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Abstract. The self-management of nutritional diseases requires a system that
combines food tracking with the potential risks of food categories on people’s
health based on their personal health records (PHRs). The challenges range from
the design of an effective food image classification strategy to the development of
a full-fledged knowledge-based system. This maps the results of the classification
strategy into semantic information that can be exploited for reasoning. However,
current works mainly address the single challenges separately without their inte-
gration into a whole pipeline. In this paper, we propose a new end-to-end semantic
platform where: (i) the classification strategy aims to extract food categories from
food pictures; (ii) an ontology is used for detecting the risk factors of food cate-
gories for specific diseases; (iii) the Linked Open Data (LOD) Cloud is queried
for extracting information concerning related diseases and comorbidities; and,
(iv) information from the users’ PHRs are exploited for generating proper per-
sonal feedback. Experiments are conducted on a new publicly released dataset.
Quantitative and qualitative evaluations, from two living labs, demonstrate the
effectiveness and the suitability of the proposed approach.

1 Introduction

Nutritional diseases can lead to heart diseases, cancer, or type-2 diabetes and are re-
sponsible for approximately 678,000 annual deaths in the U.S. They also have a huge
impact on the healthcare spending1: the annual cost of diabetes associated with diet and
inactivity in the U.S. is 245 billions of dollars. Prevention would help people to stay
healthy, to lead productive lives, to avoid/delay the onset of diseases and keep diseases
far from becoming worse or debilitating. It would also reduce the costs of public health.

Dietary tracking is fundamental for the self-management of nutritional diseases. A
common modality for tracking eaten food is to keep a diary of food pictures. This opens
the challenge of recognizing all the taken food from users’ pictures. However, for an ef-
fective management of nutritional diseases, the dietary tracking should be coupled with
a reasoning system that (i) checks if the user diet is compliant with some dietary restric-
tions or with his/her clinical history and (ii) eventually provides useful feedback [16].
This integration requires the mapping of the visual food categories (e.g., cold cuts) into
diseases to pay attention (e.g., cardiovascular diseases). However, current approaches
are limited to the single image food detection [7,18] or to the nutritional diseases man-
agement with logical rules [17]. In addition, image food detection approaches classify

1 https://cspinet.org/eating-healthy/why-good-nutrition-important
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meal images according to the whole recipe. Hence, they do not infer the contained food
categories. The detection of these categories is fundamental for people affected by par-
ticular diseases, such as, diabetes, hypertension, or obesity.

In this paper, we propose an end-to-end semantic platform that supports the man-
agement of nutritional diseases. The system covers the whole pipeline from data acqui-
sition (meal pictures taken with a smartphone) to tailored messages to users in order to
correct wrong dietary habits within a behavior change context. Here, we focus on the
following aspects originally presented in this contribution:

– A multi-label classification of food pictures according to the food categories con-
tained in a specific food recipe of the Mediterranean diet. The classification is per-
formed with a Convolutional Neural Network (CNN).

– An extension of a state-of-the-art ontology (i.e., the HeLiS ontology [9]) about the
dietary and physical activity domains with knowledge about the risk level of food
categories with respect to a set of diseases.

– A strategy for navigating over the Linked Open Data (LOD) Cloud to infer matches
between the user clinical history and the potential risks of diseases and comorbidi-
ties induced by an excessive intake of some food categories.

– A new dataset of food pictures, the classification models and the source code of the
classification tool. These are released in order to support the reproducibility of the
results and to foster further research in this direction.

The significance of our work relies on the integration of deep learning in a Seman-
tic Web (SW) platform for healthcare. Indeed, Computer Vision (CV) methods have
no mapping in the semantic space of an ontology, thus they are rarely used as input
providers for reasoning systems. SW systems (for healthcare) instead deal with a clean
input. This can be time consuming and could affect the scalability. The proposed SW
platform allows us to investigate the right balance between effort and effectiveness.
We evaluated the proposed platform from three perspectives: (i) the effectiveness of
the food categories classification, (ii) the usability of the mobile application adopted by
users, and (iii) the effectiveness of the generated messages. In all cases, the obtained
results confirm the soundness of the proposed end-to-end semantic platform.

2 Related Work

The end-to-end platform proposed in this paper conjugates two research areas: the clas-
sification of food images and the effective navigation of the LOD Cloud for gathering
and exploiting knowledge for the realization of intelligent systems.

The recognition of foods from images is the first step for dietary tracking. This task
has been studied by the Computer Vision community with techniques of image classi-
fication/segmentation and volume estimation. The first works rely on the extraction of
visual features from the images and the consequent use of classifiers. The main features
used are local/global features and local binary patterns [14,3]. The classifiers are k-NN
classifiers, Support Vector or Kernel Machines. Successively, CNNs became the stan-
dard technique for food classification [18], thus avoiding the use of engineered features.
The Food524DB dataset is used in [7] for food recognition with CNNs and gathers the
Food50, Food-101, UEC FOOD-256 and VIREO Food-172 datasets.
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Other works estimate the quantity of food in the dish and thus the intake calories.
The semantic segmentation of the food dish is performed, then techniques of volume
estimation compute the food quantity. However, this requires a database of foods with
relatives densities [8,6]. Other works exploit a reference object (e.g., a thumb [23] or
a wallet [22]) for the volume computation. Im2Calories [20] uses a CNN to predict a
depth map of the image that is used to build the 3D model of the meal. Quantity esti-
mation can be addressed with multi-task learning by training CNNs that learns both the
food classification and the relative calories/volume. However, this technique requires a
dataset with the annotated calories [11] or the depth information in the images [15].

