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Foreword 

John R. Edwards  

 

This book is an excellent exposition of the use of Data Envelopment 
Analysis (DEA) to generate data analytic insights to make evidence-based 
decisions, to improve productivity, and to manage cost-risk and benefit-
opportunity in public and private sectors. The design and the content of the book 
make it an up-to-date and timely reference for professionals, academics, students, 
and employees, in particular those involved in strategic and operational decision-
making processes to evaluate and prioritize alternatives to boost productivity 
growth, to optimize the efficiency of resource utilization, and to maximize the 
effectiveness of outputs and impacts to stakeholders. It is concerned with the 
alleviation of world changes, including changing demographics, accelerating 
globalization, rising environmental concerns, evolving societal relationships, 
growing ethical and governance concern, expanding the impact of technology; 
some of these changes have impacted negatively the economic growth of private 
firms, governments, communities, and the whole society. 
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Preface 

Prof. Florentin Smarandache  

Dr. Mohamed Abdel-Basset  

Dr. Victor Chang 

 

This book treats all kind of data in neutrosophic environment, with real-
life applications, approaching topics as multi-objective programming, 
bidirectional projection method, decision-making, teacher selection, interval 
valued neutrosophic graph, score function, Minimum Spanning Tree (MST), 
single-objective welded beam optimization, multi-objective Riser design 
optimization, non-linear membership function, structural optimization, 
generalized neutrosophic goal programming, arithmetic aggregation, geometric 
aggregation, welded beam design optimization, neutrosophic group, neutrosophic 
ring, neutrosophic R-module, weak neutrosophic R-module, strong neutrosophic 
R-module, neutrosophic R-module homomorphism, neutrosophic triplet inner 
product, neutrosophic triplet metric spaces, neutrosophic triplet vector spaces, 
neutrosophic triplet normed spaces, and so on. 

The first chapter (Application of Neutrosophic Optimization Technique on 
Multi-objective Reliability Optimization Model) proposes a multi-objective non-
linear reliability optimization model taking system reliability and system cost as 
two objective functions. As a generalized version of fuzzy set and intuitionistic 
fuzzy set, neutrosophic set is a very useful tool to express uncertainty, 
impreciseness in more general way. Thus, here the authors Sahidul Islam and 
Tanmay Kundu have considered neutrosophic optimization technique with linear 
and non-linear membership function to solve a multi-objective reliability 
optimization model. This proposed method is an extension of fuzzy and 
intuitionistic fuzzy optimization technique in which the degree of acceptance, 
indeterminacy and rejection of objectives are simultaneously considered. To 
demonstrate the methodology and applicability of the proposed approach, 
numerical examples are presented and evaluated by comparing the result obtained 
by neutrosophic approach with the intuitionistic fuzzy optimization technique. 

Teacher selection strategy is a multiple criteria decision-making process 
involving indeterminacy and vagueness, which can be represented by 
neutrosophic numbers of the form a+ bI, where a represents determinate 
component and bI represents indeterminate component.  The purpose of the 
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second chapter (Teacher Selection Strategy Based on Bidirectional Projection 
Measure in Neutrosophic Number Environment) is to develop a multiple criteria 
group decision-making model for teacher selection strategy based on 
bidirectional projection measure based method in neutrosophic number 
environment.  Seven criteria obtained from expert opinions are considered for 
selection process. The criteria are, namely: demonstration, pedagogical 
knowledge, action research, emotional stability, knowledge on child phychology, 
social quality, and leadership quality. Weights of the decision makers are 
considered as equal. The bidirectional projection measure of neutrosophic 
numbers is a useful mathematical tool that can deal with decision-making 
problems with indeterminate information. Using the bidirectional projection 
measure, a new multi criteria decision-making strategy is proposed. Using 
bidirectional projection measures between each alternative and the ideal 
alternative, all the alternatives are preference-ranked to select the best one. 
Finally, teacher selection problem for secondary education is solved, example by 
authors Surapati Pramanik, Rumi Roy and Tapan Kumar Roy, demonstrating the 
applicability and effectiveness of the developed bidirectional projection strategy.  

In the third chapter (A New Concept of Matrix Algorithm for MST in 
Undirected Interval Valued Neutrosophic Graph), Said Broumi, Assia Bakali, 
Mohamed Talea, Florentin Smarandache and Kishore Kumar P K introduce a new 
algorithm for finding a minimum spanning tree (MST) of an undirected 
neutrosophic weighted connected graph whose edge weights are represented by 
an interval valued neutrosophic number. In addition, the authors compute the cost 
of MST and compare the de-neutrosophied value with an equivalent MST having 
the detereministic weights. Finally, a numerical example is provided. 

The fourth chapter (Optimization of Welded Beam Structure using 
Neutrosophic Optimization Technique: A Comparative Study) investigates 
Neutrosophic Optimization (NSO) approach to optimize the cost of welding of a 
welded steel beam, while the maximum  shear stress in the weld group,  maximum 
bending stress in the beam, maximum deflection at the tip and buckling load of 
the beam have been considered as flexible constraints. The problem of designing 
an optimal welded beam consists of dimensioning a welded steel beam and the 
welding length so as to minimize its cost, subject to the constraints as stated 
above. Specifically based on truth, indeterminacy and falsity membership 
function, a single objective NSO algorithm has been developed by authors 
Mridula Sarkar and Tapan Kumar Roy to optimize the welding cost, subjected to 
a set of flexible constraints. It is shown that NSO is an efficient method in finding 
out the optimum value in comparison to other iterative methods for nonlinear 
welded beam design in precise and imprecise environment. Numerical example 
is also given to demonstrate the efficiency of the proposed NSO approach. 
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The fifth chapter (Multi-Objective Neutrosophic Optimization Technique 
and Its Application to Riser Design Problem) aims to give computational 
algorithm to solve a multi-objective non-linear programming problem 
(MONLPP) using neutrosophic optimization method. The proposed method is for 
solving MONLPP with single valued neutrosophic data. A comparative study of 
optimal solution has been made between intuitionistic fuzzy and neutrosophic 
optimization technique. The developed algorithm has been illustrated by a 
numerical example. Finally, optimal riser design problem is presented by authors 
Mridula Sarkar, Pintu Das and Tapan Kumar Roy as an application of such 
technique. 

Mridula Sarkar and Tapan Kumar Roy develop in the sixth chapter (Truss 
Design Optimization using Neutrosophic Optimization Technique) a 
neutrosophic optimization (NSO) approach for optimizing the design of plane 
truss structure with single objective subject to a specified set of constraints. In 
this optimum design formulation, the objective functions are the weight of the 
truss and the deflection of loaded joint; the design variables are the cross-sections 
of the truss members; the constraints are the stresses in members. A classical truss 
optimization example is presented to demonstrate the efficiency of the 
neutrosophic optimization approach. The test problem includes a two-bar planar 
truss subjected to a single load condition. This single-objective structural 
optimization model is solved by fuzzy and intuitionistic fuzzy optimization 
approach as well as neutrosophic optimization approach. Numerical example is 
given to illustrate our NSO approach. The result shows that the NSO approach is 
very efficient in finding the best discovered optimal solutions. 

The seventh chapter, called Multi-objective Neutrosophic Optimization 
Technique and its Application to Structural Design, is authored also by Mridula 
Sarkar and Tapan Kumar Roy, who develop a multi-objective non-linear  
neutrosophic optimization (NSO) approach for optimizing the design of plane 
truss structure with multiple objectives subject to a specified set of constraints. In 
this optimum design formulation, the objective functions are the weight of the 
truss and the deflection of loaded joint; the design variables are the cross-sections 
of the truss members; the constraints are the stresses in members. A classical truss 
optimization example is presented to demonstrate the efficiency of the 
neutrosophic optimization approach. The test problem includes a three-bar planar 
truss subjected to a single load condition. This multi-objective structural 
optimization model is solved by neutrosophic optimization approach. With linear 
and non-linear membership function.  

The eight chapter (Multi-Objective Welded Beam Optimization using 
Neutrosophic Goal Programming Technique) investigates multi–objective 
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Neutrosophic Goal Optimization (NSGO) approach to optimize the cost of 
welding and deflection at the tip of a welded steel beam, while the maximum 
shear stress in the weld group, maximum bending stress in the beam, and buckling 
load of the beam have been considered as constraints. The problem of designing 
an optimal welded beam consists of dimensioning a welded steel beam and the 
welding length so as to minimize its cost, subject to the constraints as stated 
above. The classical welded bream design structure is presented to demonstrate 
the efficiency of the neutrosophic goal programming approach. The model is 
numerically illustrated by generalized NSGO technique with different 
aggregation method. The result shows that the Neutrosophic Goal Optimization 
technique is very efficient in finding the best optimal solutions.   

The ninth chapter (Neutrosophic Modules) attempts to study the 
neutrosophic modules and neutrosophic submodules. Neutrosophic logic is an 
extension of the fuzzy logic in which indeterminancy is included. Neutrosophic 
Sets are a significant tool of describing the incompleteness, indeterminacy, and 
inconsistency of the decision-making information. Modules are one of 
fundemental and rich algebraic structure with respect to some binary operation in 
the study of algebra. In this chapter, the authors Necati Olgun and Mikail Bal 
study some basic definition of neutrosophic R-modules, and neutrosophic 
submodules in algebra are generalized. Some properties of neutrosophic R-
modules and neutrosophic submodules are presented. The authors use classical 
modules and neutrosophic rings. Consequently, they introduce neutrosophic R- 
modules, which is completely different from the classical module in the structural 
properties. Also, neutrosophic quotient modules and neutrosophic R-module 
homomorphism are explained, and some definitions and theorems are given. 
Finally, some useful examples are given to verify the validity of the proposed 
definitions and results. 

In the tenth and last chapter (Neutrosophic Triplet Inner Product), a notion 
of neutrosophic triplet inner product is given and properties of neutrosophic 
triplet inner product spaces are studied. The neutrosophic triplets and 
neutrosophic triplet structures were introduced by Smarandache and Ali in 2014-
2016. Furthermore, the authors Mehmet Şahin and Abdullah Kargın also show 
that this neutrosophic triplet notion is different from the classical notion. 
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I  

Application of Neutrosophic Optimization 

Technique on Multi-objective Reliability 

Optimization Model  

Sahidul Islam1 ▪ Tanmay Kundu2* 

1, 2 Department of Mathematics, University of Kalyani, Kalyani, 741235, West Bengal, India. 
* Corresponding author.  E-mail:  tanmaykundu.math@gmail.com  

 

Abstract 

In this paper, we propose a multi-objective non-linear reliability 
optimization model taking system reliability and system cost as two 
objective functions. As a generalized version of fuzzy set and 
intuitionistic fuzzy set, neutrosophic set is a very useful tool to 
express uncertainty, impreciseness in more general way. Thus, here 
we have considered neutrosophic optimization technique with linear 
and non-linear membership function to solve this multi-objective 
reliability optimization model. This proposed method is an 
extension of fuzzy and intuitionistic fuzzy optimization technique in 
which the degree of acceptance, indeterminacy and rejection of 
objectives are simultaneously considered. To demonstrate the 
methodology and applicability of the proposed approach, numerical 
examples are presented and evaluated by comparing the result 
obtained by neutrosophic approach with the intuitionistic fuzzy 
optimization technique at the end of the paper. 

Keywords 

Reliability, Multi-objective programming, Neutrosophic set, 
Neutrosophic optimization. 
 

1 Introduction 

In 1965, Zadeh [1] first introduced the concept of fuzzy set. The fuzzy set 
theory which considers the degree of membership of elements, is a very effective 
tool to measure uncertainty in real life situation. In recent time, the fuzzy set 
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theory has been widely developed and generalized form have appeared. 
Intuitionistic fuzzy set (IFS) theory is one of the generalized versions of fuzzy set 
theory. In 1986, Atanassov [2] extended the concept of fuzzy set and introduced 
intuitionistic fuzzy set theory, which consider not only the degree of membership 
but also the degree of non-membership function such that the sum of both values 
is less than one.  

As a generalization of fuzzy set theory [12], intuitionistic fuzzy set theory 
[11], interval valued fuzzy sets [9] etc. , neutrosophic sets (NSs) was first  
introduced by Smarandache in 1995 [3] . In real world situations we often 
encounter with incomplete, indeterminate and inconsistent information, 
neutrosophic set is a powerful mathematical tool to deal with them. Neutrosophic 
sets  which is characterized by a truth membership function , an indeterminacy 
membership function and a falsity membership function , contains both the real 
standard and non-standard intervals and thus it is very difficult to apply NSs in 
practical field such as real scientific and engineering applications. In order to use 
NSs in real life application, Wang  et al. [4] proposed single valued neutrosophic 
sets (SVNSs)  and also introduced the concept of interval valued neutrosophic 
sets (IVNS) [5], which is more realistic , precise and flexible than SVNSs. 

Reliability engineering is one of the important tasks in designing and 
development of a technical system. The primary goal of the reliability engineer 
has been always to find the best way to increase system reliability.   The diversity 
of system   resources, resource constraints and options for reliability improvement 
lead to the construction and analysis of several optimization models. In daily life, 
due to some uncertainty in judgements of the decision maker (DM), there are 
some coefficients and parameters in the optimization model, which are always 
imprecise with vague in nature. In order to handle such type of nature in multi-
objective optimization model, fuzzy approach is use to evaluate this. Park [6] first 
applied fuzzy optimization techniques to the problem of reliability apportionment 
for a series system. Ravi et al. [7] used fuzzy global optimization reliability 
model. Huang [8] presented a multi objective fuzzy optimization method to 
reliability optimization problem. Later, intuitionistic fuzzy optimization method 
is also applied to various field of research work. Sharma [10] proposed a method 
to analyse the network system reliability which is based on intuitionistic fuzzy 
set theory. Jana and Roy [13] described intuitionistic fuzzy linear programming 
method in transportation problems. Also, Mahapatra [14] introduced intuitionistic 
fuzzy multi objective mathematical programming on reliability optimization 
model. 

Nowadays neutrosophic optimization technique is an open field of research 
work. Roy [15] applied neutrosophic linear programming approach to multi 



Neutrosophic Operational Research 
Volume II 

15 

 

objective production planning problem. Pranmanik [16] discussed the framework 
of neutrosophic multi objective linear programming problem. Baset et al. [17,22-
30] introduced goal programming in neutrosophic environment.  

In this paper we have introduced a fuzzy multi-objective reliability 
optimization model in which system reliability and cost of the system are 
considered as two objective functions. This is very first when neutrosophic 
optimization technique is applied on multi-objective non-linear reliability 
optimization model. The motivation of the present study is to give a 
computational procedure for solving multi-objective reliability optimization 
model by neutrosophic optimization approach to find the optimal solution which 
maximize the system reliability and minimize the cost of the system. Also as an 
application of the proposed optimization technique to a reliability model of LCD, 
display unit is presented. The results of the proposed approach are evaluated by 
comparing with intuitionistic fuzzy optimization (IFO) technique at the end of 
the paper. 

2 Mathematical model  

Let Rj be the reliability of the jth component of a system and  RS(R) 
represents the system reliability. Let 𝐶S(R) denote the cost of the system. Here 
we consider a complex system, which includes a five-stage combination 
reliability model. 

 
Fig 1: Reliability model of a LCD display unit. 

