈ L[s], and z2 ∈ L[t]. Lemma 5.35 and the
structure of Type (II) trees then imply x2, y2 �T v1 and x′2, z2 �T v2. Consider
first LQ

′

t and let x ∈ L[r], y ∈ L[s]. Then, by definition, y ∈ LQ
′

t if and only
if 〈x′yz2〉 ∈ P3 for each x′ ∈ Nr(y). Since any two leaves of color s and t are
reciprocal best matches in (G,σ) by Lemma 5.18(iii) and x′z2 /∈ E(G) for any
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x′ ∈ Nr(y) only if x′ /∈ L(T (v2)) by Lemma 5.18(i)+(iv), we have 〈x′yz2〉 ∈ P3
for any x′ ∈ Nr(y) if and only if 〈x′yz1〉 ∈ P3 for any x′ ∈ Nr(y). Hence,
y ∈ LQ

′

t if and only if y ∈ LQt , i.e., L
Q
t ∩L[s] = LQ

′

t ∩L[s]. If Ns(x) = ∅, the
latter by definition of LQt immediately implies that x ∈ LQ

′

t if and only if x ∈ LQt .
On the other hand, if Ns(x) 6= ∅, then x ∈ LQ

′

t if and only if Nr(y′) = {x} for
some induced P3 〈xy′z2〉. This can only be true if y′ ∈ L(T (v1)) since otherwise,
y′z2x

′
2 forms a circle, thus |Nr(y′)| > 1. Consequently, x ∈ L(T (v1)) by Lemma

5.18(i). Since y′z′ ∈ E(G) for any y′ ∈ L[s], z′ ∈ L[t] by Lemma 5.18(ii) and
x′z /∈ E(G) for any z ∈ L(T (v2)) ∩ L[t] by Lemma 5.18(ii), we conclude that
〈xy′z2〉 is an induced P3 with Nr(y′) = {x} if and only if 〈xy′z1〉 is an induced
P3 with Nr(y′) = {x}, hence LQt ∩ L[r] = LQ

′

t ∩ L[r]. We therefore conclude
LQt = LQ

′

t .
By symmetry, an analogous argument shows LQs = LQ

′
s . Together this finally

implies LQ∗ = LQ
′
∗ , which completes the proof.

Fig. 27 shows that good and bad quartets do not necessarily imply the same
leaf sets LPs , LPt .
The restriction of a BMG ~G(T ,σ) to a subset S′ ⊂ S of colors is an induced
subgraph of ~G(T ,σ) explained by the restriction of (T ,σ) to the leaves with
colors in S′ and thus, again a BMG (cf. Observation 4.2). Since G(T ,σ) is the
symmetric part of ~G(T ,σ), it inherits this property. In particular, we have

Observation 5.6. If (G,σ) is an n-RBMG, n ≥ 3, explained by (T ,σ), then,
for any three colors r, s, t ∈ S, the restricted tree (Trst,σrst) explains (Grst,σrst)
and (Grst,σrst) is an induced subgraph of (G,σ).

This observation will play an important role in the proof of the following lemma
as well as in Section 5.7.

Lemma 5.37. Let ( ~G,σ) be a BMG. Then the symmetric part (G,σ) contains
an induced 3-colored P4 whose endpoints have the same color if and only if
( ~G,σ) contains a good quartet.

Proof. Note that, if ( ~G,σ) contains a good quartet, then its symmetric part
(G,σ) by definition contains a 3-colored P4 〈abcd〉 with σ(a) = σ(d).

Conversely, suppose that (G,σ) contains a 3-colored induced P4 〈abcd〉 whose
endpoints have the same color σ(a) = σ(d). Moreover, let S be the color set of
(G,σ) and (T ,σ) be a tree explaining ( ~G,σ) and thus also (G,σ). W.l.o.g. we
can assume that the three colors of 〈abcd〉 are r, s, t ∈ S without explicitly stat-
ing the particular coloring of the vertices a, b, c, and d. By definition, (Grst,σrst)
contains the induced path 〈abcd〉. W.l.o.g. we may assume that (Grst,σrst) is
connected; otherwise the proof works analogously for the connected component
of (Grst,σrst) that contains 〈abcd〉.
Let us first assume that (Grst,σrst) is S-thin. In this case, we can apply

Thm. 5.4 and conclude that (Grst,σrst) is either of Type (B) or (C), i.e., the
restricted tree (Trst,σrst) with root ρ := lcaT (L[r] ∪L[s] ∪L[t]) that explains
(Grst,σrst) must be of Type (II) or (III). Hence, there are distinct children
v1, v2 ∈ child(ρ) with σ(L(Trst(v1))) = {r, s} and σ(L(Trst(v2))) = {r, t} for
distinct colors r, s, t (up to permutation of the colors). Then there exist leaves
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x, y ∈ L(Trst(v1)) and x′, z ∈ L(Trst(v2)) with x,x′ ∈ L[r], y ∈ L[s], and
z ∈ L[t] such that xy,x′z ∈ E(Grst) (cf. Lemma 5.9). Moreover, Lemma
5.18(ii) implies that yz ∈ E(Grst) as well as xz,x′y /∈ E(Grst). Hence, 〈xyzx′〉
is an induced P4 in (Grst,σrst) and thus, by Obs. 5.6, also in (G,σ). Since
t /∈ σ(L(T (v1))), we have ρ = lcaT (x, z) �T lcaT (x, z′) for any z′ ∈ L[t],
i.e., z ∈ N+

t (x) in (T ,σ). In particular, xz /∈ E(G) then immediately implies
x /∈ N+

r (z). One similarly argues that y ∈ N+
s (x

′) and x′ /∈ N+
r (y) in (T ,σ),

hence (x, z), (x′, y) ∈ E( ~G) and (z,x), (y,x′) /∈ E( ~G). Therefore 〈xyzx′〉 is a
good quartet in ( ~G,σ).
Now suppose that (Grst,σrst) is not S-thin. In this case, we apply the same

arguments as above to the quotient graph (Grst/S,σrst/S) and conclude that
there exists a good quartet 〈[x][y][z][x′]〉 induced by the tree (Trst,σrst) that
explains (Grst/S,σrst/S). Let x ∈ [x], y ∈ [y], z ∈ [z] and x′ ∈ [x′]. Lemma 5.4
implies that 〈xyzx′〉 is an induced P4 with σ(x) = σ(x′) in (Grst,σrst) and
thus, by Obs. 5.6, also in (G,σ). To conclude that 〈xyzx′〉 is a good quartet,
it remains to show that (x, z), (x′, y) ∈ E( ~G) and (z,x), (y,x′) /∈ E( ~G). In
order to see this, observe first that ([x], [z]), ([x′], [y]) ∈ E( ~G(Trst,σrst)) and
([z], [x]), ([y], [x′]) /∈ E( ~G(Trst,σrst)) since 〈[x][y][z][x′]〉 is a good quartet in-
duced by (Trst,σrst). To obtain a tree (T̂ , σ̂) that explains (Grst,σrst), we can
proceed as in the proof of the “if-direction” in Lemma 5.6 and simply replace
all edges par([v])[v] in Trst by edges par([v])v′ for all v′ ∈ [v] and putting
σ̂(v′) = σrst([v]). Clearly, the latter construction and ([x], [z]), ([x′], [y]) ∈
E( ~G(Trst,σrst)) and ([z], [x]), ([y], [x′]) /∈ E( ~G(Trst,σrst)) implies that
(x, z), (x′, y) ∈ E( ~G(T̂ , σ̂)) and (z,x), (y,x′) /∈ E( ~G(T̂ , σ̂)). Therefore 〈xyzx′〉
is a good quartet induced by (T̂ , σ̂) and thus, in (Grst,σrst). Now Obs. 5.6
implies that 〈xyzx′〉 is a good quartet in ( ~G,σ).

Since every bad quartet induces in particular an induced P4 with endpoints of
the same color, Lemma 5.37 immediately implies:

Corollary 5.12. If a BMG ( ~G,σ) contains a bad quartet, then it contains a
good quartet. In particular, any BMG ( ~G,σ) whose symmetric part contains a
3-RBMG of Type (B) or (C) as induced subgraph, contains a good quartet.

Proof. The first statement is an immediate consequence of Lemma 5.37. If
(G,σ) is a 3-RBMG of Type (B), then, by definition, it contains an induced
P4 of the form (r, s, t, r) for distinct colors r, s, t. Hence, by Lemma 5.31, this
P4 is either a good or a bad quartet in ( ~G,σ), where ( ~G,σ) is a BMG whose
symmetric part contains (G,σ) as induced subgraph. Lemma 5.37 thus implies
that ( ~G,σ) contains a good quartet. If (G,σ) is a 3-RBMG of Type (C), it must,
by definition, contain an induced C6 of the form (r, s, t, r, s, t). In particular,
it contains an induced P4 whose endpoints are of the same color, thus we can
again apply the same argumentation to complete the proof.

The converse of Cor. 5.12 is, however, not true. As an example, consider the
tree T = ((x, y), (x′z)) in Newick format with σ(x) = σ(x′) = r, σ(y) = s,
σ(z) = t. The graph G(T ,σ) is the P4 〈xyzx′〉, which is of course uniquely
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defined. The BMG ~G(T ,σ) contains the directed edges (x, z), (x′, y) but not
(z,x), (y,x′), hence Q = {x, y, z,x′} = V (T ) is a good quartet.
We close this section with a variation of Lemma 5.35 for Type (C) RBMGs:

Lemma 5.38. Let (G,σ) be a connected, S-thin 3-RBMG of Type (C) that
contains an induced hexagon H := 〈x1y1z1x2y2z2〉 with |Nt(x1)| > 1, where
xi ∈ L[r], yi ∈ L[s], zi ∈ L[t] for distinct colors r, s, t. Moreover, let (T ,σ)
explain (G,σ) and v := lcaT (x1,x2, y1, y2, z1, z2). Then

(i) 〈x1y1z1x2〉, 〈z1x2y2z2〉, and 〈y2z2x1y1〉 are good quartets in ~G(T ,σ),

(ii) 〈y1z1x2y2〉, 〈x2y2z2x1〉, and 〈z2x1y1z1〉 are bad quartets in ~G(T ,σ), and

(iii) x1, y1 �T v1, x2, z1 �T v2, and y2, z2 �T v3 for some distinct v1, v2, v3 ∈
childT (v).

Proof. We start with proving Properties (i) and (ii). By definition and
Lemma 5.31, 〈x1y1z1x2〉 is either a good or a bad quartet in ~G(T ,σ). As-
sume, for contradiction, that it is a bad quartet in ~G(T ,σ), thus, in particular,
(z1,x1) ∈ E( ~G(T ,σ)) and (x1, y1) /∈ E( ~G(T ,σ)). Hence, as also 〈z2x1y1z1〉
must be either a good or a bad quartet in ~G(T ,σ), this immediately implies
that 〈z2x1y1z1〉 is a good quartet in ~G(T ,σ). Let w := lcaT (z2,x1, y1, z1).
Lemma 5.35 then implies that there exist distinct w1,w2 ∈ childT (w) such that
z2,x1 �T w1 and y1, z1 �T w2. Clearly, as x1y1 ∈ E(G) and lcaT (x1, y1) = w,
we must have s /∈ σ(L(T (w1))). Since |Nt(x1)| > 1, there is a leaf z ∈
L[t] \ {z1, z2} such that x1z ∈ E(G). By Lemma 5.9, there exists an edge
x′z′ ∈ E(G(T ,σ)) with x′ ∈ L[r] ∩ L(T (w′)), z′ ∈ L[t] ∩ L(T (w′)) for any
inner vertex w′ �T w. One easily verifies that this and x1z2 ∈ E(G) neces-
sarily implies that the leaves x1, z2, and z must all be incident to the same
parent in T . However, we then have N(z) = N(z2), i.e., z and z2 belong to the
same S-class; a contradiction since (G,σ) is S-thin. We therefore conclude that
〈x1y1z1x2〉 must be a good quartet. Hence, (x2, y1), (x1, z1) ∈ E( ~G(T ,σ)) and
(y1,x2), (z1,x1) /∈ E( ~G(T ,σ)), which, as a consequence of Lemma 5.31, im-
mediately implies that 〈y1z1x2y2〉 and 〈z2x1y1z1〉 are bad quartets in ~G(T ,σ).
This similarly implies that 〈z1x2y2z2〉 and 〈y2z2x1y1〉 are good quartets, from
which we finally conclude that 〈x2y2z2x1〉 is a bad quartet in ~G(T ,σ).

We continue with showing Property (iii). Property (i) implies that 〈x1y1z1x2〉
and 〈z1x2y2z2〉 are good quartets in ~G(T ,σ). Hence, by Lemma 5.35, we
have x1, y1 �T w1, x2, z1 �T w2 for distinct w1,w2 ∈ childT (u1), where
u1 := lcaT (x1, y1, z1,x2), and y2, z2 �T w′1, x2, z1 �T w′2 for distinct w′1,w′2 ∈
childT (u2), where u2 := lcaT (y2, z2, z1,x2), respectively. Since u1 and u2 are
both located on the path from z1 to the root of T , they must be comparable.
Next, we show that u1 = u2. Assume first, for contradiction, u1 ≺T u2. Then,
by construction, we have lcaT (x2, y1) = u1 ≺T u2 = lcaT (x2, y2); a contra-
diction to x2y2 ∈ E(G). Similarly, u2 ≺T u1 yields a contradiction and thus,
u1 = u2 = v and, in particular, w2 = w′2. It remains to show w1 6= w′1. Assume,
for contradiction, w1 = w′1. Then lcaT (x1, y2) �T w1 ≺T v = lcaT (x2, y2); a
contradiction to x2y2 ∈ E(G). Hence, w1, w2, and w′1 are distinct children of
v in T , which completes the proof.
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5.7 characterization of n-rbmgs

This section finally combines the results about 3-RBMGs to obtain a charac-
terization of RBMG with an arbitrary number of colors (Subsection 5.7.1). In
addition, it gives a characterization of RBMGs that are also cographs (Sub-
section 5.7.2), which is of particular interest in the context of orthology. It
turns out that those are actually equivalent to so-called hc-cographs (Subsec-
tion 5.7.3), a class of colored graphs that is closely related to cographs. We
finally close this section with some algorithmic considerations about the recog-
nition of hc-cographs in Subsection 5.7.4.

5.7.1 The General Case: Combination of 3-RBMGs

The key idea of characterizing n-RBMGs is to combine the information con-
tained in their 3-colored induced subgraphs (Grst,σrst). Observation 5.6 plays
a major role in this context; it shows that (Grst,σrst) is an induced subgraph
of an n-RBMG and it is always a 3-RBMG that is explained by (Trst,σrst).
Unfortunately, the converse of Observation 5.6 is in general not true. Fig. 28
shows a 4-colored graph that is not a 4-RBMG while each of the four subgraphs
induced by a triplet of colors is a 3-RBMG. Observation 5.6 can, however, be
rephrased in the following way:

Observation 5.7. Let (G,σ) be an n-RBMG for some n ≥ 3. Then (T ,σ)
explains (G,σ) if and only if (Trst,σrst) explains (Grst,σrst) for all triplets of
colors r, s, t ∈ S.

Lemma 5.39. Let (Te,σ) be the tree obtained by contracting an inner edge of
(T ,σ). Then G(T ,σ) is a subgraph of G(Te,σ).

Proof. Consider the edge e = uv in T . By construction (Te,σ) ≤ (T ,σ),
thus Lemma 4.14 implies N+

T (x) ⊆ N+
Te
(x) in the BMG ~G(T ,σ) for all x ∈

L(T ) \ L(T (v)) and N+
T (y) = N+

Te
(y) for all y ∈ L(T (v)). It immediately

follows N−T (z) ⊆ N−Te(z) for all z ∈ L(T ). Hence, E(G) ⊆ E(G(Te)). Since
the leaf set remains unchanged, L(T ) = L(Te), we conclude that the G(T ,σ)
is a subgraph of G(Te,σ).

Definition 5.15. Let (G,σ) be an n-RBMG. Then the tree set of (G,σ) is the
set T (G,σ) := {(T ,σ) | (T ,σ) is least resolved w.r.t. G(T ,σ) and G(T ,σ) =

(G,σ)} of all leaf-colored trees explaining (G,σ). Furthermore, we write
Trst(G,σ) for the set of all least resolved trees explaining the induced subgraphs
(Grst,σrst).

It is tempting to conjecture that the existence of a supertree for the tree set
T := {T ∈ Trst(Grst,σrst), r, s, t ∈ S} is sufficient for (G,σ) to be an n-RBMG.
However, this is not the case as shown by the counterexample in Fig. 28.

Theorem 5.7. A (not necessarily connected) undirected colored graph (G,σ)
is an n-RBMG with n ≥ 3 if and only if (i) all induced subgraphs (Grst,σrst)
on three colors are 3-RBMGs and (ii) there exists a supertree (T ,σ) of the tree
set T := {T ∈ Trst(G,σ) | r, s, t ∈ S}, such that G(T ,σ) = (G,σ).
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Fig. 28. The 4-colored graph (G,σ) in (A) with color set S = {A,B,C,D} is not
an RBMG. All four subgraphs induced by three of the four colors, however, are (not
necessarily connected) 3-RBMGs. These are explained by the unique least resolved
trees in (B). Because of the uniqueness of the least resolved trees on three colors, the
tree explaining (G,σ) must display these four trees. The tree (T ,σ) in Panel (C) is the
least resolved supertree of T :=

⋃
r,s,t∈S Trst. However, (T ,σ) does not explain (G,σ)

since the edge b2c is not contained in G(T ,σ). Clearly, there exists no refinement
(T ′,σ) of (T ,σ) such that b2c ∈ E(G(T ′,σ)) and therefore (G,σ) is not an RBMG.

Proof. Suppose (G,σ) is an n-RBMG, n ≥ 3, explained by some tree (T ,σ).
Then Obs. 5.7 implies that (Grst,σrst) is a 3-RBMG that is explained by
(Trst,σrst) for all triplets of colors r, s, t ∈ S. By definition, each (Trst,σrst) is
displayed by (T ,σ) and thus, (T ,σ) is a supertree of these trees. Hence, the
conditions are necessary. Conversely, the existence of some supertree (T ,σ)
with G(T ,σ) = (G,σ), i.e., (T ,σ) explains (G,σ), clearly implies that (G,σ)
is an n-RBMG.

Whether the recognition problem of n-RBMGs is NP-hard or not may
strongly depend on the number of least resolved trees for a given 3-colored
induced subgraph. However, even if this number is polynomial bounded in
the input size (e.g. number of vertices), the number of possible (least resolved)
trees that explain a given n-RBMG, may grow exponentially. In particular,
since the order of the inner nodes in the 2-colored subtrees of Type (I), (II),
and (III) trees is in general arbitrary, determining the number of least resolved
trees seems to be far from trivial. It is therefore left as an open problem at this
point.

5.7.2 Characterization of n-RBMGs that are cographs

Probably the most important application of reciprocal best matches is orthology
detection. Since orthology relations are cographs, it is of particular interest to
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characterize RBMGs of this type. Since cographs are hereditary (see e.g. [215]
where they are called Hereditary Dacey graphs), one expects their 3-colored
restrictions to be of Type (A). The next theorem shows that this intuition is
essentially correct. It is based on the following observation about cographs:

Observation 5.8. Any undirected colored graph (G,σ) is a cograph if and only
if the corresponding S-thin graph (G/S,σ/S) is a cograph.

Proof. It directly follows from Lemma 5.4 that (G,σ) contains an induced P4
if and only if (G/S,σ/S) contains an induced P4, which yields the statement.

Note in passing that point-determining (thin) cographs recently have attracted
some attention in the literature [148].

Theorem 5.8. Let (G,σ) be an n-RBMG with n ≥ 3, and denote by
(G′rst,σ′rst) := (Grst/S,σrst/S) the S-thin version of the 3-RBMG that is ob-
tained by restricting (G,σ) to the colors r, s, and t. Then (G,σ) is a cograph
if and only if every 3-colored connected component of (G′rst,σ′rst) is a 3-RBMG
of Type (A) for all triples of distinct colors r, s, t.

Proof. We first emphasize that distinct S-classes of some S-thin n-RBMG (G,σ)
may belong to the same S-class in (G′rst,σ′rst) := (Grst/S,σrst/S). Like-
wise, distinct S-classes in (G′rst,σ′rst) may belong to the same S-classes in
(G′r′s′t′ ,σ′r′s′t′). In the following, the vertex set of a connected component
(G∗rst,σ∗rst) of (G′rst,σ′rst) will be denoted by L∗rst.

Recall that (G,σ) is a cograph if and only if all of its connected components
are cographs. Clearly, if (G,σ) is an RBMG, then (Grst,σrst) and thus, in
particular, (G′rst,σ′rst) is a 3-RBMG (cf. Obs. 5.6) for any three distinct colors
r, s, t. Moreover, since (G,σ) is a cograph, it cannot contain an induced P4,
thus its induced subgraph on L[r]∪L[s]∪L[t] and therefore also (G′rst,σ′rst) do
not contain an induced P4 either, i.e., each connected component of (G′rst,σ′rst)
is again a cograph. Hence, by Obs. 5.3, each of the connected components with
three colors must be of Type (A).
Conversely, suppose that, for any distinct colors r, s, t, each connected com-

ponent (G∗rst,σ∗rst) of (G′rst,σ′rst) is a 3-RBMG of Type (A). Thus (G∗rst,σ∗rst)
is again S-thin. Obs. 5.3 implies that (G∗rst,σ∗rst) must be a cograph. Hence, in
particular, (G,σ) cannot contain an induced P4 on two or three colors (cf. Obs.
5.6). Assume, for contradiction, that (G,σ) contains an induced P4 〈abcd〉 on
four distinct colors, where σ(a) = A, σ(b) = B, σ(c) = C, and σ(d) = D.
By abuse of notation, we will write a, b, c, and d for the S-classes [a], [b], [c],
and [d], respectively. Hence, Lemma 5.4 implies that (G/S,σ/S) contains the
induced P4 〈abcd〉 on four distinct colors. By Obs. 5.6, 〈abc〉 must again be
an induced P3 in some connected component (G∗ABC ,σ∗ABC) of (G′ABC ,σ′ABC).
Let L∗ABC be the leaf set of (G∗ABC ,σ∗ABC). Since G∗ABC /∈ P3 as a conse-
quence of Lemma 5.21, (G∗ABC ,σ∗ABC) must contain at least four vertices, i.e.,
|L∗ABC | > 3. Hence, as (G∗ABC ,σ∗ABC) is of Type (A), Lemma 5.21 implies that
(G∗ABC ,σ∗ABC) contains a hub-vertex. By Property (A1), the hub-vertex must
be connected to any other vertex in (G∗ABC ,σ∗ABC). Hence, neither a nor c
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can be the hub-vertex, since ac /∈ E(G). By Cor. 5.7, the hub-vertex must be
the only vertex of its color in (G∗ABC ,σ∗ABC). Therefore no vertex of color A
or C in (G∗ABC ,σ∗ABC) can be the hub-vertex. We therefore conclude that the
hub-vertex must be b.

Applying the same argumentation to the connected component
(G∗BCD,σ∗BCD) of (G′BCD,σ′BCD) that contains the induced P3 〈bcd〉, we
can conclude that |L∗BCD| > 3 and c must be the hub-vertex of (G∗BCD,σ∗BCD).
Thus, in particular, it is the only vertex of color C in (G∗BCD,σ∗BCD).

Moreover, since |L∗ABC | > 3 and b is the only vertex of color B, there must
be at least one other vertex of color A or C in the connected component
(G∗ABC ,σ∗ABC).

Assume, for contradiction, that L∗ABC contains a leaf c′ of color C such that
c′ 6= c in (G∗ABC ,σ∗ABC). Since b is the hub-vertex of (G∗ABC ,σ∗ABC), we have
bc′ ∈ E(G∗ABC) and thus, bc′ ∈ E(G). As c is the only leaf of color C in
(G∗BCD,σ∗BCD), we must ensure c = c′ in G∗BCD. Thus cd ∈ E(G) implies
c′d ∈ E(G). Since c 6= c′ in G∗ABC , c must be adjacent to a vertex ã of color
A that is not adjacent to c′, or vice versa. Suppose first that ãc′ ∈ E(G)

and ãc /∈ E(G). In this case a = ã in G∗ABC is possible. Since b is the
hub-vertex of (G∗ABC ,σ∗ABC), we have ãb ∈ E(G). Consider (G′ACD,σ′ACD).
By construction, the vertices ã, c, c′, d are contained in the same connected
component (G∗ACD,σ∗ACD) of Type (A) in the 3-RBMG (G′ACD,σ′ACD). Since
ãc /∈ E(G), the hub-vertex of (G∗ACD,σ∗ACD) must be of color D. Hence,
as the hub-vertex is the only vertex of its color in (G∗ACD,σ∗ACD), we can
conclude that d is the hub-vertex. Therefore ãd ∈ E(G), which in particular
implies ã 6= a in (G∗ACD,σ∗ACD) because ad /∈ E(G) by assumption. Hence,
〈abãd〉 ∈ P4 in (G∗ABD,σ∗ABD); a contradiction. Now assume ãc ∈ E(G) and
ãc′ /∈ E(G). Analogous argumentation implies 〈abãd〉 ∈ P4 in (G∗ABD,σ∗ABD);
again a contradiction.
We therefore conclude that L∗ABC does not contain a leaf c′ 6= c of color C

and hence, L∗ABC [C] = {c}. Together with L∗ABC [B] = {b} and |L∗ABC | > 3,
this implies that there must exist a leaf a′ 6= a of color A in L∗ABC . We
have a′b ∈ E(G) because b is the hub-vertex of (G∗ABC ,σ∗ABC). Hence, since
(G∗ABC ,σ∗ABC) is S-thin, the neighborhoods of a and a′ must differ. The latter
and L∗ABC [B] ∪ L∗ABC [C] = {b, c} implies a′c ∈ E(G∗ABC), i.e., a′c ∈ E(G).
One now easily checks that, by S-thinness of (G∗ABC ,σ∗ABC), there cannot be a
third vertex of color A in L∗ABC , thus L∗ABC = {a, a′, b, c}. Applying analogous
arguments to (G∗BCD,σ∗BCD) shows L∗BCD = {b, c, d, d′}, where σ(d′) = D

and bd′, cd′ ∈ E(G). Moreover, we have a′d /∈ E(G), because otherwise
ad, bd /∈ E(G) would imply that 〈aba′d〉 is an induced P4 in (G∗ABD,σ∗ABD);
a contradiction since (G∗ABD,σ∗ABD) is of Type (A). Similarly, ad′ /∈ E(G) as
otherwise (G∗ACD,σ∗ACD) would contain the induced P4 〈ad′cd〉.

In summary, 〈abcd〉 is an induced P4 in (G,σ) and there are vertices a′ and
d′ such that a′b, a′c, d′b, d′c ∈ E(G) and a′d, ad′ /∈ E(G), see Fig. 29(A).
Let (T ,σ) be a tree that explains (G,σ) and u := lca(b, c). The steps of

the subsequent proof are illustrated in Fig. 29. Since ab ∈ E(G), we have
lca(a, b) �T lca(a′, b). Similarly, a′b ∈ E(G) implies lca(a′, b) �T lca(a, b).
Hence, we clearly have v := lca(a, b) = lca(a′, b). Note that v and u are both
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Fig. 29. Panel (A) shows the induced subgraph (G|L′ ,σ|L′) with L′ = {a, a′, b, c, d, d′}
of (G,σ) that is used in the proof of Thm. 5.8. In the two trees in Panels (B) and
(C), it holds u := lca(b, c) and v := lca(a, b) = lca(a′, b). Panel (B) shows a sketch of
the subtree of (T ,σ) in case v �T u. Panel (C) shows a sketch of a possible subtree
of (T ,σ) in case v ≺T u and w := lca(c, d) = lca(c, d′) ≺T u. In this representation
of (T ,σ) we have lca(a, d̃) �T v and lca(ã, d) �T w. However, lca(a, d̃) �T v or
lca(ã, d) �T w may be possible. Dashed lines represent edges in (G|L′ ,σ|L′) and paths
in the trees that may or may not be present. Solid lines in the trees represent paths.

ancestors of b and are thus located on the path from the root ρT to b. In other
words, v and u are always comparable in T , i.e., we have either v �T u or
v ≺T u. If v �T u, then v = lca(a, c) = lca(a′, c). Since a′c ∈ E(G), we have
v �T lca(a′, c̃) and v �T lca(ã, c) for all ã ∈ L[A] and all c̃ ∈ L[C]. Together
with v = lca(a, c), this implies ac ∈ E(G); a contradiction. Thus only the case
v ≺T u is possible and hence, v must be located on the path from some child of
u to b in T . Similarly, we have w := lca(c, d) = lca(c, d′) because cd, cd′ ∈ E(G).
As bd′ ∈ E(G), bd /∈ E(G), we can apply an analogous argumentation as for u
and v to conclude that only the case w ≺T u is possible. Thus w must be located
on the path from some child of u to c in T . In particular, we have lca(v,w) = u

by definition of u and therefore, u = lca(a, d). Since ad /∈ E(G), we have
u = lca(a, d) �T lca(a, d̃) for some ã ∈ L[A] or u = lca(a, d) �T lca(ã, d) for
some d̃ ∈ L[D]. Assume u = lca(a, d) �T lca(a, d̃) for some d̃ ∈ L[D]. In this
case, lca(a, d̃) must be located on the path from some child u′ of u to a. Thus
u �T u′ �T a, d̃ and by construction, u′ �T b. Hence, lca(b, d̃) ≺T u = lca(b, d′)
and thus, bd′ /∈ E(G); a contradiction. Analogously, u = lca(a, d) �T lca(ã, d)
would imply that lca(ã, d) is located on the path from some child of u to d,
which would contradict a′c ∈ E(G). Therefore the tree (T ,σ) does not explain
(G,σ); a contradiction.
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Thus, if for any distinct colors r, s, t, each 3-colored connected component
(G∗rst,σ∗rst) of (G′rst,σ′rst) is a 3-RBMG of Type (A), then (G,σ) must be a
cograph.

For technical reasons, the latter result has been stated for S-thin induced
3-RBMGs only. However, due to Lemma 5.4, it clearly extends to general
RBMGs:

Corollary 5.13. An n-RBMG (G,σ) with n ≥ 3 is a cograph if and only if
every 3-colored connected component of (Grst,σrst) is a Type (A) 3-RBMG for
all triplets of distinct colors r, s, t.

Moreover, as a by-product of the previous proof, the induced subgraph shown
in Panel (A) of Fig. 29 is a forbidden subgraph of general RBMGs.

5.7.3 Hierarchically Colored Cographs

Thm. 5.8 yields a polynomial time algorithm for recognizing n-RBMGs that are
cographs. It is not helpful, however, for the reconstruction of a tree (T ,σ) that
explains such a graph. In this part, we derive an alternative characterization
in terms of so-called hierarchically colored cographs (hc-cographs). As we shall
see, the cotrees of hc-cographs explain a given n-RBMG and can be constructed
in polynomial time.

Definition 5.16. A graph that is both a cograph and an RBMG is a co-RBMG.

Interestingly, for every leaf-labeled tree explaining a co-RBMG, one can iden-
tify certain subtrees whose color sets do not overlap. This property forms the
basis for the definition of so-called hc-cographs.

Lemma 5.40. Let (G,σ) be a co-RBMG that is a explained by (T ,σ). Then,
for any v ∈ V 0(T ) and each pair of distinct children w1,w2 ∈ childT (v), the
sets σ(L(T (w1))) and σ(L(T (w2))) do not overlap.

Proof. Assume, for contradiction, that there exists some v ∈ V 0(T ) and distinct
w1,w2 ∈ child(v) such that r ∈ σ(L(T (w1))) ∩ σ(L(T (w2))), s is contained
in σ(L(T (w1))) but not in σ(L(T (w2))), and t is contained in σ(L(T (w2)))

but not in σ(L(T (w1))) for three distinct colors r, s, t in (G,σ). Then, by
Cor. 5.3, there is a pair x, y ∈ L(T (w1)) with σ(x) = r, σ(y) = s such that
xy ∈ E(G), as well as a pair x′, z ∈ L(T (w2)) with σ(x′) = r,σ(z) = t such
that x′z ∈ E(G). Since t /∈ σ(L(T (w1))) and s /∈ σ(L(T (w2))), we have
lcaT (y, z) = v �T lcaT (y, z′) for any z′ ∈ L[t] and lcaT (y, z) = v �T lcaT (y′, z)
for any y′ ∈ L[s], hence yz ∈ E(G). Moreover, as lcaT (z,x′) ≺T v = lcaT (z,x)
and lcaT (y,x) ≺T v = lcaT (y,x′), the edges xz and x′y are not contained
in (G,σ). We therefore conclude that 〈xyzx′〉 is an induced P4 in (G,σ); a
contradiction since (G,σ) is a cograph.

Cographs are constructed using joins and disjoint unions. Motivated by the
latter result, we extend these graph operations to vertex-colored graphs:
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Definition 5.17. Let (H1,σH1) and (H2,σH2) be two vertex-disjoint col-
ored graphs. Then (H1,σH1)O(H2,σH2) := (H1OH2,σ) and (H1,σH1) ∪·
(H2,σH2) := (H1 ∪· H2,σ) denotes their join and union, respectively, where
σ(x) = σHi(x) for every x ∈ V (Hi), i ∈ {1, 2}.

It turns out that the join and union of RBMGs (H,σH) and (H ′,σH′) with
non-overlapping color sets again yield an RBMG (G,σ). Moreover, a tree
representation for (G,σ) can be readily obtained by combining the tree repre-
sentations of (H,σH) and (H ′,σH′).

Lemma 5.41. Let (G,σ) be a properly colored, undirected graph such that
either (G,σ) = (H,σH)O(H ′,σH′) with σ(V (H))∩σ(V (H ′)) = ∅ or (G,σ) =
(H,σH)∪· (H ′,σH′) with σ(V (H))∩σ(V (H ′)) ∈ {σ(V (H)),σ(V (H ′))}, where
(H,σH) and (H ′,σH′) are disjoint RBMGs. Then (G,σ) is an RBMG.

Moreover, let (H,σH) and (H ′,σH′) be explained by the trees (TH ,σH) and
(TH′ ,σH′), respectively, and let (T ,σ) be the tree obtained by joining (TH ,σH)
and (TH′ ,σH′) by a common root ρT . Then (T ,σ) explains (G,σ).

Proof. Let (T ,σ) be the tree that is obtained by joining (TH ,σH) and (TH′ ,σH′)
with roots ρH and ρH′ , respectively, under a common root ρT . By construction,
σ(V (H)) = σH and σ(V (H ′)) = σH′ . We first show that (T (ρH),σH) and
(T (ρH′),σH′) explain (H,σH) and (H ′,σH′), respectively. By construction, we
have lcaT (x, y) = lcaTH (x, y) and lcaT (x, y) ≺T lcaT (x, z) for any x, y ∈ V (H)

and z ∈ V (H ′). It is therefore easy to see that G(T (ρH),σH) = (H,σH).
Analogous arguments show G(T (ρH′),σH′) = (H ′,σH′). Therefore, in order
to show that (T ,σ) explains (G,σ), it remains to show that all edges between
vertices in V (H) and V (H ′) are identical in (G,σ) and G(T ,σ).

Suppose first (G,σ) = (H,σH)O(H ′,σH′) with σ(V (H)) ∩ σ(V (H ′)) =

∅. Thus we need to show xy ∈ E(G(T ,σ)) for any x ∈ L(T (ρH)) and y ∈
L(T (ρH′)). Since σ(V (H)) and σ(V (H ′)) form a partition of σ(V (G)), we
have lcaT (x, y) = ρT for any x ∈ L[r], y ∈ L[s] with r ∈ σ(V (H)) and s ∈
σ(V (H ′)). Hence, xy ∈ E(G(T ,σ)) for any x ∈ L(T (ρH)), y ∈ L(T (ρH′)) and
therefore, G(T ,σ) = (G,σ).

Now suppose that (G,σ) = (H,σH)∪· (H ′,σH′) with σ(V (H))∩σ(V (H ′)) ∈
{σ(V (H)),σ(V (H ′))}. Thus we need to show xy /∈ E(G(T ,σ)) for any x ∈
L(T (ρH)), y ∈ L(T (ρH′)). W.l.o.g. assume σ(V (H ′)) ⊆ σ(V (H)). Hence,
(T (ρH),σH) is color-complete. We can therefore apply Lemma 5.12 to conclude
that xy /∈ E(G(T ,σ)) for any x ∈ V (H), y ∈ V (H ′). Hence, G(T ,σ) =

(G,σ).

The previous result serves as motivation for the definition of hc-cographs:

Definition 5.18. An undirected colored graph (G,σ) is a hierarchically colored
cograph (hc-cograph) if

(K1) (G,σ) = (K1,σ), i.e., a colored vertex, or

(K2) (G,σ) = (H,σH)O(H ′,σH′) and σ(V (H)) ∩ σ(V (H ′)) = ∅, or

(K3) (G,σ) = (H,σH) ∪· (H ′,σH′) and σ(V (H)) ∩ σ(V (H ′)) ∈
{σ(V (H)),σ(V (H ′))},
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where both (H,σH) and (H ′,σH′) are hc-cographs. For the color-constraints
(cc) in (K2) and (K3), we simply write (K2cc) and (K3cc), respectively.

Omitting the color-constraints reduces Def. 5.18 to Def. 3.1. Therefore we have

Observation 5.9. If (G,σ) is an hc-cograph, then G is cograph.