Few works among those mentioned above predict food categories and match them
with some nutritional facts in a database [11,8]. They predict only one food category
(e.g., pasta) for each detected food and this can be inaccurate. Indeed, a pasta dish
should be avoided by a person suffering of diabetes. However, a pasta dish might have
carbonara sauce, containing cold cuts that are not suitable for people suffer from car-
diovascular diseases. Therefore, it is important to perform a multi-label classification of
the several food categories in the dish.

The promotion of healthy lifestyle through dietary counseling is a recent topic with
few available working systems. Nevertheless, some SW-based approaches have been
previously proposed. The Medical Decision Support System in [2] supports (i) the col-
lection of patients’ relevant information via a mobile application prompting questions
related to the patient’s medical background, and (ii) the creation of customized advices
based on the information collected and on the changes of patient’s lifestyle.

In [19] the authors present an approach for designing a semantic reasoning engine
to support coaching profiles. This system uses a web-based interface for collecting user
data and an ontology for analyzing and processing them. This way, created profiles can
be used to optimize the coaching activities of professionals. The work presented in [5]
aims to integrate multiple knowledge sources for the development of a dietary consul-
tation system for chronic kidney diseases. The system demonstrates how a knowledge-
based approach can achieve sound problem solving modeling and effective knowledge
inference. The evaluation involved 84 case patients about recommending appropriate
food serving amounts from different food groups for balanced key nutrient ingestion.
Finally, in [10] the authors discussed the use of SW technologies to build a system
for supporting and motivating people in following healthy lifestyles. SW technologies
are used for modeling domain knowledge, and for performing reasoning activities by
combining real-time user-generated data and domain expert knowledge.

To the best of our knowledge, our platform innovates the state-of-the-art as it inte-
grates multiple modalities (images, reasoning, LOD Cloud and Personal Health Records)
of managing information. Indeed, current CV approaches classify food images accord-
ing to their recipe label with very poor reasoning about the food intake and related dis-
eases. On the other hand, SW systems do not deal with a noisy input. Our full-fledged
solution supports the transformation of food images content into semantic information.
This is used for gathering from the LOD Cloud the knowledge of the nutritional dis-
eases associated with the detected food categories. This knowledge is exploited in a
fine-grained reasoning process for generating proper personalized feedback.
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3 Architecture

Here, we discuss the pipeline modules developed (or reused from existing platforms)
for supporting the detection and processing of food categories from users’ pictures,
see Figure 1. Such food categories are exploited for (i) detecting the risk level with
respect to specific diseases; (ii) navigating the LOD cloud for extracting related diseases
and possible comorbidities; and, (iii) linking all collected information with the user’s
Personal Health Record (PHRs) in order to generate proper feedback.

Fig. 1. Architecture of the end-to-end system. Green boxes are external resources, i.e., ontologies.
Orange boxes are input data (pictures or PHRs). Light blue boxes are the modules of the system.

The input module of the pipeline is a mobile application allowing users of taking
pictures of consumed food. This kind of input represents the best trade-off between effi-
ciency and effectiveness. On the one hand, the efficiency is supported by the low effort
required for providing data. Taking a picture requires less time than providing the com-
plete list of the consumed food. Hence, the reduced effort implies a lower abandonment
rate. On the other hand, the effectiveness is given by the fact that it is unfeasible to
have a knowledge base with the description of all possible variants for a recipe. Thus,
a recipe-based classification system could fail in recognizing all the eaten food cate-
gories whereas a food-category-based classification system can be more accurate, see
Section 8. A correct detection of food categories impacts the consequent reasoning over
medical knowledge bases, the inference of risk levels for specific diseases, the align-
ment of such diseases with users’ PHRs and the generation of personalized feedback.

Before detailing the modules of our end-to-end semantic platform, we describe the
adopted state-of-the-art components: the HeLiS ontology [9] and the PerKApp plat-
form [16]. The HeLiS ontology is the most updated ontology covering the dietary and
physical activity domains. It also defines a model for describing the Mediterranean diet
rules that can be associated with user profiles. We extended HeLiS with the risk level of
each food category with respect to some diseases, see Section 4. The PerKApp platform
is a behavior change persuasive platform designed for generating persuasive messages
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to support people in healthy lifestyles adoption. PerKApp exposes APIs that give ac-
cess to a subset of its reasoning facilities. This allows the development of applications
that monitor users dietary behaviors. Our system exploits the PerKApp APIs to reason
about the consumed food categories and trigger the navigation of the LOD Cloud.

