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Abstract. The self-management of chronic diseases related to dietary
habits includes the necessity of tracking what people eat. Most of the
approaches proposed in the literature classify food pictures by labels de-
scribing the whole recipe. The main drawback of this kind of strategy
is that a wrong prediction of the recipe leads to a wrong prediction of
any ingredient of such a recipe. In this paper we present a multi-label
food classification approach, exploiting deep neural networks, where each
food picture is classified with labels describing the food categories of the
ingredients in each recipe. The aim of our approach is to support the
detection of food categories in order to detect which one might be dan-
gerous for a user affected by chronic disease. Our approach relies on
background knowledge where recipes, food categories, and their related-
ness with chronic diseases are modeled within a state-of-the-art ontology.
Experiments conducted on a new publicly released dataset demonstrated
the effectiveness of the proposed approach with respect to state-of-the-
art classification strategies.

Keywords: Food Classification ·Knowledge-Based System · Food Track-
ing · Food Dataset · mHealth.

1 Introduction

Chronic diseases are responsible for approximately 70% of deaths among Europe
and U.S. each year and they account for about 75% of the health spending1,2.
Such chronic diseases can be largely preventable by eating healthily, exercising
regularly, avoiding (tobacco) smoking, and receiving preventive services. Preven-
tion at every stage of life would help people stay healthy, avoid or delay the onset
of diseases, and keep diseases they already have from becoming worse or debil-
itating; it would also help people lead productive lives and, at the end, reduce
the costs of public health.

Dietary tracking is one of the pillars for the self-management of chronic dis-
eases. One of the most common modalities for tracking eaten food is to keep a
diary of food pictures as implemented in numerous commercial applications. The
use of food pictures opens the challenge of recognizing all the taken food from

1 http://www.who.int/nmh/publications/ncd report full en.pdf
2 https://www.cdc.gov/media/releases/2014/p0501-preventable-deaths.html
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users’ pictures. State-of-the-art approaches classify meal images according to the
food they contain. However, they are not able to infer the food categories given
by the recipe of that particular food. The detection of these categories is funda-
mental for people affected by particular diseases, such as diabetes, hypertension
or obesity.

In this work, we propose a strategy based on the multi-label classification
of food pictures according to the food categories contained in a specific food
recipe of the Mediterranean diet. We compare this method against the (more
standard) single-label classification of the food recipe and the inference of the
contained food categories. Our claim is that a classification error in a single food
recipe affects the majority of the inferred food categories. For example, a single-
label classifier may confuse two similar pasta recipes, e.g., “Pasta with carbonara
sauce” and “Pasta with cheeses” that, even if they might be aesthetically similar,
they have different food categories. Indeed, the former contains cold cuts that
affect people suffering of cardiovascular diseases. This can be prevented with a
multi-label classification. Moreover, food categories, thanks to the use of back-
ground knowledge, can be associated with a risk level with respect to specific
diseases. Within this scenario, the use of background knowledge helps for two
reasons. Firstly, it gives the possibility of modeling logical relationships between
food categories and risk levels with respect to specific diseases. Secondly, infor-
mation collected from users can be exploited within a behavior change context
to support them in changing their dietary habits through the implementation of
goal-based strategies [21]. The contribution of the paper is the following:

– food pictures are classified with respect to the set of food categories contained
in the food recipe. This outperforms the standard (single-label) classification
of food recipes and the consequent inference of the food categories;

– background knowledge is used for inferring which are the food categories
contained within each recipe together with information about the risk level
of each food category with respect to a first identified set of chronic diseases;

– a new dataset of food pictures and the source code of the classification tool
have been released in order to support the reproducibility of the results and
to foster further research in this direction.