2.1. Reliability model of a LCD display unit  

Now we are interested to find out the system reliability of a LCD display 
unit [21] which consists of several component connected to one another. This 
complex system mainly consists five stages  L𝑖  , (𝑖 = 1,2, . . . ,5), which are in 
series. Thus, the generalized formula for the system reliability of the proposed 
model is given by   
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RS(R) =  L1 × L2 × L3 × L4 × L5 = ∏ L𝑖
5
𝑗=1             (2.1.1) 

where 

L1:  LCD panel with reliability R1 , 

i.e.  L1 = R1; 

L2:  A backlighting board with 10 bulbs with individual bulb reliability R2 
such that the  board functions with at most one bulb failure, 

i.e.  L2 = 𝑅2
10 + 10𝑅2

9(1 − 𝑅2); 

L3:  Two Microprocessor boards A and B hooked up in parallel, each with 
reliability R3, 

i.e.  L3 = 1 − (1 − 𝑅3)
2 ; 

L4:  Dual power supplies in standby redundancy, each power supply with 
reliability R4, 

i.e.  L4 = 𝑅4 + 𝑅4ln (1 𝑅4⁄ ) ; 

L5:  EMI board with reliability R5 hooked in series with common input of 
the power supply A , 

i.e.   L5 = R5 ; 

Thus we have the following system reliability 

RS(R) =  R1 (𝑅2
10 + 10𝑅2

9(1 − 𝑅2)) ( 1 − (1 − 𝑅3)
2) 

(𝑅4 + 𝑅4ln (1 𝑅4⁄ )) R5                         (2.1.1) 

2.2. Multi-objective Reliability Optimization Model  

Here we consider cost of the proposed complex system as an additional 
objective function. Now system reliability has to be maximized and cost of the 
system is to be minimized subject to system space as  target goal . Thus, the model 
becomes – 

Max RS(R) =  R1 (𝑅2
10 + 10𝑅2

9(1 − 𝑅2)) ( 1 − (1 − 𝑅3)
2) 

(𝑅4 + 𝑅4ln (1 𝑅4⁄ ) ) R5 

Min 𝐶S(R) = ∑ 𝑐𝑗[tan (
𝜋

2
) 𝑅𝑗]

𝛼𝑗5
𝑗=1  

𝑠. 𝑡.   𝑉𝑆(𝑅) = ∑ 𝑣𝑗𝑅𝑗
𝑎𝑗5

𝑗=1 ≤ 𝑉𝑙𝑖𝑚   

0.5 ≤  𝑅𝑗,𝑚𝑖𝑛 ≤ 𝑅𝑗 ≤ 1 , 0 ≤  𝑅𝑆 ≤ 1 ;  𝑗 = 1,2, … ,5                              (2.2.1) 
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where 𝑣𝑗 and 𝑐𝑗 represent the space and cost of the j-th component of the system 
respectively.  𝑉𝑙𝑖𝑚 is the system space limitation and  𝑅𝑗,𝑚𝑖𝑛 is the lower bound 
of the reliability of each component j . 

Now for simplicity of calculation and to convert the above problem to one 
type maximization problem , we consider –  CS

′(R) = −𝐶S(R) . 

Thus the model (2.2.1) have the following form  

Max RS(R) Max  CS
′(R)       (2.2.2) 

subject to the same constraints defined in (2.2.1). 

3 Preliminaries 

Definition 3.1. (Fuzzy Set )  

A 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡 𝐴̃  in 𝑋 is a set  of  ordered  pairs 
𝐴̃ =  {(𝑥, 𝜇𝐴̃(𝑥))| 𝑥 ∈ 𝑋},  

where 𝑋  is a  collection of  objects   denoted   generically by 𝑥 and  𝜇𝐴̃(𝑥): 𝑋 →

[0,1]  is  called the membership function or grade of membership of 𝑥 in 𝐴̃ . 

Definition 3.2. (Intuitionistic fuzzy set)   

An intuitionistic fuzzy set (IFS) 𝐴̃𝑖 in X , where X is the universe of 
discourse, is defined as an object of the following form  

𝐴̃𝑖 = {< 𝑥, 𝜇𝐴̃𝑖(𝑥), 𝜈𝐴̃𝑖(𝑥) > | 𝑥 ∈ 𝑋} ,  
where 𝜇𝐴̃𝑖(𝑥): 𝑋 → [0,1]  and 𝜈𝐴̃𝑖(𝑥): 𝑋 → [0,1]  defined the degree of 
membership and the degree of non-membership of the element  𝑥 ∈ 𝑋  
respectively and for every  𝑥 ∈ 𝑋 ,    0 ≤ 𝜇𝐴̃𝑖(𝑥) + 𝜈𝐴̃𝑖(𝑥) ≤ 1. 

Now for each element  𝑥 ∈ 𝑋 , the value of 𝜋𝐴̃𝑖(𝑥) = 1 − 𝜇𝐴̃𝑖(𝑥) − 𝜈𝐴̃𝑖(𝑥) 
is called the degree of uncertainty of the element 𝑥 ∈ 𝑋 to the intuitionistic fuzzy 
set 𝐴̃𝑖 . 

Definition 3.3. (Neutrosophic set ) [18] 

Let X be a space of points with a generic element in X denoted by 𝑥. A 
neutrosophic set (NS) 𝐴̃𝑁 in X is characterized by a truth membership function 
𝜇𝐴(𝑥) , an indeterminacy membership function 𝜎𝐴(𝑥) and a falsity membership 
function 𝜈𝐴(𝑥) and having of the form  

                       𝐴̃𝑁 = {< 𝑥  𝜇𝐴(𝑥), 𝜈𝐴(𝑥) , 𝜎𝐴(𝑥) > | 𝑥 ∈ 𝑋} 

where 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) 𝑎𝑛𝑑 𝜎𝐴(𝑥) are real standard or non-standard subsets of   
] 0−,1+[  i.e.  
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𝜇𝐴(𝑥): 𝑋 →     ] 0−,1+[   

𝜈𝐴(𝑥): 𝑋  →     ] 0−,1+[   

and    𝜎𝐴(𝑥): 𝑋  → ] 0−,1+[  .   

There is no restriction on the sum of 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) 𝑎𝑛𝑑 𝜎𝐴(𝑥).  

So,   0− ≤ sup  𝜇𝐴(𝑥) + sup  𝜈𝐴(𝑥) + sup𝜎𝐴(𝑥) ≤ 3+. 

From the philosophical point of view, the NS takes the value from the real 
standard or non-standard subsets of   ] 0−,1+[ . But in real life application in 
scientific and engineering problems it is difficult to use NS with value from the 
subsets of   ] 0−,1+[ . 

Ye [19] reduced NSs of non-standards intervals into a kind of simplified 
neutrosophic sets of standard intervals that will preserve the operations of NSs.  

Definition 3.4. (Single-valued neutrosophic set) [20] 

Let X be a space of points with a generic element 𝑥 in X. A single-valued 
neutrosophic set (SVNS) 𝐴̃𝑁 in X is characterized by 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) and 𝜎𝐴(𝑥), 
and having the form  

       𝐴̃𝑁 = {< 𝑥  𝜇𝐴(𝑥), 𝜈𝐴(𝑥) , 𝜎𝐴(𝑥) > | 𝑥 ∈ 𝑋} 

where   𝜇𝐴(𝑥): 𝑋 →   [0,1]     

𝜈𝐴(𝑥): 𝑋  →  [0,1]   

and  𝜎𝐴(𝑥): 𝑋  →  [0,1]   

with  0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) + 𝜎𝐴(𝑥) ≤ 3   for all  𝑥 ∈ 𝑋. 

4 Mathematical Analysis 

4.1. Neutrosophic Optimization Technique 

Here we are presenting a computational algorithm to solve multi-
objective reliability optimization model (MOROM) by single valued 
neutrosophic optimization (NSO) approach and the following steps are 
used – 

Computational algorithm 

Step 1:  A multi-objective non-linear programming taking k 
objective functions can be taken as  - 

Maximize         ( 𝑓1(𝑥), 𝑓2(𝑥), … … 𝑓𝑘(𝑥))    
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Subject to  𝑔𝑖(𝑥) ≤ 𝑏𝑖 ,   𝑖 = 1,2,… ,𝑚;     𝑥 ≥ 0;     (4.1.1) 

Step 2:  Solve the above multi-objective non-linear programming 
model (4.1.1) taking only one objective function at a time and avoid the 
others, so that we can get the ideal solutions. With the values of all 
objective functions evaluated at these ideal solutions, the pay-off matrix 
can be formulated as follows- 

 
Table 1:  Pay-off matrix of the solution of k single objective non–

linear programming problem. 

 
Step 3: Determine the upper bound and lower bound for each 

objective function as follows – 
Ur

T = max  {fr( x1), fr(x
2), … . , fr(x

k)}    ∀  r = 1,2, … . , k 
and         Lr

T = min  {fr( x1), fr(x
2), … . , fr(x

k)}     ∀  r = 1,2, … . , k    (4.1.2) 

   So,          Lr
T ≤ fr(x) ≤ Ur

T                                          

Where 𝑈𝑟
𝑇 and 𝐿𝑟

𝑇 are respectively upper and lower bounds for 
truth membership of the r-th objective function 𝑓𝑟(𝑥) , ∀  𝑟 . 

Step 4: Now the upper and lower bounds for indeterminacy and 
falsity membership of objectives can be presented as follows – 

Ur
I =  Ur

T  and    Lr
I = Ur

T − t1(Ur
T − Lr

T) 

Ur
F = Ur

T − t2(Ur
T − Lr

T)  and  Lr
F = Lr

T          ∀  𝑟.                               (4.1.3) 

Where   Ur
I ,  Lr

I are upper and lower bounds for indeterminacy 
membership and  Ur

F ,  Lr
F are upper and lower bounds for falsity 

membership of the r-th objective function 𝑓𝑟(𝑥) . 

Here t1 and t2 are two real parameters lies between 0 and 1.  
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Step 5: Construct the truth membership, indeterminacy membership 
and falsity membership functions as follows – 

 
(A) Linear membership function 

 

 

 
(B) Non-linear membership function 
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where Ψ and  𝛿𝑟  are two non-zero parameters prescribed by the decision 
maker. 

Step 6: Now using neutrosophic optimization technique the given 
multi-objective non-linear programming (MONLP) is equivalent to the 
following non-linear problem as  

Max  𝜇𝑟(𝑓𝑟(𝑥)) 

Min  𝜈𝑟(𝑓𝑟(𝑥)) 

Max  𝜎𝑟(𝑓𝑟(𝑥)) 

Subject to       𝜇𝑟(𝑓𝑟) ≥  𝜈𝑟(𝑓𝑟) , 

                         𝜇𝑟(𝑓𝑟) ≥  𝜎𝑟(𝑓𝑟) , 

                         𝜈𝑟(𝑓𝑟) ≥ 0 , 

                         0 ≤ 𝜇𝑟(𝑓𝑟) + 𝜎𝑟(𝑓𝑟) + 𝜈𝑟(𝑓𝑟) ≤ 3 , 

                        𝑔𝑖(𝑥) ≤ 𝑏𝑖 ,   𝑖 = 1,2, … ,𝑚;     𝑥 ≥ 0  ,  

 ∀  r = 1,2, … . , k            (4.1.10) 

where 𝜇𝑟(𝑓𝑟) , 𝜎𝑟(𝑓𝑟)  and 𝜈𝑟(𝑓𝑟)  are the truth membership function, 
indeterminacy membership function and falsity membership function of 
neutrosophic decision set respectively. 

Step 7: Now using additive operator, the above problem (4.1.10) is 
reduced to the following crisp model  

Maximize ∑ {𝜇𝑟(𝑓𝑟) − 𝜈𝑟(𝑓𝑟) + 𝜎𝑟(𝑓𝑟)}
𝑘
𝑟=1  

subject to the same constraints described in (4.1.10).   (4.1.11) 
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Step 8: Solve (4.1.12 ) to get optimal solution. 

4.2. Neutrosophic Optimization technique on Multi-objective Reliability 
Optimization problem  

To solve the above defined problem in  (2.2.2) , pay-off matrix is 
formulated as follows  - 

 
 Now the best upper bound and worst lower bound are identified. 

The upper and lower bound for truth membership function of the 
objective functions are defined as – 

URS

T = max { RS(R
1 ) ,   RS(R

2 )} 

UCS
′
T = max {CS

′(R1) , CS
′(R2) }  

LRS

T = min { RS(R
1 )  ,   RS(R

2 )} 

LCS
′
T = min {CS

′(R1) ,  CS
′(R2)    (4.2.1) 

where   LRS

T ≤ RS(R) ≤ URS

T     and  LCS
′
T ≤ CS

′(R) ≤  UCS
′
T  

Also the upper and lower bounds for indeterminacy and falsity 
membership of objective functions can be presented as  

U RS

I =  URS

T  and    L RS

I = U RS

T − t1(U RS

T − L RS

T) 

U
 CS

′
I =  U

CS
′
T  and    L

 CS
′
I = U

 CS
′
T − t1(U CS

′
T − L

 CS
′
T) 

U RS

F = U RS

T − t2(U RS

T − L RS

T)  and  L RS

F = L RS

T 

U
 CS

′
F = U

 CS
′
T − t2(U CS

′
T − L

 CS
′
T) and  L CS

′
F = L CS

′
T                 (4.2.2) 

Now the linear and non-linear membership functions are formulated 
for the objective functions RS(R)    and     CS

′(R).  

After electing the membership functions, the crisp non-linear 
programming problem is formulated as follows – 
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Maximize [μRS
(RS(R)) + μCS

′ (CS
′(R)) − νRS

(RS(R)) − νCS
′ (CS

′(R)) +

 σRS
(RS(R)) + σCS

′(CS
′(R))] 

Subject to  

                         μRS
(RS) ≥ νRS

(RS) 

                         μRS
(RS) ≥ σRS

(RS) 

                         μCS
′(CS

′) ≥ νCS
′(CS

′) 

                         μCS
′(CS

′) ≥ σCS
′(CS

′) 

                         0 ≤ μRS
(RS) + νRS

(RS) + σRS
(RS) ≤ 3 

                         0 ≤ μCS
′(CS

′) + νCS
′(CS

′) + σCS
′(CS

′) ≤ 3 

                         νRS
(RS) ≥ 0 , νCS

′(CS
′) ≥ 0                       (4.2.3) 

∑ vjRj
aj5

j=1 ≤ Vlim  , 

0.5 ≤  𝑅𝑗,𝑚𝑖𝑛 ≤ 𝑅𝑗 ≤ 1 , 0 ≤  𝑅𝑆 ≤ 1 ;  𝑗 = 1,2, … ,5 

Solve the above crisp model to obtain  optimal solution of the system 
reliability and cost of the system. 

5 Numerical example 

Now a five-stage combination reliability model of a complex system is 
considered for numerical exposure. The problem becomes as follows: 

Max RS(R) =  R1 (𝑅2
10 + 10𝑅2

9(1 − 𝑅2)) ( 1 − (1 − 𝑅3)
2) 

(𝑅4 + 𝑅4ln (1 𝑅4⁄ ) ) R5 

Min 𝐶S(R) = ∑ 𝑐𝑗[tan (
𝜋

2
)𝑅𝑗]

𝛼𝑗5
𝑗=1  

𝑠. 𝑡.   𝑉𝑆(𝑅) = ∑ 𝑣𝑗𝑅𝑗
𝑎𝑗5

𝑗=1 ≤ 𝑉𝑙𝑖𝑚   

0.5 ≤  𝑅𝑗,𝑚𝑖𝑛 ≤ 𝑅𝑗 ≤ 1 , 0 ≤  𝑅𝑆 ≤ 1 ;  𝑗 = 1,2, … ,5         (5.1) 

Table 2: The input data for the MOROM (5.1) is given as follows: 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝛼𝑗  (∀  𝑗) 

 

𝑎𝑗(∀  𝑗) 𝑉𝑙𝑖𝑚 

40 30 35 36 32 6 4.75 2 3 7 0.75 1 22 
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Table 3: With the above solutions  pay-off matrix of the objective functions 
is formulated  as follows :  

 
Now the upper and lower bound for truth membership of objective 

functions are given by   

URS

T = 0.9457139  , UCS
′
T = −156.8623; 

LRS

T = 0.0017051   , LCS
′
T = −6564.526;  and can be written as  

0.0017051 ≤  RS(R) ≤ 0.9457139      

and     −6564.526 ≤  CS
′(R) ≤ −156.8623 ; 

the upper and lower bounds for indeterminacy and falsity 
membership of objective functions can be presented as  

U RS

I =  0.9457139  and    L RS

I = 0.9457139  − t1(0.9440087) 

U
 CS

′
I =  −156.8623 and    L

 CS
′
I = −156.8623 − t1(6407.6637) 

U RS

F = 0.9457139 − t2(0.9440087)      and  L RS

F = 0.0017051    

U
 CS

′
F = −156.8623 − t2(0.9440087)     and  L CS

′
F = −6564.526 

Here we consider  t1 = 0.002 , t2 = 0.085 ;  𝛿1 = 1.15 , 𝛿2 = 0.005; 
and Ψ = 4. 

 
Table 4:  Comparison of optimal solutions by IFO and NSO technique 
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The above table shows the comparison of results of the proposed 
approach with the intuitionistic optimization approach. It is clear from the 
table (4) that NSO technique with linear membership function gives more 
of less same system reliability and the system cost with the intuitionistic 
fuzzy optimization (IFO) approach. However, in perspective of system 
reliability neutrosophic optimization technique with non-linear 
membership function gives better result than the IFO approach. 