The recursive construction of an hc-cograph (G,σ) according to Def. 5.18
immediately produces a binary hc-cotree TGhc corresponding to (G,σ). The
construction is essentially the same as for the cotree of a cograph (cf. Corneil
et al. [38, Section 3]): Each of its inner vertices is labeled by 1 for a O operation
and 0 for a disjoint union ∪· , depending on whether (K2) or (K3) is used in the
construction step. We write t : V 0(TGhc) → {0, 1} for the labeling of the inner
vertices. The recursion terminates with a leaf of TGhc whenever a colored single-
vertex graph, i.e., (K1) is reached. We therefore identify the leaves of TGhc with
the vertices of (G,σ). The binary hc-cograph (TGhc, t,σ) with leaf coloring σ
and labeling t at its inner vertices uniquely determines (G,σ), i.e., xy ∈ E(G)
if and only if t(lca(x, y)) = 1.

By construction, (TGhc, t) is a not necessarily discriminating cotree for G. An
example for different constructions of (TGhc, t,σ) based on the particular hc-
cograph representation of (G,σ) is given later in Fig. 30.
While the cograph property is hereditary, this is no longer true for hc-

cographs, i.e., an hc-cograph may contain induced subgraphs that are not
hc-cographs. As an example, consider the three single vertex graphs (Gi,σi)
with Vi = {i} and colors σ1(x) = r and σ2(y) = σ3(z) = s 6= r. Then
(G,σ) = ((G1,σ1)O(G2,σ2)) ∪· (G3,σ3) is an hc-cograph. However, the in-
duced subgraph (G,σ)[x, z] = (G1,σ1) ∪· (G3,σ3) is not an hc-cograph, since
σ1(V1) ∩ σ3(V3) = ∅ and hence, (G,σ)[x, z] does not satisfy Property (K3cc).
Both O and ∪· are commutative and associative operations on graphs. For

a given cograph G, hence, alternative binary cotrees may exist that can
be transformed into each other by applying the commutative or associative
laws. This is no longer true for hc-cographs as a consequence of the color
constraints. There are no restrictions on commutativity, i.e., if (G,σ) can
be obtained as the join (H,σH)O(H ′,σH′), equivalently we have (G,σ) =

(H ′,σH′)O(H,σH). The same holds for the disjoint union ∪· . If (G,σ) is
obtained as (H,σH)O

(
(H ′,σH′)O(H ′′,σH′′)

)
, i.e., if (H ′,σH′)O(H ′′,σH′′) is

also an hc-cograph, then the color sets of H, H ′, and H ′′ must be disjoint
by Def. 5.18 and thus, (H,σH)O(H ′,σH′) is also an hc-cograph. Condition
(K3cc), however, is not so well-behaved:
Example: Consider the single vertex graphs (Gi,σi) with vertex set Vi = {i},
1 ≤ i ≤ 4 and colors σ(i) = r if i is odd and σ(i) = s 6= r if i is
even. Consider the graph G = G1 ∪· (G2 ∪· (G3OG4)). By construction,
(G3OG4,σ|{3,4}) is an hc-cograph because σ(V3)∩ σ(V4) = ∅ and thus, (K2cc)
is satisfied. Furthermore, (G2 ∪· (G3OG4)),σ|{2,3,4}) is an hc-cograph since
σ(V2) = {s} ⊆ σ(V3 ∪ V4) = {r, s} and thus, (K3cc) is satisfied. Checking
(K3cc) again, we verify that (G,σ) is an hc-cograph. By associativity of O and
∪· , we also have G′ = (G1 ∪· G2) ∪· (G3OG4) = G. However, (G1 ∪· G2,σ{1,2})

is not an hc-cograph because σ(V1) ∩ σ(V2) = ∅ implies that (G1 ∪· G2,σ{1,2})

does not satisfy Property (K3cc).
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As a consequence, we cannot simply contract edges in the hc-cotree TGhc with
incident vertices labeled by the ∪· operation. In other words, it is not sufficient
to use discriminating trees to represent hc-cotrees. Moreover, not every (binary)
tree with colored leaves and internal vertices labeled with O or ∪· (which specifies
a cograph) determines an hc-cotree because in addition the color-restrictions
(K2cc) and (K3cc) must be satisfied for each internal vertex.

Lemma 5.42. Every hc-cograph (G,σ) is a properly colored cograph.

Proof. Let (G,σ) be an hc-cograph. In order to see that (G,σ) is properly
colored, observe that any edge xy in (G,σ) must be the result of some (possible
preceding) join (H,σH)O(H ′,σH′) during the recursive construction of (G,σ)
such that x ∈ V (H) and y ∈ V (H ′). Condition (K2) implies that σ(V (H)) ∩
σ(V (H ′)) = ∅ and hence, σ(x) 6= σ(y) for every edge xy in (G,σ).

Not every properly colored cograph is an hc-cograph, however. The simplest
counterexample is K2 = K1 ∪· K1 with two differently colored vertices, violating
(K3cc). The simplest connected counterexample is the 3-colored P3 since the
decomposition P3 = (K1∪· K1)OK1 is unique, and involves the non-hc-cograph
K1 ∪· K1 with two distinct colors as a factor in the join.

Theorem 5.9. A vertex-labeled graph (G,σ) is a co-RBMG if and only if it is
an hc-cograph.

Proof. Suppose that (G = (V ,E),σ) with vertex set V and edge set E is a
co-RBMG. We show by induction on |V | that (G,σ) is an hc-cograph. This is
trivially true for the base case |V | = 1.
For the induction step assume that any co-RBMG with less than N vertices is

at the same time an hc-cograph and consider a co-RBMG with |V | = N . Since
(G,σ) is an n-RBMG, there exists a tree (T ,σ) with root ρT that explains
(G,σ). By Lemma 5.40, none of the color sets σ(L(T (v))) and σ(L(T (w)))

overlap for any two distinct children v,w ∈ child(ρT ). Moreover, Lemma 5.40
allows us to define a partition Π of child(ρT ) into classes P1, . . . ,Pk such
that each pair of vertices v ∈ Pi and w ∈ Pj , i 6= j, satisfies σ(L(T (v))) ∩
σ(L(T (w))) = ∅. Note that each Pi may contain distinct elements v,w such
that σ(L(T (v))) ∩ σ(L(T (w))) ∈ {∅,σ(L(T (v))),σ(L(T (w)))}.

First assume that the partition Π of child(ρT ) is trivial, i.e., it consists of a
single class P1. Since none of the sets σ(L(T (v))) and σ(L(T (w))) overlap for
any v,w ∈ P1, there is an element w ∈ P1 such that σ(L(T (w))) is inclusion-
maximal, i.e., σ(L(T (v))) ⊆ σ(L(T (w))) for all v ∈ P1 = child(ρT ). Let L¬w =⋃
v∈P1\w L(T (v)) and Lw = L(T (w)). Since ρT is always color-complete, w

must be color-complete, i.e., σ(Lw) = σ(V ). Hence, we have σ(L¬w) ⊆ σ(Lw).
We continue by showing that (G[L¬w],σ|L¬w) and (G[Lw],σ|Lw) are RB-

MGs that are explained by (T|L¬w ,σ|L¬w) and (T|Lw ,σ|Lw), respectively.
By construction, we have lcaT (x, y) = lcaT|L¬w (x, y) and lcaT (x, y) �T
lcaT (x, z) for any x, y ∈ L¬w and z ∈ Lw. It is therefore easy to see
that G(T|L¬w ,σ|L¬w) = (G[L¬w],σ|L¬w). Analogous arguments show that
G(T|Lw ,σ|Lw) = (G[Lw],σ|Lw). Hence, (G[L¬w],σ|L¬w) and (G[Lw],σ|Lw) are
RBMGs. Since any induced subgraph of a cograph is again a cograph, we can
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thus conclude that (G[L¬w],σ|L¬w) and (G[Lw],σ|Lw) are co-RBMGs. Hence,
by induction hypothesis, (G[L¬w],σ|L¬w) and (G[Lw],σ|Lw) are hc-cographs.
Moreover, since w is color-complete, we can apply Lemma 5.12 to conclude
that (G,σ) = (G[L¬w],σ|L¬w) ∪· (G[Lw],σ|Lw) is the disjoint union of two hc-
cographs and in addition satisfies σ(L¬w) ⊆ σ(Lw). Hence, (G,σ) satisfies
Property (K3) and is therefore an hc-cograph.

Now assume that Π is non-trivial, i.e., there are at least two classes P1, . . . ,Pk.
Then, by construction, we have σ(L(T (v)))∩σ(L(T (w))) = ∅ for all v ∈ Pi and
w ∈ Pj , i 6= j. Let Li =

⋃
v∈Pi L(T (v)). By construction, σ(Li) ∩ σ(Lj) = ∅

for all distinct i, j. Hence, σ(L1), . . . ,σ(Lk) form a partition of σ(V ). Thus
we have lcaT (x, y) = ρT for any x ∈ L[r], y ∈ L[s] with r ∈ σ(Li) and s ∈
σ(Lj) for distinct i, j ∈ {1, . . . , k}, which clearly implies xy ∈ E(G). Hence,
G = G[L1]OG[L2]O . . .OG[Lk]. Thus, by setting H = Ok−1

i=1 G[Li] and H ′ =
G[Lk], we obtain (G,σ) = (H,σ|V (H))O(H

′,σ|V (H′)). We proceed to show that
(H,σ|V (H)) and (H ′,σ|V (H′)) are hc-cographs. Since any induced subgraph of
a cograph is again a cograph, we can conclude that H and H ′ are cographs.
Thus it remains to show that (H,σ|V (H)) and (H ′,σ|V (H′)) are RBMGs. By
similar arguments as in the case for one class P1, one shows that (T|V (H),σ|V (H))

and (T|V (H′),σ|V (H′)) explain (H,σ|V (H)) and (H ′,σ|V (H′)), respectively. In
summary, (H,σ|V (H)) and (H ′,σ|V (H′)) are co-RBMGs and thus, by induction
hypothesis, hc-cographs. Since σ(V (H)) =

⋃k−1
i=1 σ(Li), σ(V (H ′)) = σ(Lk),

and σ(Li),σ(Lj) are disjoint for distinct i, j ∈ {1, . . . , k}, we can conclude that
σ(V (H))∩σ(V (H ′)) = ∅. Hence, (G,σ) = (H,σ|V (H))O(H

′,σ|V (H′)) satisfies
Property (K2). Thus (G,σ) is an hc-cograph.
Now suppose that (G = (V ,E),σ) is an hc-cograph. Lemma 5.42 implies

that G is a cograph. In order to show that (G,σ) is an RBMG, we proceed
again by induction on |V |. The base case |V | = 1 is trivially satisfied. For
the induction hypothesis, assume that any hc-cograph (G,σ) with |V | < N

is an RBMG. Now let (G,σ) with |V | = N > 1 be an hc-cograph. By
definition of hc-cographs and since |V | > 1, there exist disjoint hc-cographs
(H,σH) and (H ′,σH′) such that either (i) (G,σ) = (H,σH)O(H ′,σH′) and
σ(V (H))∩σ(V (H ′)) = ∅, or (ii) (G,σ) = (H,σH)∪· (H ′,σH′) and σ(V (H))∩
σ(V (H ′)) ∈ {σ(V (H)),σ(V (H ′))}. By induction hypothesis, (H,σ(V (H)))

and (H ′,σ(V (H ′))) are RBMGs. Hence, we can apply Lemma 5.41 to con-
clude that (G,σ) an RBMG.

Theorem 5.10. Every co-RBMG (G,σ) is explained by its cotree (TGhc,σ).

Proof. We show by induction on |V | that (G,σ) is explained by (TGhc,σ). This
is trivially true for the base case |V | = 1. Assume that any co-RBMG with less
than N vertices is explained by its cotree (TGhc,σ). Now let (G = (V ,E),σ)
be a co-RBMG with |V | = N . By Thm. 5.9, (G,σ) is an hc-cograph. Thus
(G,σ) = (H,σH) ? (H ′,σH′) with ? ∈ {O,∪· } such that (K2) and (K3), resp.,
are satisfied. Thm. 5.9 implies that (H,σH) and (H ′,σH′) are co-RBMGs.
By induction hypothesis, the co-RBMGs (H,σH) and (H ′,σH′) are explained
by their hc-cotrees (THhc ,σH) and (TH

′
hc ,σH′), respectively. By construction,

(TGhc,σ) is the tree that is obtained by joining (THhc ,σH) and (TH
′

hc ,σH′) under
a common root. Lemma 5.41 now implies that the (TGhc,σ) explains (G,σ).
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5.7.4 Recognition of hc-cographs

Although (discriminating) cotrees can be constructed and cographs can be rec-
ognized in linear time [86, 24, 37], these results cannot be applied directly to
the construction of hc-cotrees and the recognition of hc-cographs. The key
problem is that whenever (G,σ) comprises k > 2 connected components, there
are 2k−1− 1 bipartitions (G,σ) = (G1,σ1)∪· (G2,σ2). For each of them (K3cc)
needs to be checked and, if it is satisfied, both (G1,σ1) and (G2,σ2) need to
be tested for being hc-cotrees. In general, this incurs exponential effort. The
following results show, however, that it suffices to consider a single, carefully
chosen bipartition for each disconnected graph (G,σ).

Lemma 5.43. Every connected component of an hc-cograph is an hc-cograph.

Proof. Let (G,σ) be an hc-cograph. By Thm. 5.9, (G,σ) is a co-RBMG. Since
each connected component of a cograph is again a cograph, each connected
component of (G,σ) must be a cograph. In addition, Thm. 5.3 implies that
each connected component of (G,σ) is an RBMG. The latter two arguments
imply that each connected component of (G,σ) is a co-RBMG. Hence, Thm.
5.9 implies that each connected component of (G,σ) is an hc-cograph.

Lemma 5.44. Let (G,σ) be a disconnected hc-cograph with connected com-
ponents G1 = (V1,E1), . . . , Gk = (Vk,Ek) and let G`, 1 ≤ ` ≤ k be a con-
nected component whose color set is minimal w.r.t. inclusion, i.e., there is no
i ∈ {1, . . . , k} with i 6= ` such that σ(Vi) ( σ(V`). Denote by G−G` the graph
obtained from (G,σ) by deleting the connected component G`. Then

(G,σ) = (G`,σ|V`) ∪· (G−G`,σ|V \V`)

satisfies Property (K3).

Proof. Let (G = (V ,E),σ) be a disconnected hc-cograph with connected com-
ponents (G1 = (V1,E1),σ1), . . . , (Gk = (Vk,Ek),σk) and put σi := σ|Vi for
1 ≤ i ≤ k. Let (G`,σ`), 1 ≤ ` ≤ k be a graph such that σ(V`) is mini-
mal w.r.t. inclusion. We write G′ = (V ′,E′) := G − G` and σ′ := σ|V \V` ,
thus (G′,σ′) = (G − G`,σ|V \V`) and V ′ = V \ V`. In order to prove that
(G,σ) = (G`,σ`) ∪· (G′,σ′) satisfies (K3), we must show that (i) (G`,σ`) and
(G′,σ′) are hc-cographs, and (ii) σ(V`) ∩ σ(V ′) ∈ {σ(V`),σ(V ′)}.

(i) By Lemma 5.43, each connected component (G1,σ1), . . . , (Gk,σk) is an hc-
cograph. Thus, in particular, (G`,σ`) is an hc-cograph. Furthermore, Thm. 5.9
implies that each connected component (G1,σ1), . . . , (Gk,σk) is a co-RBMG.
By Thm. 5.3, the latter two arguments imply that (G′,σ′) is a co-RBMG.
Moreover, Thm. 5.3 implies that there exists 1 ≤ j ≤ k such that σ(Vj) = σ(V )

and j 6= l since σ(Vl) is minimal w.r.t. inclusion. Hence, we can conclude from
Thm. 5.9 that (G′,σ′) is an hc-cograph.

(ii) By Thm. 5.9, (G,σ) is an RBMG. Applying Cor. 5.4, we can conclude
that (G,σ) contains a connected component (G∗,σ∗) with σ(V (G∗)) = σ(V ).
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Fig. 30. The graph (G,σ) is an hc-cograph and, by Thm. 5.9, a co-RBMG. The trees
(T1, t1,σ) and (T2, t2,σ) correspond to two possible cotrees (TGhc, ti,σ) that explain
(G,σ). The inner labels “0” and “1” in the cotrees correspond to the values of the maps
ti : V 0 → {0, 1}, i = 1, 2, such that xy ∈ E(G) if and only if t(lca(x, y)) = 1. Let Gx =
(({x}, ∅),σx) be the colored single vertex graph K1 with σx(x) = σ(x) for each x ∈
{a1, a2, a3, b1, b2, b3} as indicated in the figure. The tree (T1, t1,σ) is constructed based
on the valid hc-cograph representation G = Ga1 ∪· (Gb1 ∪· ((Ga2 OGb2) ∪· (Ga3 OGb3))).
Here, Ga1 plays the role of G` as in Lemma 5.44. The tree (T2, t2,σ) is constructed based
on the valid hc-cograph representation G = (Ga1 ∪· (Ga2 OGb2)) ∪· (Gb1 ∪· (Ga3 OGb3)).

Since σ(V`) is minimal w.r.t. inclusion, we can w.l.o.g. assume that (G∗,σ∗)
is contained in (G′,σ′). Hence, σ(V`) ∩ σ(V ′) = σ(V`) ∩ σ(V ) = σ(V`) and
thus, σ(V`) ⊆ σ(V ′), which implies that (G,σ) = (G`,σ`) ∪· (G′,σ′) satisfies
Property (K3cc).

The choice of the graph G` in Lemma 5.44 will in general not be unique.
As a consequence, there may be distinct cotrees (TGhc,σ) that explain the same
co-RBMG, see Fig. 30 for an illustrative example.
While Thm. 5.8 allows the recognition of co-RBMGs in polynomial time, it

does not provide an explaining tree. The equivalence of co-RBMGs and hc-
cographs together with Lemmas 5.41 and 5.44 yields an alternative polynomial
time recognition algorithm that is constructive in the sense that it explicitly
provides a tree explaining (G,σ).

Theorem 5.11. Let (G,σ) be a properly colored undirected graph. Then it can
be decided in polynomial time whether (G,σ) is a co-RBMG and, in the positive
case, a tree (T ,σ) that explains (G,σ) can be constructed in polynomial time.

Proof. Let G denote the complement of G. Testing if (G,σ) is the join or
disjoint union of graphs can clearly be done in polynomial time.
Assume first that (G,σ) is the join of graphs. In this case, (G,σ) decom-

poses into connected components (G1,σ1), . . . , (Gk,σk), k ≥ 2, i.e., (G,σ) =⋃
· ki=1(Gi,σi). Therefore (G,σ) = (G,σ) =

⋃
· ki=1(Gi,σi) = Oki=1(Gi,σi) =

Oki=1(Gi,σi), where none of the graphs (Gi,σi) can be written as the join of
two graphs and k is maximal. Note that we can ignore the parenthesis in the
latter equation since the O operation is associative. It follows from (K2cc) that
(G,σ) is an hc-cograph if and only if (1) all (Gi,σi) are hc-cographs and (2)
all color sets σ(V (Gi)) are pairwise disjoint. In this case, every binary tree
with leaves (G1,σ1), . . . , (Gk,σk) and all inner vertices labeled 1 may appear
in (TGhc, t).
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Fig. 31. The cotree (T , t,σ) explains a 4-colored co-RBMG (G,σ). Cor. 5.14 implies
that the edge uv is redundant. However, by Prop. 3.1, the tree (Te, t′) is not a cotree for
the co-RBMG (G,σ) for all possible labelings t′ : V 0(T ) → {0, 1}. Moreover, Lemma
5.45(2) implies that the two inner edges vw3 and vw4 of T are redundant. However,
contracting both edges at the same time gives a tree (T1,σ) with par(a2) = par(a3),
thus a2 and a3 belong to the same S-class in G(T1,σ). Hence, (T1,σ) does not explain
(G,σ) (cf. Lemma 5.47). Finally, one checks that the edge vw1 is relevant because the
edge a3c2 is contained in G(T2,σ), where (T2,σ) is obtained from (T ,σ) by contraction
of vw1, but not in (G,σ) (cf. Lemma 5.45).

Now assume that (G,σ) is the disjoint union of the connected graphs (Gi,σi),
1 ≤ i ≤ k. Let G` = (V`,E`), 1 ≤ ` ≤ k, be a connected component such that
σ(V`) is minimal w.r.t. inclusion. Such a component can be clearly identified
in polynomial time. By Lemma 5.44, (G,σ) = (G`,σ|V`) ∪· (G −G`,σ|V \V`)
satisfies (K3), whenever (G,σ) is a co-RBMG. Again, Lemma 5.41 implies that
the two trees that explains (G`,σ|V`) and (G−G`,σ|V \V`), respectively, can
then be joined under a common root in order to obtain a tree that explains
(G,σ). The effort is again polynomial.

Finally, each of the latter steps must be repeated recursively on the con-
nected components of either (G,σ) or (G,σ). This either results in an hc-cotree
(TGhc, t,σ) or we encounter a violation of (K2cc) or (K3cc) on the way. That
is, we obtain a join decomposition such that the color sets σ(V (Gi)) are not
pairwise disjoint, or a graph G` such that (G`,σ|V`) ∪· (G−G`,σ|V \V`) violates
(K3cc). In either case, the recursion terminates and reports “(G,σ) is not an
hc-cograph”. Since TGhc has O(|V (G)|) vertices, the polynomial time decompo-
sition steps must be repeated at most O(|V (G)|) times, resulting in an overall
polynomial time algorithm.

Recall that Te denotes the tree that is obtained from T by contraction of the
edge e and (T , t,σ) or (T , t) is a cotree for (G,σ) if t(lca(x, y)) = 1 if and only
if xy ∈ E(G).
Fig. 19 gives an example of a least resolved tree (T ,σ) that explains a co-

RBMG (G,σ). However, one easily verifies that (T ,σ) is not a refinement
of the discriminating cotree for (G,σ). Moreover, as shown in Fig. 30, there
might exist several cotrees that explain a given co-RBMG. From Prop. 3.1 we
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can infer that the discriminating cotree for a co-RBMG (G,σ) is unique. It
does not necessarily explain (G,σ), however. In order to see this, consider the
example in Fig. 31, where the edge vw1 with t(v) = t(w1) = 0 cannot be
contracted without violating the property that the resulting tree still explains
the underlying co-RBMG.
To shed some light on the question how cotrees for a co-RBMG (G,σ) and

least resolved trees that explain (G,σ) are related, we identify the edges of a
cotree for (G,σ) that can be contracted. To this end, we show that the sufficient
conditions in Lemma 5.2 are also necessary for co-RBMGs.

Lemma 5.45. Let (T , t,σ) be a not necessarily binary cotree explaining the
co-RBMG (G,σ) that is also a cotree for (G,σ) and let e = uv be an inner
edge of T . Then (Te,σ) explains (G,σ) if and only if either Property (1) or (2)
from Lemma 5.2 is satisfied.

Proof. By Lemma 5.2, Properties (1) and (2) ensure that (Te,σ) explains
(G,σ).

Conversely, suppose that (Te,σ) explains (G,σ). Since (G,σ) is a co-RBMG,
it is an hc-cograph by Thm. 5.9 and thus, (T , t,σ) is an hc-cotree for (G,σ).
Let Gx := (G,σ)[L(T (x))] for x ∈ V (T ). Clearly, (T (u), t|L(T (u)),σ|L(T (u)))
is an hc-cotree for Gu and thus, Gu is an hc-cograph. Hence, Gu can be
written as Gv ? (H,σH), where ? ∈ {O,∪· } and (H,σH) = ?x∈CGx for
C := childT (u) \ {v}. Clearly, either t(u) = 1 (in case ? = O) or t(u) = 0
(in case ? = ∪· ). As (T (u), t|L(T (u)),σ|L(T (u))) is an hc-cotree, we have ei-
ther σ(L(T (v′))) ∩ σ(L(T (v))) = ∅ for all v′ ∈ childT (u) (in case ? = O) or
σ(L(T (v′))) ∩ σ(L(T (v))) ∈ {σ(L(T (v))),σ(L(T (v′)))} for all v′ ∈ childT (u)
(in case ? = ∪· ).

Thus, if ? = O, then we immediately obtain Property (1). In the second case,
where Gu = Gv ∪· (H ′,σH′), the color constraint (K3cc) implies σ(L(T (v))) ⊆
σ(L(T (v′))) or σ(L(T (v′))) ( σ(L(T (v))) for any v′ ∈ childT (u). If the first
case is true for all children of u in T , we obtain Property (2.i) of Lemma 5.2.
Thus suppose there exists some vertex v′ ∈ childT (u) with σ(L(T (v′))) (
σ(L(T (v))). Assume, for contradiction, that there is a vertex w ∈ childT (v)
with Sw,¬v′ = σ(L(T (x))) \ σ(L(T (y))) 6= ∅ and a color s such that s is
contained in σ(L(T (v′))) but not in σ(L(T (w))). Thus, in particular, there
exists a vertex b �T v′ with σ(b) = s. Moreover, there is vertex a �T w with
σ(a) = r ∈ Sw,¬v′ . Since r /∈ σ(L(T (v′))), the leaf a must be contained in
the out-neighborhood of b in ~G(T ,σ). Since σ(L(T (v′))) ( σ(L(T (v))) and
s /∈ σ(L(T (w))), there exists a vertex b′ ∈ L(T (v)) \L(T (w)) with σ(b′) = s.
Hence, lca(a, b′) = v. Thus b is not contained in the out-neighborhood of a, i.e.,
ab /∈ E(G). However, if we contract e = uv, we obtain the new vertex uv =

lcaTe(a, b) in Te. Since r /∈ σ(L(T (v′))) and s /∈ σ(L(T (w))), we immediately
obtain lcaTe(a, b) �Te lcaTe(a, b′) and lcaTe(a, b) �Te lcaTe(a′, b) for all a′ of
color σ(a) and b′ of color σ(b). Thus ab ∈ E(G(Te,σ)) and hence, (Te,σ) does
not explain (G,σ); a contradiction.

As an immediate consequence of Lemma 5.45(1) we obtain

137



Corollary 5.14. Let (T , t,σ) be a not necessarily binary cotree explaining the
co-RBMG (G,σ) that is also a cotree for (G,σ). If t(u) = 1 for an inner edge
e = uv of T , then the tree (Te,σ) explains (G,σ).

Now, Cor. 5.14 and Prop. 3.1 imply

Corollary 5.15. Let (T , t,σ) be a not necessarily binary cotree explaining the
co-RBMG (G,σ) and let e = uv be an inner edge of T with t(u) = t(v) = 1.
Then the tree (Te, te,σ) explains (G,σ) and is a cotree for (G,σ), where the
vertex w = uv obtained by contracting the edge uv is labeled by te(w) = 1 and
te(w′) = t(w′) for all other vertices w′ 6= w.

Thus, if (TGhc, t,σ) is a least resolved tree that explains (G,σ), then it will not
have any adjacent vertices labeled by 1. The situation is more complicated for
0-labeled vertices. Fig. 31 shows that not all edges uv in (TGhc, t,σ) with t(u) =
t(v) = 0 can be contracted. However, we obtain the following characterization,
which is an immediate consequence of Prop. 3.1, Lemma 5.45, and Cor. 5.15.

Corollary 5.16. Let (T , t,σ) be a not necessarily binary cotree explaining the
co-RBMG (G,σ) that is also a cotree for (G,σ). Let e = uv be an inner edge
of T . The following two statements are equivalent:

1. (Te, te,σ) explains (G,σ) and is a cotree for (G,σ), where the vertex
w = uv obtained by contracting the edge uv is labeled by te(w) = t(u)

and te(w′) = t(w′) for all other vertices w′ 6= w,

2. t(u) = t(v) and, if t(u) = 0, then e satisfies Properties (1) and (2) in
Lemma 5.2.

If we apply Cor. 5.15 and 5.16, then Prop. 3.1 implies that we always obtain
a cotree (Te, te,σ) for (G,σ). Hence, we can repeatedly apply Cor. 5.15 and
5.16 and conclude that the least resolved tree (T , t,σ) explaining (G,σ) does
neither contain edges uv with t(u) = t(v) = 1 nor edges uv with t(u) =

t(v) = 0 satisfying Lemma 5.2(1) and (2). Moreover, Cor. 5.14 allows us to
contract edges uv with t(u) = 1 6= t(v). In this case, however, Prop. 3.1 implies
that (Te, t′) is not a cotree for the co-RBMG (G,σ) for all possible labelings
t′ : V 0 → {0, 1}. Hence, the question arises how often we can apply Cor. 5.14.
An answer is provided by the next result:

Lemma 5.46. Let (T , t,σ) be a not necessarily binary cotree that explains the
co-RBMG (G,σ) and that is a cotree for (G,σ). Let A be the set of all inner
edges e = uv of T with t(u) = 1. Then (TB,σ) explains (G,σ) for all B ⊆ A.

Proof. Any edge e = uv ∈ B is contracted to some vertex ue in (TB,σ).
Let e = uv ∈ A. By definition of the set A, we have t(u) = 1. Clearly,

(T (u), t|L(T (u)),σ|L(T (u))) is an hc-cotree. Hence, σ(L(T (v1)))∩σ(L(T (v2))) =

∅ for any two distinct vertices v1, v2 ∈ childT (u). Now assume that we have
contracted e to obtain (Te,σ). By Cor. 5.14, (Te,σ) explains (G,σ). Moreover,
suppose that there exists another edge f = uv′ ∈ A which corresponds to
uev
′ in (Te,σ). In (T ,σ), we have σ(L(T (v))) ∩ σ(L(T (v′))) = ∅ which, in
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particular, implies σ(L(T (v′))) ∩ σ(L(T (w))) = ∅ for all w ∈ childT (v). In
(Te,σ), the children of ue are now childTe(ue) = (childT (u) \ {v}) ∪ childT (v).
Thus σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ for all v′′ ∈ childTe(ue). Lemma 5.2(1)
implies that f can be contracted to obtain the tree (Tef ,σ) that explains (G,σ).
Repeated application of the latter arguments shows that all edges incident to
vertex u in (T ,σ) can be contracted.

Finally, the contraction of the edges can be performed in a top-down fashion.
In this case, the contraction of edges incident to u does not influence the children
of any vertex u′ that is incident to some edge e′ = u′v′ having label t(u′) = 1.
That is, we can apply the latter arguments to all edges in B independently,
from which we conclude that (TB,σ) explains (G,σ) for all B ⊆ A.

For the contraction of edges uv with t(u) = 0 6= t(v), however, the situation
becomes more complicated.

Lemma 5.47. Let (T , t,σ) be a not necessarily binary cotree that explains the
co-RBMG (G,σ) and is a cotree for (G,σ). Moreover, let u ∈ V 0(T ) be an
inner vertex with t(u) = 0 and A = {e1, . . . , ek} be the set of all inner edges
ei = uvi ∈ E(T ) with vi ∈ childT (u) such that t(vi) = 1 and ei is redundant in
(T ,σ). Then (Te,σ) explains (G,σ) for all e ∈ A but (TB,σ) does not explain
(G,σ) for all B ⊆ A with |B| ≥ 2.

Proof. Let the edges e = uv and f = uv′ be contained in A. Since e and f

are redundant, (Te,σ) and (Tf ,σ) both explain (G,σ). It suffices to show that
(Tef ,σ) does not explain (G,σ). Following the same argumentation as in the be-
ginning of the proof of Lemma 5.45, we conclude that (T (v), t|L(T (v)),σ|L(T (v)))
is an hc-cotree. This and t(v) = 1 implies σ(L(T (wi)))∩ σ(L(T (wj))) = ∅ for
any two distinct vertices wi,wj ∈ childT (v). Hence, σ(L(T (v))) is partitioned
into the sets σ(L(T (w1))), . . . ,σ(L(T (wk))) with wi ∈ childT (v), 1 ≤ i ≤ k.
Analogously, σ(L(T (w′1))), . . . ,σ(L(T (w′m))) with w′i ∈ childT (v′), 1 ≤ i ≤ m

forms a partition of σ(L(T (v′))). Consider an arbitrary but fixed vertex
w ∈ childT (v). Assume, for contradiction, that (Tef ,σ) explains (G,σ) and de-
note by uef the inner vertex in Tef that is obtained by contracting the edges uv
and uv′. Since (G,σ) is an hc-cograph and t(u) = 0, the color sets σ(L(T (v)))
and σ(L(T (v′))) are neither disjoint nor do they overlap. As (Tef ,σ) = (Tfe,σ),
we can w.l.o.g. assume σ(L(T (v′))) ⊆ σ(L(T (v))).

Now let w′ ∈ childT (v′) such that there is some z′ ∈ L(T (w′)) with σ(z′) =
t /∈ σ(L(T (w))). Let x ∈ L(T (w)) with σ(x) = r. Since t(u) = 0 and
u = lcaT (x, z′), we have xz′ /∈ E(G). However, as σ(L(T (v′))) ⊆ σ(L(T (v))),
there is some child w̃ ∈ childT (v) distinct from w such that t ∈ σ(L(T (w̃))).
Let z̃ ∈ L(T (w̃)) with σ(z̃) = t. Since t(v) = 1, we have xz̃ ∈ E(G). As
(Tef ,σ) explains (G,σ), xz̃ must be an edge in G(Tef ,σ). Hence, lcaTef (x, z̃) =
uef �Tef lcaTef (x, z′′) and lcaTef (x, z̃) = uef �Tef lcaTef (x′′, z̃) for all x′′ ∈
L[σ(x)] and z′′ ∈ L[t]. However, by construction of Tef , we have lcaTef (x, z′) =
lcaTef (x, z̃) = uef . Hence, if r /∈ σ(L(T (w′))), then xz̃ ∈ E(G(Tef ,σ)) implies
that xz′ is an edge in G(Tef ,σ); a contradiction to xz′ /∈ E(G). Now assume
r ∈ σ(L(T (w′))). Clearly, v′ must have at least one further child w′′ with
s ∈ σ(L(T (w′′))) and s /∈ σ(L(T (w′))). In particular, r, t /∈ σ(L(T (w′′))).
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Algorithm 5 From Cotrees to Least Resolved Trees
Require: Leaf-labeled cotree (T , t,σ)
1: A← ∅
2: for all inner edges e = uv with t(u) = 1 do
3: A← A∪ {e}
4: (T ,σ)← (TA,σ)
5: while (T ,σ) contains redundant inner edges e = uv do
6: Contract e to obtain (Te,σ)
7: (T ,σ)← (Te,σ)
8: return (T ,σ)

Since σ(L(T (v′))) ⊆ σ(L(T (v))), there exists a leaf y ∈ L(T (v)) with σ(y) = s.
Now we either have y �T w or y �T w̃ or y �T ŵ ∈ childT (v) \ {w, w̃}. In
any case, t(v) = 1 implies that at least one of the edges xy or yz̃ must be
contained in G. Assume xy ∈ E(G). Since t(u) = 0, we have xy′′ /∈ E(G) for
any y′′ ∈ L(T (w′′)) ∩ L[s]. On the other hand, as r /∈ σ(L(T (w′′))), we can
apply the preceding argumentation to infer from xy ∈ E(G(Tef ,σ)) that xy′′
is an edge in G(Tef ,σ); a contradiction. Analogously, the existence of an edge
yz̃ in G yields a contradiction as well. Hence, (Tef ,σ) does not explain (G,σ).

The previous results can finally be used to obtain a least resolved tree (T ,σ)
from a cotree (T ′, t,σ) for a given co-RBMG (G,σ) that also explains (G,σ).
Instead of checking all inner edges of (T ′,σ) for redundancy, Lemma 5.46 can be
applied to identify promptly many redundant edges, which considerably reduces
the number of edges that need to be checked. This idea is implemented in
Algorithm 5, which returns a least resolved tree explaining (G,σ). Lemma 5.47,
however, suggests that this least resolved tree is not necessarily unique for
(G,σ).

Theorem 5.12. Let (G,σ) be a co-RBMG that is explained by (T , t,σ) such
that (T , t,σ) is also a cotree for (G,σ). Then Algorithm 5 returns a least
resolved tree that explains (G,σ), in polynomial time.

Proof. Lemma 5.46 implies that all inner edges e = uv with t(u) = 1 can be
contracted, which is done in Line 2-4. Afterwards we check for all remaining
inner edges e = uv whether they are redundant or not and, if so, contract them.
In summary, the algorithm is correct. Clearly, all steps including the check for
redundancy as in Lemma 5.1 can be done in polynomial time.