The task of recognizing food categories is performed by the Food Category Rec-
ognizer module (Section 5). Such a module uses a CNN trained with recipe images an-
notated with the contained food categories. During the classification the CNN receives
as input the picture taken by the user and it predicts the detected food categories.

Once consumed food categories have been recognized, they are passed to the Mon-
itoring System module (i.e., an interface for the PerKApp platform). As mentioned
above, this module verifies, through reasoning operations, if the user violated one of
the assigned rules defined within the HeLiS ontology.

In case an undesired behavior is detected, information about the involved food cat-
egories are sent to the Navigation on the LOD Cloud module. This module acquires
from nutritional and medical knowledge bases (available in the LOD Cloud) disease in-
formation linked with the received food categories. This process is performed through
the following activities:

1. The module looks up into the HeLiS extension for the risk level of the detected
food categories with respect to the modeled diseases. Such information have been
provided by domain experts only for a subset of possible nutritional diseases. Cur-
rently the HeLiS extension contains knowledge for five nutritional diseases, see
Section 4. The rationale behind the limited number is: (i) we want to limit the effort
of the domain experts in providing all the knowledge, and (ii) missing information
(other nutritional diseases of the literature) are acquired through the second step.

2. The HeLiS ontology is connected to the LOD Cloud due to the alignments with
AGROVOC 2, see the equivalentClass annotation property in HeLiS . In this step,
the module exploits the diseases modeled in HeLiS for accessing to the related
nutritional diseases defined within AGROVOC (i.e., children and sibling diseases).

3. PHRs have a very specific medical terminology and they contain detailed informa-
tion that do not match with the AGROVOC diseases. Hence, the module navigates
the LOD Cloud from AGROVOC to the UMLS Knowledge Base 3 to collect infor-
mation about comorbities associated with the diseases extracted from AGROVOC.
Indeed, comorbidities are not directly associated with food categories, thus only
the navigation of the LOD Cloud enables the finding of the ones that a user already
had in his/her PHR. The UMLS is a medical knowledge base containing both a tax-
onomy of diseases and properties concerning associated diseases, comorbidities,
recidivity degree, etc.. Such low-level information increases the likelihood to find
an alignment between the content of a PHR and the knowledge collected from the
LOD Cloud. For reaching UMLS from AGROVOC, the module exploits the path
AGROVOC→ Bio2RDF→ LinkedCT→ Pubmed→ UMLS as described in [26].

4. The last step consists in matching all the information extracted from both AGROVOC
and UMLS with the information contained in the PHR of the user. The result of this
match is provided to the last module of the pipeline.

2 http://aims.fao.org/vest-registry/vocabularies/agrovoc
3 https://www.nlm.nih.gov/research/umls/
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To perform the LOD Cloud navigation we use the LOD-a-lot [12] service, i.e., a dump
of the LOD Cloud that can be queried by using a single SPARQL endpoint for all
the involved resources. This prevents us from the possible unreliability of some SW
resources, e.g., a fault in the path from AGROVOC to UMLS.

Finally, once the system has computed (i) the intake food categories, (ii) the risk
levels of associated diseases, (iii) the related diseases and possible comorbidities, and
(iv) the alignments with the user’s PHR, it generates a proper feedback that is returned
to the user mobile application. The Feedback Generator module relies on a template-
based engine where the structured information of above is realized into natural language
sentences. More details on how templates are populated are in [16].

4 Background Knowledge

The role of background knowledge in our platform is two-fold. First, background knowl-
edge allows our semantic platform to go beyond the sole classification of food images.
Indeed, background knowledge enables the possibility of exploiting logic relationships
and inference capabilities for reusing the food classification results to support users for
more complex goals. For example, the prediction of some food categories might repre-
sent a warning for people affected by specific diseases, e.g., pasta for people affected
by diabetes. Moreover, background knowledge can contains conceptual models about
specific dietary patterns that can be used to improve users’ lifestyle, avoiding the rise
or sharpening of chronic diseases, and to support a behavioral changing. Second, the
exploitation of knowledge resources enables the access to the LOD Cloud. This focuses
the modelling only on extending HeLiS since all other semantic information exploited
by the system are available through the LOD Cloud.

The background knowledge exploited here is HeLiS [9]: a state-of-the-art ontology
for supporting healthy lifestyles. It defines the dietary and physical activity domains to-
gether with entities that model concepts concerning users’ profiles and the monitoring
of their activities. Details about the conceptual model and the methodology for building
it are in [9]. The HeLiS ontology has been extended by adding, to the dietary domain,
information concerning the risk level of food categories with respect to specific dis-
eases 4. We discuss the main concepts involved into the food category classification
together with the ones modeled within the HeLiS ontology extension, see Figure 2.