7 Conclusions and Future Work 

Here we have introduced neutrosophic optimization technique with linear 
and non-linear membership function to find the optimal solution of the proposed 
multi-objective non-linear reliability optimization model. The main aim of this 
paper is to give a computational procedure for solving multi-objective reliability 
optimization model by neutrosophic optimization approach to find the optimal 
solution, which maximize the system reliability and minimize the cost of the 
system. In table (4), the result obtained in the neutrosophic optimization 
technique was compared with the IFO method and it shows that NSO technique 
with non-linear membership function gives better reliable system. Thus, the 
proposed method is an efficient and modified optimization technique and gives a 
highly reliable system than the other existing method. 
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Abstract 

Teacher selection strategy is a multiple criteria decision-making 
process involving indeterminacy and vagueness, which can be 
represented by neutrosophic numbers of the form a+ bI, where a 
represents determinate component and bI represents indeterminate 
component.  The purpose of this study is to develop a multiple 
criteria group decision making model for teacher selection strategy 
based on bidirectional projection measure based strategy in 
neutrosophic number environment.  Seven criteria obtained from 
expert opinions are considered for selection process. The criteria are 
namely demonstration, pedagogical knowledge, action research, 
emotional stability, knowledge on child phycology, social quality, 
and leadership quality.  Weights of the decision makers are 
considered as equal. The bidirectional projection measure of 
neutrosophic numbers is a useful mathematical tool that can deal 
with decision making problems with indeterminate information. 
Using the bidirectional projection measure, a new multi criteria 
decision making strategy is proposed in the article. Using 
bidirectional projection measures between each alternative and the 
ideal alternative, all the alternatives are preference ranked to select 
the best one. Finally, teacher selection problem for secondary 
education is solved to demonstrate the applicability and 
effectiveness of the developed bidirectional projection strategy.  
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1 Introduction 

Multiple criteria group decision making (MCGDM) [1, 2, 3] addresses the 
problem of finding the most desirable alternative from all the feasible 
alternatives. In crisp environment decision makers can express their ratings in 
terms of traditional number or crisp numbers for classical MCGDM [1, 2, 3].  
deals with crisp numbers. However, when uncertainty involves in MCGDM, then 
new mathematical tool is needed to deal with uncertainty. Fuzzy set [4] and 
intuitionistic fuzzy set [5] are widely used mathematical tools to deal with non-
statistical uncertainty.  Intuitionistic fuzzy MCGDM [6, 7, 8, 9, 10, 11] strategies 
were reported in the literature, which employed the fuzzy or intuitionistic fuzzy 
numbers directly or through linguistic variables to represent the ratings and 
weights associated with the problems.  However, when indeterminacy involves 
as independent entity, then fuzzy and intuitionistic fuzzy cannot deal such 
situation. To deal indeterminacy as independent entity, F. Smarandache defined 
neutrosophic set [12]. Later single valued neutrosophic set (SVNS) [13], a 
subclass of neutrosophic set receives much popularity in engineering, scientific 
and medical field.  Various strategies [14-42, 71-78] for neutrosophic multi 
criteria decision making (MCDM) and MCDGM have been reported in the 
literature.  Various neutrosophic hybrid structures such as rough neutrosophic set 
[43, 44], bipolar neutrosophic set (45), rough bipolar neutrosophic set [46], 
neutrosophic cubic set [47, 48], neutrosophic soft set [49], neutrosophic refined 
set [50], neutrosophic hesitant fuzzy set [51] have been proposed in the literature. 
The trend toward the study of neutrosophic theory and applications can be found 
in [52]. 

Teacher selection strategy is a MCDGM problem. G. B. Redfern [53] 
opinioned that in teacher selection strategy paradoxical aspect exists. In crisp 
environment, teacher selection strategy and related issues have been discussed in 
[54-57] 

In intuitionistic fuzzy environment. Pramanik and Mukhopadhaya [58] 
developed intuitionistic fuzzy MCGDM strategy for teacher selection based on 
grey relational analysis.  Motivated by the work of Pramanik and Mukhopadhaya 
[58], Mondal and Pramanik [59] extended it in single valued neutrosophic 
environment by employing score function and accuracy function where 
neutrosophic number is expressed as three independent components representing 
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membership, indeterminacy and falsity membership degrees. F. Smarandache 
[60, 61] defined neutrosophic number (NN) in another form which is easy to 
understand and cognitively suitable for working in the form r+sI , where r reflects 
determinate components and sI  reflects indeterminate component respectively. 
If N = sI i.e. the indeterminate component reaches the maximum label, the worst 
situation occurs. If N =r i.e. the indeterminate component vanishes, the best 
situation occurs. Therefore, it seems that employment of NNs is more promising 
mathematical tool to deal with the indeterminate and incomplete information in 
practical decision making situations. J. Ye [62] proposed linear programming 
strategy with NN and solved production planning problem. In the same study, J. 
Ye [62] presented some basic operations of neutrosophic numbers and 
neutrosophic number function.  Pramanik and Banerjee [63] developed three new 
neutrosophic goal programming model to solve multi-objective programming 
problems with neutrosophic coefficients, where coefficients are expressed as NNs 
in the form r+ sI.  

J. Ye [64] grounded a de-neutrosophication strategy and a possibility 
degree ranking strategy for NNs. In the same study, J. Ye [64] demonstrated the 
applicability of ranking strategy by solving a numerical MCGDM problem. 
Kong, Wu, and Ye [65] defined cosine similarity measure of NNs and employed 
it to deal with the misfire fault diagnosis of gasoline engine. In NNs environment, 
Liu and Liu [66] proposed MAGDM based on NN generalized weighted power 
averaging operator. Zheng et al. [67] developed a MAGDM method based on NN 
generalized hybrid weighted averaging operator. Literature review reflects that 
MCGDM in NNs environment is in its infancy.  Therefore, it is necessary to 
investigate new strategy to solve MCGDM problems in NNs environment.  

Projection strategies were used for solving MCGDM with intuitionistic 
fuzzy information [68, 69]. J. Ye [70] pointed out the general projection measures 
have shortcoming in some cases and need to be improved. In the same study, J. 
Ye [70] developed a bidirectional projection strategy for solving MCGDM under 
NNs environment. In NNs environment, teacher selection strategy is yet to 
appear. To fill the research gap, MCGDM strategy based on bidirectional measure 
is proposed for teacher selection for secondary education. This study is the 
extension work of Pramanik and Mukhopadhyaya [58] to NN environment. 
Selection criteria are obtained from experts’ opinion.  For this study, some criteria 
are common to the previous study [58] because experts agree to include these 
criteria for secondary education also.  So operational definitions can be found in 
[58]. The selected seven criteria are demonstration (C1), pedagogical knowledge 
(C2), action research (C3), emotional stability (C4), knowledge on child 
phycology (C5), social quality (C6) and leadership quality (C7).  An illustrative 
example is solved to demonstrate the feasibility and applicability of the proposed 
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strategy in NNs environment. In this study, strategy is comprehensively used 
including method, approach, process, technique, etc. 

Rest of the paper is organized in the following way. Section 2 describes 
some basic concepts of NNs, the general projection measure and bidirectional 
projection measure between NNs. Section 3 describes projection and 
bidirectional projection based strategies for solving MCGDM problem. In section 
4, an illustrative example of teacher selection strategy is presented. Finally, 
section 6 presents conclusion and future scope of work. 

2 Preliminaries  

In this Section, we provide some basic definitions that are useful in the 
paper. 

2.1 Some concepts of neutrosophic numbers 

Smarandache [13, 14, 15] firstly proposed the concept of neutrosophic 
numbers which consists of a determinate component and an indeterminate 
component and is denoted by N= r + sI where r and s are real numbers and I is 
the indeterminacy such that In= I for n > 0,0×I = 0, and bI/kI= undefined for any 
real number k. 

For example, assume that N= 2 + 3I is a NN. If I   [0, 0.5], it is equivalent 
to N  [2, 3.5]  for such N ≥ 2, this means that its determinate component is 2 and 
its indeterminate component is 3I with the indeterminacy I  [0, 0.5] and the 
possibility for the number ‘‘N’’ is within the interval [2, 3.5]. In general, a NN 
may be considered as a changeable interval. 

Let N = r+ sI be a neutrosophic number. If r, s ≥ 0, then   they are stated. 

Let N1 = r1+s1I, and N2= r2+ s2I be two neutrosophic numbers, then: 

N1 + N2 = r1+ r2 + (s1 + s2) I;     (a) 

N1-N2 = r1 -r2 + (s1-s2) I;      (b) 

N1N2 = r1r2 + (s1 r2 + s2 r1 + s1s2) I;     (c) 

2
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2.2 Projection measure of neutrosophic numbers [70] 

Definition 2.1 [70] 

Let R= r1, r2, …,rn) and S = (s1, s2, …,sn) be two NN vectors, where  rj =  [aj 

+ bj Il, aj+ bj Iu] and sj= [cj + dj Il, cj + dj Iu] for I [Il, Iu] and j =1,2, …, n. Then 
the moduli of R and S are defined as Then, the projection of the vector R on the 
vector S is defined as ),cos()(Pr SRRRoj

S
  

Here, cos(R, S) is called the cosine the included angle between R ad S and 

is defined as
SR
SRSR .),cos(  . 

Then the moduli of R and S are defined as: 
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Here, cos(R, S) is called the cosine measure and is defined as
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Then, 
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2.3 Bidirectional Projection Measure of NNs [70] 

 This section presents a bidirectional projection measure between NNs. 

Definition 3.1 [70] Let R= r1, r2, …,rn) and S = (s1, s2, …,sn) be two NN 
vectors, where                rj =  [aj + bj Il, aj+ bj Iu] and sj= [cj + dj Il, cj + dj Iu] for I 
[Il, Iu] and j =1,2, …, n. Then the moduli of R and S are defined as 

 

a
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R =      
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))(())(( . Then the bidirectional projection 

measure between R and S is defined as:  

Bproj(R, S)=

R
SR

S
SR ..1

1



=
SRSRSR

SR
.

.                                          (3) 

Obviously, the closure the value of Bproj(R, S) is to 1, the closure R is to S. 

Bproj(R, S) = 1 if and only if R = S . 

0   Bproj(R, S)  1 for any two NN vector R and S which is a normalized 
measure. 

Definition 3.2 [70] Let R=  
qrkj

x


 and S=  
qrkj

y


 be two NN matrices, 

where xkj= [axkj+bxkjIl, axkj+bxkjIu ] and ykj= [aykj+bykj Il, aykj+bykj Iu ] for I [Il, Iu] 
and k =1, 2,…, r ; j =1, 2, …, q.  
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Then the bidirectional projection measure between R and S is defined as 

Bproj(R,S)=
SRSRSR

SR
.

                                                                                (4) 

3 Projection and Bidirectional Projection Based Strategies 

for Solving MCGDM Problem  

In this section, we extends work of Ye [70] to present two strategies for 
MCGDM problems using the (i) projection measure, (ii) bidirectional projection 
measure of NNs for teacher selection. 

a
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For a MCGDM problem with NNs, assume that A= {A1, A2, … , Ap} be a 
set of applicants, C = {C1, C2, … , Cq} be a set of criteria/attributes, and D = {D1, 
D2,…, Dm} be a set of DMs or experts. If the decision maker (DM) Dk (k = 1, 2, 
…  , m) provides an evaluation value of the attribute Cj (j = 1, 2, … , q) for the 
alternative Ai(i = 1, 2,…, p) by utilizing a scale from 1 (less fit) to 10 (more fit) 
with indeterminacy I that is represented by a NN i

kj
r = i

kj
a  + i

kj
b  I , i
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a , i

kj
b 0  

and  i

kj

i

kj
b,a R (k = 1, 2, …, m , i
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b I  [ Il, Iu]. Then, we can construct the 

alternative decision matrix of NNs Ri (i = 1, 2, … , p): 
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The importance of the DMs in the selection committee may be differential 
in decision making situation.  For the decision makers Dk (k = 1, 2,…,m), weight 
vector is considered as:  

V = (v1, v2,…, vm)T with 0jv and 1
1




m

j j
v . 

The weights of attributes are generally different, and the weight of the 
attribute reflects the importance of the attribute in decision making situation.  For 
the attributes Cj (j = 1, 2, …, q) the weight vector of attributes is considered as: 

W = (w1, w2,…,wq)T with 0jw and 1
1




q

j j
w . 

 
(i) MCGDM Strategy-1 using projection measure (see Fig. 1): 

Step 1  In decision making situation, to perform de-neutrosophication [70], 
each alternative decision matrix of NNs Xi is transformed into an equivalent 
alternative decision matrix of interval numbers.  NN i

kj
r = i

kj
a  + i

kj
b  I is 

transformed into i
kj

r = [ i
kj

a  + i
kj

b  Il , i
kj

a  + i
kj

b  Iu]  with respect to the prescribed 

indeterminacy I [ Il, Iu] . Specification of I [ Il, Iu] depends on decision 
makers’  choice and need of the practical situation. 

 

Step 2 On calculating i
kj

s  = [ ui
kj
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kj

s,s ]= [ ui
kjj
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sw,sw ](k = 1,…,m; j = 1,….,q; 

i =1,….,p) for i
kj

s , we obtain the weighted alternative decision matrix 
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Step 3 To obtain the ideal alternative matrix 
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We calculate *
kj

s =  *u
kj

*i
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s,s , =[maxi  ,s li
kj ,maxi  ,sui

kj ](k =1,…,m; j=1,….,q; 

i=1,….,p). 

 

Step 4 The projection measure between each weighted alternative decision 
matrix iS (i = 1, 2,…, p) and the ideal alternative matrix *S can be calculated by 
using equation (4) as follows: . 

)(Pr
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Step 5 The alternatives are ranked in a descending order according to the 
values of ProjS

*(Si) for i = 1, 2, …, p. The greater value of ProjY
*(Si) reflects the 

better alternative Ai. 

 

Step 6 End. 
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Fig.1: Flowchart for MCGDM strategy based on projection measure 

 

(ii) MCGDM Strategy-2 using bidirectional projection measure 
(See fig. 2): 

Step 1  Step 1 is the same as MCGDM strategy 1. 

Step 2  Step 2 is the same as MCGDM strategy 1.  

Step 3  Step 3 is the same as MCGDM strategy 1. 

 

Step 4 The bidirectional projection measure between each weighted 
alternative decision matrix iS (i = 1, 2,…, p) and the ideal alternative matrix *S
can be calculated by utilizing  the equation (4) as follows: . 
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Step 5 The alternatives are ranked in a descending order according to the 
values of BProj(Si, S*) for i = 1, 2, …, m. The greater value of BProj(Si, S*) 
means the better alternative Ai. 

 

Step 6 End. 

 

 



Editors: Prof. Florentin Smarandache 
Dr. Mohamed Abdel-Basset 
Dr. Victor Chang 

38 

 

 
Fig.2: Flowchart for MCGDM strategy 2 based on bidirectional projection 

measure 

4 Illustrative example 

In this section, an illustrative example about teacher selection is given to 
show the applicability of the proposed method. 

Suppose that a secondary institution is going to recruit in the post of a 
mathematics teacher. 

After initial screening, five candidates (i.e. alternatives) A1, A2, A3, A4, A5 
remain for further evaluation. A committee of five decision makers or experts, 
E1, E2, E3, E4, E5 has been formed to conduct the interview and select the most 
appropriate candidate. Seven criteria obtained from expert opinions, namely, 
demonstration (C1), pedagogical knowledge(C2), action research(C3), emotional 
stability(C4), knowledge on child phycology (C5), social quality (C6) and 
leadership quality(C7) are considered for selection criteria. 