5.8 summary

Reciprocal best match graphs are the symmetric parts of best match graphs
(see Chapter 4). They have a surprisingly complicated structure that makes it
quite difficult to recognize them. Although we have succeeded here in obtaining
a complete characterization of 3-RBMGs, it remains an open problem whether
general n-RBMGs can be recognized in polynomial time. This is in striking
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contrast to the directed BMGs, which are recognizable in polynomial time. The
key difference between the directed and symmetric version is that every BMG
( ~G,σ) is explained by a unique least resolved tree which is displayed by every
tree that explains ( ~G,σ). RBMGs, in contrast, can be explained by multiple,
mutually inconsistent trees. This ambiguity seems to be the root cause of the
complications that are encountered in the context of RBMGs with more than
three colors.
An important subclass of RBMGs are the ones that have cograph struc-

ture (co-RBMGs). These are good candidates for correct estimates of the
orthology relation. Interestingly, they are easy to recognize: by Thm. 5.8 it
suffices to check that all connected 3-colored restrictions of an RBMG are
cographs. Moreover, hierarchically colored cographs (hc-cographs) character-
ize co-RBMGs. Thm. 5.11 shows that co-RBMGs (G,σ) can be recognized in
polynomial time. In addition, Thm. 5.11 and 5.12 imply that a least resolved
tree that explains (G,σ) can be constructed in polynomial time. Since each
orthology relation is equivalently represented by a cograph, every co-RBMG
(G,σ) represents an orthology relation. The converse, however, is not always
satisfied, as not all mathematically valid orthology relations are hc-cographs.
The relationships of orthology relations and RBMGs will be the topic of the
next chapter.
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6
BEST MATCH GRAPHS AND RECONCIL IAT ION OF
GENE TREES WITH SPEC IES TREES

Despite its practical importance, the mathematical interrelationships of best
matches on one hand, and reconciliations of gene and species trees on the other
hand have remained largely unexplored. The purpose of this chapter is to bridge
that gap between (reciprocal) best matches and reconciliation maps. While it
is true that any gene tree, and thus also any best match graph, can be recon-
ciled with any species tree [79], such a reconciliation may imply unrealistically
many duplication and deletion events. Although orthology implies a cograph
structure, it is not necessarily true that reciprocal best matches form a cograph.
One of the main result in this chapter shows, however, that, in the absence of
HGT, the true orthology graph (TOG) is a subgraph of the reciprocal best
match graph (Section 6.2). Furthermore, conditions under which a co-RBMG
identifies the correct orthology relation are established in Sections 6.3 and 6.4.
Computer simulations in Section 6.5 show that in a broad parameter range the
TOG and RBMG are very similar, proving an a posteriori justification for the
use of reciprocal best matches in orthology estimation. Moreover, these simu-
lations reveal that most false positive orthology assignments can be identified
as good quartets – and thus corrected – in the absence of horizontal transfer.
Horizontal transfer, however, may introduce also false negative orthology assign-
ments. The chapter is started with some important prerequisites and findings
about the reconciliation map and the event labeling.
This chapter is based on the results in Geiß et al. [74].

6.1 reconciliation map and event labeling

This section makes intensive use of planted phylogenetic trees (see Section 3.3.1
for a definition). The main reason for using planted phylogenetic trees instead
of modeling phylogenetic trees simply as rooted trees, which is the much more
common practice in the field, is that we will often need to refer to the time
before the first branching event. Conceptually, this corresponds to explicitly
representing an outgroup. Whenever not stated otherwise, the trees in this
chapter are assumed to be planted phylogenetic trees.
Let a gene tree T = (V ,E) and a species tree S = (W ,F ) be planted phy-

logenetics trees on a set of (extant) genes L(T ) and species L(S), respectively.
Their planted roots will be denoted by 0T and 0S , resp., and their conventional
roots by ρT and ρS . Recall that the only neighbor of a planted root is the
conventional root and it is neither contained in the set of leaves nor in the set
of inner vertices. We assume that the map σ : L(T ) → L(S) that assigns to
each gene the species in whose genome it resides, is known. Recall from the
introductory Chapter 2 that a reconciliation of T and S is an extension of this
map which maps the ancestors of the extant genes into the species tree:
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Definition 6.1. Let S = (W ,F ) and T = (V ,E) be two planted phylogenetic
trees and let σ : L(T )→ L(S) be a surjective map. A reconciliation from (T ,σ)
to S is a map µ : V →W ∪ F satisfying

(R0) Root Constraint. µ(x) = 0S if and only if x = 0T .

(R1) Leaf Constraint. If x ∈ L(T ), then µ(x) = σ(x).

(R2) Ancestor Preservation. x ≺T y implies µ(x) �S µ(y).

(R3) Speciation Constraints. Suppose µ(x) ∈W 0.
(i) µ(x) = lcaS(µ(v′),µ(v′′)) for at least two distinct children v′, v′′ of

x in T .
(ii) µ(v′) and µ(v′′) are incomparable in S for any two distinct children

v′ and v′′ of x in T .

The axiom system above is equivalent to the following version, which com-
monly has been used in the literature, see e.g. Górecki and Tiuryn [79], Vernot
et al. [227], Doyon et al. [57], Rusin et al. [194], Hellmuth [91], Nøjgaard et al.
[173], and the references therein:

Lemma 6.1. Let µ be a map from (T = (V ,E),σ) to S = (W ,F ) that satisfies
(R0) and (R1). Then µ satisfies Axioms (R2) and (R3) if and only if µ satisfies

(R2’) Ancestor Constraint.
Suppose x, y ∈ V with x ≺T y.
(i) If µ(x),µ(y) ∈ F , then µ(x) �S µ(y),
(ii) otherwise, i.e., at least one of µ(x) and µ(y) is contained in W ,

µ(x) ≺S µ(y).

(R3’) Inner Vertex Constraint.
If µ(x) ∈W 0, then
(i) µ(x) = lcaS(σ(L(T (x)))) and
(ii) µ(v′) and µ(v′′) are incomparable in S for any two distinct children

v′ and v′′ of x in T .

Proof. Assume first that (R2) and (R3) are satisfied for µ.
Then Property (R2’.i) is satisfied since it is the restriction of (R2) to
µ(x),µ(y) ∈ F .
In order to see that (R2’.ii) holds, let x ≺T y and µ(x) ∈ W or µ(y) ∈ W . As-
sume first µ(y) ∈ W . Property (R2) implies µ(x) �S µ(y). Let v be the child
of y that lies on the path from y to x in T , i.e., x �T v ≺T y. Assume, for con-
tradiction, that µ(x) = µ(y). By Property (R2), we have µ(x) = µ(v) = µ(y).
For every other child v′ of y, Property (R2) implies µ(v′) �S µ(y) = µ(v). Thus
µ(v) and µ(v′) are comparable; a contradiction to (R3.ii). Hence, µ(x) ≺S µ(y)
and (R2’.ii) is satisfied. Now suppose µ(x) ∈W and assume, for contradiction,
that µ(x) = µ(y). Thus µ(y) ∈ W and we can apply the same arguments as
above to conclude that (R3.ii) is not satisfied. Hence, µ(x) ≺S µ(y) and (R2’.ii)
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is satisfied.
In order to show that (R3’) is satisfied, let x ∈ V such that µ(x) ∈W 0. Proper-
ties (R3’.ii) and (R3.ii) are equivalent. It remains to show that (R3’.i) is satisfied.
From (R2) we infer µ(y) �S µ(x) for all y ∈ ⋃v∈child(x) L(T (v)) = L(T (x)).
Thus

µ(x) �S lcaS(σ(L(T (x)))). (19)

Property (R3.i) implies that there are two distinct children v′, v′′ ∈ child(x)
with µ(x) = lcaS(µ(v′),µ(v′′)). Again using (R3.ii), we know that the images
µ(v′) and µ(v′′) are incomparable in S. The latter together with µ(y) �S µ(v′)
for all y ∈ L(T (v′)) and µ(y′) �S µ(v′′) for all y′ ∈ L(T (v′′)) implies

lcaS(µ(v′),µ(v′′)) = lcaS(σ(L(T (v′)))∪σ(L(T (v′′)))) �S lcaS(σ(L(T (x)))).

In summary, lcaS(σ(L(T (x)))) �S µ(x) = lcaS(µ(v′),µ(v′′)) �S
lcaS(σ(L(T (x)))) implies that µ(x) = lcaS(σ(L(T (x)))) and Property (R3’.i)
is satisfied.
Therefore (R2) and (R3) imply (R2’) and (R3’).

Conversely, assume that (R2’) and (R3’) are satisfied for µ. Clearly, (R2’)
implies (R2), and (R3’.ii) implies (R3.ii). It remains to show that (R3.i) is
satisfied. Let µ(x) ∈ W 0. By (R2’.ii), we have µ(x) �S µ(vi) for all children
vi ∈ child(x) = {v1, . . . , vk}, k ≥ 2. Therefore µ(x) �S lcaS(µ(v1), . . . ,µ(vk)).
By (R3’.ii), the images µ(v1), . . . ,µ(vk) are pairwise incomparable in S. The
latter and (R2’.i) imply lcaS(µ(v1), . . . ,µ(vk)) = lcaS(

⋃k
i=1 σ(L(T (vi)))) =

lcaS(σ(L(T (x)))) = µ(x). It is easy to verify that lcaS(µ(v1), . . . ,µ(vk)) =

lcaS(µ(v′),µ(v′′)) for at least two children v′, v′′ ∈ child(x) is always satisfied.
Hence, µ(x) = lcaS(µ(v′),µ(v′′)) for some v′, v′′ ∈ child(x) and thus, (R3.i) is
satisfied.
Therefore (R2’) and (R3’) imply (R2) and (R3).

A simple consequence of the axioms is

Lemma 6.2. Let µ be a reconciliation map from the leaf-colored tree (T ,σ) to
S = (W ,F ) and x ∈ V (T ) a vertex with µ(x) ∈ W 0. Then σ(L(T (v′))) ∩
σ(L(T (v′′))) = ∅ for all distinct v′, v′′ ∈ child(x).

Proof. Assume, for contradiction, that there is a vertex z ∈ σ(L(T (v′))) ∩
σ(L(T (v′′))). By Condition (R2’), we have µ(x) �S µ(v′) �S z and µ(x) �S
µ(v′′) �S z. Thus there is a path P1 from µ(x) to z that contains µ(v′) and a
path P2 from µ(x) to z that contains µ(v′′). However, Condition (R3.ii) implies
that µ(v′) and µ(v′′) are incomparable in S, that is, the subtree of S consisting
of the two paths P1 and P2 must contain a cycle; a contradiction.

It is a well-known result that it is always possible to reconcile a given pair
of gene tree T and species tree S, see e.g. [79]. For convenience, we include a
short direct proof of this fact.

Lemma 6.3. For every tree (T = (V ,E),σ) there is a reconciliation map µ to
any species tree S with leaf set L(S) = σ(L(T )).
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Proof. Let S = (W ,F ) be an arbitrary species tree with leaf set L(S) and
e0 = 0SρS be the unique root-edge of S. Set µ(0T ) = 0S and µ(v) = σ(v)

for all v ∈ L(T ). Thus (R0) and (R1) are satisfied. Now set µ(v) = e0 for
all v ∈ V 0 = V \ (L(T ) ∪ {0T }). Thus µ(v) /∈ W 0 for all v ∈ V 0 and (R3) is
trivially satisfied. Finally, for all v, v′ ∈ V 0 and y ∈ L(T ) with y ≺T v ≺T v′

we have, by construction of µ, µ(y) ≺T µ(v) = µ(v′) ≺T µ(0T ). Thus (R2) is
satisfied.

The reconciliation map also completely determines an event labeling on the
vertices of T .

Definition 6.2. Given a reconciliation map µ from (T ,σ) to S, the event
labeling on T (determined by µ) is the map tT : V (T ) → {},�, ,�} given
by:

tT (u) =



} if u = 0T , i.e., µ(u) = 0S (root)

� if u ∈ L(T ), i.e., µ(u) ∈ L(S) (leaf)

 if µ(u) ∈ V 0(S) (speciation)

� else, i.e., µ(u) ∈ E(S) (duplication)

A given gene tree (T ,σ) together with a specified map tT : V (T ) →
{},�, ,�} is denoted by (T , tT ,σ). One can characterize in polynomial time
whether there is reconciliation map µ between a gene tree (T , tT ,σ) and a given
species tree that implies tT [99]. In other words, the analog of Lemma 6.3 is
not true if event labels are prescribed at the inner vertices of the gene tree T
[105]. Recall from Section 2.1 that two distinct leaves x, y ∈ L(T ) are called
orthologs (w.r.t. µ) if tT (lcaT (x, y)) =  and paralogs if tT (lcaT (x, y)) = �.
For completeness, note that tT (lcaT (x, y)) = � if and only x = y, and 0T is
never the last common ancestor of any of pair of leaves since the planted root
0T has degree 1 by construction.

We give at this point a more formal definition of the orthology relation based
on the event labeling of a gene tree:

Definition 6.3. Let Θ be a binary relation on L and let T be a planted tree with
event map t. Define Θ(T , tT ) as the set of all pairs (x, y) with tT (lcaT (x, y)) =
 , x, y ∈ L(T ). We say that Θ is explained by (T , tT ), if Θ = Θ(T , tT ). In
this case we call Θ an orthology relation.

Recall that the orthology relation Θ explicitly depends on the event label-
ing. In analogy with Def. 6.3, one can also define the paralogy relation Θ
by tT (lcaT (x, y)) = �. Both orthology and paralogy are irreflexive since
tT (lcaT (x,x)) = tT (x) = � for all leaves x ∈ L(T ). Recall that both re-
lations are symmetric but not transitive (cf. Section 2.1). Note that, in the
absence of HGT, orthology Θ and paralogy Θ are complementary in the graph-
theoretical sense, i.e., (x, y) – and, by symmetry, also (y,x) – is contained in
exactly one of Θ or Θ.
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Based on the work of Böcker and Dress [21] it has been shown by Hellmuth
et al. [97] that Θ is a valid orthology relation, i.e., Θ is explained by an event
labeled tree (T , tT ), if and only if Θ is a cograph. Furthermore, a cograph Θ
is explained (in the sense of Def. 6.3) by its cotree by replacing the labeling 0
and 1 by � and  , respectively.

According to Lemma 6.3 there is a reconciliation map from (T ,σ) to every
species tree with leaf set σ(L(T )). However, this is no longer true when an
event labeling is prescribed for T . Given (T , tT ,σ), denote by S(T , tT ,σ) the
set of triples σ(a)σ(b)|σ(c) for which ab|c is a triple displayed by T such that
(i) σ(a), σ(b), σ(c) are pairwise distinct and (ii) the root of the triple is a
speciation event, i.e., tT (lca(a, b, c)) =  . This set of triples characterizes the
existence of a reconciliation map:

Proposition 6.1. [105, 99] Given an event-labeled, leaf-labeled tree (T , tT ,σ)
and species tree S with L(S) = σ(L(T )), there is a reconciliation map µ :
V (T ) → V (S) ∪E(S) such that the event labeling is consistent with Def. 6.2
if and only if S displays S(T , tT ,σ). In particular, (T , tT ,σ) can be reconciled
with a species tree if and only if S(T , tT ,σ) is consistent.

Clearly, it is possible to find event labelings for T such that there is a rec-
onciliation with any gene tree S. In particular, this is the case whenever
S(T , tT ,σ) = ∅. This in particular holds if (T , tT ,σ) contains no speciation
with descendants in three different species or if all children of a speciation
vertex are leaves.

Corollary 6.1. Let (T , tT ,σ) be an event-labeled and leaf-labeled tree. If
|σ(L(T (v)))| ≤ 2 for every v ∈ V (T ) with tT (v) =  , then there is a rec-
onciliation map from T to any species tree S.

It is known that the species triples can directly be obtained from the or-
thology relation Θ without the need to construct the gene tree [96]. We have
σ(a)σ(b)|σ(c) ∈ S(T , tT ,σ) if and only if σ(a),σ(b), and σ(c) are pairwise
different species and either

(a) (a, c), (b, c) ∈ Θ and (a, b) 6∈ Θ or

(b) (a, c), (b, c), (a, b) ∈ Θ and there is a vertex d 6= a, b, c with (c, d) ∈ Θ
and (a, d), (b, d) /∈ Θ.

This simple rule in particular applies to co-RBMGs (G,σ). It seems likely that
it also generalizes to induced subgraphs (H,σ′) of (G,σ) that are cographs.
This will be analyzed in forthcoming work.

6.2 orthology and best matches

The main result of this section shows that the true orthology relation is con-
tained in the reciprocal best match graph:

Theorem 6.1. Let T and S be planted trees, σ : L(T )→ L(S) a surjective map,
and µ a reconciliation map from (T ,σ) to S. If x, y ∈ L(T ) are orthologous
w.r.t. (the event map tT defined by) µ, then x and y are reciprocal best matches
in (T ,σ).
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Proof. Assume that x, y ∈ L(T ) are orthologous w.r.t. µ and let u = lcaT (x, y).
By definition of orthologs, µ(u) ∈ W 0 and tT (u) =  . By construc-
tion, there are distinct children v1, v2 ∈ child(u) such that x �T v1 and
y �T v2. Since µ(u) ∈ W 0, we can apply Lemma 6.2 to conclude that
σ(L(T (v1))) ∩ σ(L(T (v2))) = ∅. Hence, there are X,Y ∈ L(S) such that
σ(x) = X 6= σ(y) = Y , and, in particular, Y /∈ σ(L(T (v1))).
Assume, for contradiction, that y is not a best match of x. Hence, there

is a leaf y′ ∈ L(T ) with σ(y′) = Y such that w = lcaT (x, y′) ≺T lcaT (x, y).
This implies that w must be located on the path from x to v1 and hence,
y′ �T w �T v1. But then y′ ∈ L(T (v1)) and thus, Y ∈ σ(L(T (v1))); a
contradiction. Hence, y is a best match of x. By similar arguments, x must
be a best match of y and therefore, x and y are reciprocal best matches in
(T ,σ).

Observation 6.1. Reciprocal best matches therefore cannot produce false neg-
ative orthology assignments as long as the evolution of a gene family proceeds
via duplications, losses, and speciations only.

In practical application we usually do not know the event-labeled gene tree.
It is possible, however, to compute the reciprocal best matches directly from
sequence data. Therefore it is of interest to investigate the relationship of
colored best match graphs and orthology relations.
Every tree (T ,σ) explains a reciprocal best match graph G(T ,σ). On the

other hand, we can endow (T ,σ) with a special event labeling t̂T : V (T ) →
{},�, ,�}, which, motivated by Lemma 6.2, maximizes the number of specia-
tions. Our interest is then to understand the constraints imposed by (T , t̂T ,σ).

Definition 6.4. (T ,σ) be a leaf-labeled tree explaining the RBMG (G,σ). The
extremal event labeling of T is the map t̂T : V (T ) → {},�, ,�} defined for
u ∈ V (T ) by

t̂T (u) =



} if u = 0T
� if u ∈ L(T )

� if there are two children u1,u2 ∈ child(u) such that

σ(L(T (u1))) ∩ σ(L(T (u2))) 6= ∅

 otherwise

An analogous result as in Thm. 6.1 holds for the extremal event labeling:

Lemma 6.4. If (T ,σ) with leaf set L explains the RBMG (G,σ) and t̂T is
the extremal event labeling of (T ,σ), then Θ(T , t̂T ) is a subgraph of the RBMG
G(T ,σ).

Proof. Consider a vertex u ∈ V 0(T ) with child(u) = {u1, . . . ,uk}. If t̂T (u) =
�, then none of the edges xy in G with x ∈ L(T (ui)) and y ∈ L(T (uj)),
1 ≤ i < j ≤ k is contained in Θ(T , t̂T ).
Now suppose t̂T (u) =  . For x ∈ L(T (ui)) and y ∈ L(T (uj)) with 1 ≤ i <
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j ≤ k, we have xy ∈ Θ(T , t̂T ) and, by construction of t̂T , σ(x) 6= σ(y). In
particular, t̂T (u) =  implies that all distinct children ui,uj ∈ child(u) satisfy
σ(L(T (ui))) ∩ σ(L(T (uj))) = ∅. Thus lcaT (x, y) = u �T lcaT (x′, y) for all
x′ 6= x with σ(x′) = σ(x) and lcaT (x, y) = u �T lcaT (x, y′) for all y′ 6= y with
σ(y′) = σ(y), i.e., x and y are reciprocal best matches. Hence, xy ∈ E(G) and
thus, Θ(T , t̂T ) ⊆ G.

The following result about least resolved trees w.r.t. some RBMG is tightly
linked to the extremal event labeling. Least resolved trees are interesting in
this context because they reflect the maximal information that can be inferred
from sequence data.

Lemma 6.5. Let (G,σ) be an RBMG that is explained by (T ,σ). If (T ,σ)
is least resolved w.r.t. (G,σ), then every inner edge e = uv ∈ E(T ) satisfies
σ(L(T (v))) ∩ σ(L(T (u)) \L(T (v))) 6= ∅.

Proof. For contraposition, assume that there is an inner edge e = uv ∈ E(T )
with σ(L(T (v))) ∩ σ(L(T (u)) \L(T (v))) = ∅. Hence, for all x ∈ L(T (v)) and
y ∈ L(T (u)) \ L(T (v)), we have lcaT (x, y) = u and σ(x) = X 6= σ(y) = Y .
It is easy to see that all such x and y form a reciprocal best match and thus,
xy ∈ E(G). Clearly, x and y form also reciprocal best match in (Te,σ) and
thus, each edge xy ∈ E(G) with x ∈ L(T (v)) and y ∈ L(T (u)) \ L(T (v)) is
contained in G(Te,σ). Since we have not changed the relative ordering of the
lca’s of the remaining vertices, all edges in E(G) are contained in G(Te,σ).

The converse of Lemma 6.5 is not necessarily true. As an example, consider
an inner edge e = uv ∈ E(T ) with σ(L(T (u))) = σ(L(T (v))) = {c}. It is easy
to see that e can be contracted.

Lemma 6.5 implies that, if (T ,σ) is least resolved w.r.t. G(T ,σ) and u ∈
V 0(T ) such that u is incident to some other inner vertex v ∈ child(u), then
there is a child v′ 6= v of u which satisfies σ(L(T (v′))) ∩ σ(L(T (v))) 6= ∅. By
construction of t̂T , we have t̂T (u) = �. The latter observation also implies the
following:

Corollary 6.2. Suppose that (T ,σ) is least resolved w.r.t. G(T ,σ) and let t̂T
be the extremal event labeling for (T ,σ). Then t̂T (u) =  if and only if all
children of u are leaves that are from pairwise distinct species.

The latter result can be used to show the existence of a reconciliation map
determining the extremal event labeling of a given pair of gene and species tree,
where the gene tree is least resolved w.r.t. some RBMG.

Lemma 6.6. Let (T ,σ) be some least resolved tree (w.r.t. some RBMG) with
extremal event map t̂T and let S(W ,F ) be a species tree with L(S) = σ(L(T )).
Then there is a reconciliation µ : V (T ) → V (S) ∪ E(S) that determines the
extremal event labeling t̂T .

Proof. By Cor. 6.2, every inner vertex u with t̂T (u) =  is only incident to
leaves from pairwise distinct species. However, this implies that the set of
informative species triples S(T , t̂T ,σ) is empty and thus consistent. Hence,
Proposition 6.1 implies that there is a reconciliation map µ from (T , t̂T ,σ) to
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any species tree S, defined by µ(0T ) = 0S , µ(v) = 0SρS for every inner vertex
v ∈ V 0(T ) that is incident to another inner vertex in T , and µ(v) = x =

lcaS(σ(L(T (v)))) for any inner vertex v that is only incident to leaves that
are from pairwise distinct species, and µ(v) = σ(v) for all leaves of T . By
construction of µ, we have t̂T (u) = tT (u) with tT (u) specified by Def. 6.2 for
all u ∈ V (T ).

Suppose that we are given the orthology relation Θ(T , t̂T ) that is obtained
from a least resolved tree (T ,σ) explaining some RBMG (G,σ). By Cor. 6.2,
every inner vertex u with t̂T (u) =  is only incident to leaves from pairwise dis-
tinct species. Hence, Θ(T , t̂T ) is the disjoint union of complete graphs. Lemma
6.6 implies that there is always a reconciliation map µ from (T ,σ) to any species
tree S with L(S) = σ(L(T )) such that t̂T is determined by µ as in Def. 6.2.
Now we can apply Thm. 6.1 to conclude that all orthologous pairs in Θ(T , t̂T )
are reciprocal best matches. In other words, all complete graphs of Θ(T , t̂T )
are also induced subgraphs of the underlying RBMG (G,σ). Hence, Θ(T , t̂T )
is obtained from (G,σ) by removing edges such that the resulting graph is the
disjoint union of cliques, see the top-right tree in Fig. 32 for an example. How-
ever, Fig. 32 also shows that many edges have to be removed to obtain Θ(T , t̂T ).
Note that this observation in essence establishes the precise relationship of or-
thology detection and clustering since (graph) clustering can be interpreted as
the graph editing problem for disjoint unions of complete graphs [22].
The results above show that the RBMG contains the orthology relation.

Equivalently, RBMGs imply constraints on the event labeling. We also ob-
serve that the RBMGs cannot provide conclusive evidence regarding edges that
must correspond to orthologous pairs. In the following sections we consider the
constraints implied by the detailed structure of RBMGs and BMGs in more
detail.

6.3 classification of rbmgs

This section establishes the connection between hc-cographs, discriminating
hc-cotrees, and the orthology relation.

Let C(G,σ) be the set of the connected components of the 3-colored induced
subgraphs of an RBMG (G,σ). We have already seen in the last chapter that
any (C,σ) ∈ C(G,σ) is either of Type (A), (B), or (C), and the graphs for
which all (C,σ) ∈ C(G,σ) are of Type (A) are exactly the RBMGs that are
cographs. Intuitively, these co-RBMGs have a close connection to orthology
graphs because orthology graphs are cographs. The components of Type (B)
and Type (C), in contrast, contain induced P4s and thus, are not cographs.
Thus, by Obs. 6.1, they introduce false positives relative to the orthology graph
Θ. We distinguish here co-RBMGs, (B)-RBMGs, and (C)-RBMGs depending
on whether C(G,σ) contains only Type (A) components, at least one Type (B)
but not Type (C) component, or at least one Type (C) component.
Recall from the last chapter that co-RBMGs have a convenient structure

that can be readily understood in terms of hc-cographs (cf. Def. 5.18). More-
over, the recursive construction of (G,σ) also defines a corresponding hc-
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cotree (TGhc, thc,σ). According to Thm. 5.10 every co-RBMG (G,σ) is ex-
plained by its hc-cotree. Let {v′, v′′} = child(u). If thc(u) = 1, then
σ(L(TGhc(v

′)))∩σ(L(TGhc(v
′′))) = ∅ in agreement with Lemma 6.2. On the other

hand, if thc(u) = 0, then (K3) implies σ(L(TGhc(v
′))) ∩ σ(L(TGhc(v

′′))) 6= ∅, in
which case u indeed must be a duplication.

As we have seen in the previous chapter, the cotree (TGhc, thc,σ) will in gen-
eral not be discriminating. However, it is not necessarily possible to reduce
(TGhc, thc,σ) to a discriminating hc-cotree (T̂Ghc, t̂hc,σ) that still explains (G,σ).
It is of interest, therefore, to ask whether there are true orthology relations
Θ that are not hc-cographs, or equivalently, when does a discriminating hc-
cotree (T̂Ghc, t̂hc,σ) that is obtained by edge contraction from a given hc-cotree
(TGhc, thc,σ) still explain an RBMG (G,σ)?

Consider an hc-cotree (TGhc, thc,σ) explaining a co-RBMG (G,σ). Since G is
a cograph, it also represents an orthology relation, which in turn is represented
by a unique discriminating cotree (T̂Ghc, t̂hc,σ) that is obtained by contracting
all edges uv in TGhc with thc(u) = thc(v) [97]. For every vertex û in T̂Ghc with
t̂hc(û) = 1 we still have disjoint color sets σ(L(T̂Ghc(v̂

′)))∩σ(L(T̂Ghc(v̂
′′))) = ∅ for

any two children v̂′, v̂′′ ∈ child(û). Hence, in the absence of HGT (and probably
other types of evolutionary events such as recombination, hybridization, or
incomplete lineage sorting), the latter property is always satisfied for any true
orthology relation.
Condition (K3) implies that the discriminating tree (T̂Ghc, t̂hc,σ) still explains
(G,σ) if for every û with t̂hc(û) = 0 we have σ(L(T̂Ghc(v̂

′))) ⊆ σ(L(T̂Ghc(v̂
′′))) or

σ(L(T̂Ghc(v̂
′′))) ⊆ σ(L(T̂Ghc(v̂

′))) for all v̂′, v̂′′ ∈ child(û). Now suppose there are
no losses. Then every duplication event has the property that σ(L(TGhc(v

′))) =

σ(L(TGhc(v
′′))) for all v′, v′′ ∈ child(u) and thc(u) = 0. Clearly, this is still

true after contracting all 0-0 edges, i.e., σ(L(T̂Ghc(v̂
′))) = σ(L(T̂Ghc(v̂

′′))) for all
v̂′, v̂′′ ∈ child(û) and t̂hc(û) = 0. Therefore (T̂Ghc, t̂hc,σ) explains (G,σ).
As a consequence we have

Observation 6.2. In the absence of losses and HGT, G(T ,σ) is a co-RBMG
if and only if G(T ,σ) is an orthology relation.

Based on the latter arguments, in the absence of HGT, a true orthology
relation cannot be an hc-cograph if and only if Condition (K3) is violated for
some vertex û with t̂hc(û) = 0 for any of its cotrees and thus, in particular,
for its discriminating cotree (T̂Ghc, t̂hc,σ). In this case, there are two children
v1, v2 ∈ child(û) such that σ(L(T̂Ghc(v1))) and σ(L(T̂Ghc(v2))) are not contained
in each other. In both cases, there must have been losses in the subsequent
history of both v1 and v2 such that there are genes x1 6= x2 from some species
σ(x1) 6= σ(x2) such that xi �T̂Ghc

vi but x′ 6�T̂Ghc
vj for all x′ with σ(x′) = σ(xi),

i, j ∈ {1, 2} being distinct. We say that losses leading to the latter case are
non-hc-preserving.

Observation 6.3. In the absence of HGT and non-hc-preserving losses,
G(T ,σ) is a co-RBMG if and only if G(T ,σ) is an orthology relation.

Just like for event-labeled trees in general, it is not necessarily possible to
reconcile a (discriminating) hc-cotree with any species tree. A counterexample
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Fig. 32. Top Left: A (discriminating) hc-cotree (TGhc, thc,σ). Its corresponding hc-
cograph (G,σ) = (Θ(TGhc, thc),σ) is drawn below (TGhc, thc,σ). Top Right: A tree
(T ∗, t̂T ,σ) that is least resolved w.r.t. (G,σ) together with extremal labeling t̂T and
the resulting orthology relation Θ(T ∗, t̂T ), where (T ∗, t̂T ) is not discriminating. Below:
A tree (T , t̂T ,σ) together with extremal labeling t̂T that explains (G,σ) but is not
least resolved w.r.t. (G,σ). The resulting orthology relation Θ(T , t̂T ) is drawn below
(T , t̂T ,σ).

is shown in Fig. 32. To be more precise, the hc-cotree (TGhc, thc,σ) in Fig. 32
(top left) yields the conflicting species triples AB|C and AC|B. Hence, Prop.
6.1 implies that (TGhc, thc,σ) cannot be reconciled with any species tree although
(TGhc,σ) explains the RBMG (G,σ). One can contract edges of (TGhc,σ) to obtain
a least resolved tree (T ∗,σ) that still explains (G,σ), see Fig. 32 (top right). In
agreement with Lemma 6.6, S(T ∗, t̂T ,σ) = ∅ and thus, there is always a recon-
ciliation map µ from (T ∗, t̂T ,σ) to any species tree S with L(S) = σ(L(T )) such
that t̂T is determined by µ as in Def. 6.2. Moreover, in agreement with Theorem
6.1, all orthologous pairs in Θ(T ∗, t̂T ,σ) are best matches. Although (T ∗,σ)
explains (G,σ), the two graphs (G,σ) = (Θ(TGhc, t),σ) and (Θ(T ∗, t̂T ),σ) are
very different. In particular, Θ(T ∗, t̂T ) is the disjoint union of cliques.

This observation essentially establishes the precise relationship of orthology
detection and clustering techniques as used by many orthology inference tools.
However, there is no need to edit (G,σ) to the disjoint union of cliques. An
example is provided by the tree (T , t̂T ,σ) in Fig. 32 (bottom). Obviously,
Θ(T , t̂T ) is not the disjoint union of cliques. Moreover, there is only one species
triple AB|C provided by (T , t̂T ,σ). Prop. 6.1 implies that (T , t̂T ,σ) can be
reconciled with any species tree that displays AB|C. In other words, Θ(T , t̂T )
is already “biologically feasible” and there is no need to remove further edges
from Θ(T , t̂T ).
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6.4 non-orthologous reciprocal best matches

The aim of this section is a first step to extract the orthology relation Θ from
the (reciprocal) best match graph by identifying false positive edges in the
latter. Since the orthology relation must be a cograph, it is natural to consider
the smallest obstructions, i.e., induced P4s in more detail.
Recall from Section 5.6 that every induced P4 in an RBMG contains either

three or four distinct colors. We already showed that, with respect to a fixed
BMG, every induced P4 is either a good, a bad, or an ugly quartet (cf. Def.
5.14). Moreover, recall that good, bad, and ugly quartets cannot appear in
RBMGs of Type (A) since these are cographs and thus, by definition, do not
contain induced P4s.

The location of good quartets (in contrast to bad and ugly quartets) turns
out to be strictly constrained (cf. Lemma 5.35). This fact can be used to show
that the “middle” edge of any good quartet must be a false positive orthology
assignment. More precisely, we have

Lemma 6.7. Let T and S be planted trees, σ : L(T )→ L(S) a surjective map,
and µ a reconciliation map from (T ,σ) to S determining an event labeling tT
on T . If 〈xyzx′〉 is a good quartet in the BMG ~G(T ,σ), then tT (v) = � for
v := lca(x,x′, y, z).

Proof. Lemma 5.35 implies that for a good quartet 〈xyzx′〉 in ~G(T ,σ) with
v := lca(x,x′, y, z) there are two distinct children v1, v2 ∈ child(v) such that
x, y �T v1 and x′, z �T v2. Thus, in particular, v1 and v2 must be inner
vertices in (T ,σ). Since σ(x) = σ(x′) by definition of a good quartet, we
have σ(L(T (v1))) ∩ σ(L(T (v2))) 6= ∅. Hence, by Lemma 6.2, µ(v) /∈ V 0(S)

which implies tT (v) 6=  . Since v is an inner vertex of T , we can conclude
tT (v) = �.

As an immediate consequence, this is in particular true for extremal event
labelings:

Corollary 6.3. Let (T ,σ) be some leaf-labeled tree and t̂T the extremal event
labeling for (T ,σ). If 〈xyzx′〉 is a good quartet in the BMG ~G(T ,σ), then
t̂T (v) = � for v := lca(x,x′, y, z).

Given an RBMG (G,σ) that contains a good quartet 〈xyzx′〉 (w.r.t. the
underlying BMG ( ~G,σ)), the edge yz therefore always corresponds to a false
positive orthology assignment, i.e., it is not contained in the true orthology
relation Θ. However, not all false positives can be identified in this way from
good quartets. The RBMG G(T1,σ) in Fig. 33, for instance, contains only one
good quartet, that is 〈a1c2b2a2〉. After removal of the false positive edge c2b2,
the remaining undirected graph still contains the bad quartet 〈a1b1c1a2〉, hence,
in particular, it still contains an induced P4 and is, therefore, not an orthology
relation.
Neither bad nor ugly quartets can be used to unambiguously identify false

positive edges. For an example, consider Fig. 33. The two 3-RBMGs G(T1,σ)
and G(T2,σ) both contain the bad quartet 〈a1b1c1a2〉. As a consequence of
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Fig. 33. Not all false positive orthology assignments can be identified using good quar-
tets. Conversely, bad and ugly quartets do not unambiguously identify false positive
edges. See the text below Cor. 6.3 for more explanation.

Lemma 6.2, neither the root of T1 nor the root of T2 can be labeled by a specia-
tion event. Hence, as a1, b1, c1, a2 reside all in different subtrees below the root
of T1, all edges a1b1, b1c1, c1a2 in G(T1,σ) correspond to false positive orthology
assignments. On the other hand, the vertices b1 and c1 reside within the same
2-colored subtree below the root of T2 and are incident to the same parent in
T2. Therefore one easily checks that there exist reconciliation scenarios where
b1 and c1 are orthologous, hence the edge b1c1 must indeed be contained in
the orthology relation. Similarly, 〈a1b1c1b2〉 and 〈a1b1a3c2〉 are ugly quartets in
G(T1,σ) and G(T2,σ), respectively. By the same argumentation as before, the
edges a1b1, b1c1, and c1b2 are false positives in G(T1,σ). For (T2,σ), however,
there exist reconciliation scenarios, where a3 and c2 are orthologs.

Cor. 5.12, finally, implies that every (B)-RBMG and every (C)-RBMG con-
tains at least one good quartet. In particular, therefore, there is at least one
false positive orthology assignment that can be identified with the help of good
quartets. We shall see below using simulated data that in practice the over-
whelming majority of false positive orthology assignments is already identified
by good quartets.
From a theoretical point of view it is interesting nevertheless that it is pos-

sible to identify even more false positive orthology assignments starting from
Lemma 6.2. We close this section with a brief discussion of this issue. To this
end, we extend the leaf sets LP∗ ,LPs ,LPt and LH∗ ,LHr ,LHs ,LHt that have been
introduced in the Subsections 5.5.4 and 5.5.5 for S-thin 3-RBMGs, to general
3-RBMGs:
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Definition 6.5. Let (G,σ) be a 3-RBMG with vertex set L and colors S =

{r, s, t}, and let (G/S,σ/S) with vertex set L be its S-thin version. We set

LPs := {x | x ∈ L, [x] ∈ LPs }

LPt := {x | x ∈ L, [x] ∈ LPt }

LP∗ := {x | x ∈ L, [x] ∈ LP∗ }

if (G,σ) is of Type (B) and (G/S,σ/S) B-like w.r.t. some induced path P , and
we set

LHr := {x | x ∈ L, [x] ∈ LHr }

LHs := {x | x ∈ L, [x] ∈ LHs }

LHt := {x | x ∈ L, [x] ∈ LHt }

LH∗ := {x | x ∈ L, [x] ∈ LH∗ }

if (G,σ) is of Type (C) and (G/S,σ/S) C-like w.r.t. some hexagon H.