Instances of the BasicFood concept describe foods for which micro-information of
nutrients (carbohydrates, lipids, proteins, minerals, and vitamins) are available. More-
over, these instances belong also to subclasses of the BasicFood concept, such as Pasta,
Aged Cheese, Eggs, Cold Cuts and Vegetal Oils. On the other hand, instances of the
Recipe concept, describe the composition of complex dishes (such as Pasta with Car-
bonara Sauce) by expressing them as a list of instances of the RecipeFood concepts.
This concept reifies the relationships between each Recipe individual, the list of Ba-
sicFood it contains and the amount of each BasicFood. Besides this dual classification,
instances of both BasicFood and Recipe concepts are categorized under a more fine-
grained structure. With respect to the number of individuals, currently, HeLiS contains
986 individuals of type BasicFood and 4408 individuals of type Recipe.

4 The HeLiS extension is available on the HeLiS website http://w3id.org/helis

http://w3id.org/helis
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Fig. 2. Excerpt of the HeLiS ontology including the main concepts (white boxes) and instances
(blue boxes) exploited by our semantic platform. Solid lines are object properties, dashed lines
are RDF core properties

The Disease concept defines the diseases supported by the system such that infor-
mation about the risk level relationship with specific BasicFood is available. Currently,
we instantiate the Disease concept for diabetes, kidney diseases, cardiovascular dis-
eases, hypertension and obesity. Diseases are defined as single individuals instead of
concepts for avoiding the creation of a new individual for each specific disease for
each user. Instances of the DiseaseRiskLevel concept reifies the relationships between
each Disease and BasicFood individuals and with the risk level of a BasicFood for that
Disease. The risk level is represented by a value ranging from 0 (no risk) to 3 (high
risk). For readability we report in Figure 2 only some instances of the DiseaseRiskLevel
concept, e.g., DiseaseRiskLevel-A, DiseaseRiskLevel-B, and DiseasesRiskLevel-C.

The HeLiS ontology is used by the Food Category Recognizer module for getting
the list of available food categories, by the Monitoring System for supporting the rea-
soning process, and by the Navigation on LOD Cloud as starting point for getting the
list of diseases associated with the detected food categories.

5 Multi-label Food Category Classification

Our goal is to assign every food image with a set of food category labels. These cate-
gories compose the food recipe in the image and are provided by HeLiS. We address
this problem as a multi-label image classification task where X ∈ Rd is the input do-
main of our images and the subclasses of BasicFood are the possible food category
labels. Given an image x ∈ X , we need to predict a vector y = {y1, y2, . . . , yK} ⊆
BasicFood where yi is the i-th food category label associated to x. State-of-the-art
methods in food image recognition mostly classify images according to only one single
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label taken from Recipe without multi-label classification. Here, we exploit two strate-
gies for food-categories classification: (i) a direct multi-label classification of the food
categories with a CNN and (ii) a single-label image classification of the food recipes
(e.g., Pasta with Carbonara Sauce) with a CNN and then the logical inference of all its
food categories (i.e., Pasta, Eggs, etc) through the RecipeFood concept.

5.1 Methods

Current methods in image classification use supervised deep learning techniques based
on CNNs [13]. These are able to learn the salient features of an image in order to classify
it according to some training examples. CNNs exploit several combinations of the hid-
den layers (convolutions, poolings, activations) in order to improve their performance.
In both methods (i) and (ii) we separately train (on the dataset in Section 8.1) one of
the most performing CNN, the Inception-V3 [25]. This network presents convolutional
filters of multiple sizes operating at the same level. This makes the network “wider”
and able to better detect the salient parts of an image. Finally, the network has a stan-
dard fully-connected layer for predicting the classes. Moreover, this networks does not
present some redundant connections between neurons that affect the efficiency of the
other CNNs. Further details and performance results can be found in [25].

Direct Multi-Label Classification We train the Inception-V3 for directly learning the
vector y of the food categories in BasicFood. We use a sigmoid as activation function
of the last fully-connected layer and binary cross entropy as loss function. This is a
standard setting for multi-label classification.

Single-Label Classification and Inference Another method to classify food categories
consists in: firstly, to classify an input image with a CNN according to the food la-
bel (in Recipe) it contains (e.g., Pasta with Carbonara Sauce). This is the standard
multiclass classification where one image is classified with only one food label among
many classes. Secondly, to infer the food category labels from the food label by using
the RecipeFood reification. The detection of Pasta with Carbonara Sauce implies the
presence of the food categories: Pasta, Eggs, Aged cheese, Vegetal Oils and Cold cuts.
Let CNN be an Inception-V3 trained to multiclassify food labels in Recipe. We use
a softmax as activation function of the last fully-connected layer and categorical cross
entropy as loss function. Thus CNN(x) = 〈s1, s2, . . . , sn〉 with si ∈ R is the classifi-
cation score of the network for the label li ∈ Recipe. Let l∗ ∈ Recipe be the label with
highest score in CNN(x), then the food category labels vector y is defined as:

y = {yi ∈ BasicFood | ∃w ∈ RecipeFood : hasFood(w, yi) ∧ hasRecipeFood(l∗, w)}

6 From Image Classification to LOD Cloud Navigation

Here we show how the system works through a concrete example. Let us consider a user
suffered from anomalies of blood pressure and with a nasal polyps surgery five years
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before the use of the platform. Her electronic PHR contains all these information related
to her clinical history. Then, let us assume that she is going to eat a pasta with carbonara
sauce and she sends to the system the meal picture taken with her smartphone. The
Food Category Recognizer detects the presence of these food categories: Pasta, Eggs,
AgedCheese, VegetalOils and ColdCuts. These are sent to the Monitoring System.