2 Related Work

The recognition of foods from images is the first step for the dietary tracking.
This task has been studied by the Computer Vision community with techniques
of image classification/segmentation and volume estimation. The first works rely
on the extraction of visual features from the images and the consequent use of
classifiers. The main features used are local and global features, SIFT, textons
and local binary patterns [9,11,13,12,15,17,1]. The classifiers are k-NN classi-
fiers, Support Vector or Kernel Machines. The works in [13,12] also developed
the first food images datasets: the Food50 and Food85, with 50 and 85 labels of
Japanese foods, respectively. In [15] the authors developed the UEC FOOD-100



Ontology-Driven Food Category Classification in Images 3

dataset (100 food labels), successively extended with 256 labels in UEC FOOD-
256 [17]. Food-101 [1] is one of the biggest datasets having 101,000 images with
101 food labels. Here the authors mine discriminant food image parts with Ran-
dom Forests and classify them with a SVM. These techniques have been used
in mobile apps for food tracking, such as, Food-Log [18], DietCam [19], Food-
Cam [17], Snap-n-Eat [29]. They also perform an approximate estimation of the
taken calories with volume estimation techniques. However, the growing avail-
ability of huge datasets and hardware resources has made Convolutional Neural
Networks (CNNs) the standard technique for food classification [4,22,28,14,16,2],
thus avoiding the use of engineered features. In [2] the authors combine CNNs
and Conditional Random Fields to predict both food and ingredient labels in a
multi-task learning setting. They also developed one of the biggest food images
dataset: the VIREO Food-172 dataset. It contains 172 food labels, 353 ingredi-
ents labels and 110,241 images. The Food524DB dataset is used in [4] for food
recognition with CNNs and gathers the Food50, Food-101, UEC FOOD-256 and
VIREO Food-172 datasets. It contains 524 food labels and 247,636 images.

A more fine-grained analysis of the meal is performed by estimating also the
quantity of food in the dish and the consequent calories intake. The first step is
the semantic segmentation of the food in the dish and the quantity computation
with techniques of volume estimation. However, these techniques also require a
database of foods and relatives densities. The GoCARB [5] system estimates the
carbohydrates intake for people with diabetes. After a segmentation of the foods
their classification is performed with SVMs. The volume estimation performs
the 3D reconstruction of the food with stereo vision techniques. A density table
returns the carbohydrates for each food label. A similar technique is used also
in [26]. Other works exploit a known reference object (e.g., a thumb [25] or a
wallet [24]) for volume computation or assume a defined shape template for a
given class of foods [10]. The Im2Calories system [23] uses a CNN to predict a
depth map of the food image that is used to build the 3D model of the meal.
Quantity estimation can be addressed with a multi-task learning approach by
defining a tailored CNN that both learns the classification of the food in the dish
and the relative calories or volume. However, this interesting direction requires
a dataset with the annotated calories [8] or the depth information in the images
[20]. In [3] the authors use CNNs to perform semantic segmentation to estimate
the leftovers in the trays in the canteens. They also developed the UNIMIB2016
dataset with 73 food labels to test their method.

Few works among those mentioned above predict food categories and match
them with some nutritional facts in a database [8,25,29,5,2]. Also, they pre-
dict only one food category (e.g., pasta) for each detected food and this can
be inaccurate. Indeed, a pasta dish should be avoided by a person suffering of
diabetes. However, a pasta dish might have carbonara sauce, containing eggs,
aged cheese and cold cuts. One, or more, of these food categories could be not
suitable for people suffering of obesity, hypertension or cardiovascular diseases.
In these cases it is important to have a food recognition system that performs
multi-label classification of the several food categories in the dish.
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3 Background Knowledge

The use of background knowledge allows the design of intelligent systems having
the purpose of going beyond the sole classification of food images. Such back-
ground knowledge, indeed, enables the possibility of exploiting logic relationships
and inference capabilities for reusing the results of the food classification task in
order to support users for more complex goals. For example, background knowl-
edge can formalize specific dietary patterns that can be used to improve users’
lifestyle, avoiding the rise or sharpening of chronic diseases, and to support them
in changing their behaviors. Here we propose a strategy to predict food cate-
gories from food images. These categories might represent a warning for people
affected by specific diseases (e.g. “Pasta” for people affected by diabetes). Our
approach relies on a state-of-the-art conceptual model for the Mediterranean
diet, called HeLiS, defining the dietary and physical activity domains together
with entities modeling concepts concerning users’ profiles and the monitoring of
their activities. For the description of the conceptual model and of the methodol-
ogy adopted for building it, the reader can refer to [7]. Here, the HeLiS ontology
(http://w3id.org/helis) has been extended by adding, to the dietary domain,
information concerning the risk level of food categories with respect to specific
diseases. In this section, we limit to mention the main concepts involved into the
food classification task proposed in this paper together with the ones modeled
within the HeLiS ontology extension. Figure 1 shows an excerpt of the HeLiS
ontology containing the concepts involved into our classification task.