The cases of Type (B) and (C) 3-RBMGs will be treated separately, starting
with Type (B). We first need a technical result:

Lemma 6.8. Let (G,σ) be a connected 3-RBMG of Type (B) with vertex set
L, (G/S,σ/S) its S-thin version with vertex set L, and (T ,σ) a leaf-labeled tree
that explains (G,σ). Moreover, let P := 〈[x̃1][ỹ][z̃][x̃2]〉 for some good quartet
〈x̃1ỹz̃x̃2〉 in ~G(T ,σ), and set v := lcaT (x̃1, x̃2, ỹ, z̃). Then the leaf sets LPs , LPt ,
and LP∗ , where σ(x̃1) = σ(x̃2) = r, σ(ỹ) = s, and σ(z̃) = t, satisfy:

(i) LPt ,LPs ⊆ L(T (v)),

(ii) If LPc ∩L(T (v′)) 6= ∅ for some v′ ∈ child(v) and c ∈ {s, t}, then
(a) LPc ∩L(T (v′)) = ∅, where c ∈ {s, t}, c 6= c,
(b) σ(L(T (v′))) ⊆ σ(LPc ),

(iii) lcaT (a, b) = v for any a ∈ LP∗ , b /∈ LP∗ with ab ∈ E(G).

Proof. Throughout this proof we will often use the fact that xy ∈ E(G) if and
only if [x][y] ∈ E(G/S) for any x, y ∈ L (cf. Lemma 5.4).

Lemma 5.24 implies [x̃1], [ỹ] ∈ L
P
t and [x̃2], [z̃] ∈ L

P
s , thus, by definition, we

have x̃1, ỹ ∈ LPt and x̃2, z̃ ∈ LPs . Moreover, by Lemma 5.35, there exist distinct
children v1, v2 ∈ child(v) such that x̃1, ỹ �T v1 and x̃2, z̃ �T v2. Therefore
ỹz̃ ∈ E(G) implies σ(L(T (v1))) = {r, s}; otherwise there exists a leaf z′ ∈
L(T (v1)) ∩L[t] which implies lcaT (ỹ, z′) ≺T v = lcaT (ỹ, z̃); a contradiction to
ỹz̃ ∈ E(G). Analogously we obtain σ(L(T (v2))) = {r, t}.
(i) By symmetry, it suffices to consider LPt in more detail, analogous arguments
can then be applied to LPs . Let a ∈ LPt , or equivalently [a] ∈ LPt by definition,
and suppose first σ(a) = s. Then Property (B3.b) implies [a][z̃] ∈ E(G/S).
As a consequence of Lemma 5.4 we thus have az̃ ∈ E(G). Hence, ỹz̃ ∈ E(G)
implies lcaT (a, z̃) = lcaT (ỹ, z̃) = v and thus, a �T v. We therefore conclude
LPt ∩ L[s] ⊆ L(T (v)). Now assume σ(a) = r. By Property (B2.b), we either
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have Ns([a]) = ∅ or there exists a vertex y ∈ L[s] such that [y] ∈ L
P
t and

Ns([a]) = {[y]}. In the latter case, since [y] ∈ L
P
t implies y ∈ LPt and, in

addition, it holds LPt ∩L[s] ⊆ L(T (v)), we have y �T v. Moreover, by (B3.b), it
holds [x̃2][y] /∈ E(G/S), hence x̃2y /∈ E(G). As a consequence of the latter and
the fact that [a][y] ∈ E(G/S) implies ay ∈ E(G), it must hold lcaT (a, y) ≺T
lcaT (x̃2, y) �T v and thus, a �T v. Otherwise, if Ns([a]) = ∅, then there must
exist a leaf z ∈ L[t] such that [z] ∈ Nt([a]) due to the connectedness of G/S,
which is implied by the connectedness of G (cf. Lemma 5.4). Since [a] ∈ LPt ,
Properties (B4.a) and (B4.b) immediately imply [z] ∈ L

P
∗ . Then, by (B4.a),

the edge [x̃1][z] must be contained in G/S, thus x̃1z ∈ E(G). Since x̃1, z̃ �T v
by Lemma 5.35, it must thus hold lcaT (x̃1, z) �T lcaT (x̃1, z̃) �T v. Therefore
x̃1z, az ∈ E(G) implies lcaT (a, z) = lcaT (x̃1, z) �T v and thus, a �T v. Hence,
LPt ∩L[r] ⊆ L(T (v)), which finally implies LPt ⊆ L(T (v)).
(ii) By symmetry, it again suffices to consider the case c = t. Let a ∈ LPt ∩
L(T (v′)) for some v′ ∈ child(v). Note that, by (i), such a leaf a and inner
vertex v′ must exist. We need to distinguish the two Cases (1) σ(a) = s and
(2) σ(a) = r.

Consider first Case (1), thus in particular s ∈ σ(L(T (v′))). Then, as
σ(L(T (v2))) = {r, t}, we have v′ 6= v2 and thus, lcaT (a, z̃) = v. Hence,
as [a][z̃] ∈ E(G/S) by Property (B3.b) and therefore, az̃ ∈ E(G), we can
conclude t /∈ σ(L(T (v′))) by analogous arguments as just used for showing
σ(L(T (v1))) = {r, s}. This implies (ii.b). Now assume, for contradiction, that
there exists a leaf x ∈ L(T (v′)) ∩ LPs . Since t /∈ σ(L(T (v′))) and, by defini-
tion, s /∈ σ(LPs ), this leaf x must be of color r. Clearly, either there exists a
leaf y ∈ L[s] such that xy ∈ E(G) or Ns(x) = ∅. In the first case, we have
[x][y] ∈ E(G/S) and thus, by (B2.c), [y] ∈ LP∗ which implies y ∈ LP∗ . In partic-
ular, as s ∈ σ(L(T (v′))) and xy ∈ E(G) implies lcaT (x, y) �T lcaT (x, y′) for
any y′ ∈ L[s], we can conclude y �T v′. Moreover, since [x̃2] ∈ L

P
s , Property

(B3.a) implies [x̃2][y] ∈ E(G/S) and thus, x̃2y ∈ E(G). However, since v′ 6= v2,
we have lcaT (x, y) �T v′ ≺T v = lcaT (x̃2, y); a contradiction to x̃2y ∈ E(G).
We thus conclude Ns(x) = ∅. Hence, as G is connected, there must exist a leaf
z′ of color t such that xz′ ∈ E(G), which implies [x][z′] ∈ E(G/S). By Property
(B2.c), we have [z′] ∈ LPs and therefore, (B4.b) implies Nr([z′]) = {[x]}. Since
t /∈ σ(L(T (v′))), there is a v′′ ∈ child(v) \ {v′} such that z′ �T v′′ ≺T v. From
xz′ ∈ E(G) and lcaT (x, z′) = v, we conclude that r /∈ σ(L(T (v′′))). Moreover,
Lemma 5.9 implies that there exist leaves x′, y′ ∈ L(T (v′)) with σ(x′) = r and
σ(y′) = s such that x′y′ ∈ E(G). Thus, as by assumption Ns(x) = ∅, we in par-
ticular have [x] 6= [x′]. Since r /∈ σ(L(T (v′′))) and t /∈ σ(L(T (v′))), it follows
x′z′ ∈ E(G) and therefore, [x′] ∈ Nr([z′]); a contradiction to Nr([z′]) = {[x]}.
This implies (ii.a).

Now consider Case (2), i.e., σ(a) = r. We first show that σ(L(T (v′))) (
{r, s, t} holds. Assume, for contradiction, that L(T (v′)) contains leaves y ∈ L[s]
and z ∈ L[t]. If v′ 6= v2, this implies lcaT (y, z) ≺T v = lca(y, z̃) and thus, yz̃ /∈
E(G) and in particular [y][z̃] /∈ E(G/S); a contradiction to (B4.b). One anal-
ogously obtains a contradiction for the case v′ 6= v1; therefore σ(L(T (v′))) (
{r, s, t} and we either have σ(L(T (v′))) ⊆ {r, s} or σ(L(T (v′))) ⊆ {r, t}. If
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σ(L(T (v′))) = {r}, then it clearly holds N(x) = N(a) and thus x ∈ LPt for any
x ∈ L(T (v′)), hence (ii.a) and (ii.b) are trivially satisfied. If σ(L(T (v′))) =

{r, s}, then (ii.b) is trivially satisfied. Moreover, by Lemma 5.9, L(T (v′))
contains leaves x′ ∈ L[r] and y′ ∈ L[s] such that x′y′ ∈ E(G). Hence, we
have [x′][y′] ∈ E(G/S) and Property (B4.b) implies [y′][z̃] ∈ E(G/S) and
thus, y′z̃ ∈ E(G). As σ(L(T (v2))) = {r, t} and σ(L(T (v′))) = {r, s}, we
clearly have v′ 6= v2 and thus, lcaT (x′, y′) �T v′ ≺T v = lcaT (x̃2, y′). Hence,
x̃2y
′ /∈ E(G), which implies N([y′]) 6= L

P
s ∪ (L

P
∗ \ {[y′]}) since x̃2 ∈ LPs . There-

fore, by Property (B3.a), we have [y′] /∈ L
P
∗ , implying y′ /∈ LP∗ . We thus

conclude y′ ∈ LPt . Hence, we can apply the argumentation of Case (1) (by
substituting a = y′) in order to infer (ii.a).
Finally, for contradiction, assume σ(L(T (v′))) = {r, t}. In particular, this im-
plies v1 6= v′. Clearly, either there exists a leaf y ∈ L[s] such that ay ∈ E(G)
(and thus [a][y] ∈ E(G/S)) or Ns(a) = ∅. In the latter case, since G is con-
nected, there must be a leaf z ∈ L[t] such that az ∈ E(G) and [a][z] ∈ E(G/S).
In particular, as σ(L(T (v′))) = {r, t}, this implies z �T v′. By (B2.b), we have
[z] ∈ LP∗ and thus, by (B4.a), it follows [x̃1][z] ∈ E(G/S) implying x̃1z ∈ E(G);
a contradiction since lcaT (z, a) �T v′ ≺T v = lcaT (z, x̃1). Hence, there must
exist a leaf y ∈ L[s] such that ay ∈ E(G). By (B2.b), we have Ns([a]) = {[y]}
and [y] ∈ L

P
t . Then (B3.b) implies Nr([y]) ⊂ L

P
t . It is easy to see that

this implies Nr(y) ⊂ LPt . Since s /∈ σ(L(T (v′))), there must exist a vertex
v′′ ∈ child(v) \ {v′} such that y �T v′′ ≺T v = lcaT (a, y). One easily checks
that ay ∈ E(G) implies r /∈ σ(L(T (v′′))). Together with σ(L(T (v2))) = {r, t},
this implies lcaT (x̃2, y) = v �T lcaT (x′′, y) and lcaT (x̃2, y) = v �T lcaT (x̃2, y′)
for any x′′ ∈ L[r] and y′ ∈ L[s]. Thus, x̃2y ∈ E(G), which, as x̃2 ∈ LPs , con-
tradicts Nr(y) ⊂ LPt . We therefore conclude that σ(L(T (v′))) = {r, t} is not
possible, which finally completes the proof.
(iii) Since, by definition, V (G) is partitioned into LPs , LPt , and LP∗ , the leaf
b must be either contained in LPt or LPs . Suppose first b ∈ LPt . Since
[a][b] ∈ E(G/S) follows from ab ∈ E(G), Properties (B2.a), (B3.a), and (B4.a)
immediately imply σ(a) = t. Moreover, by (i), there exists some v′ ∈ child(v)
such that b �T v′ ≺T v, and, by (ii.b), σ(L(T (v′))) ⊆ σ(LPt ) = {r, s}. Hence,
as σ(a) = t, we can conclude lcaT (a, b) �T v. Similarly, σ(L(T (v′))) ⊆ {r, s}
implies lcaT (b, z̃) = v, thus it must hold lcaT (a, b) �T lcaT (b, z̃) = v because
of ab ∈ E(G). In summary, this implies lcaT (a, b) = v. Analogous arguments
can be applied to the case b ∈ LPs .

Lemma 6.8 can now be used to identify a potentially very large set of edges
that cannot be present in the orthology graph Θ.

Theorem 6.2. Let T and S be planted trees, σ : L(T ) → L(S) a surjective
map, and µ a reconciliation map from (T ,σ) to S determining an event labeling
tT on T . Moreover, let the leaf sets LPt , LPs , and LP∗ be defined w.r.t. P , which
is the S-thin version of some good quartet of the form (r, s, t, r) in ( ~G,σ) with
color set S = {r, s, t}. Then tT (lcaT (a, b)) = � for any edge ab ∈ E(G) such
that a ∈ LP? and b /∈ LP? , where ? ∈ {s, t, ∗}.
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Proof. Let P = 〈[x1][y][z][x2]〉, i.e., in particular σ(x1) = σ(x2) = r, σ(y) = s,
and σ(z) = t, and let v := lcaT (x1,x2, y, z). Then, by Lemma 5.35, there exist
distinct v1, v2 ∈ child(v) such that x1, y �T v1 and x2, z �T v2. As [x1], [y] ∈
L
P
t and [x2], [z] ∈ L

P
s by Lemma 5.24 and thus, by definition, x1, y ∈ LPt and

x2, z ∈ LPs , Lemma 6.8(ii.b) in particular implies σ(L(T (v1))) = {r, s} and
σ(L(T (v2))) = {r, t}.
Now, if a ∈ LPt , b ∈ LPs , it follows from Lemma 6.8(ii.a) that lcaT (a, b) = v.
On the other hand, if a ∈ LP∗ and either b ∈ LPs or b ∈ LPt , then we also have
lcaT (a, b) = v by Lemma 6.8(iii). Since σ(L(T (v1)))∩ σ(L(T (v2))) = {r} 6= ∅,
we conclude from Lemma 6.2 that µ(v) /∈ V 0(S), which implies tT (v) 6=  .
Therefore we have tT (v) = �.

A similar procedure will be applied to Type (C) 3-RBMGs, again starting with
an analogous technical result:

Lemma 6.9. Let (G,σ) be a connected 3-RBMG of Type (C) with vertex
set L, (G/S,σ/S) its S-thin version with vertex set L, and (T ,σ) a leaf-
labeled tree that explains (G,σ). Moreover, let H := 〈[x̃1][ỹ1][z̃1][x̃2][ỹ2][z̃2]〉
for some induced hexagon 〈x̃1ỹ1z̃1x̃2ỹ2z̃2〉 in ~G(T ,σ) with |Nt([x̃1])| > 1 and
σ(x̃1) = σ(x̃2) = r, σ(ỹ1) = σ(ỹ2) = s, and σ(z̃1) = σ(z̃2) = t, and set
v := lcaT (x̃1, x̃2, ỹ1, ỹ2, z̃1, z̃2). Then the leaf sets LHr , LHs , LHt , and LH∗ satisfy:

(i) LHr ,LHs ,LHt ⊆ L(T (v)),

(ii) If LHc ∩L(T (v′)) 6= ∅ for some v′ ∈ child(v) and c ∈ {r, s, t}, then
(a) LHc ∩L(T (v′)) = ∅, where c ∈ {r, s, t}, c 6= c,
(b) σ(L(T (v′))) ⊆ σ(LHc ),

(iii) lcaT (a, b) = v for any a ∈ LH∗ , b /∈ LH∗ with ab ∈ E(G).

Proof. The proof of Lemma 6.9 closely follows the arguments leading to
Lemma 6.8. In particular, we again use the fact that xy ∈ E(G) if and only if
[x][y] ∈ E(G/S) for any x, y ∈ L (cf. Lemma 5.4).
By Lemma 5.26, we have [x̃1], [ỹ1] ∈ L

H
t , [x̃2], [z̃1] ∈ L

H
s , and [ỹ2], [z̃2] ∈ L

H
r ,

hence x̃1, ỹ1 ∈ LHt , x̃2, z̃1 ∈ LHs , and ỹ2, z̃2 ∈ LHr . Moreover, by Lemma 5.38(iii),
there exist distinct children v1, v2, v3 ∈ child(v) such that x̃1, ỹ1 �T v1,
x̃2, z̃2 �T v2, and ỹ2, z̃2 �T v3. In particular, since ỹ1z̃1 ∈ E(G), it must
hold σ(L(T (v1))) = {r, s} as otherwise there exists a leaf z′ ∈ L(T (v1)) ∩L[t]
which implies lcaT (ỹ1, z′) ≺T v = lcaT (ỹ1, z̃1); a contradiction to ỹ1z̃1 ∈ E(G).
One analogously checks σ(L(T (v2))) = {r, t} and σ(L(T (v3))) = {s, t}.
(i) By symmetry, it suffices to consider LHt in more detail, analogous arguments
can then be applied to LHs and LHr . Let a ∈ LHt , or equivalently [a] ∈ LHt , and
suppose first σ(a) = r. Then Property (C2.b) implies [a][z̃2] ∈ E(G/S) and
thus, az̃2 ∈ E(G). As x̃1z̃2 ∈ E(G), we thus have lcaT (a, z̃2) = lcaT (x̃1, z̃2) =

v, hence a �T v. We therefore conclude LHt ∩L[r] ⊆ L(T (v)). Analogously, we
obtain a �T v for σ(a) = s as a consequence of Property (C3.b). In summary,
we obtain LHt ⊆ L(T (v)).
(ii) Again invoking symmetry, it suffices to consider the case c = t. Let a ∈ LHt ∩
L(T (v′)) for some v′ ∈ child(v). First, let σ(a) = r. Then, as r /∈ σ(L(T (v3))),
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we have v′ 6= v3 and thus, lcaT (a, z̃2) = v. Hence, as [a][z̃2] ∈ E(G/S) by
Property (C2.b) and thus az̃2 ∈ E(G), we can conclude t /∈ σ(L(T (v′))) using
the same line of reasoning used above for showing σ(L(T (v1))) = {r, s}. This
implies (ii.b). Now assume, for contradiction, that there exists either (1) a leaf
x ∈ L(T (v′)) ∩LHs or (2) a leaf y ∈ L(T (v′)) ∩LHr .
In Case (1), since t /∈ σ(L(T (v′))) and, by definition, s /∈ σ(LHs ), this leaf x
must be of color r. In particular, since LHs and LHt are disjoint, we have x 6= a.
Hence, it must hold s ∈ σ(L(T (v′))) as otherwise N(x) = N(a); contradicting
a ∈ LHt , x ∈ LHs , and LHs ∩LHt = ∅. This immediately implies v′ 6= v2 because
s /∈ σ(L(T (v2))). By Property (C2.c), as [ỹ2] ∈ L

H
r [s], we have [x][ỹ2] ∈

E(G/S) and thus, xỹ2 ∈ E(G). However, since s ∈ σ(L(T (v′))), there exists a
leaf y′ �T v′ with σ(y′) = s, which implies lcaT (x, y′) �T v′ ≺T v = lcaT (x, ỹ2)

because of ỹ2 �T v3 6= v′; a contradiction to xỹ2 ∈ E(G).
Hence, assume Case (2), i.e., there exists y ∈ L(T (v′)) ∩ LHr . Since t /∈
σ(L(T (v′))) and, by definition, r /∈ σ(LHr ), the leaf y must be of color s, which
in particular implies v′ 6= v2. As t /∈ σ(L(T (v′))) and s /∈ σ(L(T (v2))), one eas-
ily checks that yz̃1 ∈ E(G). However, as y ∈ LHr and thus [y] ∈ LHr , Property
(C3.c) implies [z̃1] ∈ L

H
r , hence z̃1 ∈ LHr ; a contradiction since z̃1 ∈ LHs .

In summary, we conclude that LHc ∩L(T (v′)) = ∅, where c ∈ {r, s}, hence (ii.a)
is satisfied for c = t. Analogous arguments can be used to demonstrate that
properties (ii.a) and (ii.b) are also satisfied for σ(a) = s.
(iii) Since, by definition, V (G) is partitioned into LHr , LHs , LHt , and LH∗ , the leaf
bmust be either contained in LHr , LHs , or LHt . Suppose first b ∈ LHt . Then, since
[a][b] ∈ E(G/S) follows from ab ∈ E(G), Properties (C2.a), (C3.a), and (C4.a)
immediately imply σ(a) = t. Moreover, by (i), there exists some v′ ∈ child(v)
such that b �T v′ ≺T v and, by (ii.b), σ(L(T (v′))) ⊆ σ(LHt ) = {r, s}. Hence,
as σ(a) = t, we can conclude lcaT (a, b) �T v. Similarly, σ(L(T (v′))) ⊆ {r, s}
implies lcaT (b, z̃1) = v, thus it must hold lcaT (a, b) �T lcaT (b, z̃1) = v because
of ab ∈ E(G). In summary, this implies lcaT (a, b) = v. Analogous arguments
can be applied to the cases b ∈ LHs and b ∈ LHr .

Similar to Type (B) 3-RBMGs, we use Lemma 6.9 to finally identify false
positive edges.

Theorem 6.3. Let T and S be planted trees, σ : L(T ) → L(S) a surjective
map, and µ a reconciliation map from (T ,σ) to S determining an event labeling
tT on T . Moreover, let the leaf sets LHr , LHs , LHt , and LH∗ be defined w.r.t. H,
which is the S-thin version of some hexagon H ′ = 〈x1y1z1x2y2z2〉 of the form
(r, s, t, r, s, t) and |Nt(x1) > 1| in ( ~G,σ) with color set S = {r, s, t}. Then
tT (lcaT (a, b)) = � for any edge ab ∈ E(G) such that a ∈ LH? and b /∈ LH? ,
where ? ∈ {r, s, t, ∗}.

Proof. Let v := lcaT (x1,x2, y1, y2, z1, z2). Again, we have [x1], [y1] ∈ L
H
t ,

[x2], [z1] ∈ L
H
s , and [y2], [z2] ∈ L

H
r by Lemma 5.26 and thus, x1, y1 ∈ LHt ,

x2, z1 ∈ LHs , y2, z2 ∈ LHr . Moreover, by Lemma 5.38(iii), there exist distinct
v1, v2, v3 ∈ child(v) such that x1, y1 �T v1, x2, z1 �T v2, and y2, z2 �T v3. As
x1, y1 ∈ LHt , x2, z1 ∈ LHs , y2, z2 ∈ LHr , Lemma 6.9(ii.b) in particular implies
σ(L(T (v1))) = {r, s}, σ(L(T (v2))) = {r, t}, and σ(L(T (v3))) = {s, t}.
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Now, if a ∈ LHc , b ∈ LHc , where c = {r, s, t} and c ∈ {r, s, t}, c 6= c, it follows
from Lemma 6.9(ii.a) that lcaT (a, b) = v. On the other hand, if a ∈ LH∗
and b ∈ LHc , then we also have lcaT (a, b) = v by Lemma 6.9(iii). Since
σ(L(T (vi)))∩σ(L(T (vj))) 6= ∅ for 1 ≤ i < j ≤ 3, we conclude from Lemma 6.2
that µ(v) /∈ V 0(S), which implies tT (v) 6=  . Therefore we have tT (v) = �.

These results show that if x and y are located in two distinct leaf sets LPs ,
LPt , LP∗ in a connected component of Type (B) of an induced 3-RBMG, then
tT (lca(x, y)) = �. Similarly, edges connecting two vertices of the leaf sets LHr ,
LHs , LHt , LH∗ in a connected component of Type (C) of an induced 3-RBMG
cannot belong to orthologs. However, the simulation study in the following
section suggests that such cases that are not covered already by good quartets
seem to be exceedingly rare and thus, of little practical relevance.

6.5 simulations

Although the edges in an RBMG cannot identify orthologous pairs with cer-
tainty (as a consequence of Lemma 6.3), there is a close resemblance in prac-
tice, i.e., for empirically determined scenarios. In order to explore this con-
nection in more detail, we consider simulated evolutionary scenarios (T ,S,µ).
These uniquely determine both the (reciprocal) best match graph ~G(T ,σ) and
G(T ,σ), resp., and the orthology graph Θ, thus allowing a direct comparison
of these graphs. Since only scenarios (T ,S,µ) will be analyzed here, simula-
tions tools such as ALF [42] that are designed to simulate sequence data, are
not used in these simulations. Preliminary simulations have been performed in
the context of a Bachelor’s thesis [151].

6.5.1 Method

In order to simulate evolutionary scenarios (T ,S,µ), a stepwise procedure is
employed:

(1) Construction of the species tree S. The tree S is regarded as ul-
trametric, i.e., its branch lengths are interpreted as real-time. Given a
user-defined number of species N , the species tree S is generated under
the innovations model as described by Keller-Schmidt and Klemm [126].
The binary trees generated by this model have similar depth and imbal-
ances as those of real phylogenetic trees from databases.

(2) Construction of the true gene tree T̃ . Traversing the species tree
S top-down, one gene tree T̃ is generated with user-defined rates rD for
duplications, rL for gene losses, and rH for horizontal transfer events. The
number of events along each edge of the species tree, of each event type, is
drawn from a Poisson distribution with parameter λ = `re, where ` is the
length of the edge e and re is the rate of the event type. Duplication and
horizontal transfer events duplicate an active lineage and occur only inside
edges of S. For duplications, both offspring lineages remain inside the
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same edge of the species tree as their parental gene. In contrast, one of the
two offspring lineages of an HGT event is transferred to another, randomly
selected, branch of the species tree at the same time. At speciation nodes
all branches of the gene tree are copied into each offspring. Loss events
terminate branches of T̃ . In our setting, loss events may occur only within
edges of the species tree that harbor more than one branch of the gene
tree, which ensures that every leaf of S is reached by at least one branch
of the gene tree T̃ . All vertices v of T̃ are labeled with their event type
tT (v), in particular, there are different leaf labels for extant genes and
lost genes. The simulation explicitly records the reconciliation map, i.e.,
the assignment of each vertex of T̃ to a vertex or edge of S.

(3) Construction of the observable gene tree T from T̃ . The leaves of
T̃ are either observable extant genes or unobservable losses. As described
by Hernandez-Rosales et al. [105], T̃ is pruned in bottom-up order by
removing all loss events and omitting all inner vertices with only a single
remaining child.

Using Steps (1) and (2), the simulation consists of 10,000 scenarios for species
trees with 3 to 100 species (=leaves) and additional 4,000 scenarios for species
trees with 3 to 50 leaves, drawn from a uniform distribution. For each of these
species trees, exactly one gene tree was simulated as described above. The rate
parameters have been varied between 0.65 and 0.99 in steps of 0.01 for duplica-
tion and loss events. For HGTs, either a rate of 0 or a rate in the range between
0.1 and 0.25, again in steps of 0.01, was used. A detailed list of all simulated
scenarios can be found in Geiß et al. [74, Supplemental Material].
For each of the 14,000 true gene trees T̃ the total number Sn of speciations, Ln
of losses, Dn of duplications, and Hn of HGTs was determined. Summary statis-
tics of the simulated scenarios can be found in Geiß et al. [74, Supplemental
Material].
From each true gene tree T̃ the observable gene tree T was extracted as

described in Step (3). For all retained vertices, the event labeling tT and the
reconciliation map µ remain unchanged. Since lcaT (x, y) = lcaT̃ (x, y) for all
extant genes x, y ∈ L(T ), it suffices to consider T . The leaf coloring map
σ : L(T ) → L(S) is obtained from its definition, i.e., setting σ(v) = µ(v) for
all v ∈ L(T ). The orthology relation and (reciprocal) best match relation can
now be extracted from each scenario.
The orthology relation Θ(T , tT ) is easily constructed from the event-labeled

gene tree (T , tT ) by a simple recursive construction. More precisely, for each
v ∈ T̃ we define a graph Θ(v) recursively: if v is a leaf, then Θ(v) is the K1
with vertex set {v} whenever v is an extant gene and Θ(v) = ∅, i.e., the empty
graph, if v is a loss event. For inner vertices we set

Θ(v) =


O

u∈child(v)
Θ(u) if t(v) =  

⋃
u∈child(v)

Θ(u) otherwise
(20)
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Since H O ∅ = H ∪ ∅ = H, there is no contribution of the leaves corresponding
to a loss event. Thus the graph Θ(v) can be computed in exactly the same
manner from the observable gene tree T and the true gene tree T̃ . Hence,
Θ(ρT ) = Θ(ρT̃ ) =: Θ is the orthology graph of the scenario. Note that the
planted root 0T does not appear as the last common ancestor of any two leaves
in L, hence it suffices to consider the root ρT . Although the next result is an
immediate consequence of the definition of cographs and their corresponding
cotrees [38], we give here an alternative short proof.

Lemma 6.10. Let (T , tT ,σ) be an event-labeled and leaf-labeled tree. Then
xy ∈ E(Θ(v)) if and only if tT (lcaT (x, y)) =  .

Proof. We proceed by induction. The assertion is trivially true if v is a leaf,
in which case x = y = v and thus, tT (lcaT (x, y)) = �; indeed, xy /∈ E(Θ(v))

since Θ is loop-free by definition. Now suppose the assertion holds for all
u ≺T v and consider two vertices x, y ∈ L(T (v)). We consider two cases: (i)
If lcaT (x, y) ≺T v, then there is a child u ∈ child(v) such that x, y ∈ L(T (u))
and thus, xy ∈ E(Θ(v)) if and only if xy ∈ E(Θ(u)), which by induction
hypothesis is true if and only if tT (lca(x, y)) =  . (ii) If lcaT (x, y) = v, then
there are two distinct children u1,u2 ∈ child(v) with x �T u1 and y �T u2.
The definition of the disjoint union and the join of graphs, resp., implies that
xy ∈ E(Θ(v)) if and only the join is used to combine Θ(u1) and Θ(u2), i.e., if
and only if tT (lca(x, y)) = tT (v) =  .

We already argued in Section 6.3 that, in the absence of losses and HGT
events, every duplication event u in a cotree (TGhc, thc,σ) explaining some RBMG
(G,σ) satisfies σ(L(TGhc(v

′))) = σ(L(TGhc(v
′′))) for any v′, v′′ ∈ child(u) in

the absence of gene loss and HGT. Similarly, if u is a speciation event, then
σ(L(TGhc(v

′))) ∩ σ(L(TGhc(v
′′))) = ∅ for any v′, v′′ ∈ child(u). In particular, we

discussed that the discriminating cotree (T̂Ghc, t̂hc,σ) still satisfies these proper-
ties and explains (G,σ). Hence, together with Obs. 6.2, Lemma 6.10 immedi-
ately yields

Observation 6.4. In the absence of losses and HGT, it holds (G,σ) =

(Θ(TGhc, thc),σ) for any hc-cotree (TGhc, thc,σ) explaining a co-RBMG (G,σ).

By construction, Θ(u) is an induced subgraph of Θ(v) whenever u �T v. It
is thus sufficient to store the binary |L| × |L| adjacency matrix of Θ. Traversing
T in postorder, one sets Θxy = 1, i.e., xy ∈ E(Θ), for all xy with x ∈ L(T (u1))

and y ∈ L(T (u2)) where u1 and u2 are distinct children of v, if and only if v is
a speciation vertex. Since the pair x, y is considered exactly once, namely when
v = lca(x, y) is encountered in the traversal of T , the total effort is O(|L|2).

The computation of the BMG ~G(T ,σ) proceeds as follows: first every inner
vertex v is associated with the lists Lr(v) := {x ∈ L(T (v))|σ(x) = r} of leaves
below v with color r. We have Lr(v) =

⋃
u∈child(v) Lr(u) for inner vertices,

while leaves are initialized with Lr(v) = {v} if σ(v) = r, and Lr(v) = ∅ if
σ(v) 6= r. Again this can be achieved in not more than quadratic time. Now
define C¬s(v) := {u ∈ child(v)|Ls(u) = ∅} and Cs(v) := {u ∈ child(v)|Ls(u) 6=
∅}.
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Lemma 6.11. Let u1 and u2 be two distinct children of some inner vertex
v of the leaf-colored tree (T ,σ) and let x ∈ L(T (u1)) with σ(x) = r and
y ∈ L(T (u2)) with σ(y) = s 6= r. Then (x, y) is a best match in (T ,σ) if and
only if

u1 ∈ Cr(v) ∩C¬s(v) and u2 ∈ Cs(v).

Proof. If Ls(u1) = ∅, then there is no best match of color s for x in L(T (u1)),
i.e., any best match σ(y′) = s satisfies v � lca(x, y′). From lca(x, y) = v we
see that (x, y) is indeed a best match. On the other hand, if Ls(u1) 6= ∅, then
there is a leaf y′ ∈ Ls(u1) with lca(x, y′) � u1 ≺ v = lca(x, y) and thus, y is
not a best match for x.

Algorithm 6 Construction of ~G(T ,σ)
Require: Leaf-colored tree (T ,σ)
for all leaves v of T , colors r do
L(T (v)) = {v}
if σ(v) = r then
`vr = 1

else
`vr = 0

for all inner vertices v of T in postorder do
for all u1,u2 ∈ child(v), u1 6= u2 do
for all x ∈ L(T (u1)) and y ∈ L(T (u2)) do
(x, y) ∈ ~G(T ,σ) if `u1,σ(y) = 0

L(T (v)) =
⋃
u∈child(v) L(T (u))

for all u ∈ child(v), colors r ∈ S do
`vr = 1 if `ur = 1

This observation yields the very simple way to construct ~G(T ,σ). Algo-
rithm 6 iterates over all pairs of vertices x, y ∈ L such that each pair is visited
exactly once by considering for every interior vertex v exactly the pairs that
are members of two distinct subtrees rooted at children u1 and u2 of v. Since
y ∈ Lσ(y)(u2) and x ∈ Lσ(x)(u1) is guaranteed by construction, (x, y) is a best
match if and only if Lσ(y)(u1) = ∅ by Lemma 6.11. Using the precomputed
binary variable `vr with value 1 if Lr(v) 6= ∅ and `vr = 0 otherwise, this can be
done in constant time O(|L|). By traversing T in postorder, finally, the lists of
leaves L(v) can be computed on the fly. Since no subtree is revisited, there is
no need to retain the L(T (u)) for the children, i.e., for each vertex v, the lists
of its children can simply be concatenated. Similarly, the variables `vr can be
obtained while traversing T using the fact that `vr = 1 if and only if `ur = 1
for at least one of its children. Hence, Algorithm 6 runs in time with O(|L| |S|)
memory using a single postorder traversal of T .
The RBMG G(T ,σ) is easily obtained from the BMG ~G(T ,σ) by extracting
its symmetric part. Clearly, the effort for this step is also bounded by O(|L|2).
Note, finally, that given (T , tT ,σ), both the orthology graph Θ and the BMG
G(T ,σ) can be found in O(|L|2) time using Tarjan’s off-line lowest common
ancestors algorithm [219, 70] to first tabulate all lcaT (x, y) in quadratic time.
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We have seen in Section 6.4 that at least some false positive edges are iden-
tified by good quartets. A convenient way of listing all good quartets Q in
some BMG ( ~G,σ) makes use of the degree sequence of ~G, that is, the list
α = ((α+

x ,α−x )|x ∈ V ( ~G)) of pairs (α+
x ,α−x ), where α+

x and α−x are the out-
and the in-degree of the vertex x ∈ V ( ~G), and the list is ordered in positive
lexicographical order. One easily checks that a good quartet contains neither
a 2-switch nor an induced 3-cycle, hence Q is uniquely defined by its degree
sequence ((2, 1), (2, 3), (2, 3), (2, 1)) as a consequence of [35, Thm. 1]. Regard-
ing the coloring, it suffices to check that the two endpoints, that is, the ver-
tices with indegree 1, have the same color σ(u) = σ(x). This already implies
σ(v),σ(w) 6= σ(u) = σ(x). Since there is an edge between v and w, we also
have σ(v) 6= σ(w), i.e., the colors are determined up to a permutation of colors.
The false positive edge is the one connecting the two vertices with outdegree 3.

For each reconciliation scenario (T ,S,µ), all good quartets in the BMG ( ~G,σ)
are identified and the middle edge of the corresponding P4 is then deleted from
the RBMG (G,σ). The resulting graph will be referred to as (G4,σ4).

6.5.2 Duplication/Loss Scenarios

In order to assess the practical relevance of co-RBMGs, the abundance of non-
cograph components in the simulated RBMGs has been measured. More pre-
cisely, for each simulated RBMG, the connected components of its restrictions
to any three distinct colors have been determined and it has been tested whether
these components are cographs, graphs of Type (B), or graphs of Type (C). In
order to identify these graph types, algorithms of [108] have been applied to
first identify an induced P4 corresponding to a good quartet. If one exists, it
has been checked for the existence of an induced P5 and then tested whether
its endpoints are connected, thus forming a hexagon characteristic for the a
Type (C) graph. Otherwise, the presence of the P4 implies Type (B), while the
absence of induced P4s guarantees that the component is a cograph.
As a direct implication of the following result, none of these connected compo-
nents can be expected to be of Type (C).

Lemma 6.12. Let (G,σ) be a connected 3-RBMG containing the induced C6
〈x1y1z1x2y2z2〉 of the form (r, s, t, r, s, t) for distinct colors r, s, and t, let (T ,σ)
be a tree explaining (G,σ), and set v := lcaT (x1,x2, y1, y2, z1, z2). Then there
exist distinct v1, v2, v3 ∈ child(v) such that either x1, y1 �T v1, x2, z1 �T v2,
y2, z2 �T v3 or y1, z1 �T v1, x2, y2 �T v2, x1, z2 �T v3. In particular, T is not
binary.