As first action, this module adds into the dietary diary of the user, represented as a
set of individuals within HeLiS, the consumed food categories. Then, through logical
reasoning, the Monitoring System checks if the intake food categories follow the rules
associated with the user’s profile encoded in HeLiS. According with the user’s dietary
diary and the rules of his profile, the system detects an undesired behavior: in the last 7
days the user has consumed the ColdCuts food category four times while the associated
rules limits the consumption of ColdCuts three times per week.

These undesired food categories are passed to the Navigation on LOD Cloud mod-
ule and trigger the retrieval of possible diseases to pay attention if the user exceeds
with ColdCuts food consumption. The module queries the HeLiS extension for all in-
stances of type DiseaseRiskLevel having an hasFood object property instantiated with
the concept ColdCuts. By looking in Figure 2, the module finds the DiseaseRiskLevel-
2 individual and from it, retrieves the individual Hypertension of type Disease. From
the DiseaseRiskLevel-2 individual, the module looks for the riskLevel data property for
retrieving the risk level associated with the pair < Hypertension,ColdCuts >. If the
value is greater than 1, the module starts to navigate through the LOD Cloud for finding
all related information. Indeed, HeLiS mainly focuses on healthy lifestyles and it is not
a medical ontology. Hence, the acquisition of further medical information concerning
the diseases associated with the consumed food categories has to be performed from the
LOD Cloud. The navigation starts from the alignment between HeLiS and AGROVOC.
Here, the system retrieves the children and sibling diseases of Hypertension provided by
the diseases taxonomy of AGROVOC. Examples of children diseases of Hypertension
are Embolism, HeartAttack and Phlebitis. However, the specific medical terminology
in PHRs do not always match with the diseases in AGROVOC. Hence, the system con-
tinues the navigation through the LOD Cloud to refine the list of AGROVOC diseases
by extracting information from the UMLS Knowledge Base. In our example, from the
Hypertension concept, extracted from HeLiS, the platform reaches the BloodPressure-
Anomalies associated disease and NasalPolyps possible comorbidity within the UMLS
Knowledge Base. The latter contains also the recidivity attribute. Every retrieved dis-
ease and their attributes are searched in the electronic PHR to provide a more accurate
user feedback. In our case, the module finds alignments with BloodPressureAnomalies
and with NasalPolyps that are two diseases that the patient suffered from.

The gathered information (ColdCuts, Hypertension, NasalPolyps, BloodPressure-
Anomalies, riskLevel(BloodPressureAnomalies, High), and hasAttribute(NasalPolyps,
Recidivity)) are processed by the Feedback Generation Module. Its language genera-
tion engine fills message templates to realize tailored motivational messages. Concern-
ing our scenario, a sample message is the following: “This week you have eaten too
much cold cuts. Do yo know that an excessive intake of cold cuts could cause the re-
cidivity of nasal polyps and significantly increases the probability of having anomalies
in your blood pressure? Next time you can try a meal with some fresh fish.”.
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7 Use Cases: The Key to Health and Salute Plus Living Labs

As specific case studies, we validated our platform within two living labs: Key To Health
and Salute Plus. The Key To Health living lab promotes healthy lifestyles in workplaces
with the aim of preventing the onset of chronic diseases through organizational interven-
tions directed to workers. Actions can concern the promotion of a correct diet, physical
activity, social and individual well-being, or the discouragement of bad habits, such as
smoking and alcohol consumption. Within the Key To Health living lab, our platform
has been used by 120 workers of our institution (both researchers and employers) as a
tool to persuade them to follow healthy recommendations. The Salute Plus living lab is
part of Trentino Salute 4.05, a digital health initiative promoted by the local healthcare
department. Such an initiative aims at proving innovative technological solutions to cit-
izens to promote healthy lifestyles. Table 1 shows the main demographic information
concerning the users involved in the two living labs. Whereas Table 2 provides statistics
about the usage of the platform. Even if the Salute Plus living lab runs from a longer
period (it is still active), we consider for the evaluation the data acquired during the first
49 days in order to provide a fair comparison with the Key To Health living lab.

Dimension Property Value
Key To Health Salute Plus

Gender
Male 57% 48%

Female 43% 52%

Age
25-35 12% 27%
36-45 58% 45%
46-55 30% 28%

Education
High School 0% 56%

Master Degree 42% 43 %
Ph.D. Degree 58% 1 %

Occupation
Ph.D. Student 8% n.a
Administration 28% n.a

Researcher 64% n.a
Table 1. Demographic information of the users involved in the evaluation campaign.