Fig. 1. Excerpt of the HeLiS ontology including the main concepts exploited for the
proposed food classification approach.

Instances of the BasicFood concept describe foods for which micro-information
concerning nutrients (carbohydrates, lipids, proteins, minerals, and vitamins) is
available. Moreover, these instances also contain information about the category
to which each BasicFood belongs to (such as Pasta, Aged Cheese, Eggs, Cold

http://w3id.org/helis
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Cuts and Vegetal Oils). While instances of the Recipe concept describe the
composition of complex dishes (such as Pasta with Carbonara Sauce) as a list
of instances of the RecipeFood concepts. This concept reifies the relationships be-
tween each Recipe individual, the list of BasicFood it contains and the amount
of each BasicFood. Besides this dual classification, instances of both BasicFood

and Recipe concepts are categorized under a more fine-grained structure. Re-
garding the number of individuals, currently, the HeLiS ontology contains 986
individuals of type BasicFood and 4408 individuals of type Recipe.

The Disease concept models the chronic diseases supported by the sys-
tem and for which information about the risk level relationship with specific
BasicFood is available. Currently, we instantiated the Disease concept for the
“diabetes”, “kidney diseases”, “cardiovascular diseases”, “hypertension”, and
“obesity” diseases. Finally, the BasicFoodDiseaseImpact concept reifies the
relationships between each Disease and BasicFood individuals and, for each
reification, it contains a number representing the risk level of that BasicFood

for that Disease. The risk level is represented by a numeric value ranging from
0 (no risk) to 3 (high risk) and is useful for the generation of warning messages
to users in a behaviuoral-change system. For example, the food category Eggs

has a low risk level for diabetes. Thus, the warning messages for a user suffering
of diabetes will be soft if the user exceeds with the consume of eggs.

4 Multi-label Food Category Classification

Our goal is to assign every food image with a set of food category labels. These
categories refer to the ingredients that compose the food recipe in the image and
are provided by the HeLiS ontology. We address this problem as a multi-label
image classification task where X ∈ Rd is the input domain of our images and
BasicFood is the set of the possible food category labels. Given an image x ∈ X ,
we need to predict a vector y = {y1, y2, . . . , yK} ⊆ BasicFood where yi is the
i-th food category label associated to x. Up to our knowledge, state-of-the-art
methods in food image recognition do not exploit multi-label classification. They
classify images according to only one single label taken from Recipe. Therefore,
we exploit two methods: i) a direct multi-label classification of the food categories
with a CNN and ii) a single-label image classification of the food recipes (e.g.,
Pasta with Carbonara Sauce) with a CNN and then the logical inference of
all its food categories (i.e., Pasta, Eggs, etc) through the RecipeFood concept.

4.1 Methods

Current methods in image classification use supervised deep learning techniques
based on CNNs. These are able to learn the salient features of an image in order
to classify it according to some training examples. Many CNNs have been devel-
oped exploiting several combinations of the hidden layers (convolutions, poolings,
activations) in order to address the main challenges of the visual recognition. In
both methods i) and ii) we separately train (on the dataset in Section 5.1) one
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of the most performing CNN, the Inception-V3 [27]. This network presents con-
volutional filters of multiple sizes operating at the same level. This makes the
network “wider” and able to better detect the salient parts of an image both
locally and globally. Finally, the network has a standard fully-connected layer
for predicting the classes.

Direct Multi-Label Classification For this task we train the Inception-V3 for
directly learning the vector y of the food categories in BasicFood. We use a
sigmoid as activation function of the last fully-connected layer and binary cross
entropy as loss function. This is a standard setting for multi-label classification.