 Thus, the five alternative decision matrices are expressed, respectively, as 
tabular form: 

 

Table 1: Alternative decision matrix provided by the decision maker E1 

X1 = 

7+I 8+I 7+I 7+I 7+I 5+4I 6+2I 
6+2I 7+I 7+I 5+4I 6+2I 7+I 8+I 
6+2I 7+I 6+2I 5+4I 5+4I 3+5I 6+2I 
7+I 8+I 6+2I 7+I 5+4I 5+4I 7+I 
7+I 7+I 6+2I 7+I 7+I 7+I 6+2I 

 



Neutrosophic Operational Research 
Volume II 

39 

 

Table 2: Alternative decision matrix provided by the decision maker E2 

X2 = 

6+2I 7+I 7+I 7+I 7+I 5+4I 6+2I 
7+I 8+I 7+I 6+2I 6+2I 7+I 7+I 
6+2I 7+I 6+2I 6+2I 6+2I 3+5I 7+I 
7+I 7+I 6+2I 7+I 7+I 7+I 6+2I 
6+2I 7+I 6+2I 7+I 7+I 7+I 6+2I 

 

Table 3: Alternative decision matrix provided by the decision maker E3 

X3 = 

7+I 8+I 7+I 7+I 7+I 7+I 7+I 
7+I 7+I 7+I 5+4I 6+2I 7+I 8+I 

6+2I 7+I 6+2I 5+4I 7+I 3+5I 6+2I 
5+4I 5+4I 6+2I 7+I 5+4I 7+I 5+4I 
7+I 6+2I 6+2I 7+I 7+I 5+4I 6+2I 

 

Table 4: Alternative decision matrix provided by the decision maker E4 

X4 = 

7+I 8+I 7+I 7+I 7+I 5+4I 6+2I 
6+2I 7+I 7+I 5+4I 6+2I 7+I 8+I 
6+2I 7+I 6+2I 5+4I 3+5I 3+5I 6+2I 
7+I 8+I 6+2I 7+I 5+4I 5+4I 7+I 
7+I 7+I 6+2I 7+I 7+I 7+I 6+2I 

 

Table 5: Alternative decision matrix provided by the decision maker E5 

X5 = 

8+I 8+I 7+I 5+4I 7+I 6+2I 5+4I 
8+I 7+I 7+I 7+I 6+2I 7+I 8+I 
5+4I 7+I 8+I 7+I 7+I 7+I 5+4I 
5+4I 7+I 8+I 7+I 5+4I 5+4I 7+I 
7+I 7+I 6+2I 5+4I 7+I 5+4I 7+I 

 

Then the developed strategy is applied to the decision making problem and 
described by the following steps: 
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Step 1: Assume that the specified indeterminacy is I[0,0.5]. Then each 
Xk can be transferred into the following forms: 

 

Table 6: Alternative decision matrix provided by the decision maker E1 

after deneutrofication 

X1= 

        

 [7,7.5] [8,8.5] [7,7.5] [7,7.5] [7,7.5] [5,7] [6,7] 

 [6,7] [7,7.5] [7,7.5] [5,7] [6,7] [7,7.5] [8,8.5] 

 [6,7] [7,7.5] [6,7] [5,7] [5,7] [3,5.5] [6,7] 

 [7,7.5] [8,8.5] [6,7] [7,7.5] [5,7] [5,7] [7,7.5] 

 [7,7.5] [7,7.5] [6,7] [7,7.5] [7,7.5] [7,7.5] [6,7] 

 
Table 7: Alternative decision matrix provided by the decision maker E2 

after deneutrofication 

X2 = 

[6,7] [7,7.5] [7,7.5] [7,7.5] [7,7.5] [5,7] [6,7] 

[7,7.5] [8,8.5] [7,7.5] [6,7] [6,7] [7,7.5] [7,7.5] 

[6,7] [7,7.5] [6,7] [6,7] [6,7] [3,5.5] [7,7.5] 

[7,7.5] [7,7.5] [6,7] [7,7.5] [7,7.5] [7,7.5] [6,7] 

[6,7] [7,7.5] [6,7] [7,7.5] [7,7.5] [7,7.5] [6,7] 

 

Table 8: Alternative decision matrix provided by the decision maker E3 

after deneutrofication 

X3 = 

[7,7.5] [8,8.5] [7,7.5] [7,7.5] [7,7.5] [7,7.5] [7,7.5] 

[7,7.5] [7,7.5] [7,7.5] [5,7]] [6,7] [7,7.5] [8,8.5] 

[6,7] [7,7.5] [6,7] [5,7] [7,7.5] [3,5.5] [6,7] 

[5,7] [5,7] [6,7] [7,7.5] [5,7] [7,7.5] [5,7] 

[7,7.5] [6,7] [6,7] [7,7.5] [7,7.5] [5,7] [6,7] 
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Table 9: Alternative decision matrix provided by the decision maker E4 

after deneutrofication 

X4 = 

[7,7.5] [8,8.5] [7,7.5] [7,7.5] [7,7.5] [5,7] [6,7] 

[6,7] [7,7.5] [7,7.5] [5,7] [6,7] [7,7.5] [8,8.5] 

[6,7] [7,7.5] [6,7] [5,7] [5,7] [3,5.5] [6,7] 

[7,7.5] [8,8.5] [6,7] [7,7.5] [5,7] [5,7] [7,7.5] 

[7,7.5] [7,7.5] [6,7] [7,7.5] [7,7.5] [7,7.5] [6,7] 

 

Table 10: Alternative decision matrix provided by the decision maker E5 

after deneutrofication 

X5= 

[8,8.5] [8,8.5] [7,7.5] [5,7] [7,7.5] [6,7] [5,7] 

[8,8.5] [7,7.5] [7,7.5] [7,7.5] [6,7] [7,7.5] [8,8.5] 

[5,7] [7,7.5] [8,8.5] [7,7.5] [7,7.5] [7,7.5] [5,7] 

[5,7] [7,7.5] [8,8.5] [7,7.5] [5,7] [5,7] [7,7.5] 

[7,7.5] [7,7.5] [6,7] [5,7] [7,7.5] [5,7] [7,7.5] 

 

Step 2: Assume that the weighting vector of the attributes is W= 
(0.2,0.2,0.2,0.1,0.1,0.1,0.1)T. Then the five weighted decision matrices are 
obtained as follows: 

Table 11: Weighted decision matrix provided by the decision maker E1 

Y1= 

[1.4,1.5] [1.6,1.7] [1.4,1.5] [.7,.75] [.7,.75] [.5,.7] [.6,.7] 

[1.2,1.4] [1.4,1.5] [1.4,1.5] [.5,.7] [.6,.7] [.7,.75] [.8,.85] 

[1.2,1.4] [1.4,1.5] [1.2,1.4] [.5,.7] [.5,.7] [.3,.55] [.6,.7] 

[1.4,1.5] [1.6,1.7] [1.2,1.4] [.7,.75] [.5,.7] [.5,.7] [.7,.75] 

[1.4,1.5] [1.4,1.5] [1.2,1.4] [.7,7.5] [.7,.75] [.7,.75] [.6,.7] 
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Table 12: Weighted decision matrix provided by the decision maker E2 

Y2= 

[1.2,1.4] [1.4,1.5] [1.4,1.5] [.7,.75] [.7,.75] [.5,.7] [.6,.7] 

[1.4,1.5] [1.6,1.7] [1.4,1.5] [.6,.7] [.6,.7] [.7,.75] [.7,.75] 

[1.2,1.4] [1.4,1.5] [1.2,1.4] [.6,.7] [.6,.7] [.3,.55] [.7,.75] 

[1.4,1.5] [1.4,1.5] [1.2,1.4] [.7,.75] [.7,.75] [.7,.75] [.6,.7] 

[1.2,1.4] [1.4,1.5] [1.2,1.4] [.7,.75] [.7,.75] [.7,.75] [.6,.7] 

 

 

Table 13: Weighted decision matrix provided by the decision maker E3 

Y3= 

[1.4,1.5] [1.6,1.7] [1.4,1.5] [.7,.75] [.7,.75] [.7,.75] [.7,.75] 

[1.4,1.5] [1.4,1.5] [1.4,1.5] [.5,.7] [.6,.7] [.7,.75] [.8,.85] 

[1.2,1.4] [1.4,1.5] [1.2,1.4] [.5,.7] [.7,.75] [.3,.55] [.6,.7] 

[1,1.4] [1,1.4] [1.2,1.4] [.7,.75] [.5,.7] [.7,.75] [.5,.7] 

[1.4,1.5] [1.2,1.4] [1.2,1.4] [.7,.75] [.7,.75] [.5,.7] [.6,.7] 

 

 

Table 14: Weighted decision matrix provided by the decision maker E4 

Y4= 

[1.4,1.5] [1.6,1.7] [1.4,1.5] [.7,.75] [.7,.75] [.5,.7] [.6,.7] 

[1.2,1.4] [1.4,1.5] [1.4,1.5] [.5,.7] [.6,.7] [.7,.75] [.8,.85] 

[1.2,1.4] [1.4,1.5] [1.2,1.4] [.5,.7] [.5,.7] [.3,.55] [.6,.7] 

[1.4,1.5] [1.6,1.7] [1.2,1.4] [.7,.75] [.5,.7] [.5,.7] [.7,.75] 

[1.4,1.5] [1.4,1.5] [1.2,1.4] [.7,.75] [.7,.75] [.7,.75] [.6,.7] 
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Table 15: Weighted decision matrix provided by the decision maker E5 

Y5= 

[1.6,1.7] [1.6,1.7] [1.4,1.5] [.5,.7] [.7,.75] [.6,.7] [.5,.7] 

[1.6,1.7] [1.4,1.5] [1.4,1.5] [.7,.75] [.6,.7] [.7,.75] [.8,.85] 

[1,1.4] [1.4,1.5] [1.6,1.7] [.7,.75] [.7,.75] [.7,.75] [.5,.7] 

[1,1.4] [1.4,1.5] [1.6,1.7] [.7,.75] [.5,.7] [.5,.7] [.7,.75] 

[1.4,1.5] [1.4,1.5] [1.2,1.4] [.5,.7] [.7,.75] [.5,.7] [.7,.75] 

 

Step3: The ideal alternative matrix is determined as follows: 























]75,.7[.]75,.7[.]75,.7[.]75,.7[.]4.1,2.1[]5.1,4.1[]5.1,4.1[
]75,.7[.]75,.7[.]75,.7[.]75,.7[.]7.1,6.1[]7.1,6.1[]5.1,4.1[
]75,.7[.]75,.7[.]75,.7[.]75,.7[.]7.1,6.1[]5.1,4.1[]4.1,2.1[
]85,.8[.]75,.7[.]7,.6[.]75,.7[.]5.1,4.1[]7.1,6.1[]7.1,6.1[
]75,.7[.]75,.7[.]75,.7[.]75,.7[.]5.1,4.1[]7.1,6.1[]7.1,6.1[

Y*

  

Step4: The bidirectional projection measure values between each weighted 
alternative decision matrix Yi(i =1, 2, …, 5) and the ideal alternative matrix Y* 

can be obtained as follows: 

5586.9*Y  , 9250.8Y
1
 , 8431.8Y

2
 , 7418.8Y

3
 , 9250.8Y

4
 ,

2129.9Y
5


 
Y1.Y* = 82.2749, Y2.Y* = 89.7328, Y3.Y* = 77.6600, Y4.Y* = 83.6450, 

Y5.Y* = 87.2375. 

ProjY
*(Y1) = 8.607421, ProjY

*(Y2) = 9.387651, ProjY
*(Y3) = 8.124621, 

ProjY
*(Y4) = 8.750758,  ProjY

*(Y5) = 9.126598. 

Y*),BProj(Y
1 =0.6207, Y*),BProj(Y

2 =0.5683, Y*),BProj(Y
3 =0.5687,

Y*),BProj(Y
4 =0.6168, Y*),BProj(Y

5 =0.7449. 

Step5:  

Since, ProjY
*(Y2)> ProjY

*(Y5)> ProjY
*(Y4)> ProjY

*(Y1)> ProjY
*(Y3) ,  

then, the five candidates are ranked as:A2 A5 A4 A1 A3. 

 Hence, according to MCGDM strategy 1 based on projection measure, A2 
is the best choice among all candidates. 
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Since  

BProj(Y5, Y*)>BProj(Y1,Y*)>BProj(Y4,Y*)>BProj(Y3,Y*)>BProj(Y2,Y*), 
then, the five candidates are ranked as:A5 A1 A4 A3  A2. 

Hence, according to MCGDM strategy 2 using bidirectional projection 
measure, A5 is the best choice among all candidates. 

For I ]2,.0[  

Note. We calculate ranking order for I ]2,.0[  and calculations are given 
in appendix. Similarly, for specified I  ranking order can be determined.  

7 Conclusion 

In real teacher selection process, indeterminacy plays an important role 
because the experts cannot present all the criteria and traits of applicant’s 
completely and accurately due to time pressure, lack of domain knowledge, 
suitable environment of interview and other related issues of selection process. 
So, indeterminacy involves in their rating and decision. To deal such situations, 
neutrosophic number (a + bI, where a is the determinate component and bI is the 
indeterminate component) is more cognitively efficient to present indeterminate 
and incomplete information. In this paper, the teacher selection procedure is 
studied based on projection and bidirectional projection measure. The 
significance of the paper is that we combine NNs in educational setting to cope 
with MCGDM problems.  Selection criteria are obtained by employing direct 
interview and opinion from domain experts.  The proposed teacher selection 
strategy is an effective mathematical tool to express cognitive information and 
taking into account the reliability of the information.  The proposed MCGDM 
strategy for teacher selection simply and reliably represents human cognition by 
considering the interactivity of criteria and the cognition towards indeterminacy 
involves in the problem. The developed MCGDM strategy for teacher selection 
combines the advantages of NNs and MCGDMS, which is more feasible and 
practical than other strategies. The proposed strategy is fairly flexible and easy to 
implement. Proposed MCGDM strategy for teacher selection is more 
comprehensive because when I = 0, it reduces to classical MCGDM strategy i.e. 
crisp MCGDM strategy.  

Although this study has demonstrated the effectiveness of the proposed 
strategy, many areas need to be explored. Future studies should address the 
following problems: (i) the case when indeterminacy (I) assumes different 
specifications simultaneously for rating. (ii) unknown weights of the decision 
makers and unknown weights of the criteria (iii) Other practical decision making 
where MCGDM involves. 
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Appendix 

Assume that the specified indeterminacy is I[0,0.2] according to the decision 
makers’ choice  and real requirements. 

Then, 
Step 1: Each Xk can be transferred into the following forms: 

 

Table 6: Alternative decision matrix provided by the decision maker E1 after 
deneutrofication 

X1= 

 [7,7.2] [8,8.2] [7,7.2] [7,7.2] [7,7.2] [5,5.8] [6,6.4] 

 [6,6.4] [7,7.2] [7,7.2] [5,5.8] [6,6.4] [7,7.2] [8,8.2] 

 [6,6.4] [7,7.2] [6,6.4] [5,5.8] [5,5.8] [3,4] [6,6.4] 

 [7,7.2] [8,8.2] [6,6.4] [7,7.2] [5,5.8] [5,5.8] [7,7.2] 

 [7,7.2] [7,7.2] [6,6.4] [7,7.2] [7,7.2] [7,7.2] [6,6.4] 

 

 

Table 7: Alternative decision matrix provided by the decision maker E2 after 
deneutrofication 

X2= 

[6,6.4] [7,7.2] [7,7.2] [7,7.2] [7,7.2] [5,5.8] [6,6.4] 

[7,7.2] [8,8.2] [7,7.2] [6,6.4] [6,6.4] [7,7.2] [7,7.2] 

[6,6.4] [7,7.2] [6,6.4] [6,6.4] [6,6.4] [3,4] [7,7.2] 

[7,7.2] [7,7.2] [6,6.4] [7,7.2] [7,7.2] [7,7.2] [6,6.4] 

[6,6.4] [7,7.2] [6,6.4] [7,7.2] [7,7.2] [7,7.2] [6,6.4] 
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Table 8: Alternative decision matrix provided by the decision maker E3 after 
deneutrofication 

X3= 

[7,7.2] [8,8.2] [7,7.2] [7,7.2] [7,7.2] [7,7.2] [7,7.2] 

[7,7.2] [7,7.2] [7,7.2] [5,5.8] [6,6.4] [7,7.2] [8,8.2] 

[6,6.4] [7,7.2] [6,6.4] [5,5.8] [7,7.2] [3,4] [6,6.4] 

[5,5.8] [5,5.8] [6,6.4] [7,7.2] [5,5.8] [7,7.2] [5,5.8] 

[7,7.2] [6,6.4] [6,6.4] [7,7.2] [7,7.2] [5,5.8] [6,6.4] 

 

Table 9: Alternative decision matrix provided by the decision maker E4 after 
deneutrofication 

X4= 

[7,7.2] [8,8.2] [7,7.2] [7,7.2] [7,7.2] [5,5.8] [6,6.4] 

[6,6.4] [7,7.2] [7,7.2] [5,5.8] [6,6.4] [7,7.2] [8,8.2] 

[6,6.4] [7,7.2] [6,6.4] [5,5.8] [3,4] [3,4] [6,6.4] 

[7,7.2] [8,8.2] [6,6.4] [7,7.2] [5,5.8] [5,5.8] [7,7.2] 

[7,7.2] [7,7.2] [6,6.4] [7,7.2] [7,7.2] [7,7.2] [6,6.4] 

 

Table 10: Alternative decision matrix provided by the decision maker E5 after 
deneutrofication 

X5= 

[8,8.2] [8,8.2] [7,7.2] [5,5.8] [7,7.2] [6,6.4] [5,5.8] 

[8,8.2] [7,7.2] [7,7.2] [7,7.2] [6,6.4] [7,7.2] [8,8.2] 

[5,5.8] [7,7.2] [8,8.2] [7,7.2] [7,7.2] [7,7.2] [5,5.8] 