Proof. Note that it suffices to show the first statement since this, in particular,
implies that v has more than two children, thus T cannot be binary.
If |V (G)| > 6, then, due to the connectedness of G, at least one of the six
vertices in the induced C6 is adjacent to more than one vertex of one of the
colors r, s, t, hence the first statement immediately follows from Lemma 5.38(iii).
Now consider the special case |V (G)| = 6. By Cor. 5.12, ~G(T ,σ) contains a
good quartet. W.l.o.g. let 〈x1y1z1x2〉 be a good quartet, thus (x1, z1), (x2, y1) ∈
E( ~G) and (z1,x1), (y1,x2) /∈ E( ~G). This, in particular, implies lcaT (x2, z1) ≺T
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Fig. 34. Relative abundance η = B
B+A of (B)-RBMGs in the simulation data. Panel

(A) shows the dependence on the number of edges in the RBMG in every simulated
scenario, and its average depicted by the line in darker blue. Scatter plots (B) show
the dependence of η on the number of duplications and losses, and HGTs and losses,
respectively.

lcaT (x1, z1), thus there are distinct children v1, v2 ∈ child(v) such that x1 �T
v1 and x2, z1 �T v2. Moreover, as x1y1 ∈ E(G) and (y1,x2) /∈ E( ~G), we
have lcaT (x1, y1) ≺T lcaT (x2, y1), hence y1 �T v1. Now consider y2. Since
x1y2 /∈ E(G) and x2y2 ∈ E(G), it must hold lcaT (x2, y2) �T lcaT (x1, y2),
hence y2 /∈ L(T (v1)). Assume, for contradiction, that y2 �T v2. Then, as
y2z2 ∈ E(G) and lcaT (y2, z1) �T v2, we clearly have z2 �T v2. However, this
implies lcaT (x2, z2) ≺T lcaT (x1, z2), contradicting x1z2 ∈ E(G). We therefore
conclude that there must exist a vertex v3 ∈ child(v) \ {v1, v2} such that y2 �T
v3. One easily checks that this implies z2 �T v3, which completes the proof.

In particular, therefore, we have

Corollary 6.4. If (T ,σ) is a binary leaf-labeled tree, then G(T ,σ) does not
contain a connected component of Type (C).

Following our expectations, not a single Type (C) component has been en-
countered in 14,000 simulated scenarios. Although events that generate more
than two offspring lineages are logically possible in real data, most multifur-
cation in phylogenetic trees are considered to be “soft polytomies”, arising
from insufficient data. Various biologically appropriate approaches have been
proposed to obtain fully resolved, binary trees from trees containing soft poly-
tomies [187, 136, 197]. Type (C) 3-RBMGs thus should be very unlikely under
biologically plausible assumptions on the model of evolution. Here, only the
abundance of Type (B) components relative to all Type (A) and Type (B) com-
ponents is considered. Their ratio is denoted by η. The results are summarized
in Fig. 34. It turns out that η is usually below 20% and increases with the
number of loss and HGT events. More precisely, 83.47% of the 14,000 scenar-
ios have at least one Type (B) component and 16.53% do not have Type (B)
components at all. Among all 3-colored connected components taken from the
restrictions to any three colors, 94.41% are of Type (A) and 5.59% are of Type
(B).

A graph G is called P4-sparse if every induced subgraph on five vertices con-
tains at most one induced P4 [117]. The interest in P4-sparse graphs derives
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(A)
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Fig. 35. Top: Among the 14,000 simulated scenarios a majority of 79.12% of the (not
necessarily S-thin) 3-colored Type (B) components are not P4-sparse. For the corre-
sponding S-version of those 3-colored components only 31.32% are not P4-sparse while
68.68% are P4-sparse. Below: One of the simulated 3-colored Type (B) components
(G,σ), which is not S-thin, and its corresponding S-thin version (G/S,σ/S).

from the fact that the cograph editing problem is solvable in linear time from
P4-sparse graphs [150]. It is of immediate practical interest, therefore, to deter-
mine the abundance of P4-sparse RBMGs that are not cographs. Among the
14,000 simulated scenarios, it has been found that about 20.9% of the 3-colored
Type (B) components are P4-sparse, while the majority contains “overlapping”
P4s. Next, the corresponding S-thin graphs have been considered. Somewhat
surprisingly, this yields a reversed situation, where more than two thirds of the
S-thin 3-colored Type (B) components are now P4-sparse, while only a minority
of 31.32% is not P4-sparse. An example of an undirected colored graph (G,σ)
and its corresponding S-thin version (G/S,σ/S), which has been found during
these simluations, is shown in Panel (B) of Fig. 35.
The next step was an investigation of the relationship of the RBMG G(T ,σ)

and the orthology graph Θ (see Fig. 36). It has been empirically confirmed
that E(Θ) ⊆ E(G(T ,σ)) in the absence of HGT (not shown). Also following
our expectations, the fraction |E(G(T ,σ)) \E(Θ)|/|E(G(T ,σ))| of false pos-
itive orthology predictions in an RBMG is small as long as duplications and
losses remain moderate (l.h.s. panel in Fig. 36). Most of the false positive or-
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Fig. 36. Fraction of non-orthology edges in the reciprocal best match graph (l.h.s.).
The x-axis, resp., y-axis indicate the total number of duplications, resp., losses in
the simulated scenarios. Most of the false positive orthology assignments in the l.h.s.
panel are removed by deleting the middle edge of good quartets (r.h.s. panel). White
background indicates no data.

thology calls are associated with large numbers of losses for a given number of
duplication.
It finally turns out that good quartets eliminate nearly all false positive edges

from the RBMG and leave a nearly perfect orthology graph (r.h.s. panel in Fig.
36). As we have seen so far, reciprocal best matches indeed form an excellent
approximation of orthology in Duplication/Loss (DL) scenarios. In particular,
the good quartets identify nearly all false positive edges, making it easy to
remove the few remaining P4s using a generic cograph editing algorithm [150].

6.5.3 Evolutionary Scenarios with Horizontal Gene Transfer

The benign results above beg the question how robust they are under HGT.
Gene family histories with HGT have been a topic of intense study in recent
years [56, 224, 18, 173]. Following the so-called DTL-scenarios as proposed e.g.
by Tofigh et al. [224], Bansal et al. [18], we relax the notion of reconciliation
maps since ancestry is no longer preserved. More precisely, we replace Axiom
(R2) by

(R2w) Weak Ancestor Preservation.
If x ≺T y, then either µ(x) �S µ(y) or µ(x) and µ(y) are incomparable
w.r.t. ≺S .

and add the following constraints

(R3.iii) Addition to the Speciation Constraint.
If µ(x) ∈W 0, then µ(v) �T µ(x) for all v ∈ child(x).

(R4) HGT Constraint.
If x has a child y such that µ(x) and µ(y) are incomparable, then x also
has a child y′ with µ(y′) �S µ(x).
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Fig. 37. A gene tree (T , tT ,λ,σ)
reconciled with a species tree S.
Here, we have two transfer edges
uv and vb2 with tT (u) = tT (v) =
4. For the two children w and
v of u it holds σ(L(T (w))) ∩
σ(L(T (v))) 6= ∅, a property that
is shared with duplication ver-
tices. For the two children b2
and c1 of v it holds σ(L(T (b2)))∩
σ(L(T (c1))) = ∅, a property
that is shared with speciation ver-
tices. In this example, c1 and c2
are xeno-orthologs and the pairs
(c1, c2), (c2, c1) will be excluded
from the resulting orthology rela-
tion.

Property (R2w) equivalently states that, if x ≺T y, then we must not have
µ(y) ≺S µ(x), which would invert the temporal order. Property (R3.iii) (which
follows from (R2) but not from (R2w)) ensures that the children of speciation
events are still mapped to positions that are comparable to the image of the
speciation node. Condition (R4), finally, requires that every horizontal transfer
event also has a vertically inherited offspring. Note that Condition (R4) is
void if (R2) holds. In summary the Axioms (R0), (R1), (R2w), (R3.i), (R3.ii),
(R3.iii), and (R4) are a proper generalization of Def. 6.1. However, these axioms
are not sufficient to ensure time consistency (see [173] for details). This choice of
axioms also rules out some scenarios that may appear in reality (or simulations)
but which are not observable when only evolutionary divergence is available as
measurement. For example, Condition (R3.ii) excludes scenarios in which HGT
events have no surviving vertically inherited offspring.
Furthermore, the event labeling map tT can be extended to include HGT as

an additional event type denoted by the symbol 4. We define tT : V (T ) →
{},�, ,�,4} such that tT (u) = 4 if and only if u has a child v such that µ(u)
and µ(v) are incomparable. Since the offspring lineages of an HGT event are
not equivalent, it is useful to introduce an edge labeling λ : E(T )→ {0, 1} such
that λ(uv) = 1 if µ(u) and µ(v) are incomparable w.r.t. ≺S , i.e., uv corresponds
to a transfer edge. This edge labeling will be investigated in detail in Chapter 8
as the basis of Fitch’s xenology relation. Alternatively, the asymmetry can be
handled by enforcing an ordering of the vertices, see [100].
Evolutionary scenarios with horizontal transfer may lead to a situation where

two genes x, y in the same species, i.e., with σ(x) = σ(y), derive from a specia-
tion, i.e., lcaT (x, y) =  . This is the case when the two lineages underwent an
HGT event that transferred a copy back into the lineage in which the other gene
has been vertically transmitted. We call such genes xeno-orthologs and exclude
them from the orthology relation, see Fig. 37. This choice is motivated (1) by
the fact that, by definition, genes of the same species cannot be recognized
as reciprocal best matches, and (2) from a biological perspective they behave
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Fig. 38. Scenarios with four genes, three species, and a single HGT event. The
BMG is shown for each scenario. The extra dashed arrows in the BMG represent true
orthology relations that are missed because of the HGT event. The first two cases
(on the top) introduce an induced P4 into the RBMG, which may potentially serve as
indication for HGT events. The remaining three cases (bottom) yield K3 ∪· K1 instead
of K4. This situation would be missed by methods based on cograph editing.

rather like paralogs. In scenarios with HGT we therefore modify the definition
of the orthology graph such that E(G1OG2) is replaced by

E(G1ÕG2) := E(G1)∪E(G2)∪{uv | u ∈ V (G1), v ∈ V (G2),σ(u) 6= σ(v)}.
(21)

The extremal map t̂T as in Def. 6.4 cannot easily be extended to include HGT
as the events  and � on some vertex u are solely defined on two exclusive cases:
either σ(L(T (u1))) and σ(L(T (u2))) are disjoint or not for u1,u2 ∈ child(u).
Both cases, however, can also appear when HGT events are involved (see Fig.
37 for an example). That is, the fact that σ(L(T (u1))) and σ(L(T (u2))) are
disjoint or not, does not help to unambiguously identify the event types in the
presence of HGT.
Prop. 6.1 can be generalized to the case that (T , tT ,λ,σ) contains HGT

events. The existence of reconciliation maps from an event-labeled tree
(T , tT ,λ,σ) to an unknown species tree can be characterized in terms of species
triples σ(a)σ(b)|σ(c) that can be derived from (T , tT ,λ,σ) as follows: Denote
by E := {e ∈ E(T , tT ,λ,σ) | λ(e) = 1} the set of all transfer edges in the
labeled gene tree and let (TE , tT ,σ) be the forest obtained from (T , tT ,λ,σ)
by removing all transfer edges. By definition, µ(x) and µ(y) are incompara-
ble for every transfer edge xy in T . The set S(T , tT ,λ,σ) is the set of triples
σ(a)σ(b)|σ(c) where σ(a), σ(b), σ(c) are pairwise distinct and either

1. ab|c is a triple displayed by a connected component T ′ of TE such that
the root of the triple is a speciation event, i.e., tT (lcaT ′(a, b, c)) =  , or
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Fig. 39. Dependence of the fraction of false positive and false negative orthology as-
signments in RBMGs in the presence of different levels of HGT, measured as percentage
of HGT events among all events in the simulated true gene trees T̃ . As in Fig. 36, data
are shown as functions of the number of duplication and loss events in the scenario.
While the number of false positives seems to depend very little on even high levels of
HGT, the fraction of false negatives is rapidly increasing. Since HGT introduces good
quartets that comprise only true orthology edges, their removal further increases the
false positive rate (last column).

2. a, b ∈ L(TE(x)) and c ∈ L(TE(y)) for some transfer edge xy or yx of T .

Proposition 6.2. [99] Given an event-labeled, leaf-labeled tree (T , tT ,σ), there
is a reconciliation map µ : V (T ) → V (S) ∪E(S) to some species tree if and
only if S(T , tT ,σ) is consistent. In this case, (T , tT ,σ) can be reconciled with
every species tree S that displays the triples in S(T , tT ,σ).

Here, we have not added additional constraints on reconciliation maps that
ensure that the map is also “time-consistent”, that is, genes do not travel “back”
in the species tree, see [173] for further discussion on this. However, Prop.
6.2 gives at least a necessary condition for the existence of time-consistent
reconciliation maps. A simple proof of Prop. 6.2 for the case that T is binary and
does not contain HGT events can be found in [105]. Moreover, generalizations of
reconciling event-labeled gene trees with species networks have been established
by [103].
In contrast to pure DL scenarios, it is no longer guaranteed that all true

orthology relationships are also reciprocal best matches. Fig. 38 gives coun-
terexamples. In three of these scenarios the RBMG contains an induced P4
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that mimics a good quartet. Removal of the middle edge of good quartets
therefore not only reduces false positives in DL scenarios but also introduces
additional false negatives in the presence of HGT. This is also reflected by the
simulation scenarios with HGT (see Fig. 39).

6.6 summary

The theoretical part of this chapter clarifies the relationships between (recipro-
cal) best match graphs, orthology, reconciliation map, gene tree, species tree,
and event map for the case of DL scenarios. The orthology graph Θ is nec-
essarily a subgraph of the RBMG. In the absence of HGT, RBMGs therefore
produce only false positive but no false negative orthology assignments. Using
not only reciprocal best matches but all best matches, furthermore, shows that
good quartets identify almost all false positive edges. Simulations confirm that
removing the central edge of all good quartets in the reciprocal best match
graph yields nearly perfect orthology estimates. This, however, implies that
orthology inference is not solely based on reciprocal best matches. Instead, it
is necessary to also include certain directional best matches, namely those that
identify good quartets.
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7
FROM BEST HITS TO BEST MATCHES

The previous chapters were concerned with the relationship of (reciprocal) best
match graphs and gene trees, in particular they provided characterizations for
BMGs and RBMGs as well as algorithms for the reconstruction of least resolved
trees from the underlying BMG/RBMG. Moreover, it has been shown that, in
the absence of HGT events, these insights can be successfully used to identify
almost all false positive orthology assignments in the RBMG. Up to this point,
however, we did not treat the question how to initially recover the best match
relation from data. Many of the commonly used methods for orthology detec-
tion start from pairwise best (blast) hits as an approximation for evolutionary
most closely related pairs of genes. This approximation becomes exact for ul-
trametric dissimilarities, i.e., under the Molecular Clock Hypothesis but it fails
in general whenever there are large lineage specific variations of the evolution-
ary rate among paralogous genes. In this chapter we ask to what extent the
knowledge of an additive evolutionary distance can be leveraged to determine
the best match relation. To this end, we investigate the theoretical connection
and the impact of the missing piece of information, i.e., the exact position of
the root.
We start in Section 7.1 with a discussion about the relationship of additive
metrics and dissimilarity measures. Section 7.2 shows how additive metrics can
be transformed into quartets in general and, in particular, how quartets can be
estimated from sequence data. Quartets with known outgroups are then used
in Section 7.3 to identify best matches. The question to what extent outgroups
can be reliably identified is treated in Section 7.4.
The results of this chapter have only recently been submitted to 23th Conference
on Algorithmic Computational Biology (RECOMB 2019) [211].

7.1 additive metrics and dissimilarity measures

The lca function of a phylogenetic tree cannot be measured directly from data
but has to be inferred through the comparative analysis of the data representing
the leaf set. Likewise, the best match relation has to be inferred indirectly
from measurable quantities. Conceptually, best matches are closely related to
best hits (e.g. in blast searches) and ways of estimating most similar or least
dissimilar sequences. Denote by ` : E(T ) → R+ an assignment of positive
lengths to the edges of a planted phylogenetic tree T with planted root 0T
and leaf set L, which we interpret as a measure proportional to the number
of evolutionary events. It gives rise to a metric distance function dT ,`(x, y) on
L defined as the sum of the lengths `(e) of the edges e along the unique path
connecting the leaves x and y in T . From T we obtain an associated unrooted
tree T by (i) omitting the planted root 0T and its incident edge, and (ii), in
case the root ρ in T has exactly two children u1 and u2, by replacing the path
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u1ρu2 by a single edge u1u2 with length `(u1u2) := `(u1ρ) + `(ρu2). Note that
the dissimilarity function ` is by construction the same on T and T . Thus
T determines T up to the position of the root, i.e., T is obtained from T by
inserting the root into an edge of T or declaring an inner vertex of T as the
root.
The problem of determining the position of the root in an unrooted tree T

has been well studied in the phylogenetic literature [129]. The most common
approach is the inclusion of an outgroup, i.e., a taxon z known to branch earlier
than the taxa of interest. The root is then located in the branch leading to z.
Outgroup rooting can be unreliable in the presence of rapid radiations or when
only very distant outgroups are available [109, 205]. The simplest method is
midpoint rooting [216], which places the root at the midpoint on the longest
path in the tree. Despite its simplicity it often works remarkably well [106].
An interesting variation on this theme is minimum variance rooting [155]. The
estimation of dated phylogenies using a relaxed clock assumption yields an
estimate for the position of the root as a by-product [58]. A related Bayesian
method was introduced in [111]. In a phylogenomics setting, the root of the
species tree can also be obtained by minimizing the number of inferred gene
duplications [124]. Most recently, non-reversible substitution models have been
employed for estimating rooted phylogenic trees [232, 34].
A dissimilarity d on L is called additive if there is an unrooted tree T with

edge lengths ` such that d = d`,T . A key result in mathematical phylogenetics
[206, 28] characterizes additive (pseudo)metrics as those that satisfy the four
point condition. It states that d is additive if and only if the restriction of d to
each subset L′ of L with |L′| = 4, usually called a quartet, is additive and thus,
determines a tree on four leaves. Furthermore, the unrooted tree T is uniquely
defined by d. In principle, therefore, distance data completely determines a
phylogenetic tree up to the position of the root.

In Chapter 4 we already discussed that the evolutionary relatedness of two
extant genes x and y can be expressed by their divergence time τ (x, y) =

2τ̂ (lca(x, y)), where τ̂ is the age of lca(x, y) in the corresponding gene tree. In
particular, based on the fact that divergence times are by definition ultrametric,
the best match relation can be defined in terms of the divergence time, i.e.,
x→ y if and only if

y ∈ arg min
y′∈L[t]

τ (x, y′) (22)

This equation is restated at that point from Chapter 4 for latter reference in
the current chapter.

Divergence times cannot be measured in most cases, however, since this would
require the knowledge of dated last common ancestors. The next best choice is
the evolutionary distance, which measures the number of evolutionary events
that have taken place. For each edge e = uv in T it is given by `(e) =∫ τ̂ (v)
τ̂ (u) µe(t)dt, where µe(t) is the rate of evolution. In general µe depends both on
the lineage, and thus the individual edges in T , as well as on the exact point in
time along e. It associates with each edge e a measure `(e) of changes incurred,
and thus an additive distance. If µe(t) = µ0 is constant, we simply have
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Fig. 40. Lineage-specific rate variation between paralogs. The gene tree, with branch
length indicating an additive evolutionary distances, comprises two paralogs arising
from a duplication (�) that predates the speciation ( ) of the red and blue species.
We have lca(x, y′) ≺ lca(x, y′′) but d(x, y′′) < d(x, y′).

d`,T (x, y) = µ0τ (x, y). This corresponds to the Molecular Clock Hypothesis.
As a consequence, genes with minimal genetic distance are not necessarily best
matches in the sense of evolutionary relatedness; Fig. 40 shows a paradigmatic
example arising from lineage-specific rate differences between paralogs.

It is worth noting that additive evolutionary distances are not directly acces-
sible from data. While it is easy to obtain dissimilarities d′(x, y) on L from
pairwise alignments, d′ is usually a systematic under-estimate of the number
of events d due to back-mutations, and thus not additive. In practice, the con-
version of measurements of d′ into an additive distance d that quantifies the
number of evolutionary events is based on a Markov model. For sequence data,
this may be the Jukes-Cantor model [122] or one of its more elaborate variants
[128, 90, 218]. In the most benign setting, d and d′ are related by a monotone
transformation. If, in addition, µ is constant, then both d and d′ could be
substituted for τ in Equ. (22) to determine best matches. However, violations
of the clock hypothesis usually make this a poor approximation. In general it
is not possible to estimate the correct tree topology from a non-additive metric
[192]. Therefore it is not possible to avoid the transformation from measured
dissimilarities d′ to the estimated evolutionary distance d.

7.2 additive metrics and quartets

This section is concerned with the relationship between additive metrics and
quartets. In particular, it is shown how quartets can be estimated from sequence
alignments using concepts from statistical geometry.
Consider an unrooted tree T with leaf set L. For any four distinct leaves

p, q, r, s ∈ L denote by T [p, q, r, s] the unrooted tree obtained by suppressing
all vertices of degree 2 in the union of the paths in T that connect p, q, r, s.
We write (pq|rs) if there is an edge e in T so that {p, q} and {r, s} are in
different connected components of the forest obtained by removing e from T .
This quartet relation [196, 65] can then be expressed equivalently as (pq|rs) if
and only if

d(p, q) + d(r, s) < d(p, r) + d(q, s), d(p, s) + d(q, r) . (23)

In fact, for additive metrics, the two distance sums on the r.h.s. are equal
[206, 28]. All three terms are equal if and only if the four points form a star,
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whence the existence of a separating edge requires the strict inequality. By a
slight abuse of notation, we write T [p, q, r, s] = (pq|rs) if Equ. (23) holds, and
T [p, q, r, s] = × if no quartet exists on these four leaves, i.e., if T [p, q, r, s] is
the star tree.

7.2.1 Estimation of quartets from sequence data

Several different approaches to estimate quartets from aligned sequence data
have been discussed in the literature. Most directly, Equ. (23) can be used
to determine the dominating triple on {p, q, r, s} directly from the additive
distance d. A weight can be assigned to the triple by setting w(pq|rs) =

(1− d0/d2) exp(d1 − d2) where d0, d1, and d2 are the distance sums in Equ.
(23) ordered by increasing value, i.e., such that d0 ≤ d1 ≤ d2 [15]. This type of
approach, however, requires the prior transformation of sequence differences to
the additive distance d, or the estimate of d directly from the sequence using a
suitable model of sequence evolution. The latter is explored with the so-called
Likelihood Mapping method [213].
A more elegant approach assumes a multiple alignment of some sequences x,

y′, y′′, and z, which we assume to appear in this order. Following the idea of
statistical geometry [61, 171], each alignment column belongs to one of the 15
categories determined by which of the four sequences x, y′, y′′, and z feature
the same character:

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
x a a a a b a a a a a a b b b a

y′ a a a b a a b b a b b a a c b

y′′ a a b a a b a b b a c a c a c

z a b a a a b b a c c a c a a d

The categories C1 through C5 and C15 do not convey phylogenetic information.
Of the remaining ones, C6, C9, and C14 support (xy′|y′′z), C7, C10, and C13
support (xy′′|y′z), and C8, C11, and C12 support (xz|y′y′′) [172]. Denoting by
daaaa, etc., the number of alignment columns belonging to a given category, the
support scores for geometry mapping [172] are

S(xy′|y′′z) = daabb +
1
2 (daabc + dbcaa)

S(xy′′|y′z) = dabab +
1
2 (dabac + dbaca)

S(xz|y′y′′) = dabba +
1
2 (dabca + dbaac)

(24)

Using S := S(xy′|y′′z) + S(xy′′|y′z) + S(xz|y′y′′), normalized scores are de-
fined as s(xy′|y′′z) := S(xy′|y′′z)/S. This unweighted version can be extended
to a weighted version when a non-trivial distance measure D on the underlying
alphabet is given. As derived in [172], a support value for the three possi-
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ble quartets can be computed separately for each alignment column i as the
isolation index for the distances on the four characters:

2βi(xy′|y′′z) = D∗i − (D(xi, y′i) +D(y′′i , zi))
2βi(xy′′|y′z) = D∗i − (D(xi, y′′i ) +D(y′i, zi))
2βi(xz|y′y′′) = D∗i − (D(xi, zi) +D(y′i, y′′i ))

(25)

Here, D∗i is the largest of the three distance sums appearing in Equ. (23).
Summing up the βi( . ) values over all alignment columns i yields aggregated
support scores β( . ). These are conveniently normalized to relative values as
in the unweighted case. If no quartet can be inferred unambiguously, then we
revert to the assumption lca(x, y′) = lca(x, y′′). The quartet mapping approach
is particularly appealing because the computation of the quartet support values
is simple, can be performed efficiently, and does not require a particular model
of sequence evolution.

7.3 from quartets to rooted triples

The idea of this section is to use quartets with a known outgroup in order
to infer rooted triples, which are then used to retrieve the best matches. We
present a workflow (Algorithm 7) and discuss under which conditions the set
of best matches can be correctly identified.
The most common method to specify the root of a phylogenetic tree is the

use of so-called outgroups, that is, additional taxa that are known a priori
to be outside a monophyletic group of interest. Given a planted (or rooted)
phylogenetic tree, on the other hand, monophyletic groups are the leaf sets of a
subtree, i.e., L′ is a monophyletic group if and only if there is a vertex u ∈ V (T )

such that L′ = L(T (u)). Every leaf x ∈ L \L′ is an outgroup for L′.
Every edge in an unrooted tree T defines a split L′|L′′ of L, where L′ and L′′

are the leaves in the connected components of T \ e = T ′ ∪· T ′′. At most one
of the two subtrees T ′ and T ′′ contains the root of the underlying phylogenetic
tree T . If the root is not contained in T ′, then the tree T ′ = T ′ ∪ {e} that is
planted at the endpoint of e, describes a monophyletic group. In this case all
x ∈ L′′ are outgroups for T ′. Which subtrees of T correspond to monophyletic
groups is determined by the position of the root and therefore, requires external
information.
It will be convenient in the following to define outgroups not only for mono-
phyletic groups.

Definition 7.1. For a phylogenetic tree T with leaf set L consider a subset
L′ ⊆ L and a leaf z ∈ L \L′. We say that z is an outgroup for L′ if lca(L′) ≺
lca(L′, z).

Let us now return to the quartets of T . The following simple result, illustrated
in Fig. 41, shows that quartets can be used to infer inequalities between lca
vertices in T , provided one of the four leafs is known to be an outgroup for the
other three:

Lemma 7.1. Suppose z is an outgroup for {x, y′, y′′} in T . If T [x, y′, y′′, z] is
fully resolved, then
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Fig. 41. Relation of the last common ancestors lca(x, y′) and lca(x, y′′), resp., with
quartets on {x, y′, y′′, z} with a trusted outgroup z.

(i) lca(x, y′) = lca(x, y′′) if and only if T [x, y′, y′′, z] = (xz|y′y′′),

(ii) lca(x, y′) ≺ lca(x, y′′) if and only if T [x, y′, y′′, z] = (xy′|y′′z),
and

(iii) lca(x, y′) � lca(x, y′′) if and only if T [x, y′, y′′, z] = (xy′′|y′z).

Otherwise, T [x, y′, y′′, z] = × and lca(x, y′) = lca(x, y′′).

Proof. Since z is an outgroup by assumption, there are only three possible
fully resolved rooted trees with L = {x, y′, y′′, z}, see Fig. 41. Each of these
trees corresponds to a unique quartet (annotated at the top). The relation-
ship between lca(x, y′) and lca(x, y′′) is determined by the tree topology. The
statement follows by inspecting the three cases. If T [x, y′, y′′, z] is not fully
resolved, no quartet is defined on {x, y′, y′′, z}, i.e., T is the star tree and thus
lca(x, y′) = lca(x, y′′) = lca(y′, y′′).

Observation 7.1. If u′ = lca(x, y′) and v′ = lca(x, y′′) for x, y′, y′′ ∈ L, then
u′ and v′ are comparable w.r.t. � in T .

Lemma 7.1 together with Obs. 7.1 implies that quartets with known out-
groups can be used to identify best matches. More precisely, in order to deter-
mine the set {y ∈ L[s] | x → y}, it suffices to consider leaf sets {x, y′, y′′, z}
with y′, y′′ ∈ L[s] such that z is an outgroup for {x, y′, y′′}. By Lemma 7.1, any
set of this type implies an (in)equality between lca(x, y′) and lca(x, y′′). It may
not be necessary to consider all quartets. To explore ways to reduce the com-
putational effort, let us assume that for given x ∈ L and s ∈ S, s 6= σ(x), we
can identify sets Y ⊆ L[s] and Z ⊆ L such that the following three assumptions
are satisfied:

(A0) The noise in the data is small enough so that for any four taxa {x, y′, y′′, z}
with y′, y′′ ∈ Y and z ∈ Z one of the three possible quartets or the star
topology is inferred correctly.

(A1) The candidate set Y ⊆ L[s] contains all best matches of x in species s
(but usually also additional leaves).

(A2) Z is a non-empty set of outgroups for Y∪ {x}.
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Algorithm 7 Overall Workflow
Require: Reference vertex x
1: retrieve a sufficient set Y ⊆ L[s] of candidate best matches for x with color
s

2: determine a set Z of outgroup vertices for Y∪ {x}
3: initialize an edgeless digraph Γ with vertex set Y
4: for all pairs y′, y′′ ∈ Y do
5: for all z ∈ Z do
6: determine significantly supported quartet on {x, y′, y′′, z}
7: determine consensus quartet over all choices of z ∈ Z

8: if consensus quartet implies lca(x, y1) � lca(x, y2) then
9: insert the directed edge (y2, y1) into Γ

10: compute the strongly connected components of Γ
11: report strongly connected components without out-edges as the set of best

matches {y ∈ Y|x→ y}

The discussion so far suggests to use the workflow defined in Algorithm 7 to
identify the best matches of x.

Lemma 7.2. Algorithm 7 correctly identifies the set of best matches of x with
color s as the unique strongly connected component of Γ without out-edges, pro-
vided assumptions (A0), (A1), and (A2) are satisfied.

Proof. Assumptions (A1) and (A2) imply that comparison of the last common
ancestors can be performed in terms of the quartets according to Lemma 7.1,
which by assumption (A0) are all inferred correctly. Therefore Lines 4-7 com-
pute all quartets correctly and thus, the inequality between lca(x, y1) and
lca(x, y2) is inferred correctly. The auxiliary graphs Γ therefore contains at
least one arc between any two vertices y′, y′′ ∈ Y and both the arc (y′, y′′) and
(y′′, y′) if and only if lca(x, y′) = lca(x, y′′), i.e., the strongly connected com-
ponents are cliques. Since the lca(x, y), y ∈ Y, are inner vertices of T that are
totally ordered along the path from x to the root of T (Obs. 7.1), there is a
unique strongly connected component B in Γ that has no out-edges and whose
vertices are those y ∈ B for which lca(x, y) is minimal. Thus B is the set of
best matches of x with color s.

Algorithm 7 therefore works correctly at least under idealized assumptions.
(A0) is satisfied by construction for additive distance data. In real-life applica-
tions it is often possible to obtain at least a very good approximation.
Condition (A1) can be enforced by setting Y = L[s]. This may be too

expensive for large gene families and the inclusion of very distant relatives
may be problematic for the construction of good multiple sequence alignments
and thus, interfere with assumption (A2). In practice, it will therefore be
necessary to limit Y to a manageable size and sufficient sequence similarity. In
ProteinOrtho [144], for example, Y ⊆ L[s] is defined as the set of sequences
with blast bit scores exceeding a certain fraction of the best hit for x in species
s.
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Condition (A2), i.e., the knowledge of appropriate outgroups, is more prob-
lematic. As discussed above, distance-based methods by construction do not
convey information on the root of the phylogenetic tree T but only determine
its unrooted version T . As a consequence, additional information that is not
contained in the pairwise distance measurements, is necessary to determine the
edge in T that harbors the position of the root ρ of T [182]. In general, Z
will be chosen from one or more species that are outgroups to the species X
(containing x) and s in S. Even if outgroup species are given, gene duplications
may predate the divergence of the available species set so that a given data set
will usually violate (A2) for some pairs of leaves. We will return to this point
in the next section.

7.4 identification of outgroups

In many practical applications, the phylogenetic relationships between the
species under consideration are known. Similarly to the gene tree T , we model
the species tree S as a planted tree with leaf set L(S), where 0S is the planted
root of S with its only child ρS . As we have seen above, the most difficult
issues arise when an outgroup is not readily available. In case that the root
of the species tree S is known, however, we can still obtain some useful infor-
mation. The main result of this section shows that inconsistency between gene
and species quartets can be used to discard unsuitable outgroups.
In order to make use of the information in S, we need to describe the

embedding of the planted gene tree T into S by the reconciliation map
µ : V (T ) → V (S) ∪E(S), which, if restricted to duplication/loss scenarions,
satisfies the axioms (R0), (R1), (R2), and (R3) (cf. Def. 6.1). Such reconcilia-
tion maps satisfy

µ(x) �S lcaS(σ(L(T (x)))), (26)

i.e., an event x ∈ V (T ) in the gene tree cannot be mapped to a node in the
species tree below the last common ancestor of all the species.

Ideally, the genes chosen as outgroup Z are co-orthologs, i.e., the duplication
event that produced y′ and y′′ occured after the speciation event that separates
the species Z from the two species X and Y .

Definition 7.2. A duplication event v ∈ V 0(T ) in a gene tree T is called
ancient if v is mapped to the edge 0SρS in the species tree S under the recon-
ciliation map µ.

The definition also applies to the subtree S(u) rooted at an inner vertex
u ∈ V 0(S) of the species tree. It therefore makes sense to talk about duplication
events that are ancient w.r.t. a given speciation event.

We will show in the following that inconsistency of gene and species quartets
implies the existence of ancient duplications. To this end, we need some basic
properties of reconciliation maps.

Lemma 7.3. Let (T ,σ) be a binary gene tree, S a species tree, and µ : V (T )→
V (S) ∪E(S) a reconciliation map without horizontal gene transfer. Let x, y ∈
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Fig. 42. Incongruence of gene and species quartets implies the existence of an ancient
duplication. Consider four pairwise distinct species A, B, C, and D whose species tree
is given on the l.h.s., and let four genes a, b, c, and d be chosen such that σ(a) = A,
σ(b) = B, σ(c) = C, and σ(d) = D. The two speciation events separating A from B

and C from D are indicated by  . The root of this tree is indicated by �. One of
the three possible gene quartets is congruent with the species tree, the other two are
incongruent. For each of these quartets, Equ. (26) implies that the two inner vertices
in these quartets cannot be mapped to the species tree below the root. The root of
the gene tree must thus be mapped above the root of the species tree.

L(T ) be two genes with σ(x) 6= σ(y). If lcaS(σ(x),σ(y)) ≺S µ(lcaT (x, y)),
then lcaT (x, y) is a duplication event.

Proof. Assume, for contradiction, that u := lcaT (x, y) is a speciation event,
i.e., µ(u) ∈ V 0(S). Let v′ and v′′ be the two children of u in T . Observe
that u := lcaT (x, y) implies x ∈ L(T (v′)) and y ∈ L(T (v′′)), or vice versa.
W.l.o.g. assume x ∈ L(T (v′)) and y ∈ L(T (v′′)). By (R3.i) and (R3.ii), µ(u) =
lcaS(µ(v′),µ(v′′)) and, in particular, µ(v′) and µ(v′′) are incomparable in S.
Then, by Lemma 6.2, we have σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅. This and (R2)
implies µ(v′) �S σ(x) and µ(v′) �S σ(y). The latter two arguments imply
lcaS(σ(x),σ(y)) = µ(u); a contradiction.

The assumption that T is binary is necessary here as the example in Fig. 43
shows. Such reconciliations, however, cannot be meaningfully interpreted in
terms of evolutionary events. Instead, the root of T confounds the duplication
leading to x and y with the speciation separating lcaS(σ(x),σ(y)) from σ(z).
To suppress such undesirable cases, we additionally require that µ satisfies:

(R5) If µ(lcaT (x, y)) = µ(lcaT (x, z)) ∈ V 0(S), then lcaS(σ(x),σ(y)) =

lcaS(σ(x),σ(z)).

In essence, (R5) ensures that a single node in T cannot represent two distinct
speciation events, i.e., that the gene tree T is not “less resolved” than the species
tree S into which it is embedded.

Lemma 7.4. Let (T ,σ) be a gene tree, S a species tree, and µ : V (T ) →
V (S) ∪E(S) be a reconciliation map without horizontal gene transfer that sat-
isfies (R5). Moreover, let x, y ∈ L(T ) be two genes with σ(x) 6= σ(y). If
lcaS(σ(x),σ(y)) ≺S µ(lcaT (x, y)), then lcaT (x, y) is a duplication event.