Single-Label Classification and Inference Another method to classify the food
categories in a meal image consists in: i) classifying an input image with a CNN
according to the food label it contains (e.g., Pasta with Carbonara Sauce).
This is the standard multiclass classification where one image is classified with
only one food label among many classes. ii) Inferring the food category la-
bels from the food label by using the concepts and properties of HeLiS. In
our example, the detection of Pasta with Carbonara Sauce implies the pres-
ence of these food categories: Pasta, Eggs, Aged cheese, Vegetal Oils and
Cold cuts. More formally, let CNN an Inception-V3 trained to multiclassify
food labels in Recipe. Here the activation function of the last fully-connected
layer is a softmax and the loss function is a categorical cross entropy. Thus
CNN(x) = 〈s1, s2, . . . , sn〉 with si ∈ R is the classification score of the network
for the label li ∈ Recipe. Let l∗ ∈ Recipe be the label with highest score in
CNN(x), then the food category labels vector y is defined as:

y = {yi ∈ BasicFood | ∃w ∈ RecipeFood : hasFood(w, yi) ∧
hasRecipeFood(l∗, w)} (1)

5 Experiments

Here we compare the multi-label and single-label plus inference methods for the
food category classification from meal images. Our claim is that a classification
error in a single food recipe affects the majority of the inferred food categories
leading to inaccurate results. The dataset and the tool are publicly available at
https://github.com/ivanDonadello/Food-Categories-Classification.

5.1 The Food and Food Categories (FFoCat) Dataset

The HeLiS ontology contains the food and food category concepts (Section 3)
exploited in the multi-label classification. We build a new dataset from these con-
cepts. We sample some of the most common recipes in Recipe and use them as
food labels. The food categories are then automatically retrieved from BasicFood

with a SPARQL query. Examples of food labels are Pasta with Carbonara

https://github.com/ivanDonadello/Food-Categories-Classification
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Sauce and Baked Sea Bream. Their associated food categories are Pasta, Aged

Cheese, Vegetal Oils, Eggs, Cold Cuts and Fresh Fish, Vegetal Oils,
respectively. We collect 156 labels for foods and 51 for food categories. We scrape
the Web using Google Images as search engine to download all the images re-
lated to the food labels. Then, we manually clean the dataset resulting in 58,962
images with 47,108 images for the training set and 11,854 images for the test set
(80-20 ratio of splitting). The dataset is affected by some natural imbalance, in-
deed the food categories present a long-tail distribution: only few food categories
labels have the majority of the examples. On the contrary, many food categories
labels have few examples. This makes the food classification challenging.

5.2 Experimental Settings

For both multi and single-label we train the Inception-V3 network from scratch
on the FFoCat training set (with different loss functions) to find the best set of
weights. The fine tuning using a pre-trained Inception-V3 did not perform suffi-
ciently. We resized the images to 299x299 pixels and perform data augmentation
by using rotations, width and height shifts, shearing, zooming and horizontal
flipping. We run 100 epochs of training with a batch size of 16 and a learning
rate of 10−6. We adopt the early stopping criterion to prevent overfitting. The
training has been performed with the Keras framework (TensorFlow as backend)
on a PC equipped with a NVIDIA GeForce GTX 1080 Ti. We obtain the 93.43%
and the 41.02% of accuracy for the multi and single-label classification tasks.

5.3 Metrics

As performance metric we use the mean average precision (MAP) that summa-
rizes the classifier precision-recall curve. This is computed by listing the obtained
classification scores of the food/food categories for all the test set pictures. We
threshold this list at multiple values in [0, 1] and the predictions are the set of
labels with score higher than the threshold. The MAP is

∑n
i=1(Rn −Rn−1)Pn,

i.e., the weighted mean of precision Pn achieved at each threshold level n. The
weight is the increase of the recall in the previous threshold: Rn − Rn−1. The
macro AP is the average of the AP over the classes, the micro instead considers
each entry of the predictions as a label. We prefer MAP instead of accuracy
as the latter can give misleading results for sparse vectors. Indeed, Accuracy =
(TP+TN)/(TP+TN+FP+FN) with TP (TN) the true positives (negatives) and
FP (FN) the false positives (negatives). Therefore, a classifier returning a zero
vector y for the 51 food categories achieves an accuracy of 92%.