Living Lab # Users Days running Meals provided Triples
Key To Health 120 49 18,816 470,400

Salute Plus 2,870 112 902,944 16,704,464
Table 2. Usage statistics during the living labs. We report the number of users involved, the
number of days since each living lab started, the number of meals introduced by the users (each
meal can be composed by several pictures), and the number of RDF triples currently stored.

5 http://www.trentinosalutedigitale.it/#primo
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The Key To Health and Salute Plus use cases allowed us to deploy our platform into
two different scenarios. The former is a controlled environment in which we performed
a complete evaluation both from the quantitative and qualitative perspectives. Whereas,
the latter is a real-world environment that allowed us to observe (i) the engineering suit-
ability of our platform, and (ii) the effectiveness of our solution within a more open
context for comparing the results obtained in the controlled environment. For each liv-
ing lab, users were equipped with a mobile application 6 based on the services provided
by our platform. We analyzed the usage of the mobile application for seven weeks by
monitoring the users’ input and the associated undesired behaviors (hereafter called
“violations”). Results and discussions are in Section 8.

8 Experiments

Within the living labs, we validated our platform from both quantitative and qualitative
perspectives. The former focuses on the performance of the food category recognizer
(Section 8.1). The latter regards the whole platform: (i) the user experience with the
mobile application and (ii) the effectiveness of the generated messages (Section 8.2).
Concerning the second point, we compared the impact of the messages generated by us-
ing only the reasoning results (a.k.a. the control group) with the messages generated by
exploiting the knowledge extracted from the LOD Cloud combined with the informa-
tion in the PHRs. Finally, lessons learnt from this experience are provided (Section 8.3).

8.1 Quantitative Evaluation

Good performance of the food category recognizer are important as the misclassifica-
tion of a meal could generate wrong messages or even no message. In the example of
Section 6, we noticed that the single-label classification and inference method could
wrongly classifies some Carbonara images as Tomato and Ricotta Cheese Pasta, thus
containing FreshCheese instead of Eggs and TomatoSauces instead of ColdCuts. In this
case no message will be generated and the user could consume another meal with Cold-
Cuts next time. Here, we compare the multi-label method against the (more standard)
single-label classification of the food recipe and the inference of the food categories.
Our claim is that a classification error in a single food recipe affects the majority of the
inferred food categories leading to inaccurate results.

The Food and Food Categories (FFoCat) Dataset 7 We leverage the food and food cat-
egory concepts in HeLiS extension for the multi-label classification. However, current
food image datasets are not built with these concepts as labels, so it is necessary to build

6 The mobile applications are available on the stores and they are compliant, as the whole plat-
form, with the GDPR rules. However, since PHRs from the Trentino Healthcare Department
are used, the mobile applications cannot be used by people living outside our province. For
informative purposes, here the Google Play Store links:
https://play.google.com/store/apps/details?id=eu.fbk.trec.saluteplus
https://play.google.com/store/apps/details?id=eu.fbk.trec.lifestyle

7 The dataset, its comparison and the code are available at https://bit.ly/2Y7zSWZ.

https://bit.ly/2Y7zSWZ
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a new dataset (named FFoCat) with these concepts . We start by sampling some of the
most common recipes in Recipe and use them as food labels. The food categories are
then automatically retrieved from BasicFood with a SPARQL query. Examples of food
labels are Pasta with Carbonara Sauce and Baked Sea Bream. Their associated food
categories are Pasta, AgedCheese, VegetalOils, Eggs, ColdCuts and FreshFish, Vege-
talOils, respectively. We collect 156 labels for foods (Recipe concept) and 51 for food
categories (BasicFood concept). We scrape the Web, using Google Images as search
engine, to automatically download all the images related to the food labels. Then, we
manually clean the dataset by checking if the images are compliant with the related
labels. This results in 58,962 images with 47,108 images for the training set and 11,854
images for the test set (80-20 ratio of splitting). Then, by leveraging HeLiS properties,
we enrich the image annotations with the corresponding food category labels to perform
multi-label classification. The dataset is affected by some natural imbalance, indeed the
food categories present a long-tail distribution: only few food categories labels have
the majority of the examples. On the contrary, many food categories labels have few
examples. This makes the food classification challenging.

Experimental Settings and Metrics For both multi and single-label classification we
separately train the Inception-V3 network from scratch on the FFoCat training set to
find the best set of weights. The fine tuning using pre-trained ImageNet weights did
not perform sufficiently. We run 100 epochs of training with a batch size of 16 and
a learning rate of 10−6. At each epoch images are resized to 299x299 pixels and are
augmented by using rotations, width and height shifts, shearing, zooming and horizontal
flipping. This results in a training set 100 times bigger than the initial one. We use
early stopping to prevent overfitting. The training has been performed with the Keras
framework (TensorFlow as backend) on a PC equipped with a NVIDIA GeForce GTX
1080.