[5,5.8] [7,7.2] [8,8.2] [7,7.2] [5,5.8] [5,5.8] [7,7.2] 

[7,7.2] [7,7.2] [6,6.4] [5,5.8] [7,7.2] [5,5.8] [7,7.2] 

 

 

Step2: Assume that the weighting vector of the attributes is 
W=(0.2,0.2,0.2,0.1,0.1,0.1,0.1)T. Then the five weighted decision matrices are obtained 
as follows: 
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Table 11: Weighted decision matrix provided by the decision maker E1 

Y1= 

[1.4,1.44] [1.6,1.64] [1.4,1.44] [.7,.72] [.7,.72] [.5,.58] [.6,.64] 

[1.2,1.28] [1.4,1.44] [1.4,1.44] [.5,.58] [.6,.64] [.7,.72] [.8,.82] 

[1.2,1.28] [1.4,1.44] [1.2,1.28] [.5,.58] [.5,.58] [.3,.4] [.6,.64] 

[1.4,1.44] [1.6,1.64] [1.2,1.28] [.7,.72] [.5,.58] [.5,.58] [.7,.72] 

[1.4,1.44] [1.4,1.44] [1.2,1.28] [.7,.72] [.7,.72] [.7,.72] [.6,.64] 

 

Table 12: Weighted decision matrix provided by the decision maker E2 

Y2= 

[1.2,1.28] [1.4,1.44] [1.4,1.44] [.7,.72] [.7,.72] [.5,.58] [.6,.64] 

[1.4,1.44] [1.6,1.64] [1.4,1.44] [.6,.64] [.6,.64] [.7,.72] [.7,.72] 

[1.2,1.28] [1.4,1.44] [1.2,1.28] [.6,.64] [.6,.64] [.3,.4] [.7,.72] 

[1.4,1.44] [1.4,1.44] [1.2,1.28] [.7,.72] [.7,.72] [.7,.72] [.6,.64] 

[1.2,1.28] [1.4,1.44] [1.2,1.28] [.7,.72] [.7,.72] [.7,.72] [.6,.64] 

 

Table 13: Weighted decision matrix provided by the decision maker E3 

Y3= 

[1.4,1.44] [1.6,1.64] [1.4,1.44] [.7,.72] [.7,.72] [.7,.72] [.7,.72] 

[1.4,1.44] [1.4,1.44] [1.4,1.44] [.5,.58] [.6,.64] [.7,.72] [.8,.82] 

[1.2,1.28] [1.4,1.44] [1.2,1.28] [.5,.58] [.7,.72] [.3,.4] [.6,.64] 

[1,1.16] [1,1.16] [1.2,1.28] [.7,.72] [.5,.58] [.7,.72] [.5,.58] 

[1.4,1.44] [1.2,1.28] [1.2,1.28] [.7,.72] [.7,.72] [.5,.58] [.6,.64] 

 

Table 14: Weighted decision matrix provided by the decision maker E4 

Y4= 

[1.4,1.44] [1.6,1.64] [1.4,1.44] [.7,.72] [.7,.72] [.5,.58] [.6,.64] 

[1.2,1.28] [1.4,1.44] [1.4,1.44] [.5,.58] [.6,.64] [.7,.72] [.8,.82] 

[1.2,1.28] [1.4,1.44] [1.2,1.28] [.5,.58] [.3,.4] [.3,.4] [.6,.64] 

[1.4,1.44] [1.6,1.64] [1.2,1.28] [.7,.72] [.5,.58] [.5,.58] [.7,.72] 

[1.4,1.44] [1.4,1.44] [1.2,1.28] [.7,.72] [.7,.72] [.7,.72] [.6,.64] 
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Table 15: Weighted decision matrix provided by the decision maker E5 

Y5= 

[1.6,1.64] [1.6,1.64] [1.4,1.44] [.5,.58] [.7,.72] [.6,.64] [.5,.58] 

[1.6,1.64] [1.4,1.44] [1.4,1.44] [.7,.72] [.6,.64] [.7,.72] [.8,.82] 

[1,1.16] [1.4,1.44] [1.6,1.64] [.7,.72] [.7,.72] [.7,.72] [.5,.58] 

[1,1.16] [1.4,1.44] [1.6,1.64] [.7,.72] [.5,.58] [.5,.58] [.7,.72] 

[1.4,1.44] [1.4,1.44] [1.2,1.28] [.5,.58] [.7,.72] [.5,.58] [.7,.72] 

 

Step3: The ideal alternative matrix is determined as follows: 

























]72,.7[.]72,.7[.]72,.7[.]72,.7[.]28.1,2.1[]44.1,4.1[]44.1,4.1[
]72,.7[.]72,.7[.]72,.7[.]72,.7[.]64.1,6.1[]64.1,6.1[]44.1,4.1[
]72,.7[.]72,.7[.]72,.7[.]72,.7[.]64.1,6.1[]44.1,4.1[]28.1,2.1[
]82,.8[.]72,.7[.]64,.6[.]72,.7[.]44.1,4.1[]64.1,6.1[]64.1,6.1[
]72,.7[.]72,.7[.]72,.7[.]72,.7[.]44.1,4.1[]64.1,6.1[]64.1,6.1[

*Y  

Step4: The projection and bidirectional projection measure values between each 
weighted alternative decision matrix Yi(i=1, 2, ,…,5) and the ideal alternative matrix Y* 

can be obtained as follows: 

‖𝑌∗‖ = 9.3455, ‖𝑌1‖ = 8.6247, ‖𝑌2‖ = 8.5618, ‖𝑌3‖ = 8.3938, 

‖𝑌4‖ = 8.6052, ‖𝑌5‖ = 8.9047 

Y1.Y* = 74.7640, Y2.Y* = 79.5144, Y3.Y* = 77.7436, Y4.Y* = 78.8632, Y5.Y* = 
82.8728. 

ProjY
*(Y1) = 8.0000, ProjY

*(Y2) = 8.5083, ProjY
*(Y3) = 8.3188, ProjY

*(Y4) 
= 8.4386,          ProjY

*(Y5) = 8.8677. 
Y*),BProj(Y

1 =0.5993, Y*),BProj(Y
2 =0.5622, Y*),BProj(Y

3 =0.5146,

Y*),BProj(Y
4 =0.5794, Y*),BProj(Y

5 =0.6949. 

Step 5: Since, ProjY
*(Y5)> ProjY

*(Y2)> ProjY
*(Y3)> ProjY

*(Y4)> ProjY
*(Y5) , then, 

the five candidates are ranked as:A5  A2 A4  A3  A1. 

 Hence, according to MCGDM strategy 1, A5 is the best choice among all 
candidates.  

Since, BProj(Y5,Y*)>BProj(Y1,Y*)>BProj(Y4,Y*)>BProj(Y2,Y*)>BProj(Y3,Y*), 
then, the five candidates are ranked as:A5 A1 A4 A2 A3. 

Hence, according to MCGDM strategy 2, A5 is the best choice among all 
candidates. 
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Abstract 

In this chapter, we introduce a new algorithm for finding a minimum 
spanning tree (MST) of an undirected neutrosophic weighted 
connected graph whose edge weights are represented by an interval 
valued neutrosophic number. In addition, we compute the cost of 
MST and compare the de-neutrosophied value with an equivalent 
MST having the detereministic weights. Finally, a numerical 
example is provided. 

Keywords 

Interval valued Neutrosophic Graph, Score function, Minimum 
Spanning Tree (MST). 

1 Introduction 

In order to express the inconsistency and indeterminacy that exist in real-
life problems reasonably, Smarandache [3] proposed the concept of neutrosophic 
sets (NSs) from a philosophical standpoint, which is characterized by three totally 
independent functions, i.e., a truth-function, an indeterminacy function and a 
falsity function that are inside the real standard or non-standard unit interval ]-0, 
1+[. Hence, neutrosophic sets can be regarded as many extended forms of 
classical fuzzy sets [8] such as intuitionistic fuzzy sets [6], interval-valued 
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intuitionistic fuzzy sets [7] etc. Moreover, for the sake of applying neutrosophic 
sets in real-world problems efficiently, Smarandache [9] put forward the notion 
of single valued neutrosophic sets (SVNSs for short) firstly, and then various 
theoretical operators of single valued neutrosophic sets were defined by Wang et 
al. [4]. Based on single valued neutrosophic sets, Wang et al. [5] further 
developed the notion of interval valued neutrosophic sets (IVNSs for short), some 
of their properties were also explored. Since then, studies of neutrosophic sets 
and their hybrid extensions have been paid great attention by numerous scholars 
[19]. Many researchers have proposed a frutiful results on interval valued 
neutrosophic sets [12,14,16,17,18,20,21-31]  

MST is most fundamental and well-known optimization problem used in 
networks in graph theory. The objective of this MST is to find the minimum 
weighted spanning tree of a weighted connected graph. It has many real time 
applications, which includes communication system, transportation problems, 
image processing, logistics, wireless networks, cluster analysis and so on. The 
classical problems related to MST [1], the arc lengths are taken and it is fixed so 
that the decision maker use the crisp data to represent the arc lengths of a 
connected weighted graph. But in the real world scenarios the arch length 
represents a parameter which may not have a precise value. For example, the 
demand and supply, cost problems, time constraints, traffic frequencies, 
capacities etc., For the road networks, even though the geometric distance is 
fixed, arc length represents the vehicle travel time which fluctuates due to 
different weather conditions, traffic flow and some other unexpected factors. 
There are several algorithms for finding the MST in classical graph theory. These 
are based on most well-known algorithms such as Prims and Kruskals algorithms. 
Nevertheless, these algorithms cannot handle the cases when the arc length is 
fuzzy which are taken into consideration [2]. 

More recently, some scholars have used neutrosophic methods to find 
minimum spanning tree in neutrosophic environment. Ye [8] defined a method to 
find minimum spanning tree of a graph where nodes (samples) are represented in 
the form of NSs and distance between two nodes represents the dissimilarity 
between the corresponding samples. Mandal and Basu [9] defined a new 
approach of optimum spanning tree problems considering the inconsistency, 
incompleteness and indeterminacy of the information. They considered a network 
problem with multiple criteria represented by weight of each edge in neutrosophic 
sets. Kandasamy [11] proposed a double-valued Neutrosophic Minimum 
Spanning Tree (DVN-MST) clustering algorithm to cluster the data represented 
by double-valued neutrosophic information. Mullai [15] discussed the MST 
problem on a graph in which a bipolar neutrosophic number is associated to each 
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edge as its edge length, and illustrated it by a numerical example. To the end, no 
research dealt with the cases of interval valued neutrosophic arc lengths. 

The main objective of this work is to find the minimum spanning tree of 
undirected neutrosophic graphs using the proposed matrix algorithm. It would be 
very much useful and easy to handle the considered problem of interval valued 
neutrosophic arc lengths using this algorithm. 

The rest of the paper is organized as follows. Section 2 briefly introduces 
the concepts of neutrosophic sets, single valued neutrosophic sets, interval valued 
neutrosophic sets and the score function of interval valued neutrosophic number. 
Section 3 proposes a novel approach for finding the minimum spanning tree of 
interval valued neutrosophic undirected graph. In Section 4, two illustrative 
examples are presented to illustrate the proposed method. Finally, Section 5 
contains conclusions and future work. 

2 Preliminaries 

Definition 2.1 [3] Le   be an universal set. The neutrosophic set A on the 
universal set  categorized in to three membership functions called the true  

( )AT x , indeterminate ( )AI x and  false ( )AF x contained in real standard or non-
standard subset of  ]-0, 1+[  respectively. 

−0 sup ( )AT x + sup ( )AI x  + sup ( )AI x 3+      (1)     

Definition 2.2 [4] Let    be a universal set. The single valued neutrosophic 
sets (SVNs) A on the universal    is denoted as following 

A = {<x: ( )AT x , ( )AI x , ( )AF x > x   }        (2) 

The functions ( )AT x   [0. 1], ( )AI x  [0. 1] and ( )AF x   [0. 1] are named 
degree of truth, indeterminacy and falsity membership of x in A, satisfy the 
following condition: 

0 ( )AT x + ( )AI x + ( )AT x   3                    (3) 

Definition 2.3 [5]. An interval valued neutrosophic set A in X is defined 
as an object of the form 

 XxfitxA  :~,~,~,~
,   

where      U
A

L
A TTt ~~ ,~

 ,  U
A

L
A IIi ~~ ,~

  ,  U
A

L
A FFf ~~ ,~

  , 
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and L
AT~ , U

AT~  L
AI ~ , U

AI ~ , L
AF~ , U

AF~ :X  [0, 1].The interval membership 

degree where L
AT~ , U

AT~  L
AI ~ , U

AI ~ , L
AF~ , U

AF~  denotes the lower and upper truth 

membership, lower and upper indeterminate membership and lower and upper 
false membership of an element   X corresponding to an interval valued 
neutrosophic set A  where                                        30  p

M
p
M

p
M FIT  

In order to rank the IVNS, TAN [18] defined the following score function. 

Definition 2.4 [18]. Let  fitA ~,~,~~
 be an interval valued 

neutrosophic number , where  U
A

L
A TTt ~~ ,~

 ,  U
A

L
A IIi ~~ ,~

  ,  U
A

L
A FFf ~~ ,~

  ,Then, 

the score function ( )s A , accuracy function ( )a A and certainty function ( )c A of 
an IVNN can be represented  as follows:

 

 

(i) 
6

)2()2(
)~(

~~~~~~
U
A

U
A

U
A

L
A

L
A

L
A

TAN

FITFIT
AS


  , 

      1,0)~( AS         (4) 

(ii) 
2

)()(
)~(

~~~~
U
A

U
A

L
A

L
A

TAN

FTFT
Aa


      1,1)~( Aa        (5)  

TAN [18] gave an order relation between two IVNNs, which is defined as 
follows 

Let  1111
~,~,~~ fitA  and  2222

~,~,~~ fitA be two interval valued 
neutrosophic numbers then 

i. If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 1A is superior to 2A , 
denoted by 1 2A A  

ii. If  1 2( ) ( )s A s A ,and  1 2( ) ( )a A a A then 1A  is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A  
iii. If  1 2( ) ( )s A s A , 1 2( ) ( )a A a A , then 1A  is equal to 2A , that is, 1A is 

indifferent to 2A , denoted by 1 2A A  

Definition 2.5  [17]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F             be an IVNN, the score 

function S of A  is defined as follows 

       
1 2 2 2 , 1,1 .
4

L U L U L L
RIDVAN A A A A A AS A T T I I F F S A           (6) 
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Definition 2.6 [17]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F             be an 

IVNN, the accuracy function H  of A  is defined as follows 

     
21 , 1,1 .

2 (1 ) (1 ) (1 ) (1 )

L U
A A

RIDVAN U U L L U L L U
A A A A A A A A

T T
H A H A

I T I T F I F I

  
           

    (7)  

To rank any two IVNNs , , , , ,L U L U L U
A A A A A AA T T I I F F             and

, , , , ,L U L U L U
B B B B B BB T T I I F F            , 

Ridvan [17] introduced the following method. 

Definition 2.7 [17]:  Let A  and B be two IVNNs,  S A and  S B  be 

scores of A  and B respectively, and  H A and  H B  be accuracy values of 

A  and B respectively, then 

i. If ( ) ( )S A S B  then A  is larger than B , denoted A B . 
ii. If ( ) ( )S A S B  then we check their accuracy values and decide as 

follows: 
(a) If ( ) ( )H A H B , then .A B  

(b) However, if ( ) ( )H A H B , then A  is larger than B , denoted A B . 

Definition 2.8 [12]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F             be an 

IVNN, the score function S of A  is defined as follows 

 
  

   
4 2 2 4

, 0,1 .
8

L U L U L L L U L L
A A A A A A A A A A

NANCY

T T I I F F T T F F
S A S A

         
   

Remark 2.9: In neutrosophic mathematics, the zero sets are represented by the 

following form 0𝑁={<x, [0, 0], [1, 1], [1,1])> :x∈ X}. 

3 The proposed algorithm 

The following algorithm is a new concept of finding the MST of undirected 
interval valued neutrosophic graph using the matrix approach. 

Algorithm: 

Input: the weight matrix M = ij n n
W


   for the undirected weighted interval 

valued neutrosophic graph G. 

Output: Minimum cost Spanning tree T of G. 
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Step 1: Input interval  valued neutrosophic adjacency matrix A. 

Step 2: Convert the interval valued neutrosophic matrix into a score matrix 

ij n n
S


   using the score function. 

Step 3: Iterate step 4 and step 5 until all (n-1) entries matrix of S are either 

marked or set to zero or other words all the nonzero elements are marked. 