5.4 Results and Discussions

Given an (set of) input image(s) x, the computing of the precision-recall curve
requires the predicted vector y of food category labels and a score associated to
each label in y. In the multi-label method this score is directly returned by the
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Inception-V3 network. In the single-label and inference method this score needs
to be computed. We tested two strategies: i) we perform exact inference of the
food categories from HeLiS and assign the value 1 to the scores of each yi ∈ y;
ii) the food categories labels inherit the uncertainty returned by the CNN. The
score of each yi is the value si returned by CNN(x). Table 1 reports the results.

Table 1. The multi-label classification of food categories outperforms in average pre-
cision (AP) the methods based on single-label classification and logical inference.

Method Micro-AP (%) Macro-AP (%)

Multi-label 76.28 49.81
Single-class exact 50.74 31.82
Single-class uncert. 60.51 42.73

The direct multi-label model outperforms the single-label models of approx-
imately 26 and 16 points of micro-AP and 21 and 8 points of macro-AP, respec-
tively. The micro-AP is always better than the macro-AP as it is sensible to the
mentioned imbalance of the data. Moreover, the precision-recall curve (Figure 2)
of the direct multi-label model is always above the other models. This confirm our
claim that errors in the single recipe classification propagate to the majority of
the food categories the recipe contains. That is, the inferred food categories will
be wrong because the recipe classification is wrong. On the other hand, errors in
the direct multi-label classification will affect only few food categories. Good per-

Fig. 2. The multi-label classification of food categories outperforms in average precision
(AP) the methods based on single-label classification and logical inference.
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formance in dietary-tracking systems are important especially if the predictions
are used in a behavioural-change system for generating proper user feedback. In-
deed, the misclassification of a meal could generate wrong warning messages or
even no message to users. To this aim, we also perform a qualitative comparison
of the methods using testing images, see Figure 3. The top-left meal of Figure 3

Fig. 3. Example images leading to wrong user messages with the multi-class model.
.

contains a Pasta with Garlic, Oil and Chili Peppers that is misclassified
by the single-label method with a Pasta with Carbonara Sauce, thus inferring
wrong Eggs and Cold Cuts. In this case, for example, the intake of Cold Cuts

could violate a dietary restriction (e.g., to consume no more than two portions
of cold cuts in a week) with the consequent generation of an erroneous warn-
ing message for a user that should avoid the excessive intake of ColdCuts. Here,
the multi-label method classifies all the categories correctly. The top-right image
contains a Vegetable Pie, the single-label method misclassifies it and infers the
wrong category of Pizza Bread, whereas the multi-label method is more precise.
The low-left image contains Backed Potatoes and the single-label classification
classifies it as Backed Pumpkin thus missing the category of Fresh Starchy

Vegetables. This category is retrieved by the multi-label method that, within a
behavioural-change system, can trigger the generation of a warning message for
people affected by, for example, diabetes. Regarding the last low-right image, the
single-label classification and inference method wrongly classifies the input image
as Tomato and Ricotta Cheese Pasta, thus containing FreshCheese instead
of Eggs and TomatoSauces instead of ColdCuts. In this case, no warning mes-
sage will be generated for a user that should avoid ColdCuts and has already
violated the consequent restriction in the last few days.

6 Conclusions

This paper discusses a multi-label food classification strategy for classifying food
pictures based on the food categories contained in the recipe instead of the recipe
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itself. The aim of the proposed approach is to detect food categories having a
high risk level for people affected by specific chronic diseases. The proposed
strategy relies on the use of background knowledge exploited for inferring food
categories from a recipe and their links with the risk level associated with each
chronic disease. Moreover, we provide a new dataset containing 58,962 annotated
images. Results demonstrated the effectiveness of the proposed classification
strategy. Moreover, our proposal outperforms a more standard method based
on single-image classification and inference of the food categories.

Future work will focus on designing multi-task learning algorithms for the
joint prediction of both foods and food categories. In addition, we want to further
exploit the combination of deep learning with ontologies by using constraints-
based methods, such as Logic Tensor Networks [6], already applied to image clas-
sification tasks. Both these directions will be tested on bigger and standard image
datasets containing food and food categories, such as VIREO FOOD-172 [2]. Fi-
nally, the proposed strategy opens also the possibility of being integrated into
intelligent systems implementing behavior change policies for supporting users
in adopting healthy lifestyles.