As performance metric we use the mean average precision (MAP) that summarizes
the classifier precision-recall curve: MAP =

∑n
i=1(Rn−Rn−1)Pn, i.e., the weighted

mean of precision Pn achieved at each threshold level n. The weight is the increase of
the recall in the previous threshold: Rn − Rn−1. The macro AP is the average of the
AP over the classes, the micro instead considers each entry of the predictions as a label.
We prefer MAP instead of accuracy as the latter for sparse vectors can give misleading
results: high results for output vectors with all zeros.

Results of the Multi-Label Classification Given an (set of) input image(s) x, the com-
puting of the precision-recall curve requires the predicted vector(s) y of food category
labels and a score associated to each label in y. In the multi-label method this score is
directly returned by the Inception-V3 network. In the single-label and inference method
this score needs to be computed. We test two strategies: (i) we perform exact inference
of the food categories from HeLiS and assign the value 1 to the scores of each yi ∈ y;
(ii) the food categories labels inherit the uncertainty returned the CNN: the score of
each yi is the value si returned by CNN(x). Results are in Table 3. The direct multi-
label has very good performance (both in micro and macro AP) in comparison with the
single-label models. The micro-AP is always better than the macro-AP as it is sensible
to the mentioned imbalance of the data. This confirms our claim that errors in the single
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Method Micro-AP (%) Macro-AP (%)
Multi-label 76.24 50.12
Single-class exact 50.53 31.79
Single-class uncert 60.21 42.51

Table 3. The multi-label classification of food categories outperforms in average precision (AP)
the methods based on single-label classification and logical inference.

recipe classification propagate to the majority of the food categories the recipe contains.
That is, the inferred food categories will be wrong because the recipe classification is
wrong. On the other hand, errors in the direct multi-label classification will affect only
few food categories. With these good results, we use the direct multi-label classifica-
tion method in our platform. We also performed a qualitative analysis. The single-label
method misclassifies an image with Backed Potatoes as Backed Pumpkin thus missing
the category of FreshStarchyVegetables. Another image contains a Vegetable Pie but
the single-label method infers the wrong category of PizzaBread. In another image, this
method mistakes Pasta with Garlic, Oil and Chili Peppers with Pasta with Carbonara
Sauce, thus inferring wrong Eggs and ColdCuts. Here the multi-label method classi-
fies all the categories correctly. Therefore, the multi-label method allows a more fine
grained classification of the food categories w.r.t. the single-label method. The latter
has better results if the score returned by the CNN is propagated to the food categories
labels w.r.t. the exact inference. Good performance on food categories classification are
important as they reduce the noise for the following modules of the platform.

8.2 Qualitative Evaluation of The System
We present here the validation performed by involving users from the living labs con-
cerning (i) the overall usability of the mobile application and (ii) the effectiveness of the
generated messages, i.e. how the number of detected violations changed through time.

Usability Evaluation. The usability of the mobile application has been evaluated through
the System Usability Scale (SUS), analyzing the intuitiveness and simplicity of the sys-
tem. Only the users involved in the Key To Health living lab participated to this valida-
tion. The evaluation protocol consists in multiple use sessions and follows these steps:
1. Training meetings with the 120 involved users for an introductory explanation of

the functionalities available in the mobile application.
2. Four days of usage of the mobile application by the users.
3. Meetings with the users for collecting questions about functionalities. Release of a

new version of the mobile application integrating bug fixes reported by the users.
4. Four days of usage of the mobile application by the users.
5. Final meetings with the users and distribution of evaluation questionnaires.

According to the usability test requirements provided by [21], the number of users in-
volved in the test granted the discovery of 100% of the usability problems. The average
score obtained from the SUS was 83.1 out of 100, that, according to the adjective rating
scale proposed by [1], corresponds to “excellent”. Further interviews were conducted
to evaluate the impact of the mobile application in their daily life at the end of the seven
weeks of pilot study. Users appreciated the system and considered the mobile applica-
tion a useful tool, especially for increasing the awareness about their eating habits.
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Effectiveness of Generated Messages The last validation we performed concerned the
analysis of explanations effectiveness on the users involved within the Key to Health and
Salute Plus living labs. Our goal was to measure the effectiveness of the explanations
generated by our platform by observing the evolution of the number of detected viola-
tions. The Key To Health living lab allowed to plan a more rigorous evaluation thanks
to the exploitation of a close environment. The 120 users involved were split in two
groups. The first one (92 users) received messages generated by using the whole sys-
tem: from the results of the reasoning process to the navigation of the LOD Cloud with
exploitation of PHRs. Whereas the second group (28 users working as control group)
received feedback, as canned text messages, exploiting only the reasoner’s results. We
expect to find a higher decrease in the number of violations through the time by the users
receiving persuasive messages. Concerning, the Salute Plus living lab, we did not have
the control group since the agreement with our Local Healthcare Department foreseen
that all citizens were able to access the complete set of services of the platform. How-
ever, we could check if results on both living labs converged or not. Results concerning
the evolution of the violation numbers are presented in Figure 3. We considered two
different kinds of rules: (i) DAY-Rules: these rules define the maximum (or minimum)
number of portions of a specific food category that can be consumed during a day, and
(ii) WEEK-Rules: these rules define the maximum (or minimum) number of portions of
a specific food category that can be consumed during a week. DAY-Rules are verified at
the end of each day, while WEEK-Rules are verified at the end of each week. The blue
and the purple lines represent the average number of violations observed for the Key To
Health and Salute Plus users, respectively. The red and the azure lines are the standard
deviations. Observations related to the control group are reported by the green (average
number of violations) and the orange line (standard deviation). The increasing trend of
the gap between the blue/purple and green lines (for both the DAY and WEEK-Rules)
demonstrates the positive impact of the messages sent by the whole platform. In partic-
ular, concerning DAY-Rules, the average number of violations per user at the end of the
observed period is acceptable as it drops of about 67%. For the WEEK-Rules, however,
the drop remained limited. Notice that for both living labs we have a confident decrease
of detected violations. Hence, we can conclude that the whole platform was effective
within both living labs. The standard deviation is higher for the Salute Plus living lab:
this is due to the high number of involved people that, unavoidable, led to a marked
variance of their behaviors. Notice that both standard deviation lines remain contained
within low bounds. In addition, we did not detect the presence of outliers.