Proof. We assume that T is non-binary since the binary case is covered already
by Lemma 7.3. Moreover, we assume, for contradiction, that u := lcaT (x, y)
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Fig. 43. A gene tree T , a species tree S, and their reconciliation. The reconciliation
µ with µ(lcaT (x, y, z)) = lcaS(X,Y ,Z), where X = σ(x), Y = σ(y), and Z =
σ(z), satisfies (R1), (R2), (R3.i), and (R3.ii) but does not admit an unambiguous
interpretation of lcaT (x, y, z) as a single event: it confounds the speciation separating
Z and lcaS(Y ,X) with a gene duplication leading the ancestor of x and y or with the
speciation separating X and Y . In either interpretation, the reconciliation map µ does
not correspond to a mechanistic explanation of the gene family history.

is a speciation event, i.e., µ(u) ∈ V 0(S). Let vx and vy be the children
of u with x �T vx and y �T vy; thus we have σ(x) ∈ σ(L(T (vx))) and
σ(y) ∈ σ(L(T (vy))). Since u = lcaT (x, y), vx and vy are incomparable in
T and hence, vx 6= vy. By (R3.i), µ(vx) and µ(vy) are incomparable in S.
Lemma 6.2 implies σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ for all distinct children v′
and v′′ of u. The latter two facts together with (R2) imply lcaS(σ(x),σ(y)) =
lcaS(µ(vx),µ(vy)) ≺S µ(u). By (R3.i), µ(u) = lcaS(µ(v′),µ(v′′)) for some chil-
dren v′ and v′′ of u and thus, lcaS(µ(v′),µ(v′′)) = lcaS(σ(z′),σ(z′′)) for some
leaves z′ ∈ L(T (v′)) and z′′ ∈ L(T (v′′)) from different species σ(z′) 6= σ(z′′).
We proceed by showing that for at least one of the species σ(z′) and

σ(z′′) we have lcaS(σ(x),σ(z′)) = lcaS(σ(z′),σ(z′′)) or lcaS(σ(x),σ(z′′)) =

lcaS(σ(z′),σ(z′′)). We suppose lcaS(σ(x),σ(z′)) 6= lcaS(σ(z′),σ(z′′)). Hence,
we have lcaS(σ(x),σ(z′)) ≺S lcaS(σ(z′),σ(z′′)) = µ(u) and therefore,
lcaS(σ(x),σ(z′′)) = lcaS(σ(z′),σ(z′′)). Similarily, if lcaS(σ(x),σ(z′′)) 6=
lcaS(σ(z′),σ(z′′)), then lcaS(σ(x),σ(z′)) = lcaS(σ(z′),σ(z′′)). Hence, assume
w.l.o.g. lcaS(σ(x),σ(z′)) = lcaS(σ(z′),σ(z′′)) 6= lcaS(σ(x),σ(y)). Now, by
contraposition of (R5), we have µ(u) = µ(lcaT (x, y)) 6= µ(lcaT (x, z′)) = µ(u);
a contradiction.

Lemma 7.4 conveniently generalizes to sets of genes:

Corollary 7.1. Let (T ,σ) be a gene tree, S a species tree, and µ : V (T ) →
V (S) ∪E(S) be a reconciliation map without horizontal gene transfer that sat-
isfies (R5) and let A ⊆ L(T ) with |σ(A)| ≥ 2. If lcaS(σ(A)) ≺S µ(lcaT (A)),
then lcaT (A) is a duplication event.

Proof. Note that lcaT (A) = lcaT (x, y) holds for some x, y ∈ A. Assume first
σ(x) 6= σ(y). Thus lcaS(σ(A)) ≺S µ(lcaT (A)) implies lcaS(σ(x),σ(y)) �S
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lcaS(σ(A)) ≺S µ(lcaT (A)) = µ(lcaT (x, y)). Hence, the statement follows from
Lemma 7.4. If σ(x) = σ(y), then lcaT (A) = lcaT (x, y) implies that there exist
two distinct children vx and vy of lcaT (A) with vx � x and vy � y. Thus
lcaT (A) = lcaT (vx, vy). However, since σ(x) = σ(y) we have σ(L(T (vx))) ∩
σ(L(T (vy))) 6= ∅. Thus Lemma 6.2 implies µ(lcaT (A)) /∈ V 0(S) and hence,
lcaT (A) is duplication.

We are now in the position to state the main result about inconsistent gene
and species quartets. Consider four genes a, b, c, d residing in four pairwise dis-
tinct species A, B, C, and D, and assume that these four species form the quar-
tet (AB|CD). Then we say that the gene and species quartets are congruent if
T [a, b, c, d] = (ab|cd) or ×. Otherwise, i.e., for T [a, b, c, d] ∈ {(ac|bd), (ad|bc)},
they are called incongruent, see Fig. 42. In the following we show that the
incongruence of gene and species quartets implies ancient duplications. More
precisely:

Theorem 7.1. Let A, B, C, and D be pairwise distinct species, set u :=
lcaS(A,B,C,D), v1 := lcaS(A,B), and v2 := lcaS(C,D). If v1 ≺S u, v2 ≺S u,
and T [a, b, c, d] = (ac|bd) or T [a, b, c, d] = (ad|bc) for a ∈ A, b ∈ B, c ∈ C,
d ∈ D, then u ≺S µ(lcaT (a, b, c, d)) for every reconciliation map µ : V (T ) →
V (S)∪E(S) without HGT events. In particular, lcaT (a, b, c, d) is a duplication
event.

Proof. By assumption, S|{A,B,C,D} has the topology shown in Fig. 42. As-
suming (ac|bd), Equ. (26) implies µ(lcaT (a, c)) �S lcaS(σ(a),σ(c)) = u and
µ(lcaT (b, d)) �S lcaS(σ(a),σ(c)) = u. Thus both inner nodes p and q of the
quartet are mapped no lower than u. The edge between them, therefore, must
be mapped to an edge predating u since the speciation constraint (R3) implies
that two ≺T -comparable events in T , of which one is a speciation, cannot by
mapped to the same vertex of S. Thus u ≺S µ(lcaT (a, b, c, d)). The case
(ad|bc) is handled by an analogous argument exchanging c and d. The fact
that lcaT (a, b, c, d) is a duplication event now follows from Lemma 7.4.

This theorem can be used to discard suspicious outgroups: If T [x, y, z1, z2] is
incongruent with the known species tree, then σ(z1) 6= σ(z2) should be replaced
by outgroup candidates from earlier-branching species. The downside of using
Thm. 7.1 is that it requires a systematic investigation of possibly large numbers
of quartets.
In cases without too many ancient duplications we can use the following

result about the inference of correct best matches from quartets. Recall that we
assume that there are no HGT events. As it will be addressed in a forthcoming
Master’s thesis, the proof of the following result is omitted here. However, for
the sake of completeness, the result is stated in this context:

Lemma 7.5. Let (T , t,σ) be an event-labeled gene tree with L = X ∪· Y ∪· Z and
let S be the corresponding species tree on S = {X,Y ,Z} such that lcaS(X,Y ) ≺
lcaS(X,Y ,Z) = ρS. Let µ be a reconciliation map for (T , t,σ) and S such that
|µ−1(ρS)| ≤ 2, and assume (A0). Then Algorithm 7, using Y ⊆ Y as the
candidate best match set and Z ⊆ Z as outgroup set, correctly determines, for
every gene x ∈ X, all best matches in species Y .
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Fig. 44. A reconciliation scenario
with two ancient duplications leading
to false positive and false negative best
matches of the gene x. Assuming
that y′, y′′ are the only extant genes
of species Y and z is an outgroup for
{x, y′, y′′}, Algorithm 7 incorrectly in-
fers the quartet (xy′′|y′z), i.e., y′′ is
inferred as the unique best match of
x in species Y . In fact, (x, y′′) corre-
sponds to a false positive, while (x, y′)
is a false negative edge in the inferred
best match graph.

The condition |µ−1(ρS)| ≤ 2 makes an explicit assumption on the true history
of the gene family by limiting the scenario to at most one ancient duplication
on X ∪· Y ∪· Z. Fig. 44 shows that this condition cannot be dropped: if there
are two or more ancient duplications affecting X, Y , and Z, then the correct
inference of best matches from quartets can no longer be guaranteed.
It seems likely that it is possible in most cases to unambiguously identify

pairs whose last common ancestor in the gene tree predates the last common
ancestor of the species tree under consideration. While it may be difficult to de-
termine the relative order of such duplications, it appears likely that clustering
methods used to extract groups of co-orthologs can be adapted to disentangle
such ancient “paralog groups”.

7.5 summary

The idea to use quartet structures for improvement of orthology estimates is not
new, see e.g. [236] or the use of quartets as witnesses of non-orthology in OMA
[225]. This chapter investigated in detail how and when quartets can help to
improve and/or correct empirical best hit data to identify best matches in the
sense of closest evolutionary relatives. A workflow was presented that, given
an additive distance among the genes, correctly identifies best matches under
ideal conditions, which seem likely to be approximated in real applications.
Moreover, we observed that only local, qualitative information is necessary
and, in particular, there is no need to attempt a detailed reconstruction of the
rooted or unrooted gene trees. Instead, it suffices to operate on a moderate
subset of quartets. The key observation is that this, however, crucially depends
on the ability to identify reliable outgroup genes from a third species. First
simulation results that evaluate how well different approaches – including the
workflow presented here – estimate best matches (in the sense of evolutionary
relatedness) from both perfect and noisy data, can be found in [211].
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8
RECONSTRUCTING GENE TREES FROM FITCH ’ S
XENOLOGY RELATION

While best match heuristics have been very successful as approximations of the
orthology relation [10, 169], no comparable approach to extract the xenology
relation directly from (dis)similarity data has been devised to-date. Presumably
this is at least one reason why the binary xenology relation has attracted very
little attention so far. However, as we have seen in Chapter 6, even a relatively
small amount of HGT has a major impact in terms of missing orthology edges
in the reciprocal best match graph, thus understanding the xenology relation is
crucial not only for detecting HGT but also for correct orthology assignment.
The main focus of this part lies on the mathematical properties of the non-

symmetric xenology relation X . In particular, we will be concerned with two
related questions: (1) How much information on the gene tree T and the lo-
cation of the horizontal transfer events within T is contained in the xenology
relation? (2) Is it possible to extract the topological information and labeling
information from X efficiently?
This chapter shows that valid non-symmetric xenology relations correspond

to a heritable family of digraphs, the so-called Fitch graphs. These are char-
acterized by a small set of forbidden subgraphs on three vertices and thus can
be recognized in cubic time (Section 8.3). Fitch graphs form a subclass of
di-cographs, which have recently been associated with an alternative concept
of xenology [100]. Each Fitch graph is explained by a unique least resolved
edge-labeled phylogenetic tree which is displayed by the full evolutionary sce-
nario (Section 8.2). It therefore provides at least partial information on the
gene tree and the placement of the horizontal transfer events. It will be demon-
strated, furthermore, that this tree as well as the corresponding edge labeling
can be constructed from X in polynomial time (Section 8.4). Features of her-
itable graph properties lead to a linear-time recognition algorithm, as well as
NP-completeness and fixed-parameter tractable results for the respective graph
modification problems. Finally, in Section 8.5, the xenology relation will be ex-
tended to the symmetric Fitch relation by considering the undirected version
of X , which turns out to correspond to complete multipartite graphs. We
start this chapter with a formal definition and some simple results about the
non-symmetric Fitch relation.
The results of this chapter have been published in Geiß et al. [72] and Hellmuth
et al. [101].
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8.1 the directed (fitch-)xenology relation

In this chapter, we are interested in rooted phylogenetic trees T = (V ,E) with
leaf set L = L(T ) that are endowed with edge labels λ : E → {0, 1} such that

λ(e) =

1 if e is a horizontal transfer edge

0 otherwise

For simplicity we will speak of 0-edges and 1-edges in T depending on their
labeling. Edge-labeled trees will be written as (T ,λ). Unless explicitly stated
otherwise, all trees in this chapter are assumed to be rooted. The first part of
the chapter is concerned with the following, directed relation:

Definition 8.1. Given an edge-labeled phylogenetic tree (T ,λ) with leaf set
L we set (x, y) ∈ X(T ,λ) for x, y ∈ L whenever there is at least one directed
horizontal transfer event between y and the last common ancestor of x and y,
i.e., if the uniquely defined path from lcaT (x, y) to y contains at least one 1-
edge. We write [x, y] ∈ X(T ,λ) if both edges (x, y) and (y,x) are contained in
X(T ,λ) and x|y if X(T ,λ) contains neither (x, y) nor (y,x).

By construction X(T ,λ) is irreflexive; hence it can be regarded as a simple
directed graph. Similarly to BMGs and RBMGs, we will therefore interchange-
ably speak of X(T ,λ) as graph or relation. It is easy to check that X(T ,λ) is in
general neither symmetric nor antisymmetric. The relation X(T ,λ) formalizes
Fitch’s concept of xenology [66] (see also Chapter 3).

Definition 8.2. An edge-labeled phylogenetic tree (T ,λ) explains a given ir-
reflexive relation X whenever X = X(T ,λ).
A relation X is valid if there exists an edge-labeled tree that explains X , and
invalid otherwise.

Hence, an edge-labeled tree (T ,λ) explains a relation X if there is a 1-edge
on the path from lca(x, y) to y if and only if (x, y) ∈ X . By construction,
X must be defined on L(T ). However, we will sometimes abuse notation and
say that X [L′] is explained by (T ,λ) for some L′ ⊆ L if (T|L′ ,λ|L′) explains
X [L′]. An example of a gene tree with the corresponding Fitch relation X and
an edge-labeled tree that explains X can be found in Fig. 45.

The notion of a tree T ′ being displayed by a tree T can be generalized to
edge-labeled trees: We say that (T ′,λ′) is displayed by (T ,λ) if T ′ is displayed
by T in the usual sense and an edge e′ ∈ E(T ′) has label λ′(e′) = 1 if and only
if the path in T that corresponds to e′ contains at least one 1-edge.

Lemma 8.1. Let (T ′,λ′) be a tree with leaf set L′ = L(T ′) that is displayed by
(T ,λ). Then X(T ′,λ′) is the subgraph of X(T ,λ) induced by L′.

Proof. Consider two distinct leaves x, y ∈ L′. By construction of (T ′,λ′), there
is a 1-edge on the path from lcaT ′(x, y) to the leaf y in (T ′,λ′) if and only if
the corresponding path in (T ,λ) contains a 1-edge and thus, (x, y) ∈ X(T ′,λ′) if
and only if (x, y) ∈ X(T ,λ).

184
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Fig. 45. (A) Event-labeled gene tree embedded in the (tube-like) species tree. The
leaf set of the gene tree are the genes a1, a2, b, c1, c2, d1, and d2 in the genomes of the
four species A, B, C, and D. The gene tree contains speciations ( ), duplications (�),
HGT events (4) and gene losses (×). (B) Removal of all gene losses, suppression of all
resulting vertices of degree 2, and ignoring the types of the events on the inner vertices
yields an edge-labeled tree in which the transfer edges are labeled by 1 (red arrow) and
all other edges by 0 (black edges). Panel (C) shows the Fitch graph explained by the
edge-labeled tree of Panel (B).

The enumeration of all edge-labeled trees on two vertices shows that all four
possible digraphs on two vertices are valid. For three vertices, however, there
are valid and invalid digraphs. These are summarized in Figure 46: up to iso-
morphism there are eight valid A1-A8 and eight invalid F1-F8 digraphs. We will
refer to them as valid and invalid triangles. An enumerative approach to find
all valid and invalid triangles has been developed by Anders [12] in the context
of his master thesis.
As we shall see in Section 8.3, a relation X is valid, i.e., it has a tree represen-
tation, if and only if all its triangles are valid. This gives rise to the following
definition:

Definition 8.3. An irreflexive binary relation X on L is a Fitch relation if all
its triangles are valid. Its graph representation is called a Fitch graph.

A graph G is a di-cograph if and only if it does not contain one of the
digraphs shown in Fig. 47 as an induced subgraph [40]. Since each of these
graphs contains one of the forbidden triangles, every Fitch graph is also a di-
cograph. On the other hand, a di-cograph that does not contain F1, F5, or F8
as an induced subgraph is a Fitch graph. As an immediate consequence of its
characterization in terms of forbidden induced subgraphs, Fitch graphs are a
heritable family, i.e., every induced subgraph of a Fitch graph is again a Fitch
graph. We summarize these observations for later reference as

Lemma 8.2. The Fitch graphs are a heritable subfamily of the di-cographs.
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Fig. 46. Upper Left: Shown is the graph representation for all possible relations
X ⊆ L×L with |L| = 3. The relations are grouped into valid (A1-A8) and non-valid
(F1-F8).
Upper Right: All possible (up to isomorphism) subtrees on three leaves of a tree (T ,λ)
are shown. Edges can be understood as paths, whereby red (resp. black) edges indicate
that there is (resp., is not) a 1-edge on the particular path.
Lower Part: The table shows which tree explains which relation. In particular, there
is no tree that explains one of the graphs F1 to F8.

A closer inspection shows that four of the eight valid triangles, namely A1-A4
can be explained by multiple trees, including one of the non-binary trees T13 to
T16. In contrast, each of the triangles A5-A8 with a given labeling of its three
leaves is explained by a unique edge-labeled binary tree, i.e., a specific labeled
triple.

Definition 8.4. An edge-labeled triple ab|c is informative if it explains a labeled
triangle isomorphic to one of A5, A6, A7, or A8.

Thus, if X contains a triangle of the form A5, A6, A7, or A8 as an induced
subgraph, then any tree explaining X must display the corresponding informa-
tive triple. Any valid relation X can therefore be associated with a uniquely
defined set R(X ) of informative triples that it displays: r ∈ R(X ) if and only
if r is the unique edge-labeled triple explaining an induced triangle isomorphic
to A5, A6, A7, or A8. For later reference we summarize this fact as
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F2 F4F3

F6 F7

F1

F5 F8

Fig. 47. The eight digraphs are the forbidden induced subgraphs that characterize
di-cographs [60, 40]. The five digraphs on three vertices correspond to five of the
eight forbidden triangles. Each digraph on four vertices contains one of the remaining
forbidden triangles (highlighted by bold-red edges and vertices).

Lemma 8.3. If (T ,λ) explains X , then all triples in R(X ) must be displayed
by (T ,λ).

8.2 least resolved edge-labeled phylogenetic trees

In general, there may be more than one rooted phylogenetic tree that explains
a given relation X . In particular, if X is explained by a non-binary tree (T ,λ),
then there is always a binary tree (T ′,λ′) that refines T and explains the same
relation X by setting λ′(e) = λ(e) for all edges e that are also in T and by
choosing the label λ′(e) = 0 for all edges e that are not contained in T . In this
section, we will see that whenever a relation X is explained by an edge-labeled
tree (T ,λ), then there exists a unique “smallest” tree with this property, which
we will call the least resolved tree. These least resolved trees will play a key
role for obtaining a characterization of Fitch relations in the following.

Definition 8.5. Let (T = (V ,E),λ) be an edge-labeled phylogenetic tree and
let e = uv ∈ E. The phylogenetic tree (T e,λe), referred to as the extended
contraction of e in (T ,λ), is obtained by the following procedure:
First contract the edge e in T and keep the edge labels of all non-contracted
edges. If e is an inner edge, the resulting tree is again a phylogenetic tree and
we are done. The contraction of an outer edge e = uv, however, leads to (i)
the loss of a leaf v and (ii) a decrease in the degree of the parental vertex u.
The latter may violate the degree conditions required for a phylogenetic tree.
If u is the root of T that has degree 1 in T e, we delete u and its incident
edge, and declare the unique remaining child of u as the root of T e. Thus T e
is obtained by an additional (simple) contraction of the edge ρT echildT e(ρT e).
Otherwise, if u is an inner vertex that has degree 2 after the contraction of
e, we apply an additional (simple) contraction of the edge uchildT e(u) and set
λ(parT e(u)u) = 1 if λ(uchildT e(u)) = 1. Equivalently, the path from the parent
w of u to the unique remaining child w′ of u is replaced by a single edge ww′.
This edge is a 1-edge if and only if at least one of the edges wu and uw′ in the
initial tree was a 1-edge.
The edge e is said to be ex-contracted in (T ,σ).
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In order to avoid confusion with extended edge contractions, we will often
refer to contractions as defined in Chapter 3 as simple contractions. Note in
particular that extended contraction of an inner edge is equivalent to a simple
contraction.

Definition 8.6. An edge-labeled phylogenetic tree (T = (V ,E),λ) is least
resolved (w.r.t. X(T ,λ)) if none of the trees (T e,λe) obtained from (T ,σ) by an
extended contraction of e ∈ E, explains X(T ,λ).

The notion of "least resolved trees" in this chapter always refers to xenology
relations. For simplicity of notation, we will therefore drop the explicit reference
to the corresponding relation whenever the context is clear.
It is easy to see that (T e,λe) is, by construction, always obtained by a sequence
of simple edge contractions and thus, (T e,λe) is displayed by (T ,λ).
We state here the main result of this section:

Theorem 8.1. Let X ⊆ L×L be a valid relation, (T ,λ) a phylogenetic tree that
explains X and let (T̂ , λ̂) be a least resolved phylogenetic tree w.r.t. X . Then
(T ,λ) displays (T̂ , λ̂). Moreover, the tree (T̂ , λ̂) has the minimum number of
vertices among all trees that explain X , and is unique.

In order to prove Thm. 8.1, we need the following intermediate results,
Lemma 8.4 - 8.11.

Lemma 8.4. Let (T ,λ) be an edge-labeled phylogenetic tree. If e is an inner
0-edge in (T ,λ), then X(T e,λe) = X(T ,λ). If e is an inner 1-edge, then X(T e,λe) ⊆
X(T ,λ).

Proof. The (extended) contraction of the inner 0-edge e = uv does not change
the number of 1-edges along the paths connecting any two leaves. It affects
the last common ancestor of x and y if lcaT (x, y) = u or lcaT (x, y) = v. In
either case, however, the number of 1-edges between lcaT (x, y) and the leaves
x and y remains unchanged. Hence, the relation X(T ,λ) is not affected by the
contraction.
The (extended) contraction of an inner 1-edge e reduces the number of 1-

edges along the path between all pairs of leaves whose connecting path in T

contain e. Thus, if (x, y) ∈ X(T e,λe), then the path connecting x and y in T

contains also at least one 1-edge and hence, (x, y) ∈ X(T ,λ).

Note that edge contractions therefore always imply X(T e,λe) ⊆ X(T ,λ). An
example for X(T e,λe) ⊂ X(T ,λ) is given by the tree T3 in Fig. 46 and contraction
of the single inner 1-edge.
There may be edges in a tree whose labeling does not affect the relation, i.e.,
they can be labeled either 0 or 1. This observation gives rise to the following
definition:

Definition 8.7. An edge e in a tree (T ,λ) is irrelevant if (T ,λ′) with λ′(e) 6=
λ(e) and λ′(f) = λ(f) for all f 6= e still explains X(T ,λ). Edges that are not
irrelevant are called relevant.
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As an example consider the two trees T9 and T12 in Figure 46. Both explain
the valid triangle A1. The inner edge of T9 and T12 is a 0-edge and 1-edge,
respectively. Thus this edge is irrelevant. The tree T16, which is obtained from
both T9 and T12 by contracting the irrelevant edge, still explains A1. For later
reference, we provide a simple characterization of irrelevant edges.

Lemma 8.5. An edge e = uv is irrelevant in a phylogenetic tree (T ,λ) if and
only if e is an inner edge and every path from v to each leaf in the subtree rooted
at v contains a 1-edge.

Proof. Any inner edge e that satisfies the condition of the lemma is irrelevant
because every path from u to a leaf contains a 1-edge irrespective of the label
of uv.
Conversely, assume first that e = uv is an outer edge. Hence, changing the

label of e would immediately change the relation between v and any leaf w
located in a subtree rooted at a sibling of v. Since at least one such leaf w
exists in a phylogenetic tree, e is relevant. Now suppose that e = uv is an
inner edge and that there is a leaf w below v such that the path from v to w
comprises only 0-edges. Let x be a leaf such that lca(w,x) = u. Since T is
a phylogenetic tree, such a leaf always exists. Then (x,w) ∈ X if and only if
λ(e) = 1, i.e., the inner edge e is relevant.

A crucial consequence of Lemma 8.5 is that every outer edge is relevant.
Furthermore, since an irrelevant edge can be relabeled as a 0-edge without
affecting X(T ,λ), Lemma 8.4 implies that irrelevant edges can be (ex-)contracted
without changing X(T ,λ). These observations naturally pose the question how
edge-labeled trees are structured that cannot be contracted further without
affecting X(T ,λ).

Lemma 8.6. Let (T ,λ) be an edge-labeled phylogenetic tree explaining X . Then
the tree (T e,λe) obtained by extended contraction of the edge e explains X if
and only if e is irrelevant or e is an inner 0-edge.

Proof. The discussion above already shows that irrelevant edges as well as 0-
edges can be ex-contracted without affecting X . We show that X(T e,λe) 6= X(T ,λ)
whenever e is an outer edge or a relevant inner 1-edge. First we assume that e is
an outer edge. Clearly, if v is a leaf, then extended contraction of e = uv would
change v to an inner vertex in (T e,λe). Thus L(T ) 6= L(T ′) and therefore,
(T e,λe) does not explain X . Now, let e be a relevant inner 1-edge. Then there
is a leaf x in the subtree rooted at v such that the path from v to x consists
only of 0-edges (cf. Lemma 8.5). Since (T ,λ) is phylogenetic, there exists a
leaf y ∈ L(T ) such that lcaT (x, y) = u. Moreover, as λ(uv) = 1, we have
(y,x) ∈ X . Contracting e makes the vertex u∗, obtained by identifying u and v,
the last common ancestor of x and y, i.e., lcaT e(x, y) = u∗. The path from u∗

to x now contains only 0-edges, i.e., (y,x) /∈ X(T e,λe). Thus, relevant 1-edges
of (T ,λ) cannot be ex-contracted without affecting X .

The following result shows that relevant edges in a tree (T ,λ) remain relevant
in any of its ex-contracted versions (T e,λe), where e is an inner 0-edge or an
irrelevant edge.
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Lemma 8.7. Let (T ,λ) be an edge-labeled phylogenetic tree explaining X , the
edge e be an inner 0-edge or an irrelevant 1-edge in (T ,λ), and (T e,λe) the
tree obtained from (T ,λ) by extended contraction of e. Then, the edge f 6= e is
relevant in (T e,λe) if and only if f is relevant in (T ,λ).

Proof. As a consequence of Lemma 8.6, (T e,λe) still explains X . Lemma 8.5
implies that the edge f = uv is irrelevant in (T e,λe) if and only if f is an inner
edge and all paths from v to leaves below v contain a 1-edge. If e is not located
below f , then the extended contraction of e does not affect this condition and
thus, f is irrelevant in (T e,λe) if and only if it is irrelevant in (T ,λ).

Now suppose e is located below f . If e was a 0-edge, the number of 1-edges
along the paths from v to the leaves does not change upon extended edge
contraction and thus, f is irrelevant in (T e,λe) if and only if it is irrelevant in
(T ,λ). Finally, suppose e = u′v′ was an irrelevant 1-edge. Thus we can set
λ(e) = 0 in (T ,λ) without changing the relation X . Now we can repeat the
latter arguments to conclude that f is irrelevant in (T e,λe) if and only if it is
irrelevant in (T ,λ).

The following result shows that the order of the extended contraction of inner
0-edges or irrelevant 1-edges does not affect the resulting relation.

Lemma 8.8. Let (T ,λ) be an edge-labeled phylogenetic tree and let e and f
be two edges in T such that (T ,λ), (T e,λe), and (T f ,λf ) explain the same
relation X . Then, (T ef ,λef ) obtained from (T e,λe) by extended contraction of
the edge f , also explains X .

Proof. By Lemma 8.6, an edge can be ex-contracted without affecting X if and
only it is an inner 0-edge or an irrelevant 1-edge. The labeling of f is not
affected by extended contraction of e and vice versa. Lemma 8.7 furthermore
shows that the (ir)relevance of an edge f 6= e is conserved by the extended
contraction of 0-edges and irrelevant 1-edges. Therefore e and f can be ex-
contracted in arbitrary order and preserve X in each contraction step.

We will now apply the results developed so far to least resolved trees. First,
we show that the order of extended edge contractions does not affect the re-
sulting least resolved tree. In particular, the importance of the next lemma is
given by the following observation: By definition, (T ,λ) is least resolved w.r.t.
X if none of its single edge contracted trees (T e,λe) explains X . However, this
does not directly imply that there is no sequence of extended edge contractions
that may yield a tree that explains X .

Lemma 8.9. Let (T ,λ) be a least resolved tree w.r.t. X = X(T ,λ). Then, there
is no sequence of extended edge contractions e1e2 . . . e` such that the resulting
contracted tree (T e1e2...e` ,λe1e2...e`) explains X(T ,λ).

Proof. Let (T ,λ) be a least resolved tree, i.e., none of the ex-contracted trees
(T e,λe), e ∈ E, explains X(T ,λ). Lemma 8.4 and 8.6 imply that any edge e ∈ E
must be either an outer edge or a relevant 1-edge. Clearly, if one edge of the
sequence e1e2 . . . e` is an outer edge, then the statement is trivially satisfied.
Hence, assume that all edges e1e2 . . . e` are inner edges and therefore, relevant

1-edges in (T ,λ). Lemma 8.4 implies that for X to change, there must be at
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least one pair of leaves x, y such that (x, y) ∈ X(T ,λ) and (x, y) /∈ X(T e,λe),
i.e., there is no 1-edge along the path from lca(x, y) to y in T e, and e was
the only 1-edge along the path from lca(x, y) to y in T . By Lemma 8.4, this
implies (x, y) /∈ X ′ for the relation explained by any tree that is obtained from
extended edge contractions of (T e,λe), i.e., there is no sequence of extended
edge contractions that leads to a tree (T ′,λ′) such that X(T ′,λ′) = X(T ,λ).

Next, we summarize some useful properties of least resolved trees that will
be used repeatedly in the following sections.

Lemma 8.10. Let (T ,λ) be a phylogenetic tree that explains X . The following
three conditions are equivalent:

1. (T ,λ) is least resolved tree w.r.t. X .

2. Every edge of (T ,λ) is relevant and all inner edges are 1-edges.

3. (a) Every inner edge of (T ,λ) is a 1-edge.
(b) For every inner edge uv there is an outer 0-edge vx in (T ,λ).

Moreover, if (T ,λ) is least resolved w.r.t. X , then

4. Any inner edge of (T ,λ) is distinguished by at least one informative rooted
triple in R(X ),

5. For any edge-contracted tree (T e,λe) of (T ,λ) there is a triple in R(X )
that is not displayed by (T e,λe), i.e., (T ,λ) is also least resolved w.r.t.
R(X ), and

6. The tree (T (v),λ|L(T (v))), that is the subtree of T rooted at the vertex v
with λ|L(T (v))(e) = λ(e) for any edge e of T (v), is least resolved w.r.t. the
subrelation X [L(T (v))] of X .

Proof. The equivalence of Conditions 1 and 2 is an immediate consequence of
Lemma 8.6. Moreover, by Lemma 8.4, Condition 1 implies Condition 3(a). To
see that also Condition 3(b) is implied given Conditions 1 or 2, observe that
if v is incident to 1-edges only, then Lemma 8.5 implies that uv is irrelevant.
Thus v must be incident to at least one 0-edge. However, this 0-edge cannot
be an inner edge because inner 0-edges can always be (ex-)contracted due to
Lemma 8.4. Thus v is incident to an outer 0-edge.
Now assume that Condition 3 is satisfied. First observe that none of the

outer edges can be ex-contracted without changing X . Let uv be an inner 1-
edge and vx an outer 0-edge. Since (T ,λ) is phylogenetic, there is a leaf y for
which lca(x, y) = u. Thus (y,x) ∈ X . However, extended contraction of the
inner edge uv would yield (y,x) 6∈ X . Thus none of the inner edges can be
ex-contracted and therefore, (T ,λ) is least resolved w.r.t. X .

Property 4: Consider an arbitrary inner edge e = uv of T . Since (T ,λ) is
phylogenetic, there are necessarily leaves x, y, and z such that lca(x, y) = v

and lca(x, y, z) = u. Since e is a 1-edge due to Property 3, the tree on {x, y, z}
displayed by T must be one of T3,T5,T7,T10,T11, or T12 in Fig. 46, where the
red inner edge denotes the edge e. One easily checks explicitly that neither
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T11 nor T12 is least resolved since contraction of e still yields X(T e,λe) = X(T ,λ).
The remaining trees T3, T5, T7, and T10, on the other hand, are informative
triples xy|z ∈ R(X ). Since lca(x, y) = v and lca(x, y, z) = u, the edge e is by
definition distinguished by the triple in xy|z ∈ R(X ).
Property 5: Recall from Property 4 that each inner edge e = uv is distin-

guished by a triple xy|z ∈ R(X ); therefore lca(x, y) = v and lca(x, y, z) = u.
However, extended contraction of e would yield lcaT e(x, y) = lcaT e(x, y, z),
which in turn would imply that xy|z ∈ R(X ) is not displayed by (T e,λe); a
contradiction.
Property 6: By construction, no edge ab with v �T a was removed in T (v).

Since λ|L(T (v))(e) = λ(e) for any edge e of T (v), Property 3 is trivially fulfilled
in (T (v),λ|L(T (v))). Thus (T (v),λ|L(T (v))) is least resolved w.r.t. X [L(T (v))].

As an immediate consequence of Lemma 8.8, which implies that all extended
edge contractions can be performed independently of each other, we observe
that for every edge-labeled tree (T ,λ) there exists a unique least resolved tree
(T̂ , λ̂) that can be obtained from (T ,λ) by a sequence of extended edge con-
tractions. Every tree explaining X is therefore a refinement of a least resolved
tree that explains X . By Lemma 8.3, any tree that explains X must display
the triples in R(X ). An even stronger result holds however:

Lemma 8.11. If (T ,λ) is a least resolved tree w.r.t. X = X(T ,λ), then R(X )
identifies (T ,λ).

Proof. If R(X ) = ∅, then, by construction, all induced subgraphs on three
vertices must be isomorphic to one of the graphs A1, A2, A3, or A4 in Fig. 46.
In this case, (T ,λ) is a star tree, i.e., an edge-labeled tree that consists of outer
edges only. Otherwise, (T ,λ) contains inner edges that are, by Lemma 8.10,
distinguished by at least one informative rooted triple in R(X ), contradicting
that R(X ) = ∅. Hence, r(T ) = ∅, and therefore, r(T ) = cl(R(X)). Lemma 3.1
implies that R(X ) identifies (T ,λ).
In the case R(X ) 6= ∅, assume for contradiction that r(T ) 6= cl(R(X )). By

Lemma 8.3, we have R(X ) ⊆ r(T ). Isotony of the closure (see Thm. 3.1(3) in
[25] and Section 3.3.5), ensures cl(R(X )) ⊆ cl(r(T )) = r(T ). Our assumption
therefore implies cl(R(X )) ( r(T ) and thus, the existence of a triple ab|c ∈
r(T ) \ cl(R(X )). In particular, therefore, ab|c /∈ R(X ). Note that neither ac|b
nor bc|a can be contained in R(X ) since (T ,λ) explains X and, by assumption,
already displays the triple ab|c. Thus R(X ) contains no triples on {a, b, c}.
Lemma 8.10 implies that there exists a vertex v ∈ child(lca(a, b, c)), with

v � lca(a, b), and lca(a, b, c)v is a 1-edge. The subtree T|{abc} of (T ,λ) with
leaves a, b, c thus corresponds to one of T3, T5, T7, T10, T11, or T12 shown in Fig.
46. Recall that T3, T5, T7, and T10 explain the induced subgraphs A5, A6, A7,
and A8, respectively. If T|{abc} is one of T3, T5, T7, or T10, then we would have
a triple with leaves a, b, c in R(X ). Since this is not the case by assumption,
T|{abc} must be either T11 or T12. Thus the subgraph of X induced by a, b, c is
isomorphic to either A1 or A4.

Moreover, by Lemma 8.10, there must be a leaf d ∈ child(v) such that vd is
a 0-edge. Hence, the subtrees T|{acd} and T|{bcd} with leaves a, c, d and b, c, d,
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respectively, correspond to one of the trees T3, T5, T7, or T10. Thus the subgraph
of X induced by a, c, d or b, c, d must be isomorphic to a valid triangle A5, A6,
A7, or A8. By construction, ad|c ∈ R(X ) and bd|c ∈ R(X ). Hence, any tree
that explains X must display ad|c and bd|c. As shown in [45], a tree displaying
ad|c and bd|c also displays ab|c. This implies, however, that ab|c ∈ cl(R(X )), a
contradiction to our assumption.
Therefore, cl(R(X )) = r(T ) and we can finally apply Lemma 3.1 to conclude

that R(X ) identifies (T ,λ).

We are now in the position to prove Thm. 8.1, the main result of this section:

Proof of Theorem 8.1. The first statement is an immediate consequence of
Lemma 8.8. Lemma 8.11 implies that R(X ) identifies (T̂ , λ̂). Hence, any tree
that displays R(X ) is a refinement of (T̂ , λ̂) and thus, must have more ver-
tices. Lemma 8.11 also implies that (T ,λ) displays (T̂ , λ̂). Moreover, Lemma
8.3 ensures that any tree explaining X displays R(X ). Combining these two
observations, we conclude that T̂ has the minimum number of vertices among
all trees that explain X .

By Lemma 8.10, all inner and outer edges of (T̂ , λ̂) are relevant, and thus,
their labels cannot be changed without changing X . Moreover, Lemma 8.9
implies that there is no further sequence of extended edge contractions that
could be applied to (T̂ , λ̂) in order to obtain another tree that explains X .
Hence, (T̂ , λ̂) is unique.

8.3 characterization of valid xenology relations

This section is dedicated to the proof of the main result of this chapter: a binary
relation X is explained by a tree if and only if it contains only valid triangles.

Theorem 8.2. An irreflexive relation X on L is valid if and only if it is a
Fitch relation.