References

1. Bossard, L., Guillaumin, M., Gool, L.J.V.: Food-101 - mining discriminative com-
ponents with random forests. In: ECCV (6). Lecture Notes in Computer Science,
vol. 8694, pp. 446–461. Springer (2014)

2. Chen, J., Ngo, C.: Deep-based ingredient recognition for cooking recipe retrieval.
In: ACM Multimedia. pp. 32–41. ACM (2016)

3. Ciocca, G., Napoletano, P., Schettini, R.: Food recognition: A new dataset, exper-
iments, and results. IEEE J. Biomedical and Health Informatics 21(3), 588–598
(2017)

4. Ciocca, G., Napoletano, P., Schettini, R.: Learning cnn-based features for retrieval
of food images. In: ICIAP Workshops. Lecture Notes in Computer Science, vol.
10590, pp. 426–434. Springer (2017)

5. Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.G.: Two-view 3d
reconstruction for food volume estimation. IEEE Trans. Multimedia 19(5), 1090–
1099 (2017)

6. Donadello, I., Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks for semantic
image interpretation. In: IJCAI. pp. 1596–1602. ijcai.org (2017)

7. Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: Helis: An ontology for sup-
porting healthy lifestyles. In: International Semantic Web Conference (2). Lecture
Notes in Computer Science, vol. 11137, pp. 53–69. Springer (2018)

8. Ege, T., Yanai, K.: Image-based food calorie estimation using knowledge on food
categories, ingredients and cooking directions. In: ACM Multimedia (Thematic
Workshops). pp. 367–375. ACM (2017)

9. Farinella, G.M., Moltisanti, M., Battiato, S.: Classifying food images represented
as bag of textons. In: ICIP. pp. 5212–5216. IEEE (2014)

10. He, Y., Xu, C., Khanna, N., Boushey, C.J., Delp, E.J.: Food image analysis: Seg-
mentation, identification and weight estimation. In: ICME. pp. 1–6. IEEE Com-
puter Society (2013)



Ontology-Driven Food Category Classification in Images 11

11. He, Y., Xu, C., Khanna, N., Boushey, C.J., Delp, E.J.: Analysis of food images:
Features and classification. In: Image Processing (ICIP), 2014 IEEE International
Conference on. pp. 2744–2748. IEEE (2014)

12. Hoashi, H., Joutou, T., Yanai, K.: Image recognition of 85 food categories by
feature fusion. In: ISM. pp. 296–301. IEEE Computer Society (2010)

13. Joutou, T., Yanai, K.: A food image recognition system with multiple kernel learn-
ing. In: ICIP. pp. 285–288. IEEE (2009)

14. Kagaya, H., Aizawa, K., Ogawa, M.: Food detection and recognition using convo-
lutional neural network. In: ACM Multimedia. pp. 1085–1088. ACM (2014)

15. Kawano, Y., Yanai, K.: Real-time mobile food recognition system. In: CVPR Work-
shops. pp. 1–7. IEEE Computer Society (2013)

16. Kawano, Y., Yanai, K.: Food image recognition with deep convolutional features.
In: UbiComp Adjunct. pp. 589–593. ACM (2014)

17. Kawano, Y., Yanai, K.: Foodcam-256: A large-scale real-time mobile food recog-
nition system employing high-dimensional features and compression of classifier
weights. In: ACM Multimedia. pp. 761–762. ACM (2014)

18. Kitamura, K., Yamasaki, T., Aizawa, K.: Foodlog: capture, analysis and retrieval
of personal food images via web. In: CEA@ACM Multimedia. pp. 23–30. ACM
(2009)

19. Kong, F., Tan, J.: Dietcam: Automatic dietary assessment with mobile camera
phones. Pervasive and Mobile Computing 8(1), 147–163 (2012)

20. Lu, Y., Allegra, D., Anthimopoulos, M., Stanco, F., Farinella, G.M., Mougiakakou,
S.G.: A multi-task learning approach for meal assessment. In: MADiMa@IJCAI.
pp. 46–52. ACM (2018)

21. Maimone, R., Guerini, M., Dragoni, M., Bailoni, T., Eccher, C.: Perkapp: A gen-
eral purpose persuasion architecture for healthy lifestyles. Journal of Biomedical
Informatics 82, 70–87 (2018)
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