8.3 Lessons Learnt
Both the Key to Health and Salute Plus experiences allowed us to collect some lessons
that will improve the effectiveness of our platform and the design of future living labs.

Real-time suitability. The proposed system aims to be deployed into a real-time context.
Personalized feedback and recommendations have to be provided timely to users based
on the evolution of their behaviors and of the surrounding environment. Hence, we ob-
served the performance of the whole reasoning process implemented into our platform.
Therefore, we focus on the optimization process brought us to the deployment of a so-
lution able to support an efficient real-time generation of personalized messages. Our
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Fig. 3. Evolution of the average number of detected violations (per user), for the DAY and WEEK-
Rules, during the Key To Health and Salute Plus observation period.

results derived from the optimization of rules design and rules evaluation schedule. In
a first stage, we designed few complex rules for covering all possible monitoring ac-
tivities. On the one hand, we were able to cover several constraints with one rule. On
the other hand, the computational time required for evaluating these rules was too high
leading to a personalized tracking of users’ behavior behavior that was neither effective
nor efficient. Hence, in a second stage, we split the rules in simpler ones and schedule
their evaluation depending on their timing property (DAY and WEEK). This strategy
improved of the reasoning performance by making the platform deployable within a
real-time environment and allowed us to have an easier control on the overall reasoning
process. A future improvement of personal tracking capabilities will be the investiga-
tion of stream reasoning for monitoring a continuous flow of information as well as to
exploit learning strategies for suggesting new rules or adaptations of existing ones. An
example in the health domain is the real-time monitoring of the glycemic index.

User perception about personalization. We consider the actual perception that the users
had about the personalization capabilities of the proposed platform. During the focus
group organized at the end of the Key to Health use case, we collected feedback about
such perception by asking to users when the system can be improved concerning per-
sonalized interactions. Overall, the users appreciated the system responsiveness and
message tailoring capabilities when data about food consumption were provided. How-
ever, a common request was related to the possibility of exploiting the geographical
information that can be acquired through the smartphones. This information was rele-
vant for motivating people in changing habits within some real-life situations, e.g., to
not stop at a vendor machine during a walk. Suggested examples include the possibility
of sending alerts, based on the current user location, about close healthy nutrition shops,
restaurants cooking recipes that are compliant with users goals and users’ habits. These
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suggestions will lead the next version of the personalization component of our platform
in order to improve the perception that the system is providing a real-time support.

9 Conclusions

This paper discusses an end-to-end semantic platform that maps food categories de-
tected from meal images into semantic information of an ontology. The goal is alerting
people about the potential risks of food with respect to their PHRs. The platform in-
tegrates (i) deep learning for classifying food categories from images; (ii) an ontology
associating food categories with possible nutritional diseases; (iii) the navigation of the
LOD Cloud for extracting further diseases’ knowledge; (iv) the use of PHRs for the
generation of proper feedback. We provided a new dataset of annotated images use-
ful for fostering the research. Concerning the image classification, the multi-label food
classification outperforms a more standard method based on single-image classification
and inference of the food categories. Regarding the feedback generation, the user-based
evaluation demonstrated the efficacy of our semantic platform into real-world scenarios.

Future work will focus on exploiting the combination of deep learning with on-
tologies (in a multi-task learning setting) by using constraints-based methods, such as,
Logic Tensor Networks [24], already applied to image classification tasks. This direc-
tion will be tested on bigger and standard image datasets, such as, VIREO FOOD-
172 [4]. On the semantic part, the HeLiS ontology will be extended with further dis-
eases in order to improve the overall capability of the system. Stream reasoning algo-
rithms will be studied to support the generation of feedback by considering the wider
dietary behavior of a user instead of a single recipe. Finally, the proposed semantic
platform opens the possibility of an integration into intelligent systems implementing
behavior change policies for supporting users in adopting healthy lifestyles.
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