The key idea of the proof, which proceeds by induction on the number of
leaves, is to consider the superposition of trees explaining two induced subrela-
tions, each of which is obtained by removing a single vertex from X . We first
establish several technical results for these trees. To this end we introduce some
notation that will be used in this section only.

Definition 8.8. Let (T ,λ) be an edge-labeled phylogenetic tree and e = uv be
an outer edge of T . We write (T − v,λ|L−v) for the tree obtained from (T ,λ)
by removing the outer edge e and vertex v from T and keep the edge labels of
all remaining edges.

For an outer edge e = uv we therefore have (T − v,λ|L−v) = (T e,λe) if and
only if either u = ρT and degT−v(u) > 1, or u 6= ρT and degT−v(u) > 2.

Definition 8.9. Let X ⊂ L × L be an irreflexive relation and consider
l1, . . . , lk ∈ L. The set X¬l1,...,lk denotes the subrelation of X that is induced by
L \ {l1, . . . , lk}.

193



We emphasize that the results established in the previous sections are in
general not valid for non-phylogenetic trees. Nevertheless, it is useful in the
following to extend some concepts to more general trees. In particular, we say
that an edge-labeled rooted (but possibly non-phylogenetic) tree (T ,λ) with leaf
set L explains a given irreflexive relation X ⊂ L×L if for any pair (x, y) ∈ X
there is a 1-edge on the path from lca(x, y) to y.
Using the same arguments as in the proof of Lemma 8.1 we observe that (T −
v,λ|L−v) explains X¬v.

Lemma 8.12. Let (T ,λ) be a least resolved phylogenetic tree on L w.r.t. X =

X(T ,λ), and v ∈ L. Let (T ′,λ′) be a least resolved phylogenetic tree w.r.t. X¬v.
Then, (T ′,λ′) is displayed by (T − v,λ|L−v). In particular, (T ′,λ′) = (T −
v,λ|L−v) if and only if (i) par(v) = ρT and degT (ρT ) > 2 or (ii) degT (par(v)) >
3 and λ|L−v(par(v)u) = 0 for some child u ∈ child(par(v)), u 6= v.

Proof. If (T − v,λ|L−v) is phylogenetic, then we may apply Thm. 8.1 to verify
that (T ′,λ′) is indeed displayed by (T − v,λ|L−v). Now assume that (T −
v,λ|L−v) is not phylogenetic. In this case, either (a) par(v) 6= ρT is an inner
vertex of degree 2, or (b) the root ρ of T −v has degree 1, and hence ρT = par(v).

Case (a): If x = par(v) 6= ρT is an inner vertex of degree 2, let T ∗ be the
tree obtained from (T − v,λ|L−v) by a simple contraction of the edge par(x)x
and setting λ|L−v(xchild(x)) = 1. The labels of all other edges are kept. By
construction, we obtain a phylogenetic tree (T ∗,λ∗) that still explains X¬v and,
by Thm. 8.1, satisfies (T ′,λ′) ≤ (T ∗,λ∗) ≤ (T − v,λ|L−v). Therefore, (T ′,λ′)
is displayed by (T − v,λ|L−v).
Case (b): If the root ρ of T − v has degree 1, let T ∗ be the tree obtained by

deleting ρ and the edge ρw, where w denotes the unique child of ρ in T − v,
and declaring w as the root of T ∗. For all other edges set λ∗(e) = λ|L−v(e).
Again, we obtain a phylogenetic tree (T ∗,λ∗) that still explains X¬v. Repeating
the arguments of Case (a), we can conclude that (T ′,λ′) is displayed by (T −
v,λ|L−v).

Now assume that (T ′,λ′) = (T − v,λ|L−v). There are two cases: either
par(v) is the root ρT or not. If par(v) = ρT , then degT (ρT ) ≤ 2 would imply
that degT ′(ρT ) ≤ 1, in which case (T ′,λ′) would not be a phylogenetic tree;
a contradiction since (T ′,λ′) is phylogenetic. Hence, if par(v) = ρT , then
degT (ρT ) > 2. Now assume that par(v) 6= ρT . Thus there is an inner edge
xpar(v) where x = par(par(v)). Lemma 8.10(3) implies that this edge xpar(v)
must be incident to an outer 0-edge in (T ′,λ′) and hence, λ|L−v(par(v)u) = 0 for
some leaf u ∈ L \ {v}. Moreover, as (T ′,λ′) is phylogenetic, degT−v(par(v)) > 2
and hence, degT (par(v)) > 3.

Conversely, assume first that par(v) = ρT and degT (ρT ) > 2. In this case,
(T − v,λ|L−v) is still a phylogenetic tree. By construction, E0(T − v) = E0(T )

and λ|L−v(e) = λ(e) for all e ∈ E0(T − v) Thus any inner edge of T − v is a
1-edge. Lemma 8.10(3) implies that for each inner edge e = xy in T there is an
outer 0-edge yz in (T ,λ). This property still holds in (T − v,λ|L−v) because
the deleted edge par(v)v is incident to the root of (T ,λ). Thus all edges of
(T − v,λ|L−v) are relevant. Lemma 8.10 implies that (T − v,λ|L−v) is least
resolved.
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Now assume that par(v) 6= ρT and degT (par(v)) > 3. Thus (T − v,λ|L−v)
is still a phylogenetic tree. Moreover, let λ|L−v(par(v)u) = 0 for some child
u ∈ child(par(v)), u 6= v. Now, we can apply similar arguments as above to
conclude that all edges in (T − v,λ|L−v) are relevant, and thus (T − v,λ|L−v)
is least resolved.
In summary, if par(v) = ρT and degT (ρT ) > 2 or λ|L−v(par(v)u) = 0 for

some child u ∈ child(par(v)), u 6= v, and degT (par(v)) > 3, then (T − v,λ|L−v)
is least resolved w.r.t. X¬v. By Thm. 8.1, (T − v,λ|L−v) = (T ′,λ′).

An immediate consequence of Lemma 8.12 is the following result that is crucial
for proving the main result.

Lemma 8.13. Let (T ,λ) and (T − v,λ|L−v) be defined as in Lemma 8.12, and
(T ′,λ′) be the least resolved phylogenetic tree that explains X¬v. Then, either

1. (T − v,λ|L−v) = (T ′,λ′), or

2. (T ′,λ′) is obtained from (T − v,λ|L−v) by a simple contraction of either
(i) the inner edge ρTu ∈ E(T − v), in case that par(v) = ρT and

degT (ρT ) = 2, or
(ii) the inner edge par(x)x ∈ E(T − v), where x = par(v) 6= ρT , and

setting λ′(xchild(x)) = 1, otherwise.
In either case λ′(e) = λ|L−v(e) for all non-contracted edges e.

In particular, (T − v,λ|L−v) displays the least resolved phylogenetic tree (T ′,λ′)
that explains X¬v and therefore, r(T ′) ⊆ r(T − v).

Proof. By Lemma 8.12, (T − v,λ|L−v) is least resolved if and only if par(v) =
ρT and degT (ρT ) > 2, or there exists a leaf u ∈ par(v), u 6= v, such that
λ|L−v(par(v)u) = 0 and degT (par(v)) > 3. If (T − v,λ|L−v) is not least resolved
and par(v) = ρT , we have degT−v(ρT ) = 1. Due to Lemma 8.10(6), the tree
(T ′,λ′) obtained by a simple contraction of the single edge ρTu and adopting
u as the new root is least resolved w.r.t. X¬v.
If (T − v,λ|L−v) is not least resolved and par(v) 6= ρT , then either (a)

there is no leaf u ∈ child(par(v)), u 6= v, with λ|L−v(par(v)u) = 0, or (b)
degT−v(par(v)) = 2. Indeed, degT−v(par(v)) > 2 and u ∈ child(par(v)) with
λ|L−v(par(v)u) = 0 implies that (T − v,λ|L−v) is least resolved. On the other
hand, degT−v(par(v)) ≥ 2 because T is phylogenetic.

Case (a). Assume that par(v)u is a 1-edge for all children u 6= v of par(v).
Then the inner edge par(x)x ∈ E(T − v) is irrelevant in (T − v,λ|L−v); thus
it can be ex-contracted. Since (T ,λ) is least resolved, Lemma 8.10(3) ensures
that every inner vertex in (T − v,λ|L−v) other than par(v) is adjacent to an
outer 0-edge. Hence, extended contraction of xpar(v) in (T − v,λ− v) yields
the least resolved tree w.r.t. X¬v.
Case (b). If degT−v(par(v)) = 2 and λ|L−v(par(v)u) = 1, the edge

par(x)x can be ex-contracted without changing the relation and similar ar-
guments as in Case (a) show that (T − v,λ|L−v) is least resolved w.r.t. X¬v. If
λ|L−v(par(v)u) = 0, then the construction as in Property 2.(ii) does not change
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X since λ(par(x)x) = 1. Again, similar arguments as in Case (a) ensure that
(T − v,λ|L−v) is least resolved w.r.t. X¬v.

Obviously, it either holds (T ′,λ′) = (T − v,λ|L−v) or (T ′,λ′) can be ob-
tained from (T − v,λ|L−v) by a single simple edge contraction. Thus (T ′,λ′) is
displayed by (T − v,λ|L−v) and r(T ′) ⊆ r(T − v).

Let (T = (V ,E),λ) be an edge-labeled phylogenetic tree. Moreover, let
xy ∈ E and let (T e,λe) be the phylogenetic tree obtained from (T ,λ) by
extended contraction of e in (T ,λ). Given (T e,λe) it is possible to recover the
tree (T ,λ) reverting the extended contraction of e. If e was an internal edge,
this amounts to subdividing a vertex z, yielding e = uv, and a bi-partitioning
of the set of children of z into the children of u and v. If e was an external
edge incident to a degree 2 node, an edge f in (T e,λe) is subdivided and e is
attached to the new inner vertex. In addition, the labeling is adjusted. We
refer to these constructions as reinsertion of e into (T e,λe).

Lemma 8.14. Given a Fitch relation X ⊂ L× L, |L| > 3, such that X¬u,
X¬v, and X¬uv are valid for some u, v ∈ L. Let (T¬u,λ¬u), (T¬v,λ¬v), and
(T¬uv,λ¬uv) be the least resolved trees that explain X¬u, X¬v, and X¬uv, respec-
tively.

Then there is a tree (T ,λ) that correctly explains all members in X \X [u, v],
i.e., X(T ,λ)[a, b] = X [a, b] for all a, b ∈ L with {a, b} 6= {u, v}. Moreover (T ,λ)
displays (T¬u,λ¬u), (T¬v,λ¬v), and (T¬uv,λ¬uv).

Proof. Consider the least resolved tree (T¬uv,λ¬uv) that explains X¬uv. By
Lemma 8.13, this tree can be obtained from the least resolved trees (T¬u,λ¬u)
and (T¬v,λ¬v) by removing the vertices v and u, respectively, and possibly
(simple) contraction of edges. More precisely, it either holds (T¬uv,λ¬uv) =

(T¬u− v,λ¬u|L′), where L′ = L \ {u, v}, or (T¬uv,λ¬uv) is obtained from (T¬u−
v,λ¬u|L′) by (i) contracting par(v)w if par(v) is the root of T¬u with degree 2, or
otherwise (ii) contracting exactly the edge xy where y = par(v) and a possible
relabeling of the incident edges below y (cf. Lemma 8.13). In the following
we denote by wxy the vertex in T¬uv that is obtained by contraction of this
edge xy. Moreover, we will throughout this proof refer to those two cases as
contractions of Type (i) and (ii). In the same way, (T¬uv,λ¬uv) is obtained
from (T¬v − u,λ¬v|L′) and if the edge x′y′ was contracted, then w′x′y′ denotes
the resulting vertex in T¬uv.
Therefore, the following cases must be considered:

1. (T¬uv,λ¬uv) = (T¬u − v,λ¬u|L′) = (T¬v − u,λ¬v|L′),

2. Either
(a) (T¬uv,λ¬uv) = (T¬u − v,λ¬u|L′) � (T¬v − u,λ¬v|L′), or
(b) (T¬uv,λ¬uv) = (T¬v − u,λ¬v|L′) � (T¬u − v,λ¬u|L′),

3. (T¬uv,λ¬uv) � (T¬u − v,λ¬u|L′) and (T¬uv,λ¬uv) � (T¬v − u,λ¬v|L′),
where in at least one of the two cases (T¬uv,λ¬uv) can be obtained by
a contraction of Type (i),
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4. (T¬uv,λ¬uv) � (T¬u − v,λ¬u|L′) and (T¬uv,λ¬uv) � (T¬v − u,λ¬v|L′),
where a contraction of Type (ii) has to be applied in both cases, and
either
(a) wxy 6= w′x′y′ or (b) wxy = w′x′y′ .

In Case 1, one can simply add the edges par(v)v and par(u)u together with the
original edge labels λ¬u(par(v)v) and λ¬v(par(u)u) to obtain a tree (T ,λ) that
contains both (T¬u,λ¬u) and (T¬v,λ¬v) as subtrees and thus, X(T ,λ)[a, b] =
X [a, b] for all a, b with {a, b} 6= {u, v}.
Case 2(a). Suppose first that (T¬uv,λ¬uv) is obtained from (T¬v − u,λ¬v|L′) by
a contraction of Type (i). Reverting this contraction by inserting a new root
ρT to T¬uv, i.e., inserting the edge ρTρT¬uv with label 1, and inserting the edges
ρTu with its original label λ¬v(par(u)u), yields the tree (T¬v,λ¬v). Since, by
construction, we have (T¬v(ρT¬uv ),λ¬v|L′) = (T¬uv,λ¬uv), X¬uv and X¬v are
clearly explained by (T¬v,λ¬v). Moreover, as (T¬uv,λ¬uv) = (T¬u − v,λ¬u|L′),
one can simply add the edge par(v)v together with the original edge label
λ¬u(par(v)v) and obtains a tree (T ,λ) with (T (ρT¬uv ),λ|L−u) = (T¬u,λ¬u).
Hence, (T ,σ) explains X¬u and one easily checks that it also explains X¬uv and
X¬v.
Now assume that (T¬uv,λ¬uv) is obtained from (T¬v − u,λ¬v|L′) by a con-

traction of Type (ii). Again, one can simply add the edge par(v)v together
with the original edge label λ¬u(par(v)v) to (T¬uv,λ¬uv) in order to obtain
(T¬u,λ¬u). Since w′x′y′ denotes the vertex that results from contracting the
edge x′y′ in (T¬v − u,λ¬v|L′), this vertex is also contained in (T¬u,λ¬u). Now,
we reinsert the edge x′y′ in (T¬u,λ¬u) such that we obtain a tree (T ,λ) that
contains (T¬v,λ¬v) as a subtree. Hence, X¬uv and X¬v are correctly explained
by (T ,λ). It remains to show that also all X [v, z] and X [z, v] with z 6= u

are still correctly explained. Assume for contradiction that this is not the case
and that X [v, z] 6= X(T ,λ)[v, z] for some z 6= u. This is only possible if in the
tree (T ,λ) the 1-edge x′y′ contained in the path from lcaT (v, z) to z. Hence,
X(T ,λ)[v, z] = (v, z), which implies that the path from lcaT¬u(v, z) to z contains
only 0-edges. Moreover, (T¬u,λ¬u) is least resolved w.r.t. X¬u. Hence, all inner
edges are 1-edges. Therefore lcaT¬u(v, z) = w′x′y′ and w′x′y′z ∈ E(T¬u) must
be an outer 0-edge. Note that this implies that z is a child of y′ in T¬v. By
construction according to Lemma 8.13(ii), we have contracted the edge x′y′ in
(T¬v − u,λ|L−u) and relabeled all outer edges in T¬v incident to y′ as 1-edges.
But this implies that w′x′y′z is a 1-edge in (T¬u,λ¬u); a contradiction. The
assumption X [z, v] 6= X(T ,λ)[z, v] for some z 6= u yields a contradiction using
analogous arguments.
Case 2(b) is settled by interchanging the roles of u and v in Case 2(a).
Case 3. Assume first that, w.l.o.g., (T¬uv,λ¬uv) is obtained by a contraction of
Type (i) from (T¬v − u,λ¬v|L′) and of Type (ii) from (T¬u − v,λ¬u|L′). First,
we revert the contraction of Type (ii) by reinserting the edge xy and yv with
their original labels. This yields the tree (T¬u,λ¬u). Then we insert a new root
ρT to T¬u, i.e., inserting the edge ρTρT¬u with label 1, as well as the edge ρTu
with its original edge label. The resulting tree is denoted by (T ,λ). Clearly,
(T ,λ) displays (T¬uv,λ¬uv) and (T¬u,λ¬u), and explains X¬uv and X¬u. It
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remains to show that X [u, z] is correctly explained by (T ,λ) for all z ∈ L′. By
construction, u is incident to the root in (T¬v,λ¬v) and the degree of this root
is 2. Since (T¬v,λ¬v) is least resolved and |L| > 3, this only remaining child of
this root must be an inner 1-edge. Hence, (u, z) ∈ X for any z ∈ L′. Moreover,
for each z ∈ L′, we have (z,u) ∈ X if and only if λ¬v(par(u)u) = 1. One now
easily checks that, by construction, (T ,σ) explains X [u, z] for any z ∈ L′.

If (T¬uv,λ¬uv) is obtained by a contraction of the form (i) from both (T¬u−
v,λ¬u|L′) and (T¬v − u,λ¬v|L′), we construct a tree (T ,λ) by adding a new
root ρT to T¬uv, i.e., inserting the edge ρTρT¬uv with label 1, and inserting the
edges ρTu and ρT v with their original edge labels. Clearly, (T (ρT¬uv ),λ|L′) =
(T¬uv,λ¬uv) and thus, (T ,σ) explains X¬uv. Applying analogous arguments as
used in the first part of Case 3, one easily checks that it also explains X [u, z]
and X [v, z] for any z ∈ L′.
Case 4. In order to obtain (T ,λ) from (T¬uv,λ¬uv), we need to undo the
contractions that lead to wxy and w′x′y′ and in addition, reinsert the edges y′u
and yv with original edge labeling such that (T ,λ) contains both (T¬u,λ¬u)
and (T¬v,λ¬v) as subtrees and thus, X(T ,λ)[a, b] = X [a, b] for all a, b with
{a, b} 6= {u, v}. The subdivision of wxy partitions the set of children child(wxy)
of the vertex wxy into two disjoint sets Cx and Cy in such a way that Cx contains
all children of x that are distinct from y and Cy contains all children of y in
(T¬u− v,λ¬u|L′). Analogously, the sets Cx′ and Cy′ are obtained by partitioning
child(w′x′y′) in (T¬v −u,λ¬v|L′). The sets Cx, Cx′ , Cy, and Cy′ are all non-empty
because (T¬u,λ¬u) and (T¬v,λ¬v) are phylogenetic.
Case 4(a). wxy 6= w′x′y′ . By definition of (T¬uv,λ¬uv), it is possible to subdivide
wxy and add par(v)v with the edge labeling λ¬u(par(v)v) such that we obtain
(T¬u,λ¬u). Subdivision of w′x′y′ in (T¬u,λ¬u) results in a tree (T ,λ) that con-
tains (T¬v,λ¬v) as a subtree. Hence, (T ,λ) correctly explains X¬uv and X¬v.
Arguments analogous to Case 2 now show that X [z, v] and X [v, z] are correctly
explained for any z 6= u, thus (T ,λ) correctly explains X¬u.
Case 4(b). wxy = w′x′y′ . Since wxy = w′x′y′ , (T ,λ) is obtained from (T¬uv,λ¬uv)
by reinsertion of a single edge. To ensure that (T ,λ) displays both (T¬u,λ¬u)
and (T¬v,λ¬v), we need to show that Cx = Cx′ and Cy = Cy′ .

First, we show that all 0-edges incident to wxy in (T¬uv,λ¬uv) are incident
to x and x′ in (T¬u,λ¬u) and (T¬v,λ¬v), respectively. Let M denote the set of
all leaves z ∈ child(wxy) for which λ′(wxyz) = 0 in T¬uv. Since (T¬uv,λ¬uv) is
least resolved, M 6= ∅. For any w ∈ child(wxy), and z ∈ M there is no 1-edge
on the path from lca(w, z) to z in (T¬uv,λ¬uv). We proceed by showing that
M ⊆ Cx ∩Cx′ . Assume for contradiction that z ∈ Cx but z 6∈ Cx′ . Thus z ∈ Cy′ .
Furthermore, for any w′ ∈ Cx′ , the 1-edge e′ = x′y′ is contained in the path from
lca(w′, z) to z in the tree (T¬v −u,λv|L′). Since (T¬v −u,λv|L′) is phylogenetic,
Cx′ is non-empty, i.e., such a w′ exists. In contrast, for any w ∈ Cx ∪Cy, w 6= z,
there is no 1-edge on the path from lca(w, z) to z in (T¬u − v,λu|L′). Since
Cx′ ⊆ Cx ∪Cy, the two trees (T¬u− v,λu|L′) and (T¬v −u,λv|L′) cannot explain
the same relation X¬uv; this is the desired contradiction.
Hence, it remains to show that for every 1-edge wxyw′′ in (T¬uv,λ¬uv) either

w′′ ∈ Cx ∩ Cx′ or w′′ ∈ Cy ∩ Cy′ is true. Assume for contradiction that w′′ ∈ Cx
but w′′ /∈ Cx′ , i.e., w′′ /∈ Cy and w′′ ∈ Cy′ . This implies [w′′, v] ∈ X¬u and
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Fig. 48. (A) The two least resolved trees (T¬u,λ¬u) and (T¬v,λ¬v) that explain X¬u
and X¬v respectively both explain the least resolved tree (T¬uv,λ¬uv) that explains
X¬uv. However, there exists no tree (T ,λ) that explains X , thus there is no valid
Fitch relation X that contains both X¬u and X¬v. This is due to the fact that the
triples ac|b and bc|a in (T¬u,λ¬u) and (T¬v,λ¬v) contradict each other. (B) We have
Cx = {c} = Cx′ and Cy = {a, b} = Cy′ in the least resolved trees (T¬u,λ¬u) and
(T¬v,λ¬v). In this case, there exists a tree (T ,λ) that displays (T¬uv,λ¬uv), (T¬u,λ¬u)
and (T¬v,λ¬v), and explains X . The Fitch relation corresponding to each tree is shown
in the upper right corner. Two nodes x and y are represented as one node xy if they
have the same relationship with every other node.

(u,w′′) ∈ X¬v. Since {u, v,w′′} must form a valid triangle, either (u, v) ∈ X or
[u, v] ∈ X must be true. On the other hand, since M ⊆ Cx ∩ Cx′ and the trees
(T¬u,λ¬u) and (T¬v,λ¬v) are least resolved, both yv and y′u must be 0-edges.
By construction, (T ,λ) is obtained by reinserting a single edge in (T¬uv,λ¬uv)
in such a way that par(u) = par(v). Thus we must have u|v; a contradiction.
We therefore conclude Cy = Cy′ and Cx = Cx′ , which completes the proof.

We remark that the existence of the tree (T ,λ) asserted in Lemma 8.14
does not follow from the fact that both (T¬u,λ¬u) and (T¬v,λ¬v) explain
(T¬uv,λ¬uv). A counterexample is given in Fig. 48. The condition that the
trees together explain a Fitch relation cannot be relaxed in the proof.
We are now in the position to prove the main result of this section.

Proof of Theorem 8.2. Assume that X is valid. Hence, there is a tree (T ,λ)
that explains X . Let x, y, z ∈ L be distinct vertices. Clearly, any subtree
T ′ ⊆ T with leaf set {x, y, z} must correspond to one of the trees T1, . . . ,T16 in
Fig. 46. Since these subtrees can only encode the valid triangles A1, . . . A8, the
subgraph induced by x, y, z in X must be isomorphic to one of A1, . . . A8. As
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this statement is true for any three distinct vertices in X , all triangles in X are
valid. Hence, X is a Fitch relation.

Now assume that X is a Fitch relation. The trivial relation on L, correspond-
ing to the empty graph, is explained by any tree with leaf set L that has only
0-edges. For the non-trivial case we proceed by induction w.r.t. the number of
vertices |L|. The base case consists of the valid triangles, for which the state-
ment is trivially true. Assume now that all Fitch relations with |L| ≤ n are
valid.

Let X be a Fitch relation on |L| = n+ 1 vertices and let u, v ∈ L be two
distinct, arbitrarily chosen vertices. Clearly, X¬u, X¬v, and X¬uv are Fitch
relations and, by assumption, also valid. In particular, there are unique least
resolved trees (T¬u,λ¬u), (T¬v,λ¬v), and (T¬uv,λ¬uv) that explain X¬u, X¬v,
and X¬uv, respectively. With the exception of the relation between u and v, X
is therefore determined by (T¬u,λ¬u) and (T¬v,λ¬v), i.e., any pair (x, y) ∈ X
for which {x, y} 6= {u, v} is explained by (T¬u,λ¬u) or (T¬v,λ¬v). In particular
all pairs (x,u) or (u,x) in X \X [u, v] are explained by (T¬v,λ¬v) and all pairs
(x, v) or (v,x) in X \X [u, v] are explained by (T¬u,λ¬u).

Lemma 8.14 implies that there is a tree that correctly explains all pairs in
X \ X [u, v] and displays (T¬u,λ¬u), (T¬v,λ¬v), and (T¬uv,λ¬uv). Thus there
is in particular a least resolved tree (T ,λ) that fulfills these requirements.
X [u, v] is in some cases uniquely determined by X \X [u, v] and the require-

ment that {u, v,x} forms a valid triangle. The existence of (T ,λ) then implies
immediately that X [u, v] and hence X , is explained by (T ,λ). This is not al-
ways the case, however. If more than one choice of X [u, v] completes X \X [u, v],
we need to show that a (T ,λ) exists for each of the possible choices. Denote
by ∆uv the set of triangles in X that contain u and v. Full enumeration (which
we leave to the reader) shows that X [u, v] is not uniquely determined if and
only if all triangles in ∆uv are of the form A, B, C, or D listed in Fig. 49. Only
certain combinations of these triangle types can occur: The co-occurence of A
and B implies (u, v) ∈ X , thus X [u, v] is uniquely determined and hence, (T ,λ)
is also unique. The remaining cases can be classified as follows:

1. ∆uv contains at least one triangle of each of the Types A, C, and D but
not B, or of each of the Types B, C, and D but not A.

2. ∆uv consists of triangles of exactly one of the Types A, B and C, D,
respectively, and for each type there is a triangle.

3. ∆uv consists exclusively of triangles of the Types C and D and for each
Type C, D there is a triangle.

4. All triangles in ∆uv are of the same type.

In each of these cases, there is more than one possible choice for X [u, v].
Lemma 8.14 ensures that there is a least resolved tree (T ,λ) that explains at
least one of these choices. Given (T ,λ) for one particular choice, we show below
that it is always possible to transform (T ,λ) into another least resolved tree
that explains X with a different choice of X [u, v]. The resulting tree (T ′,λ′) is
unique by Thm. 8.1 and thus, the transformation can be inverted in a uniquely
defined manner.
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Fig. 49. All cases where the relationship X [u, v] cannot be uniquely inferred from
X \X [u, v].

In the following we call v ∈ L(T ) a sink (resp. source) if for all x ∈ L(T ) we
have (x, v) ∈ X(T ,λ) (resp. (v,x) ∈ X(T ,λ)). Moreover, in order to exclude the
trivial case ∆uv = ∅, we assume that |L(T )| ≥ 3.
Case 1a. Suppose that ∆uv contains at least one triangle of each of the Types
A, C, and D but not of Type B. Hence, X [u, v] ∈ {(u, v), (v,u),u|v}. Thus
we show that for each of these choices of X [u, v] there is a least resolved tree
that explains X .
Suppose that (T ,λ) explains u|v. Since all inner edges of (T ,λ) are 1-edges,

u and v must be siblings and in particular, the edges lca(u, v)v and lca(u, v)u
are 0-edges. Since each triangle containing u and v is of Type A, C, or D,
there is no leaf x ∈ L(T ) \ {u, v} with x|u or x|v. Moreover, if there would be
another vertex x ∈ V (T ) \ {u, v} that is adjacent to lcaT (u, v), then lca(u, v)x
must be a 1-edge. Let T ∗ denote the subtree of T with root lca(u, v) without
the leaves u and v. Then (T ,λ) locally looks like the tree shown in the first
panel in Fig. 50(1a). In order to obtain a tree that explains (u, v), we can
modify (T ,λ) locally to obtain a tree (T ′,λ′) by inserting a single inner 1-edge
ab in such a way that b becomes the new root of T ∗ and u is adjacent to a and
v adjacent to b in (T ′,λ′). Thus u and v are not siblings anymore. Moreover,
we keep all edge labelings and set λ′(au) = λ′(bv) = 0. By construction,
X [u, v](T ′,λ′) = {(u, v)}. We note that lca(u, v) cannot be the root of T since
we have a triangle of the form D, i.e., there must be an inner 1-edge ancestral
to lca(u, v). One easily checks that (T ′,λ′) still explains all remaining pairs in
X \X [u, v]. Hence, (T ′,λ′) explains X whenever X [u, v] = {(u, v)}. It is least
resolved by construction and Lemma 8.10, and thus unique by Thm. 8.1.
Analogously, a tree (T ′,λ′) that explains X \ X [u, v] with XT ,λ[u, v] = (v,u)
can be obtained from (T ,λ) by interchanging the roles of u and v.
Finally, whenever (T ′,λ′) explains either (u, v) or (v,u) we can obtain a tree

(T ,λ) that explains u|v by “reversing” the contraction above. Because of the
uniqueness of (T ′,λ′) it must locally look as in Fig. 50(1a) middle. That is,
there is exactly one inner 1-edge along the path from u to v and all edges
incident to par(v) must be 1-edges. Hence, after collapsing this edge to a
single vertex, we obtain the least resolved tree (T ,λ) that explains u|v. Since
X(T ′,λ′)[u, z] = X(T ,λ)[u, z] and X(T ′,λ′)[v, z] = X(T ,λ)[v, z] is still true for all
z ∈ L(T ′), (T ′,λ′) explains X whenever X [u, v] = u|v.
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Case 1b. Suppose ∆uv contains at least one triangle of each of the Types B, C,
and D but not of Type A. Then, X [u, v] ∈ {(u, v), [u, v]}. If (T ,λ) explains
[u, v], it has the following properties: Since ∆uv contains triangles of Type
B, v but not u is a sink, and therefore par(v)v is a 1-edge while par(u)u is
a 0-edge. Moreover, since (v,u) ∈ X(T ,λ) and par(u)u is a 0-edge, the path
from lca(u, v) to u has to contain at least one 1-edge, u and v cannot have the
same parent, thus lca(u, v) �T par(u). The presence of only triangles of Type
B, C, and D immediately implies that (u,x) ∈ X if and only if (v,x) ∈ X
for all x ∈ L(T ) \ {u, v}. Therefore, since each inner vertex of (T ,λ) (except
possibly the root) must be connected to an outer 0-edge (Lemma 8.10(3b)),
there cannot be any other inner vertex on the path from lca(u, v) to par(u),
hence the inner edge lca(u, v)par(u) must be present in (T ,λ). On the other
hand, there must be a 0-edge par(v)z with z ∈ L(T ) \ {u, v} (Lemma 8.10(3b)),
thus (v, z) /∈ X . As (v, z) ∈ X if and only if (u, z) ∈ X , this implies (u, z) /∈ X .
Hence, the path from lca(u, v) to par(v) cannot contain 1-edges and therefore
lca(u, v) = par(v). Moreover, Types B, C, and D imply that there may be
other 0- or 1-edges incident to par(v). We denote by T ∗∗ the subtree rooted
at par(u) that does not contain the leaf u. The subtree of T that is rooted at
par(v) but does neither contain the leaf v nor the leaf u nor any of the vertices
of T ∗∗ is denoted by T ∗. Thus (T ,λ) must match the pattern shown Fig. 50(1b,
left).
A tree (T ′,λ′) that explains X with X [u, v] = (u, v) can now be constructed

by a simple change in the position of v in (T ,λ), that is, we delete the 1-edge
par(v)v and instead, insert the 1-edge par(u)v. All other edge labels remain
unchanged. By construction, X [u, v](T ′,λ′) = {(u, v)} and again, one easily
checks that (T ′,λ′) displays X \X [u, v] and therefore X . Moreover, (T ′,λ′) is
by construction least resolved and therefore uniquely defined. Hence, it must
locally look as in Fig. 50(1b, right). Reverting the local modifications in (T ′,λ′)
again yields the uniquely defined least resolved tree (T ,λ) that explains X with
X [u, v] = [u, v].
Case 2a. Suppose ∆uv contains at least one triangle each of Types A and C

but no triangles of Types B and D. Then X [u, v] ∈ {u|v, (u, v), (v,u)}. We
first assume that (T ,λ) explains u|v. Then, as in Case 1a, u and v have to
be siblings, none of them is a sink and no other 0-edge is incident to lca(u, v).
Hence, (T ,λ) locally looks again like Case 1a in Fig. 50. Local transformations
of (T ,λ) that are completely analogous to Case 1a can be applied to (T ,λ) in
order to obtain unique least resolved trees that explain X with X [u, v] = (u, v)
and X [u, v] = (v,u), respectively (see Fig. 50(1a)). It is not hard to check that
these transformations can be reversed by contraction of the edge vu.
Case 2b. If ∆uv contains at least one triangle each of Types A and D but no
triangles of Types B and C, then exactly the same arguments as in Cases 2a
and 1a apply.
Case 2c. Suppose ∆uv contains at least one triangle each of Types B and C but
no triangles of Types A or D. Then X [u, v] ∈ {(u, v), [u, v]}. Let us assume
that (T ,λ) explains [u, v] ∈ X . As in Case 1b, the presence of triangles of Type
B implies that v but not u is a sink. Arguing as in Case 1b shows that (T ,λ)
locally looks like Case 1b in Fig. 50. The local transformation to the least
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Fig. 50. Local modifications of the tree (T ,λ) necessary to explain all possible choices
of X [u, v] for different combination of triangles types in ∆uv. Only the local environ-
ment around u and v is shown since the rest of the tree remains unchanged in all cases.
Dashed lines indicate possible additional subtrees that are connected to the local sit-
uation by means of a 1-edge. The subtrees T ∗ and T ∗∗ (with red triangles) may be
attached to an inner vertex (via 1-edges); their internal structure is irrelevant for the
arguments in the proof.

resolved tree (T ′,λ′) that explains X with X [u, v] = (u, v) can be performed
as described in Case 1b, resulting in a tree (T ′,λ′) that locally looks like Fig.
50(1b). The same arguments as in Case 1b can be applied to show that (T ′,λ′)
explains X and that there is a uniquely defined reverse transformation that
converts (T ′,λ′) into (T ,λ).
Case 2d. If ∆uv contains at least one triangle each of Types B and D but no
triangles of Types A and C, exactly the same arguments as in Cases 2c and 1b
apply.
Case 3. Suppose ∆uv contains at least one triangle each of Types C and D

but no triangles of Types A and B. Then X [u, v] ∈ {[u, v], (u, v), (v,u),u|v}.
Assume that (T ,λ) explains [u, v] ∈ X . This implies that both u and v are
sinks of X , i.e., par(u)u and par(v)v are both 1-edges. By symmetry, (u,x) ∈ X
if and only if (v,x) ∈ X and (x,u) ∈ X if and only if (x, v) ∈ X , respectively,
holds for all x ∈ L(T ) \ {u, v}.
We continue to show that u and v must be siblings. Assume for contradiction,

they are not. Lemma 8.10(3) implies that there are distinct leaves z, z′ ∈
L(T ) \ {u, v} such that par(u)z and par(v)z′ are 0-edges. Hence, we have at
least one of the cases (u, z) /∈ X but (v, z) ∈ X or (v, z′) /∈ X but (u, z′) ∈ X .
If par(u) and par(v) are incomparable in T , even both cases are true. However,
we obtain a contradiction to “(v,x) ∈ X if and only if (u,x) ∈ X ”. Thus u and
v are siblings. Since par(u)u and par(v)v are both 1-edges, there must be a leaf
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y ∈ L(T ) \ {u, v} such that the edge lca(u, v)y is a 0-edge by Lemma 8.10(3).
We denote by T ∗ the subtree rooted at lca(u, v) without the leaves u and v.

Given (T ,λ), a tree (T ′,λ′) that displays X with X [u, v] = u|v is obtained
by inserting an inner 1-edge ab such that a becomes the new root of T ∗ and
b = lcaT ′(u, v). The outer edges bu and bv are 0-edges; all other edge labels
are retained as in (T ,λ). The resulting tree locally looks as illustrated in Fig.
50(Case 3). Relabeling of edges in (T ′,λ′) such that bv becomes a 1-edge yields
the tree (T ′′,λ′′) that explains X with (u, v) ∈ X . Similarly, converting the
edge bu of (T ′,λ′) into a 1-edge yields the tree (T ′′′,λ′′′) that explains X with
(v,u) ∈ X . The trees (T ′,λ′), (T ′′,λ′′), and (T ′′′,λ′′′) explain X with the
corresponding choice of X [u, v] and are least resolved and thus unique. As
in the previous cases, the reverse transformations are therefore also uniquely
defined.
Case 4a. Suppose that all triangles in ∆uv are of the form A. Then X [u, v] ∈
{u|v, (u, v), (v,u)}. Let us assume that (T ,λ) displays u|v. Then u and v are
both sources, hence par(u)u and par(v)v are both 0-edges. Note that in contrast
to Case 1a, there is no x ∈ L(T ) \ {u, v} with (x,u) ∈ X or (x, v) ∈ X . This
implies that u and v are both incident to the root ρT of (T ,λ) and among all
edges incident to the root, ρTu and ρT v are the only 0-edges. The tree (T ,λ)
explaining X [u, v] = u|v is shown Fig. 50(Case 4a). Note that the tree structure
is very similar to Case 1a. Therefore, as in Case 1a, (T ,λ) can be locally
modified to a least resolved tree (T ′,λ′) explaining X with X [u, v] = (u, v)
by introducing the single 1-edge ab with a = par(u), b = par(v). The vertex b
becomes the root of T ∗, where T ∗ is defined as in Case 1a (see Fig. 50(Case 4a)).
We set λ′(au) = 0 and λ′(bv) = 0, while all other edge labels are retained.