Step 4: Find the weight matrix M either columns-wise or row-wise to 

determine the unmarked minimum entries ijS which is the weight of the 

corresponding edge ije in M. 

Step 5: If the corresponding edge ije  of selected ijS produces a cycle with the 

previous marked entries of the score  matrix S then set ijS = 0 else mark ijS . 

Step 6: Construct the graph T including only the marked entries from the score 

matrix S which shall be desired minimum cost spanning tree of G. 

4 Practical example 

4.1 Example 1 

In this section,  a numerical example of  IVNMST is used to demonstrate 
of the proposed algorithm. Consider the following graph G= (V, E) shown Figure 
1, with fives nodes and seven edges. Various steps involved in the construction 

of the minimum cost spanning tree are described as follow – 

 

 
Fig.1. Undirected interval valued neutrosophic graphs 
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Table 1. 

ije  Edge length 

12e  <[.3, .4], [.1, .2], <[.2, .4]> 

 

13e  <[.4, .5], [.2, .6], <[.4, .6]> 

14e  <[.1, .3], [.6, .8], <[.8, .9]> 

24e  <[.4, .5], [.8, .9], <[.3, .4]> 

34e  <[.2, .4], [.3, .4], <[.7, .8]> 

35e  <[.4, .5], [.6, .7], <[.5, .6]> 

45e  <[.5, .6], [.4, .5], <[.3, .4] 

 

The interval valued neutrosophic adjacency matrix A is computed below: 

A=             

[
 
 
 
 

0 𝒆𝟏𝟐 𝒆𝟏𝟑 𝒆𝟏𝟒 0
𝒆𝟏𝟐 0 0 𝒆𝟐𝟒 0
𝒆𝟏𝟑 0 0 𝒆𝟑𝟒 𝒆𝟑𝟓

𝒆𝟏𝟒 𝒆𝟐𝟒 𝒆𝟑𝟒 0 𝒆𝟒𝟓

0 0 𝒆𝟑𝟓 𝒆𝟒𝟓 0 ]
 
 
 
 

 

 

Applying the score function proposed by Tan [18], we get the score matrix: 

 

S= 

[
 
 
 
 

0 0.633 0.517 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 ]
 
 
 
 

 

 

 

In this matrix, the minimum entries 0.217 is selected and the corresponding 

edge (1, 4) is marked by the green color. Repeat the procedure until termination 

(Figure 2).  
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Fig.2. Marked interval valued neutrosophic graphs 

 

The next non-zero minimum entries 0.4 is marked and corresponding edges (3, 

5) are also colored (Figure 3). 

S =

[
 
 
 
 

0 0.633 0.517 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 ]
 
 
 
 

 

 

 

Fig. 3. Marked interval valued neutrosophic graphs in next iteration 

 

 

S =

[
 
 
 
 

0 0.633 0.517 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 ]
 
 
 
 

 

 

The next non-zero minimum entries 0.45 is marked. The corresponding 

marked edges are portrayed in Figure 4. 
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Fig. 4. Marked interval valued neutrosophic graphs in next iteration 

 

S=

[
 
 
 
 

0 0.633 0.517 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 ]
 
 
 
 

 

 

The next non-zero minimum entries 0. 5 is marked. The corresponding marked 

edges are portrayed in Figure 5. 

 

 

Fig. 5. Marked interval valued neutrosophic graphs in next iteration 
 

 

S= 

[
 
 
 
 

0 0.633 0.517  0 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 ]
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The next minimum non-zero element 0.517 is marked. However, while 
drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 
0.517 (Figure 6).  

 

Fig. 6. Cycle {1, 3, 4} 

 

S=

[
 
 
 
 

0 0.633 0.517  0 0.217 0
0.633  0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0  0 ]
 
 
 
 

 

 

The next minimum non-zero element 0.583 is marked. However, while 
drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 
0.583 (Figure 7).  

 

Fig. 7. Cycle {3, 4, 5} 

 

 

S=

[
 
 
 
 

0 0.633 0.517  0 0.217 0
0.633  0  0 0 0.5 0

0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0  0 ]
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The next minimum non-zero element 0.633 is marked. However, while 

drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 

0.633 (Figure 8).  

 

 

Fig. 8. Marked edges in the next round 

 

Finally, we get the final path of minimum cost of spanning tree of G is 

portrayed in Figure 9. 

 

Fig. 9. Final path of minimum cost of spanning tree of the graph 

 

And thus, the crisp minimum cost spanning tree is 1.567 and the final path of 

minimum cost of spanning tree is{2, 4},{4, 1},{4, 3},{3, 5}. The procedure is 

termination. 

4.2 Example 2 

The score function is used in machine learning involved in manipulating 

probabilities. Here the score functions in the proposed algorithm plays a vital role 

in identifying the minimum spanning tree of undirected interval valued 

neutrosophic graphs. Also based on the order of polynomial time computation the 

score function used are approaching towards different MST for an Neutrosophic 

graph. We compare our proposed method with these scoring methods used by 

different researchers and hence compute the MST of undirected interval valued 

neutrosophic graphs.  
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5 Comparative study  

In what follows we compare the proposed method presented in section 4 with 
other existing methods including the algorithm proposed by Mullai et al [15] as 
follow   

Iteration 1:   

Let 1C = {1} and 1C ={2, 3, 4 ,5} 

Iteration 2:  

Let 2C ={1, 4} and  2C ={2, 3 ,5} 

Iteration 3: 

Let 3C ={1, 4, 3} and  3C ={2, 5} 

Iteration 4:  

Let 4C ={1,3, 4, 5} and  4C ={2} 

Finally, the interval valued neutrosophic minimal spanning tree is  

 
Fig .10. IVN minimal spanning tree obtained by Mullai’s algorithm. 

So, it can be seen that the interval valued neutrosophic minimal spanning 
tree {2, 4},{4, 1},{4, 3},{3, 5}.obtained by Mullai’s algorithm, After 
deneutrosophication of edges’weight using the score function, is the same as the 
path obtained by proposed algorithm. The difference between the proposed 
algorithm and Mullai’s algorithm is that our approach is based on Matrix approch, 
which can be easily implemented in Matlab, whereas the Mullai’s algorithm is 
based on the comparison of edges in each iteration of the algorithm and this leads 
to high computation. 
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7 Conclusions and Future Work 

This article analyse about the minimum spanning tree problem where the 
edges weights are represented by interval valued neutrosophic numbers. In the 
proposed algorithm, many examples were investigated on MST. The main 
objective of this study is to focus on algorithmic approach of MST in uncertain 
environment by using neutrosophic numbers as arc lengths. In addition, the 
algorithm we use is simple enough and more effective for real time environment. 
This work could be extended to the case of directed neutrosophic graphs and other 
kinds of neutrosophic graphs such as bipolar and interval valued bipolar 
neutrosophic graphs. In future, the proposed algorithm could be implemented to 
the real time scenarios in transportation and supply chain management in the field 
of operations research. On the other hand, graph interpretations (decision trees) 
of syllogistic logics and bezier curves in neutrosophic world could be considered 
and implemented as the real-life applications of natural logics and geometries of 
data [31-36].  
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Abstract 

This paper investigates Neutrosophic Optimization (NSO) approach 
to optimize the cost of welding of a welded steel beam, while the 
maximum  shear stress in the weld group, maximum bending stress 
in the beam, maximum deflection at the tip and buckling load of the 
beam have been considered as flexible constraints.  

The problem of designing an optimal welded beam consists of 
dimensioning a welded steel beam and the welding length so as to 
minimize its cost, subject to the constraints as stated above.  

The purpose of the present study firstly to investigate the effect 
of truth, indeterminacy and falsity membership function in NSO in 
perspective of welded beam design in imprecise environment and 
secondly is to analyse the results obtained by different optimization   
methods like fuzzy, intuitionistic fuzzy and several deterministic 
methods  so that the welding cost of the welded steel beam become 
most cost effective.  

Specifically based on truth, indeterminacy and falsity 
membership function, a single objective NSO algorithm has been 
developed to optimize the welding cost, subjected to a set of flexible 
constraints. It has been shown that NSO is an efficient method in 
finding out the optimum value in comparison to other iterative 
methods for nonlinear welded beam design in precise and imprecise 
environment.  

Numerical example is also given to demonstrate the efficiency of 
the proposed NSO approach. 

http://www.sciencedirect.com/science/article/pii/S0020025507002940
http://www.sciencedirect.com/science/article/pii/S0020025507002940
http://www.sciencedirect.com/science/article/pii/S0020025507002940
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1 Introduction 

In today’s highly competitive market, the pressure on a construction 
agency is to find better ways to attain the optimal solution. In conventional 
optimization problems, it is assumed that the decision maker is sure about the 
precise values of data involved in the model. However, in real world applications 
all the parameters of the optimization problems may not be known precisely due 
to uncontrollable factors. Such type of imprecise data is well represented by fuzzy 
number introduced by Zadeh [1]. 

In reality, a decision maker may assume that an object belongs to a set to a 
certain degree, but it is probable that he is not sure about it. In other words, there 
may be uncertainty about the membership degree. The main premise is that the 
parameters’ demand across the problem are uncertain. So, they are known to fall 
in a prescribed uncertainty set with some attributed degree. In Fuzzy Set (FS) 
theory, there is no means to incorporate this hesitation in the membership degree. 
To incorporate the uncertainty in the membership degree, Intuitionistic Fuzzy 
Sets (IFSs) proposed by Atanassov [2] is an extension of FS theory. In IFS theory 
along with degree of membership a degree of non-membership is usually 
considered to express ill-known quantity. This degree of membership and non-
membership functions are so defined as they are independent to each other and 
sum of them is less or equal to one. So IFS is playing an important role in decision 
making under uncertainty and has gained popularity in recent years. However an 
application of the IFSs to optimization problems introduced by Angelov [3] .His 
technique is based on maximizing the degree of membership, minimizing the 
degree of non-membership and the crisp model is formulated using the IF 
aggregation operator.  

Now the fact is that in IFS indeterminate information is partially lost, as 
hesitant information is taken in consideration by default. So indeterminate 
information should be considered in decision-making process. Smarandache [4, 
41-50] defined neutrosophic set that could handle indeterminate and inconsistent 
information. In neutrosophic sets indeterminacy is quantified explicitly as 
indeterminacy membership along with truth membership, and falsity membership 
function which are  independent .Wang et.al [5] define single valued neutrosophic 
set which represents imprecise, incomplete, indeterminate, inconsistent 
information. Thus taking the universe as a real line we can develop the concept 
of single valued neutrosophic set as special case of neutrosophic sets. This set is 
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able to express ill-known quantity with uncertain numerical value in decision 
making problem. It helps more adequately to represent situations where decision 
makers abstain from expressing their assessments.  

In this way neutrosophic set provides a richer tool to grasp impression and 
ambiguity than the conventional FS as well as IFSs. Although exactly known, 
partially unknown and uncertain information handled by fully utilising the 
properties of transition rate matrices, together with the convexification of 
uncertain domains [6-8], NSO is more realistic in application of optimum design. 
These characteristics of neutrosophic set led to the extension of optimization 
methods in Neutrosophic environment (NSE). 

Besides It has been seen that the current research on fuzzy mathematical 
programming is limited to the range of linear programming introduced by 
Ziemmermann [9] . It has been shown that the solutions of Fuzzy Linear 
Programming Problems (FLPPs) are always efficient. The most common 
approach for solving fuzzy linear programming problem is to change it into 
corresponding crisp linear programming problem.  

 But practically there exist so many nonlinear structural designs such as 
welded beam design problem in various the fields of engineering . So 
development of  nonlinear programming is also essential. Recently a robust and 
reliable  static output feedback (SOF) control for nonlinear systems [25] and for 
continuous-time nonlinear stochastic systems [26] with actuator fault in a 
descriptor system framework have been studied. However welding can be defined 
as a process of joining metallic parts by heating to a suitable temperature with or 
without the application of pressure. This cost of welding should be economical 
and welded beam should be durable one. 

Since decades, deterministic optimization has been widely used in practice 
for optimizing welded connection design. These include mathematical  traditional 
optimization algorithms such as David-Fletcher-Powell with a penalty function 
(DAVID) [10], Griffith and Stewart’s Successive Linear Approximation 
(APPROX) [10], Simplex Method with Penalty Function (SIMPLEX) [10], 
Recherdson’s Random Method (RANDOM) [10], Harmony Search Method [11], 
GA based Method [12,13], Improved Harmony Search Algorithm [14], Simple 
Constrained Particle Swarm Optimizer (SiC-PSO) [15], Mezura [16], 
Constrained Optimization via PSO Algorithm (COPSO) [17], GA based on a co-
evolution model (GA1) [18], GA through the use of dominance based tournament 
selection (GA2) [19], Evolutionary Programming with a cultural algorithm (EP) 
[20], Co-evolutionary Particle Swarm Optimization (CPSO) [21], Hybrid Particle 
swarm optimization (HPSO) with a feasibility based rule [22], Hybrid Nelder-
Mead Simplex search method and particle swarm optimization (NM-PSO) [23], 
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Particle Swarm Optimization (PSO) [24],  Simulate Anneling (SA) [24], Goldlike 
(GL) [24], Cuckoo Search (Cuckoo) [24], Firefly Algorithm (FF), Flower 
Pollination (FP) [24], Ant Lion Optimizer (ALO) [24], Gravitational Search 
Algorithm (GSA) [24], Multi-Verse Optimizer (MVO) [24] etc. All these 
deterministic optimizations aim to search the optimum solution under given 
constraints without consideration of uncertainties.  

Therefore, these traditional techniques cannot be applicable in optimizing 
welded beam design when impreciseness is involved in information. Thus, the 
research on optimization for nonlinear programming under fuzzy, IF and 
neutrosophic environment are not only necessary in the fuzzy optimization theory 
but also has great and wide value in application to welded beam design problem 
of conflicting and imprecise nature. This is the motivation of our present 
investigation. 

In this regard, it can be cited that Das et al. [27] developed neutrosophic 
nonlinear programming with numerical example and application of real life 
problem recently. A single objective plane truss structure [28] and a multi-
objective plane truss structure [29] have been optimized in IF environment. A 
multi-objective structural model has been optimized by IF mathematical 
programming with IF number for truss structure [30], welded beam structure [37] 
and neutrosophic number for truss design [36] as coefficient of objective by 
Sarkaret.al. With the help of linear membership [31] and nonlinear membership 
[32, 33] for single objective truss design and multi-objective truss design [34] 
have been optimized in neutrosophic environment. A multi-objective goal 
programming technique [35] and T-norm, T-conorm based IF optimization 
technique [38] have been developed to optimize cost of welding in neutrosophic 
and IF environment respectively. 

The aim of this paper is to show the efficiency of single objective NSO 
technique in finding optimum cost of welding of welded beam in imprecise 
environment and to make a comparison of results obtained in different 
deterministic methods.  

The paper is organized as follows. In sect. 2, we have presented 
mathematical preliminaries on neutrosophic set. In sect.3, we have developed 
mathematical algorithm to solve a single objective nonlinear programming 
problem. In sect. 4, we have studied detail formulation of welded beam and 
solved it using NSO technique. In sect. 5 we have solved welded beam design 
model numerically. Lastly, in sect.6 we arrive at a conclusion. 
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2 Mathematical Preliminaries 

In the following, we briefly describe some basic concepts and basic 
operational laws related to neutrosophic set [1, 2, 5, 27] 

2.1 Fuzzy Set (FS) [1] 

        Let X be a fixed set. A fuzzy set A  of X is an object having the form  

   , AA x T x x X 
                                                                                

(1)
 

where the function  : 0,1AT X   stands for the truth membership of the element 

x X to the set A . 

2.2. Intuitionistic Fuzzy Set (IFS) [2] 

Let a set X be fixed. An intuitionistic fuzzy set or IFS iA in X  is an object 
of the form  

     , ,i i
i

A A
A X T x F x x X 

                                                                                  
(2)

 

where  : 0,1iA
T X  and  : 0,1iA

F X   define the truth membership and falsity 

membership respectively, for every element of x X such that
   0 1i iA A

T x F x   . 

2.3. Single-Valued Neutrosophic Set (SVNS) [5] 

Let a set X be the universe of discourse. A single valued neutrosophic set 
nA   over X is an object having the form  

       , , ,n n n
n

A A A
A x T x I x F x x X 

                                                                 
(3)

 

where  : 0,1 ,nA
T X   : 0,1nA

I X  and  : 0,1nA
F X   are truth , indeterminacy 

and falsity membership functions respectively so as to 

     0 3n n nA A A
T x I x F x     for all x X .  

2.4. Union of Neutrosophic Sets (NSs) [27] 

The union of two single valued neutrosophic sets nA and nB is a single 
valued neutrosophic set nU denoted by 

       , , ,n n n
n n n

U U U
U A B x T x I x F x x X  

                                            
(4)

 
and is defined by the following conditions 
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(i)       max , ,n n nU A B
T x T x T x   

(ii)       max , ,n n nU A B
I x I x I x   

(iii)       min ,n n nU A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  

(i)       max , ,n n nU A B
T x T x T x  

(ii)       min ,n n nU A B
I x I x I x  

(iii)       min ,n n nU A B
F x F x F x for all x X  for Type-II 

where   ,nU
T x    ,nU

I x   nU
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be calculated for  

Type -I as 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x                  (5) 

and for Type -II as 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x                    (6) 

2.5. Intersection of Neutrosophic Sets 

The intersection of two single valued neutrosophic sets nA and nB is a 
single valued neutrosophic set nE  is denoted by   

       , , ,n n n
n n n

E E E
E A B x T x I x F x x X  

                                     
(7) 

and is defined by the following conditions 

(i)       min , ,n n nE A B
T x T x T x   

(ii)       min , ,n n nE A B
I x I x I x   
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(iii)       max ,n n nE A B
F x F x F x for all x X for Type-I  

Or, in another way by defining following conditions  

(i)       min , ,n n nE A B
T x T x T x  

(ii)       max ,n n nE A B
I x I x I x  

(iii)       max ,n n nE A B
F x F x F x for all x X  for Type-II 

where   ,nE
T x    ,nE

I x   nE
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be measured for 

Type -I as 

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x                  (8) 

and for Type -II as 

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x                   (9) 

3 Mathematical Analysis 

Decision making is nothing but a process of solving the problem that 
achieves goals under constraints. The outcome of the problem is a decision, which 
should in an action. Decision-making plays an important role in different subject 
such as field of economic and business, management sciences, engineering and 
manufacturing, social and political science, biology and medicine, military, 
computer science etc. It faces difficulty in progress due to factors like incomplete 
and imprecise information, which often present in real life situations. In the 
decision making process, the decision maker’s  main target is to find the value 
from the selected set with the highest degree of membership in the decision set 
and these values support the goals under constraints only. However, there may 
arise situations where some values from selected set cannot support, rather such 
values strongly against the goals under constraints, which are non-admissible. In 
this case, we find such values from the selected set with least degree of non-
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membership in the decision sets. IFSs can only handle incomplete information 
not the indeterminate information and inconsistent information, which exists 
commonly belief in system. In neutrosophic set, indeterminacy is quantified 
explicitly and truth-membership, indeterminacy-membership and falsity-
membership are independent to each other. Therefore, it is natural to adopt for 
that purpose the value from the selected set with highest degree of truth-
membership, highest degree or least degree of indeterminacy-membership and 
least degree of falsity-membership on the decision set. These factors indicate that 
a decision making process takes place in neutrosophic environment. 

3.1. Neutrosophic Optimization (NSO) Technique to Solve Single 
objective Nonlinear Programming Problem (SONLPP) 

A Nonlinear Programming Problem (NLPP) may be considered in the 
following form 

 Minimize g x                                                                                      (10) 

Subject to, 

  ;j jg x b 1,2,....,j m                                                                          (11) 

0x                                                                                                       (12)  

Usually constraints goals are considered as fixed quantity. However, in real 
life problems, the constraint goals cannot be always exact. So we can consider 
the constraint goals for less than type constraints at least jb and it may be possible 

to extend to 
0

j jb b  for  1,2,....,j m . This fact seems to take the constraint goals 
as a neutrosophic set and it will be more realistic descriptions than others. Then 
NSO problem with neutrosophic goals can be described as follows 

 Minimize g x                                                                                      (13) 

Subject to, 

  ,n
j jg x b  1,2,....,j m                                                                                              (14) 

0x   where n  represents inequality in neutrosophic sense.                    (15) 

In the case of degree of falsity membership and indeterminacy membership 
it is to define simultaneously with degree of truth membership of the objective 
and constraint and while all these three degrees are independent of each other, 
NSO can be used as a more general tool to describing this uncertainty. 
Considering maximization of the degree of truth membership together with 
minimization  or maximization of the degree of indeterminacy as per decision 
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maker’s choice and minimizing degree of falsity membership of neutrosophic 
fuzzy objective and constraints, we can formulate a NSO technique to solve a 
Neutrosophic Nonlinear Programming(NSNLP)(Eq.13-Eq.15) problem. 

To solve the NSNLP (Eq.13-Eq.15), following Warner’s [40] and Angelov 
[39] we are presenting a solution procedure by successive steps as follows 

Step-1: Following Warner’s approach solve the SONLPP without 

tolerance in constraints (i.e  j jg x b ),with tolerance of truth membership in 

constraints (i.e   0
j j jg x b b  ) by appropriate non-linear programming technique  

Here they are,  

Sub-problem-1  

 Minimize g x                                                                                         (16) 

Subject to, 

  ;j jg x b  1,2,....,j m                                                                                               (17) 

0x                                                                                                                (18) 

Sub-problem-2  

 Minimize g x                                                                                        (19) 

Subject to, 

  0 ,j j jg x b b   1,2,....,j m                                                                                      (20) 

0x                                                                                                          (21) 

we may get optimal solutions    * 1 * 1,x x g x g x   and    * 2 * 2,x x g x g x  for 

sub-problem 1 and 2 respectively.  

Step-2: From the result of step 1 we now find the lower bound and upper 
bound of objective functions. Let      

, ,T I F
g x g x g xU U U be the upper bounds of truth, 

indeterminacy, falsity membership function for the objective respectively and 

     
, ,T I F

g x g x g xL L L  be the lower bound of truth, indeterminacy, falsity membership 

functions of objective respectively using following rules 

      1 2max ,T
g xU g x g x

                                                                      
(22)
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      1 2min ,T
g xL g x g x                                                                          (23) 

But in single valued NSO technique the degree of truth, indeterminacy and 
falsity membership are considered so that the sum of these degree of membership 
values are less than three. To define the falsity and indeterminacy membership 

function of NLP(Eq.10-Eq.12) ,let us consider  
,F

g xU   
F
g xL and  

,I
g xU

 
I
g xL be the 

upper and lower bound of  objective function  g x  such that 

   
F T
g x g xU U                                                                                               (24) 

         0 1F T T T
g x g x g x g xL L t U L where t    

                                              
(25)

 

   
I T
g x g xL L                                                                                                 (26) 

           0 1I T T T
g x g x g x g xU L s U L where s    

                                                      
(27)

 
The initial neutrosophic model (Model -I) with aspiration levels of 

objectives can be formulated as  

Find x
                                                                                                              

(28)
 

So as to satisfy 

   
n T

g xg x L  with tolerance 
    T T

g x g xU L  for degree of truth membership       (29) 

   
n I

g xg x L  with tolerance 
    I I

g x g xU L  for degree of indeterminacy 

membership                                   (30) 

   
n F

g xg x U  with tolerance
    F F

g x g xU L for degree of falsity membership    (31) 

  n
j jg x b  with tolerance 0

jb for degree of truth membership                             (32) 

  n
j jg x b  with tolerance

  jg x for degree of indeterminacy membership    (33)  

  0n
j j jg x b b   with tolerance      0

jj j j g xb b b    for degree of falsity 

membership                          (34) 

For 1,2,...j m ,
        ; 0,1

j j j

T T
g x g x g xt U L t      

and 
        ; 0,1

j j j

T T
g x g x g xs U L s     

and for Mode-II it can be formulated as 
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Find  x
                                                                                                

(35)
 

So as to satisfy 

   
n T

g xg x L  with tolerance
    T T

g x g xU L for degree of truth membership   (36) 

   
n I

g xg x U  with tolerance
    I I

g x g xU L for degree of indeterminacy 

membership                                       (37) 

   
n F

g xg x U  with tolerance
    F F

g x g xU L for degree of falsity membership     (38) 

  n
j jg x b  with tolerance 0

jb for degree of truth membership                              (39) 

    j

n
j j g xg x b    with tolerance

  jg x for degree of indeterminacy 

membership                                       (40) 

  0n
j j jg x b b   with tolerance      0

jj j j g xb b b    for degree of falsity 

membership                                (41) 

for 1,2,...j m ,
        ; 0,1

j j j

T T
g x g x g xt U L t      

and 
        ; 0,1

j j j

T T
g x g x g xs U L s     

Here ' 'n denotes inequality in neutrosophic sense. 

Step-3:  Here for simplicity linear membership  g xT for truth,  g xI for 

indeterminacy and  g xF for falsity membership functions of objective function 

are defined as follows  

    

   

   

   
     

   

1

0

T
g x

T
g x T T

g x g x g xT T
g x g x

T
g x

if g x L

U g x
T g x if L g x U

U L

if g x U

 

 
   
  




                      (42) 

    

   

   

   
     

   

1

0

I
g x

I
g x I I

g x g x g xI I
g x g x

I
g x

if g x L

U g x
I g x if L g x U

U L

if g x U

 

 
   
  



                     

(43) 
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    

   

   

   
     

   

0

1

F
g x

F
g x F F

g x g x g xF F
g x g x

F
g x

if g x L

g x L
F g x if L g x U

U L

if g x U

 

 

  





                                         

(44)

 
Step-4:  In this step using linear membership function  jg xT for truth,  jg xI

for indeterminacy and  jg xF for falsity membership functions we can calculate the 

membership functions of constraints as follows 

    

 

 
 

 

0
0

0

0

1

0

j

j j

j j j
j j j j jg x

j

j j

if g x b

b b g x
T g x if b g x b b

b

if g x b

 

  

     
 




                            (45) 

    

 

    

 

   

   

1

0

j

j j

j

j

j j

j jg x

j j j jg x g x
g x

j j g x

if g x b

b g x
I g x if b g x b

if g x b








 

  


   



 
                  

(46) 

    

   

   

 
   

 

0
0

0

0

1

j

j

j j

j

j j g x

j j g x
j j j j jg x g x

j g x

j j j

if g x b

g x b
F g x if b g x b b

b

if g x b b








  

  

    



 

         

(47)  

for    
01,2,....., 0 ,

j j jg x g xj m b    .  and 

Step-5: Now using NSO [31] for single objective optimization with linear 
truth, indeterminacy and falsity membership functions  the NSNLP (Eq.13-
Eq.15), can be formulated as 

Model-I 

          ,
j jg x g xMaximize T g x T g x                                                          (48) 

          ,
j jg x g xMaximize I g x I g x                                                       (49) 

          ,
j jg x g xMinimize F g x F g x                                                         (50) 
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Such that 

            3;g x g x g xT x I x F x  
                                                             

(51) 

      3;
j j jg g gT x I x F x                                                                        

(52) 

   
 
 ;

g xg xT x I x         

   
 
 ;

g xg xT x F x                                                                                        (53) 

   ;
j jg gT x I x                                                                                      

(54)
 

   ;
j jg gT x F x                                                                                        

(55)
 

             , , 0,1g x g x g xT x I x F x 
   

     , , [0,1]
j j jg g gT x I x F x 

     
 

0x  1,2,.....,j m                                                                                     (56) 

Model-II 

          ,
j jg x g xMaximize T g x T g x                                                          (57) 

          ,
j jg x g xMinimize I g x I g x                                                             (58) 

          ,
j jg x g xMinimize F g x F g x                                                         (59) 

subject to the same constraints as Model-I 

All these crisp nonlinear programming problems (Model -I), (Model-II) 
can be solved by appropriate mathematical algorithm. 

4 Welded Beam Design (WBD) and its Optimization in 

Neutrosophic Environment  

Welding, a process of joining metallic parts with the application of heat or 
pressure or the both, with or without added material, is an economical and 
efficient method for obtaining permanent joints in the metallic parts. These 
welded joints are generally used as a substitute for riveted joint or can be used as 
an alternative method for casting or forging. The welding processes can broadly 
be classified into following two groups, the welding process that uses heat alone 
to join two metallic parts and the welding process that uses a combination of heat 
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and pressure for joining (Bhandari. V. B). However, above all the design of 
welded beam should preferably be economical and durable one.  

4.1 WBD Formulation 

The optimum welded beam design(Fig. 1) can be formulated considering 
some design criteria such as cost of welding i.e cost function, shear stress, 
bending stress and deflection ,derived as follows 

Cost Function Formulation 

The performance index appropriate to this design is the cost of weld 
assembly. The major cost components of such an assembly are (i) set up labour 
cost, (ii) welding labour cost, (iii) material cost, i.e 

  0 1 2C X C C C                                                                                        (60) 

where,  C X   cost function; 0C   set up cost; 1C   welding labour cost; 2C   
material cost. Now 

Set up cost 0C : The company has chosen to make this component a 
weldment , because of the existence of a welding assembly line. Furthermore, 
assume that fixtures for set up and holding of the bar during welding are readily 
available. The cost 0C  can therefore be ignored in this particular total cost model. 

Welding labour cost 1C : Assume that the welding will be done by machine 
at a total cost of $10/hr (including operating and maintenance expense). 
Furthermore suppose that the machine can lay down a cubic inch of weld in 6 
min. The labour cost is then 

 1 3 3

$ 1 $ min $10 6 1
60 min w wC V V

hr in in
     

      
     

                                            (61) 

Where wV   weld volume,in3  

Material cost 2C : 2 3 4w BC C V C V                                                           (62) 

Where 3C   cost per volume per weld material,$/in3 (0.37)(0.283)  ; 4C   
cost per volume of bar stock,$/in3 (0.37)(0.283)  ; BV   volume of bar,in3. 

From geometry 2
wV h l  ;volume of the weld material,in3

 ;
2
1 2weldV x x  and 

 BV tb L l   ; volume of bar ,in3
  3 4 2barV x x L x   . 

Therefore cost function become 

     2 2 2
3 4 1 2 3 4 21.10471 0.04811 14.0C X h l C h l C tb L l x x x x x            (63) 
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Constraints Derivation from Engineering Relationship 

 
Fig. 1 Shear stresses in the weld group. 

 

Maximum shear stress in weld group 

To complete the model it is necessary to define important stress states 

Direct or primary shear stress i.e  

 1
1 22 2

Load P P P
Throat area A hl x x

    

                                                
(64) 

Since the shear stress produced due to turning moment  
.M P e  at any 

section, is proportional to its radial distance from centre of gravity of the joint 
‘G’, therefore stress due to M  is proportional to R  and is in a direction at right 

angles to  R  . In other words  2

R r
 

   constant                                                                (65) 

Therefore   
22 2 2

1 32

2 2 4 4
x xxl h tR
   

      
                                   

(66) 

Where, 2  is the shear stress at the maximum distance R  and  is the shear 

stress at any distance r . Consider a small section of the weld having area dA  at 
a distance r  from ‘G’. Therefore shear force on this small section dA   and 
turning moment of the shear force about centre of gravity is 

22dM dA r dA r
R


     

                                                                   
  (67) 

Therefore total turning moment over the whole weld area  

22 2 .M dA r J
R R
 

  
                                                                           

(68)
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where J   polar moment of inertia of the weld group about centre of gravity.  

Therefore shear stress due to the turning moment i.e.  

secondary shear stress, 2
MR
J

 

                                                             
(69) 

In order to find the resultant stress, the primary and secondary shear 
stresses are combined vectorially. Therefore the maximum resultant shear stress 

that will be produced at the weld group, 2 2
1 2 1 22 cos        ,                (70) 

where,    angle between 1  and 2  . 

As 22cos ;
2
xl

R R
  

     
                                                                           (71)

 

2 2 2
1 2 1 22

2
x
R

        .                                                                         (72) 

Now the polar moment of inertia of the throat area  A  about the centre of 
gravity is obtained by parallel axis theorem, 

 
222 2

1 32 2 2 2
1 22 2 2 2 2

12 12 12 2xx

x xxA l lJ I A x A x A x x x
       

               
            

(73) 

where, A   throat area 1 22x x  , 
l  Length of the weld,  

x Perpendicular distance between two parallel axes 1 3

2 2 2
x xt h 

      (74) 

Maximum bending stress in beam 

Now Maximum bending moment PL , maximum bending stress
T
Z

 , 

where ;T PL
 

Z   section modulus ;I
y

 I  moment of inertia
3

;
12
bt

 y   distance of 

extreme fibre from centre of gravity of cross section ;
2
t

 Therefore 
2

6
btZ  . 