Exchanging the roles of u and v in (T ′,λ′) defines a least resolved tree (T ′′,λ′′)
that explains X [u, v] = (v,u). As in the previous cases, one easily verifies that
all resulting trees are least resolved and explain X with the corresponding choice
for X [u, v]. Hence, the reverse transformations are also uniquely defined.
Case 4b. Suppose that ∆uv contains only triangles of the form B. Hence,
X [u, v] ∈ {(u, v), [u, v]}. Let us first assume that the least resolved tree (T ,λ)
explains [u, v] ∈ X . It immediately follows that v is a sink and u is not, hence
λ(par(v)v) = 1 and λ(par(u)u) = 0. Moreover, we have (v,u) ∈ X , thus
par(v) � par(u). Since for any x ∈ L \ {u, v} it holds (x,u) /∈ X and thus
par(u) � lca(u,x), we have par(v) = ρT and deg(ρT ) = 2. Therefore (T ,λ)
locally looks as in Fig. 50(Case 4b). Note that the tree structure is very similar
to Case 1b. Hence, similar as in Case 1b, (T ,λ) can be locally modified to a least
resolved tree (T ′,λ′) that displays (u, v) ∈ X by contraction of par(v)par(u)
and keeping all other edge labels (see Fig. 50(Case 4b, right)). By the same
argumentation as before, the reverse transformation is also uniquely defined.
Case 4c. Let us assume that all triangles in ∆uv are of the form C, i.e.,
X [u, v] ∈ {[u, v],u|v, (u, v), (v,u)}, and that (T ,λ) explains [u, v] ∈ X . As
in Case 3, both u and v are sinks of X , i.e., par(u)u and par(v)v are both
1-edges. Using the same symmetry argument as in Case 3, we conclude for any
x ∈ L(T ) \ {u, v} that (u,x) ∈ X if and only if (v,x) ∈ X , and (x,u) ∈ X if
and only if (x, v) ∈ X , respectively. Following the arguments laid out in Case
3, we conclude that (T ,λ) locally looks as Case 3 of Fig. 50. Thus the local
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transformations described above can be applied analogously in order to obtain
least resolved trees that explain all possible X [u, v].
Case 4d. If ∆uv contains only triangles of the form D, then we can apply the
same construction as in Case 4a and 3 in order to conclude that X can be
explained for all possible X [u, v].

8.4 algorithmic considerations

Summarizing our results, we present two different algorithms that are both able
to recognize a Fitch relation and compute its unique least resolved tree. The
first algorithm checks all induced triangles for forbidden subgraphs and, once
recognized a Fitch relation, uses the set of informative triples as an input for
the algorithm BUILD. Then it simply labels the edges of the resulting Aho tree
in the correct way. This is a very intuitive way to check for Fitch relations
and to construct the least resolved tree, which we will make precise first. We
shall see that it is possible, however, to achieve a much better performance by
using the fact that Fitch graphs are di-cographs. One can alternatively check
for Fitch relations using properties of di-cographs and build the least resolved
tree from the corresponding cotree. This can be achieved in linear time.
We have seen in the previous sections that every valid relation X is explained

by a unique least resolved tree (TX ,λX ), which, in turn, is identified by a set
R(X ) of informative triples due to Lemma 8.11. Lemma 3.1 therefore implies

TX = Aho(R(X )) (27)

It remains to construct the labeling function λX on Aho(R(X )).

Algorithm 8 Label the Aho Tree

Require: TX = Aho(R(X ))
Ensure: Least resolved edge-labeled tree (TX ,λX ) for X
1: for all e = uv ∈ E(T ) do
2: if v /∈ L then
3: λX (e) = 1
4: else
5: if (x, v) ∈ X for all x ∈ L \ {v} then
6: λX (e) = 1
7: else
8: λX (e) = 0

Algorithm 8 has been implemented and tested by Anders [12].

Lemma 8.15. Given the topology TX of the unique least resolved tree ex-
plaining X , Algorithm 8 computes its correct unique edge labeling λX in
O(max{|X |, |L|}) time.

Proof. By Lemma 8.10, all inner edges e of Aho(R(X )) must be labeled λ(e) =
1 since otherwise they could be contracted and hence, the tree would not be
least resolved. Now consider an edge e = uv leading to a leaf v ∈ L. If
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(x, v) /∈ X for some x ∈ L \ {v}, then λ(e) = 0. Conversely, if λ(e) = 0, then
(x, v) /∈ X for every leaf below the siblings of u. At least one such leaf x exists
in a phylogenetic tree. Hence, an outer edge is labeled λ(e) = 1 if and only if
(x, v) ∈ X for all x ∈ L \ {v}.

For the time complexity note that the labeling Algorithm 8 requires
O(|E(TX )|) operations to label the inner edges. In order to label the |L| outer
edges uv we have to determine the degree of vertex v in X , that is deg(v) = 1
implies that uv is an outer edge, which requires O(max{|X |, |L|}) operations.
Since |E(TX )| is bounded by O(|L|), the total running time of the labeling step
is bounded by O(max{|X |, |L|}).

A tree explaining a given Fitch relation can be obtained by the following
procedure: First, we check whether X is a Fitch relation. This can be achieved
in O(|L|3) by checking validity of the (L3) induced triangles. If X ⊂ L× L is
a Fitch relation, then R(X ) can be constructed within O(|L|3) time. For a
given the set of triples R(X ), the original approach to check whether R(X ) is
consistent (in which case Aho(R(X )) is returned) or not, has time complexity
O(|R(X )||L|) [3]. However, various further practical implementations have
been described [104, 118, 110, 118] that improve the asymptotic performance.
Constructing Aho(R(X )) and using Algorithm 8 to obtain the edge labels, it is
therefore possible to recognize a Fitch relation X and to compute its respective
(least resolved) tree (T ,λ) in O(|L|4).

It is possible to improve the algorithms to recognize Fitch relations X and
compute its least resolved tree (T ,λ) using di-cotrees (cf. Chapter 3 for a defi-
nition). As discussed in Section 8.1, any di-cograph that does not contain the
invalid triangles F1, F5, or F8 is a Fitch graph.

Lemma 8.16. Let ~G be a di-cograph and (T ′,~t) its corresponding di-cotree. A
di-cograph contains the triangle F1, F5, or F8 as an induced subgraph if and
only if there are two vertices v,w ∈ V 0(T ′) with v �T ′ w such that either (i)
~t(v) = 0 6= ~t(w), or (ii) ~t(v) = ~1, ~t(w) = 1 and w is located in some subtree
(rooted at a child of v) that is different from the subtree rooted at the right-most
child of v.

Proof. Consider first the triangles F1 and F5 with vertices x, y, z and edge
set E(F1) = {(x, y)} and E(F5) = {(x, y), (y,x)}. Equivalently, we have
~t(lcaT ′(x, y)) ∈ {1,~1}, ~t(lcaT ′(x, y, z)) = 0 and v = lcaT ′(x, y, z) �T ′ w =

lcaT ′(x, y).
Now let F8 have vertices x, y, z and edge set E(F8) =

{(x, y), (y,x), (x, z), (y, z)}. Equivalently, we have ~t(lcaT ′(x, y)) = 1,
~t(lcaT ′(x, y, z)) = ~1 and v = lcaT ′(x, y, z) �T w = lcaT ′(x, y). In particular,
x and y must be placed left from z in T ′ and therefore, w must be located
in some subtree different from the subtree rooted at the right-most child of
v = lcaT ′(x, y, z).

Corollary 8.1. Let X be a Fitch graph and (T ′,~t) its corresponding di-cotree.
If X contains an edge, then it is connected. Moreover, any vertex x ≺ v for
which ~t(v) = 0 must be a leaf of T ′.

206



Proof. If a Fitch graph X contains an edge, then its di-cotree contains an inner
vertex labeled 1 or ~1. If X is disconnected, then the root of the cotree must be
labeled 0 and Lemma 8.16 implies that X is not a Fitch graph. Thus the root
must be labeled either 1 or ~1, which implies that X is connected.
Now assume that (T ′,~t) contains a vertex v with ~t(v) = 0. Let x ≺ v with

vx ∈ E(T ′) and assume, for contradiction, that x is an inner vertex. By the
definition of di-cotrees, ~t(v) = 0 6= ~t(x). Lemma 8.16 and Thm. 8.2 imply that
X is not a Fitch graph; a contradiction.

Verifying whether a graph ~G is a di-cograph or not can be achieved in
O(|V ( ~G)| + |E( ~G)|) time, see [157, 100] for further details. To verify that
a given di-cograph G does not contain F1, F5, and F8 as an induced subgraph,
we apply the classical Breadth-first search (BFS) [36] on its di-cotree (T ′,~t)
starting with the root and check whether there are invalid combinations of ver-
tex labels in (T ′,~t) according to Lemma 8.16. Note that L(T ′) = V ( ~G) and
|V 0(T ′)| ≤ |L(T ′)|−1. Thus the BFS-method runs in O(|V (T ′)|) = O(|V ( ~G)|)
time. Therefore recognition of Fitch graphs or, equivalently, Fitch relations can
be achieved within O(|V ( ~G)|+ |E( ~G)|) time.
We now show how to obtain a tree (T ,λ) that explains a Fitch relation X

from its di-cotree representation (T ′,~t). To this end we need to translate the
(ordered) di-cotree with vertex labels “0”, “1” and “~1” to an unordered tree
with edge labels “1” and “0”, summarized next and called cotree2fitchtree:

For all x ∈ V 0(T ′), if

~t(x) = 1 (resp. 0), then set for each child y of x the label λ(xy) = 1 (resp.
0), and else,

~t(x) = ~1, then we can assume w.l.o.g. that the children of x are or-
dered x1, . . . ,xk, k ≥ 2 from left to right. Now, replace the subtree
of T ′ with vertices x and x1, . . . ,xk by the caterpillar C(x1, . . . ,xk) :=
(x1(x2(. . . (xk−1,xk) . . .) (in Newick notation) that is rooted at x. Set
the label λ of all inner edges of C(x1, . . . ,xk) and the outer-edge incident
to xk to “1” and the labels of all other (outer) edges of C(x1, . . . ,xk) to
“0”. Note that outer edges of C(x1, . . . ,xk) may be inner edges in (T ,λ).

Finally, remove all vertex labels and ignore the ordering of the vertices to
obtain the tree (T ,λ).

For an example of cotree2fitchtree see Fig. 51.

Lemma 8.17. The procedure cotree2fitchtree transforms the di-cotree
(T ′,~t) of a Fitch relation X into a tree (T ,λ) that explains X in O(|V (T ′)|)
time.

Proof. Let (T ′,~t) be the di-cotree of the Fitch relation X and (T ,λ) the tree
resulting from cotree2fitchtree. Since all inner vertices of (T ′,~t) are labeled,
each edge of (T ,λ) receives a label “0” or “1” by construction. It needs to be
verified that (T ,λ) explains X .

Assume (x, y), (y,x) ∈ X . Hence, ~t(lcaT ′(x, y)) = 1. By construction, the
edges incident to the children of v = lcaT ′(x, y) are labeled “1”. Hence, both
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Fig. 51. Application of cotree2fitchtree: A Fitch relation X (left), its di-cotree
(T ′,~t) (middle), and an edge-labeled tree (T ,λ) that explains X (right) is shown. The
tree (T ,λ) is obtained from (T ′,~t) by replacing the subtree with vertices v,x, y and
c by the caterpillar (x(c, y)) rooted at v and adding the edge labels as described in
the procedure cotree2fitchtree. By Lemma 8.16, ~t(x) = 0 for all inner vertices x
in the subtrees left from the subtree rooted a the right-most child y of v. Note that
(T ,λ) is not least resolved w.r.t. X . Nevertheless, Thm. 8.1 implies that (T ,λ) displays
least resolved tree for X . Here, the least resolved tree can be obtained from (T ,λ) by
ex-contracting the edges vx and zy.

paths in (T ,λ) from lcaT (x, y) = v to x and to y contain 1-edges. Thus (T ,λ)
explains all symmetric pairs in X .
Assume (x, y), (y,x) /∈ X and let z = lcaT ′(x, y). Hence, ~t(z) = 0. Cor. 8.1

implies that zx and zy are outer edges in T ′ that are, by construction, labeled
“0” in (T ,λ). As a consequence, the path from x to y in (T ,λ) contains only
0-edges, which implies that (T ,λ) also explains that all pairs (x, y), (y,x) that
are not contained in X .
Assume (x, y) ∈ X and (y,x) /∈ X . Hence, ~t(lcaT ′(x, y)) = ~1 and x is

left from y in T ′. Let vi and vj be children of lcaT ′(x, y) with vi � x and
vj � y. Since x is left from y, also vi is left from vj in T ′. Note, vi and vj are
now part of the inserted caterpillar C(child(lcaT ′(x, y))) in (T ,λ). Therefore
lcaT (x, y) must be an inner vertex of this caterpillar. By construction, the
path from lcaT (x, y) to vj � y contains a 1-edge and thus, (x, y) ∈ X . It
remains to show that the path from lcaT (x, y) to x contains only 0-edges so
that (y,x) /∈ X . Note that the vertex vi is a child of lcaT (x, y) in T and the
edge lcaT (x, y)vi is labeled “0”. Thus, if vi = x, we are done. Assume that
vi 6= x and hence, vi is an inner vertex of T ′. By the definition of di-cotrees,
we have ~t(lcaT ′(x, y)) = ~1 6= ~t(vi). Since vi is left from vj in T ′, we can apply
Lemma 8.16 and conclude that ~t(vi) 6= 1. Hence, there is only one possibility
left, namely ~t(vi) = 0. Cor. 8.1 implies that vix must must be an outer edge in
(T ′,~t) that – by construction – is labeled “0” in (T ,λ). Hence, the path from
lcaT (x, y) to x contains only 0-edges and therefore, (y,x) /∈ X .
For the running time, observe that the edge label in each step of

cotree2fitchtree for vertices v with ~t(v) ∈ {0, 1} can be computed in
O(degT ′(v)) time. Moreover, if ~t(v) = ~1 for some vertex v in (T ′,~t), we have to
replace the subtree induced by v and its children v1, . . . , vk (ordered from left to
right) in (T ′,~t), by the edge-labeled caterpillar C(v1, . . . , vk). This task can also
be performed in O(degT ′(v)) time. Since each step in cotree2fitchtree can
be done in O(degT ′(v)) time and ∑v∈V 0(T ′) degT ′(v)) ≤ 2|E(T ′)| < 2|V (T ′)|,
this implies a total time requirement of O(|V (T ′)|).
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Let (T ,λ) be the tree that explains X as constructed with cotree2fitchtree
from the respective di-cotree (T ′,~t). Thm. 8.1 implies that (T ,λ) displays the
least resolved tree for X . Thus we can utilize Lemma 8.10 and ex-contract
all irrelevant edges and all inner 0-edges in (T ,λ) in order to obtain the least
resolved tree for X . The latter can be done in O(|V (T )|) time. Taking the
latter results together with the observation that |V (T )| ≥ |V (T ′)|, we obtain
the following

Theorem 8.3. Verifying whether an irreflexive relation X ⊆ L×L is a Fitch
relation or not, can be a achieved in O(|L|+ |X |) time. Its unique least resolved
edge-labeled tree (TX ,λX ) can be computed in O(|V (TX )|) = O(|L|) time, given
the di-cotree of X .

The fact that Fitch graphs form a heritable family (cf. Lemma 8.2) has far-
reaching consequences for computational problems such as:

Problem 8.1 (Fitch graph (i, j, k)-modification).
Given: A directed graph ~G = (L, ~E) and non-negative integers i, j, k.
Question: Are there subsets L′ ⊆ L, ~E′ ⊆ ~E and ~E′′ ⊆ (L×L) \ ~E

with |L′| ≤ i, | ~E′| ≤ j and | ~E′′| ≤ k such that
~G−L′ − ~E′ + ~E′′ is a Fitch graph?

As a consequence of the results established in [235, 147], the corresponding
vertex deletion problem (i.e., the restriction in which only edges are deleted
that are incident to removed vertices) is NP-complete. Here, only |L′| ≤ i

is specified as part of the problem. NP-completeness of other types of Fitch
graph modification problems is still open. Most likely they are NP-complete
as well. Here, we show that the Fitch graph (i, j, k)-modification problem for
any i, j, k ≥ 0 is fixed-parameter tractable (FPT), see [170] for more details
regarding FPT.
Since Fitch graphs have a characterization in terms of a finite set of forbidden

subgraphs, we obtain as an immediate consequence of Thm. 1 in [29] and Thm.
8.3:

Corollary 8.2. If a directed graph ~G with vertex set L is not a Fitch graph,
then a forbidden subgraph can be determined in O(n2 +nm) time, where n = |L|
and m = |E( ~G)|.

In order to obtain an FPT-algorithm, we reuse the results as provided in the
proof of Thm. 1 and 2 in [29]. Consider the following simple procedure:

1. Find a forbidden triangle F in ~G (in O(n2 + nm) time).

2. Modify ~G by either deleting an edge or a vertex from F , or adding an
edge to F .

Clearly, the Fitch graph (i, j, k)-modification problem is solved by repeating
these two steps until one either obtains a Fitch graph or the “allowance” of i
vertex deletions, j edge deletions, and k edge additions is exhausted.

To estimate the time complexity of this procedure, we note that the forbidden
subgraphs are triangles, i.e., the number of vertices in the forbidden subgraphs
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is always N = 3. Moreover, there are are at most 2(N2 ) = 6 different ways to
add an edge to or delete an edge from F , and at most N = 3 different ways to
delete a vertex from F . Thus one can enumerate all possible ways to delete ≤ i
vertices and ≤ j edges, and to add ≤ k edges in at most 6j+k3i repetitions of
Step 1 and 2. Each step requires O(n2 + nm) time to find a forbidden triangle.
Therefore we obtain

Corollary 8.3. Fitch graph (i, j, k)-modification is fixed-parameter tractable
and can be solved in O(6j+k3i(|L|2 + |L||E( ~G)|)) for a given directed graph ~G

with vertex set L.

8.5 the symmetric fitch relation

Motivated by the fact that the direction of HGT events cannot always be un-
ambiguously inferred from sequence data, it is natural to consider also the
symmetrized version of the Fitch relation, i.e., to interpret the undirected edge
xy as a xenologous pair whenever the evolutionary history separated x and y
by at least one horizontal transfer event. In mathematical terms, this idea is
captured by

Definition 8.10. Let T be a rooted tree with leaf set L and let λ : E(T ) →
{0, 1}. Then the undirected Fitch graph X sym explained by (T ,λ) has vertex
set L and edges xy ∈ E(X sym) if and only if the (unique) path from x to y in
T contains at least one edge e with λ(e) = 1. A graph X sym is an undirected
Fitch graph if and only if it is explained in this manner by some edge-labeled
rooted tree (T ,λ).

Undirected Fitch graphs are closely related to their directed counterparts.
Since the path P connecting two leaves x and y in an edge-labeled rooted tree
(T ,λ) is unique and contains their last common ancestor lca(x, y), there is a
1-edge along P if and only if there is a 1-edge on the path between x and
lca(x, y) or between lca(x, y) and y. The undirected Fitch graph is therefore
the underlying undirected graph of the directed Fitch graph, i.e., it is obtained
from the directed version by ignoring the direction of the arcs.
The undirected Fitch graphs form a heritable family, i.e., if X sym is an undi-

rected Fitch graph, so are all its induced subgraphs. This is an immediate
consequence of the fact that directed Fitch graphs are a heritable family of
digraphs. The fact can also be obtained directly by considering the restriction
of T to a subset of leaves. This obviously does not affect the paths or their
labeling between the remaining vertices.

Clearly, X sym does not depend on which of the non-leaf vertices in T is the
root. Furthermore, a vertex v with only two neighbors and its two incident
edges e′ and e′′ can be replaced by a single edge e. The new edge is labeled
λ(e) = 0 if both λ(e′) = λ(e′′) = 0, and λ(e) = 1 otherwise. These operations
do not affect the undirected Fitch graph. Hence, we can replace the rooted tree
T by an unrooted tree in Def. 8.10 and assume that all non-leaf edges have at
least degree 3. To avoid trivial cases we assume throughout that T has at least
two leaves and hence, an undirected Fitch graph has at least two vertices.
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Lemma 8.18. If X sym is an undirected Fitch graph, then X sym does not contain
K1 ∪· K2 as an induced subgraph. In particular every undirected Fitch graph is
a complete multipartite graph.

Proof. There is a single unrooted tree with three leaves, namely the star S3,
which admits four non-isomorphic {0, 1}-edge labelings defined by the number
N of 1-edges. The undirected Fitch graphs X sym

N are easily obtained. In the
absence of 1-edges, X sym

0 = K3 is edge-less. For N = 2 and N = 3 there is a
1-edge along the path between any two leaves, i.e., X sym

2 = X sym
3 = K3. For

N = 1 one leaf is connected to the other two by a path in S3 containing a
1-edge; the path between the other two leaves consists of two 0-edges, hence
X sym

1 corresponds to the induced path of length two. Hence, only three of the
four possible undirected graphs on three vertices can be realized, while K1 ∪· K2
is not an undirected Fitch graph. By heredity, K1 ∪· K2 is therefore a forbidden
induced subgraph for the class of undirected Fitch graphs. Finally, it is well
known that the class of graphs that do not contain K1 ∪· K2 as an induced
subgraph are exactly the complete multipartite graphs, see e.g. [242].

Note that the first part of Lemma 8.18 can also be obtained from the eight
directed Fitch graphs on three vertices, using the fact that an undirected Fitch
graph is the underlying (undirected) graph of a directed Fitch graph.
In order to show that forbidding K1 ∪· K2 is also sufficient, we explicitly con-

struct the edge-labeled trees necessary to explain complete multipartite graphs.
To this end, recall that each complete multipartite graph Kn1,...,nk is deter-
mined by its independent sets V1, . . . ,Vk with |Vi| = ni for 1 ≤ i ≤ k, where
xy ∈ E(Kn1,...,nk) if and only if x ∈ Vi and y ∈ Vj with i 6= j. In particular,
therefore, Kn1,...,nk with at least two vertices is connected if and only if k ≥ 2.
The complete 1-partite graphs are the edge-less graphs Kn.

Since K1 ∪· K2 is an induced subgraph of the path on four vertices P4, any
graph G that does not contain K1 ∪· K2 as an induced subgraph must be P4-
free, i.e., a cograph [38]. The cotrees of connected multipartite graphs have a
particularly simple shape, illustrated without the vertex labels in Fig. 52. The
cotree has a root labeled “1” and all inner vertices labeled “0”. Here we do not
need the connection between cographs and their cotrees, however. Therefore
we introduce these trees together with an edge labeling that is useful for our
purposes in the following

Definition 8.11. For k = 1, T [n] is the star tree Sn with n leaves. For k ≥ 2,
the tree T [n1, . . . ,nk] has a root ρ with k children ci, 1 ≤ i ≤ k. The vertex
ci is a leaf if |Vi| = ni = 1 and has exactly ni children that are leaves if
|Vi| = ni ≥ 2.
For k = 1, all edges e of T [n] are labeled λ∗(e) = 0. For k ≥ 2, we set
λ∗(ρci) = 1 for 1 ≤ i ≤ k and λ∗(e) = 0 for all edges not incident to the root.

Now we can prove our main result:

Theorem 8.4. A graph G is an undirected Fitch graph if and only if it
is a complete multipartite graph. In particular, Kn1,...,nk is explained by
(T [n1, . . . ,nk],λ∗).
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Fig. 52. The complete multipartite graph K3,2,1,1 is the Fitch graph explained by the
tree T [3, 2, 1, 1] with edge labeling λ∗, where 0-edges and 1-edges are drawn in black
and red, respectively.

Proof. Lemma 8.18 implies that an undirected Fitch graph is a complete multi-
partite graph. To show the converse, we fix an arbitrary complete multipartite
graph G = Kn1,...,nk and find an edge-labeled rooted tree (T ,λ∗) that explains
G.
For k = 1 it is trivial that (T [n],λ∗) explains Kn.
For k ≥ 2 consider the tree T [n1, . . . nk] with edge labeling λ∗ and let X sym

be the corresponding undirected Fitch graph. The leaf set of T [n1, . . . nk] is
partitioned into exactly k subsets L1, . . . ,Lk defined by (a) singletons adjacent
to the root and (b) subsets comprising at least two leaves adjacent to the same
child ci of the root. Furthermore, we can order the leaf sets so that |Li| = ni.
By construction, all vertices within a leaf set Li are connected by a path that
does not run through the root and thus, contains only 0-edges if |Li| > 1 and
no edge, otherwise. The Li are independent sets in X sym. On the other hand
any two leaves x ∈ Li and y ∈ Lj with i 6= j are connected only by path
through the root, which contains two 1-edges. Thus x and y are connected by
an edge in X sym and therefore, X sym is a complete multipartite graph of the
form K|L1|,...,|Lk| = Kn1,...,nk . Since Kn1,...,nk is explained by (T [n1, . . . ,nk],λ∗)
for all ni ≥ 1, k ≥ 2 and Kn is explained by (T [n],λ∗), we conclude that every
complete multipartite graph is an undirected Fitch graph.

The converse of Lemma 8.18 does not follow in a straightforward manner
from the characterization of directed Fitch graphs. It is possible to make use
of the connection between directed Fitch graphs and di-cographs to obtain the
trees of Def. 8.11. This line of reasoning, however, is neither shorter nor simpler
than the direct, elementary proof given above.
Complete multipartite graphs G = (V ,E) obviously can be recognized in

O(|V |2) time (e.g. by checking that its complement is a disjoint union of com-
plete graphs), and even in O(|V | + |E|) time by explicitly constructing its
modular decomposition tree [158]. Given the tree T [n1, . . . ,nk], the canonical
edge labeling λ∗ is then assigned in O(|V |) time.

A tree (T ,λ) that explains an undirected Fitch graph X sym is minimal if it
has the smallest number of vertices among all trees that explain X sym. In
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Fig. 53. The non-isomorphic trees (T ,λ), (T ′,λ′), (T [2, 2, 1],λ∗), and (T ′[2, 2, 1],λ′∗)
all explain the same complete multipartite graph K2,2,1. Three of these trees have the
smallest possible number (7) of vertices and thus are minimal. These can be obtained
from the tree (T [2, 2, 1],λ∗) specified in Def. 8.10 by contraction of one of its inner
1-edges and possibly re-routing the resulting tree.

this case, (T ,λ) is also least resolved, i.e., the contraction of any edge in
(T ,λ) results in a tree that does not explain X sym. Not surprisingly, the
tree (T [n1, . . . ,nk],λ∗) is almost minimal in most, and minimal in some cases:
Since the vertices of the Fitch graph must correspond to leaves of the tree,
(T [n1, . . . ,nk],λ∗) is necessarily minimal whenever it is a star, i.e., for (T [n],λ∗)
and (T [1, . . . , 1],λ∗). In all other cases, its only potentially “superfluous” part
is its root. Indeed, exactly one of the edges connecting the root with a non-leaf
neighbor can be contracted without changing the corresponding Fitch graph. It
is clear that this graph is minimal: The leaf sets Li must be leaves of an induced
subtree without an intervening 1-edge. Having all vertices of Li adjacent to the
same vertex is obviously the minimal choice. Since the Li must be separated
from all other leaves by a 1-edge, at least one incident edge of ci must be a
1-edge. Removing all leaves incident to a 0-edge results in a tree with at least
k vertices that must contain at least k− 1 1-edges because every path between
leaves in this tree must contain a 1-edge. The contraction of exactly one of
the k 1-edges incident to the root ρ in T [n1, . . . ,nk] indeed already yields a
minimal tree. In general, the minimal trees are not unique, see Fig. 53.
It may be worth noting that Kn1,...,nk can also be explained by binary trees.

To see this, we convert a tree (T [n1, . . . ,nk],λ∗) into a binary tree in two simple
steps. First, each group of ni > 1 leaves with a common parent is replaced by
an arbitrary binary tree with the same leaf set and all edges labeled 0. Second,
the star consisting of the root and all its children C is replaced by an arbitrary
rooted binary tree with leaf set C and all edges labeled 1. It is obvious that
neither of the operations affects the graph that is explained.

8.6 summary

The first part of this chapter formalized Fitch’s concept of xenology in the
form of a not necessarily symmetric binary relation X such that (x, y) ∈ X
if and only the lineage from lca(x, y) to y was horizontally transferred at
least once. The main result is a complete characterization of such relations
in terms of forbidden induced subgraphs and a complete characterization
of the minimally resolved trees explaining such relations. These Fitch trees

213



represent the complete information on the gene tree that is “recorded” by the
horizontal transfer events alone. Moreover, polynomial-time algorithms have
been devised to compute Fitch trees from Fitch relations.
For the undirected Fitch relation it has been shown that a graph is an
undirected Fitch graph if and only if it is a complete multipartite graph (cf.
Thm. 8.4).
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9
CONCLUS ION

The focus of this work laid on a thorough analysis of the best match and
the reciprocal best match relation as well as their connection to the orthology
relation in the case of duplication/loss scenarios. Another main point was the
problem how to retrieve best matches from sequence data. Moreover, the impact
of horizontal gene transfer in the context of correct orthology assignment was
empirically investigated and a complete characterization of the corresponding
xenology relation was given.

First, this thesis provided two characterizations of 2-colored best match
graphs: One in terms of three simple conditions on the out-neighborhoods and
the other via informative triples that can be directly extracted from the input
graph. General BMGs with more than two colors were then characterized via
the set of their induced 2-BMGs. In both cases, polynomial time algorithms
for the recognition of BMGs and tree reconstruction were given. Moreover, it
was shown that for any BMG ( ~G,σ) there exists a unique least resolved tree,
i.e., a tree with the lowest possible resolution that explains ( ~G,σ).
A characterization of RBMGs was given in Chapter 5, where it has been

demonstrated that 3-RBMGs fall into three distinct classes, one of which has
cograph structure. Similarly to BMGs, a characterization of RBMGs with
more than three species was given in terms of the induced 3-RBMGs. Recipro-
cal best match graphs - in contrast to best match graphs - have a surprisingly
complicated structure which makes their recognition quite difficult. Although
3-RBMGs can be recognized in polynomial time, it remains an open question
whether the problem of recognizing RBMGs with more than three colors can
be solved in polynomial time. It is also unknown whether the information con-
tained in triples derived from three-colored connected components is sufficient,
even if this may not lead to a polynomial time recognition algorithm.

As shown in Chapter 6, the true orthology relation is a subgraph of the
reciprocal best match graph in the absence of HGT events, i.e., the reciprocal
best match graph only contains false positive orthology assignments. Moreover,
a certain pattern, called good quartets, could be identified in the underlying
best match graph that can be used in order to find false positive edges in the
RBMG. The empirical simulations presented here revealed that good quartets
identify almost all false positive edges in the absence of HGT. However, in the
presence of HGT, the RBMG and the true orthology graph Θ heavily deviate
and the removal of edges identified by good quartets introduces false negative
edges.
Chapter 7 demonstrated that local information in form of a subset of quar-

tets is sufficient for the estimation of best matches, instead of reconstructing
whole gene trees. Furthermore, the theoretical results in this chapter give some
guarantees for obtaining the correct best matches from quartets and highlight
some limitations that cannot be overcome with certainty as long as only dis-
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tance data is available. In particular, correct best match estimates crucially
depend on the identification of suitable outgroups.
Finally, the directed Fitch relation was characterized by forbidden subgraphs

on three leaves and a polynomial time algorithm for the reconstruction of the
corresponding unique least resolved tree was provided. Moreover, the undi-
rected Fitch relation turned out to be a complete multipartite graph.

In the case of BMGs, the existence of a unique least resolved tree implicates
that this tree must be a homeomorphic image of the gene tree that explains
the true (but usually unknown) evolutionary scenario. In contrast, there exists
in general no unique least resolved tree for RBMGs. By focusing on reciprocal
best matches and ignoring the directed best matches, important information
about the true evolutionary history of a given gene family is thus ignored. This
circumstance suggests to not only incorporate reciprocal best matches but also
non-symmetric best matches into orthology detection methods. This is strongly
supported by the simulation results in Chapter 6, where the removal of false
positive edges identified by good quartets drastically reduces the number of
induced P4s. Furthermore, this observation suggests to consider hc-cograph
editing with a given best match relation. It seems most likely that orthology
detection pipelines could be substantially improved by first inserting BMG and
RBMG editing and then removing all good P4s, followed by a variant of cograph
editing that respects the hc-cograph structure. While cograph editing is an NP-
complete problem in general [150], the complexity of the colored version, i.e.,
editing a properly colored graph to the nearest hc-cograph remains unknown.
However, it seems likely that the additional knowledge of the directed edges in
the BMG makes the problem tractable since it already implies a unique least
resolved tree that captures much of the cograph structure.
Cograph editing would be fully content with hc-cographs, i.e., RBMGs that
are cographs. These are not necessarily “biologically feasible” in the sense that
they can be reconciled with a species tree. It will therefore also be of interest
to consider the problem of editing an hc-cograph to another hc-cograph that
is reconcilable with some or a given species tree – a problem that has already
been considered for orthology relations [141, 138]. Since the obstructions are
conflicting triples with a speciation at their top node, the offending data repre-
sents conflicting orthology assignments. Therefore, it seems natural to ask for
a maximal induced sub-hc-cograph that implies a consistent triple set, instead
of phrasing the problem as an arbitrary editing problem. If it is indeed true
that triples necessarily displayed by the species tree can be extracted directly
from the (R)BMG, it will be of practical use to consider the corresponding edge
deletion problem for (R)BMGs. In particular, it would be interesting to know
whether the latter problem is the same as asking for the maximal consistent
subset of triples implied by the c(R)BMG or co-BMG.
BMG, RBMG, and hc-cograph editing is the subject of ongoing research (see
e.g. [102]).
Furthermore, Chapter 6 showed that good quartets can occur in different

contexts, where some of them refer to false positive orthologs without HGT
involved and others correspond to HGT events. These contexts need to be
treated differently in the editing problem. From a more theoretical point of
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view, the empirical findings in this chapter beg two questions: (1) Are there
local features in the (R)BMG that make it possible to unambiguously identify
HGT at least in some cases? (2) What kind of additional information can be
integrated to distinguish good quartets that arise from duplication/loss events
from those that are introduced by HGT, i.e., how can it be decided if good
quartets can be safely removed or should be “repaired” in a different manner?
In particular, can complete or partial information on the Fitch relation be
integrated, e.g. to provide additional constraints on the trees explaining a given
RBMG? Moreover, the Fitch relation corresponds to a subclass of directed
cographs, which are also connected to a generalization of orthology relations
that incorporate HGT events [100]. It seems therefore worthwhile to explore
whether there is a direct connection between BMGs and directed cographs,
possibly for those BMGs whose symmetric part is an hc-cograph.

The practical usefulness of the directed Fitch relation and its trees depends
on how easily the Fitch relation can be estimated from data. Although no
convenient tools are available to identify directed xenology relationships without
first reconstructing gene and species trees, this does not seem to be a hopeless
task at all. The reason is that genes that are imported by HGT from an
ancestor of species A into an ancestor of species B, are expected to be more
closely related than expected from the bulk of the genome [174, 190]. Since
inference from real-life data will never be noise free, it is encouraging that the
corresponding editing problem is at least FPT, even though it may be NP-
complete as so many other computational problems in phylogenetics.
The directed Fitch relation is the subject of ongoing research: Hellmuth and
Seemann [94] recently developed another characterization of the Fitch relation
and, using this new characterization, provide an alternative proof of the main
Theorem 8.2 of Chapter 8. Moreover, generalizations of Fitch graphs are the
subject of [92].
In contrast, the practical implication of the results about the undirected Fitch

relation in the context of phylogenetic combinatorics is that the mutual xenol-
ogy relation cannot convey any interesting phylogenetic information: The only
insight that can be gained by considering mutual xenology, is the identification
of the maximal subsets of taxa that have not experienced any horizontal transfer
events among them. This is due to the fact that the undirected Fitch graphs are
exactly the complete multipartite graphs, which in turn are completely defined
by their independent sets.
Furthermore, first simulation results (to appear: [211]) evaluating how well

the quartet-based workflow presented in Chapter 7 estimates best matches from
data, show that the method in its current implementation performs surprisingly
poorly. This is most likely due to the choice of the set of outgroups. Practical
developments in the near future will thus focus on how this set must be chosen
in order to get improved best match estimates. Moreover, ongoing research
addresses the question on how to prune the candidate set and on extracting a
small set of outgroups to make the procedures fast enough for applications also
to large data sets. Besides that, it will also be of interest to investigate how
quartet structures and best matches can be used to root a gene tree in case the
topology of the corresponding species tree is not known.
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The results of this work form the basis for the development of new inference
methods relying on (reciprocal) best matches that are suitable for integration
into tools such as Proteinortho. The theoretical insights into the relationships
of (reciprocal) best match graphs, orthology relations, and the estimation of
best matches from data as well as insights into the Fitch relation promise drastic
improvements in both, the accuracy and the computational performance of
RBH-based orthology detection methods.
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