So bar bending stress   2 2
4 3

6 6 .T PL PLx
Z bt x x

   

       
                             (75) 

Maximum deflection in beam 

 Maximum deflection at cantilever tip 
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 
3 3 3 3

3 3 2
4 3

4 4
3 3

12

PL PL PL PLx
EI bt Ebt Ex xE

    

                                              

(76) 

Buckling load of beam 

Buckling load can be approximated by   2

4.013 1C
EIC a ElP x

l Cl
 

   
    

(77) 

2 6

2

4.013
36 1

2 4

t bE t E
L GL

 
   

 

6 6
3 4 3

2

4.013 /36
1

2 4
EGx x x E

L GL
 

   
                            

(78) 

where, I  moment of inertia
3

;
12
bt

 torsional rigidity 31 ;
3

C GJ tb G  ; .
2
tl L a    

4.2 Crisp Formulation of WBD 

In design formulation  a welded beam ([10],Fig. 2) has to be designed at 
minimum cost whose constraints are shear stress in weld    ,bending stress in 

the beam    ,buckling load on the bar  P ,and deflection of the beam   .The 

design variables are 
1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is the weld size, l  is the length of the weld, 

t is the depth of the welded beam, b is the width of the welded beam.  

 

 
Fig.2 Design of the welded beam 
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The single-objective crisp welded beam optimization problem can be 
formulated as follows  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                       (79) 

such that  

   1 max 0g x x                                                                                    (80)
 

   2 max 0g x x                                                                               (81)
 

 3 1 4 0g x x x                                                                                      (82)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x                                          (83) 

 5 10.125 0g x x                                                                                  (84)
 

   6 max 0g x x                                                                                  (85)
 

   7 0Cg x P P x                                                                                 (86)
 

 1 2 3 4, , , 0,1x x x x                                                                                      (87) 

where   2 22
1 1 2 22

2
xx
R

        ; 1
1 22

P
x x

  ; 2
MR
J

  ; 2

2
xM P L 

  
 

;

22
1 32

4 2
x xxR
 

  
 

;
22

1 31 2 2 ;
12 22

x xx x xJ
    

    
     

  2
4 3

6 ;PLx
x x

   
3

2
4 3

4 ;PLx
Ex x

 

 
6 6
3 4 3

2

4.013 / 36
1

2 4C

EGx x x EP x
L GL

 
   

 

 as derived as Eq.(70), Eq.(64), Eq.(69), 

Eq.(68), Eq.(66), Eq.(73), Eq.(75), , Eq.(76), , Eq.(78) respectively. Again P 

Force on beam ; L  Beam length beyond weld; 1x   Height of the welded beam; 
2x   Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width 

of the welded beam;  x  Design shear stress;  x  Design normal stress for 

beam material; M   Moment of P  about the centre of gravity of the weld , J 

Polar moment of inertia of weld group; G   Shearing modulus of Beam 

Material; E   Young modulus; max   Design Stress of the weld; max   Design 
normal stress for the beam material; max   Maximum deflection; 1   Primary 
stress on weld throat , 2 Secondary torsional stress on weld.  
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4.3 WBD Formulation in Neutrosophic Environment 

Sometimes slight change of stress or deflection enhances the weight of 
structures and indirectly cost of processing. In such situation when decision 
maker (DM) is in  doubt to decide the stress constraint goal, the DM can induce 
the idea of acceptance boundary , hesitancy response or negative response margin 
of constraints goal. This fact seems to take the constraint goal as a NS instead of 
FS and IFS. It may be more realistic description than FS and IFS. When the sheer 
stress, normal stress and deflection constraint goals are NS in nature the above 
crisp welded beam design (Eq.79-Eq.87) can be formulated as   

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                    (88) 

Such that  

   1 max
ng x x                                                                                     (89)

 
   2 max

ng x x                                                                                  (90)
 

 3 1 4 0g x x x                                                                                       (91)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x                                          (92) 

 5 10.125 0g x x                                                                                  (93)
 

   6 max
ng x x                                                                                    (94)

 
   7 0Cg x P P x                                                                                 (95)

 
 1 2 3 4, , , 0,1x x x x                                                                                     (96) 

Where all the parameters have their usual meaning as stated in sect.4.2 
.Here   constraint goals are characterized by Neutrosophic Sets 

           
max max max

max max 1 2 max 1 2 max 1 2 max 1 2, , , , , , ,n n n
n x x T x x I x x F x x

  
                (97) 

with   
max

max 1 2, ,nT x x


    
max

max 1 2, ,nI x x


    
max

max 1 2,nF x x


  as the degree 

of truth, indeterminacy and falsity membership function of Neutrosophic set max
n

;  

           
max max max

max max 3 4 max 3 4 max 3 4 max 3 4, , , , , , ,n n n
n x x T x x I x x F x x

  
          (98) 

with   
max

max 3 4, ,nT x x


    
max

max 3 4, ,nI x x


   
max

max 3 4,nF x x


  as the degree 

of truth, indeterminacy and falsity membership function of Neutrosophic set max
n

and 
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           
max max max

max max 3 4 max 3 4 max 3 4 max 3 4, , , , , , ,n n n
n x x T x x I x x F x x

  
            (99) 

with   
max

max 3 4, ,nT x x


    
max

max 3 4, ,nI x x


    
max

max 3 4,nF x x


  as the degree 

of truth, indeterminacy and falsity membership function of Neutrosophic set max
n  

4.4 Optimization of WBD in Neutrosophic Environment 

 To solve the WBD (Eq.88-Eq.96)), step 1 of sect.3.1 is used and we will 
get optimum solutions of two sub problem as 1X  and 2X . After that according to 
step 2 we find upper and lower bound of membership function of objective 
function as      

, ,T I F
C X C X C XU U U and      

, ,T I F
C X C X C XL L L  where

      1 2max , ,T
C XU C X C X

      1 2min , ,T
C XL C X C X

 
Therefore 

          
,F T F T

C X C X C X C X C XU U L L    where
      0 T T

C X C X C XU L  
        

(100) 

         
,I T I T

C X C X C X C X C XL L U L     where 
      0 T T

C X C X C XU L  
        

(101) 

Let the  linear membership functions for objective be,  

    

   

   

   
     

   

1

0

T
C X

T
C X T T

C X C X C XT T
C X C X

T
C X

if C X L

U C X
T C X if L C X U

U L

if C X U

 

 
   
  



                  

(102)  

    

   

      

 
       

     

1

0

T
WT A

T
C X C X T T

C X C X C X C X
C X

T
C X C X

if C X L

L C X
I C X if L C X L

if WT A L








 

       
 
 

 


       

(103) 

    

     

      
     

       

   

0

1

T
C X C X

T
C X C X T T

C X C X C X C XT T
C X C X C X

T
C X

if C X L

C X L
F C X if L C X U

U L

if C X U








  

         
 




    

(104)

 
and constraints be,   
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    

 

   
 

 

0
0

0

0

1

0

i

i i

i i i
i i i i iX

i

i i i

if X

X
T X if X

if X



 

  
    



  

 

       
  


 
           

(105)  

    

 

    

 

   

   

1

0

i

i i

i

i

i i

i iX

i i i iX X
X

i i X

if X

X
I X if X

if X



 





 

  
    



  

 

        
 
 

 


     

(106) 

    

   

   

 
   

 

0
0

0

0

1

i

i

i i

i

i i X

i i X
i i i i iX X

i X

i i i

if X

X
F X if X

if X





 



  

  
     

 

  

  

  
     
  


 
    

(107) 

for    
01,2,..., 0 ,

i i iX Xj m
 
    

  

Then NSO problem (Eq.88-Eq.96)), can be formulated as the following 
crisp linear programming problem by considering linear membership as follows,  

Type-I 

 Maximize                                                                                (108) 

Such that 

         
;T T T

C X C X C XC X U L U  
                                                             

(109)
 

            
;T T T

C X C X C X C X C XC X U L L      
                                       

(110)
 

            
;T T T

C X C X C X C X C XC X U L L      
                                        

(111)
 

        
;

i i i

T T T
i X X XX U L U

  
   

                                                         
(112)

 
            

;
i i i i i

T T T
i X X X X XX U L U

    
       

                                  
(113)

 
            

;
i i i i i

T T T
i X X X X XX U L L

    
       

                                   
(114)

 

3;     ; ;      , , 0,1     
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Model-II 

 Maximize                                                                                      (115) 

Such that 

         
;T T T

C X C X C XC X U L U  
                                                            

(116)
 

     
;T

C X C XC X U 
                                                                           

(117)
 

          
;T T T

C X C X C X C XC X U L L    
                                                   

(118)
 

        
;

i i i

T T T
i X X XX U L U

  
   

                                                          
(119)

 
     

;
i i

T
i X XX U

 
  

                                                                          
(120)

 
          

;
i i i i

T T T
i X X X XX U L L

   
     

                                                 
(121)

 

3;     ; ;      , , 0,1                                                     (122) 

All these crisp nonlinear programming problem can be solved by 
appropriate mathematical algorithm. 

5 Numerical Illustration  

Input data of welded beam design problem(Eq.79-Eq.87)   are given in 
Table 1as follows 

Table 1 : Input data for neutrosophic  model (Eqs.(88-96)) 

 

Applied 
load P

 
 lb  

Beam 
length 
beyond 
weld 
L

 
 in  

Young 
Modulus 
E  
 psi  

Value 
of  
G   
 psi  

Maximum 
allowable   
shear  
stress

max
 

 psi  

Maximum 
allowable 
normal 
stress

max
 

 psi  

Maximum 
allowable 
deflection 

max  
 

 in  

6000  14  
63 10  

 
 

612 10  

13600  
 with 
allowable 
tolerance 
50   
 

30000  
 with 
allowable 
tolerance 
50   
 

0.25  
with 
allowable 
tolerance 
0.05   
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Solution: According to step 2 of sect. 3.1, we find upper and lower bound 

of  membership function of objective function as      
, ,T I F

C X C X C XU U U and 

     
, ,T I F

C X C X C XL L L  where        
1.861642 , 1.858613 ,T F T I

C X C X C X C XU U L L   

   
1.858613F

C X C XL   ,with  
0 .003029;C X  and      

I T
C X C X C XU L    with

 
0 .003029C X   

Now using the bounds we calculate the membership functions for Model- 
I objective as follows 

    

 

 
 

 

1 1.858613

1.861642
1.858613 1.861642

.003029

0 1.861642

C X

if C X

C X
T C X if C X

if C X

 

 

    
 
 

    (123) 

    

 

    

 

   

   

1 1.858613

1.858613
1.858613 1.858613

0 1.858613

C X

C X C X
C X

C X

if C X

g x
I C X if C X

if C X








 

        
 
 

 


 

(124) 

    

   

   

 
   

 

0 1.858613

1.858613
1.858613 1.861642

.003029

1 1.861642

C X

C X
C X C X

C X

if C X

C X
F C X if C X

if C X








  

  
    
  




   

(125) 

 similarly the membership functions for shear stress constraint are,   

    

 

 
 

 

1

1

1
1 1

1

1 13600

13600
13600 13650

50

0 13650

g x

if g x

g x
T g x if g x

if g x

 

 

    
 
 

                 (126) 

    

 

    

 

   

   

1

1 1

1

1

1

1

1 1

1

1 13600

13600
13600 13600

0 13600

g x

g x g x
g x

g x

if g x

g x
I g x if g x

if g x








 

        
 
 

 


     

(127)
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    

   

   

 
   

 

1

1

1 1

1

1

1
1 1

1

0 13600

13600
13600 13650

50

1 13650

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




       

(128)  

   1 1
0 , .003209g x g xwhere     

 and the membership functions for normal stress constraint are, 

    

 

 
 

 

2

2

2
2 2

2

1 30000

30000
30000 30050

50

0 30050

g x

if g x

g x
T g x if g x

if g x

 

 

    
 
 

     

       (129) 

    

 

    

 

   

   

2

2 2

2

2

2

2

2 2

2

1 30000

30000
30000 30000

0 30000

g x

g x g x
g x

g x

if g x

g x
I g x if g x

if g x








 

        
 
 

 


     

(130)

 

    

   

   

 
   

 

2

2

2 2

2

2

2
2 2

2

0 30000

30000
30000 30050

50

1 30050

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




     

(131)

 
   2 2

0 , 50g x g xwhere     

and the membership functions for deflection constraint are, 

    

 

 
 

 

6

6

6
6 6

6

1 0.25

0.25
0.25 0.3

0.05

0 0.3

g x

if g x

g x
T g x if g x

if g x

 

 

    
 
 

                 

(132) 

    

 

    

 

   

   

6

6 6

6

6

6

6

6 6

6

1 0.25

0.25
0.25 0.25

0 0.25

g x

g x g x
g x

g x

if g x

g x
I g x if g x

if g x








 

        
 
 

 


    

(133)
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    

   

   

 
   

 

6

6

6 6

6

6

6
6 6

6

0 0.25

0.25
0.25 0.3

0.05

1 0.3

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




      

(134)

 
   6 6

0 , .05g x g xwhere     
Similarly the truth,indeterminacy and falsity membership function can be 

calculated for objective and constraint functions.Now, using above mentioned 
truth, indeterminacy and falsity linear membership functions NLP (Eq.79-Eq.87)) 
can be solved for Model -I, Model-II, by fuzzy, intuitionistic fuzzy and  NSO 
technique with  different values of 

       1 2 6
, , ,C X g x g x g x    and 

       1 2 6
, , ,C X g x g x g x   

. The optimum height, length, depth, width and cost of welding of welded beam 
design (Eq.79-Eq.87) are given in Table 2 and the solution are compared with 
other deterministic optimization methods. 

 

Table 2: Comparison of Optimal solution of welded beam design (Eq.79-
Eq.87)) based on fuzzy and IF and NSO technique (Model - I and Model- II) 

with different methods 

Methods Height
  

 
1x

inch
 

Length
  

 
2x

inch  

Depth 

 
3x

inch
 

Width
 

 
4x

inch  

Welding cost 
 C X  
$  

DAVID[10] 0.2434
 

6.2552
 

8.2915
 

0.2444
 

2.3841
 APPROX[10] 0.2444

 
6.2189

 
8.2915

 
0.2444

 
2.3815

 SIMPLEX[10] 0.2792
 

5.6256
 

7.7512
 

0.2796
 

2.5307
 RANDOM[10] 0.4575

 
4.7313

 
5.0853

 
0.66

 
4.1185

 Harmony Search Algorithm[11] 0.2442
 

6.2231
 

8.2915
 

0.2443
 

2.3807
 GA Based Method[12] 0.2489

 
6.173

 
8.1789

 
0.2533

 
2.4328

 
GA Based Method[13] 0.2088

 
3.4205

 
8.9975

 
0.21

 
1.7483

 Improved Harmony Search  
Algorithm[14] 

0.20573
 

3.47049
 

9.03662
 

0.20573
 

1.72485
 

SiC-PSO[15] 0.205729
 

3.470488
 

9.036624
 

0.205729
 

1.724852
 Mezura [16] 0.244438

 
6.237967

 
8.288576

 
0.244566

 
2.38119

 COPSO[17] 0.205730  3.470489  9.036624  0.205730  1.724852  
GA1[18] 0.208800  3.420500  8.997500  0.210000  1.748309  
GA2[19] 0.205986  3.471328  9.020224  0.206480  1.728226  
EP[20] 0.205700  3.470500  9.036600  0.205700  1.724852  

CPSO[21] 0.202369  3.544214  9.048210  0.205723  1.728024  
HPSO[22] 0.205730  3.470489  9.036624  0.205730  1.724852  
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A detailed comparison has been made among several deterministic 

optimization methods for optimizing welding cost with imprecise optimization 
methods such as fuzzy, IF and NSO methods in Table 2. It has been observed that 
fuzzy nonlinear optimization provides better result in comparison with IF and 
NSO methods. Although it has been seen that cost of welding is minimum other 
than the method studied in this paper, as far as non-deterministic optimization 
methods  concern ,fuzzy, IF and NSO are  providing a valuable result  in 
imprecise environment in this paper and literature. It has been seen that Improved 
Harmony Search Algorithm[14],COPSO[17],EP[20],HPSO[22] are providing 
minimum most cost of welding where all the parameters have been considered as 
exact in nature . However, it may also be noted that the efficiency of the proposed 
method depends on the model chosen to a greater extent because it is not always 
expected that NSO will provide  better results over fuzzy and IF optimization . 
So overall NSO is an efficient method in finding best optimal solution in 
imprecise environment. It has been studied that same results have been obtained 

NM-PSO[23] 0.205830  0.3.468338  9.036624  0.205730  1.724717  
PSO[24] 0.206412  3.528353  8.988437  0.208052  1.742326  
SA[24] 0.165306  5.294754  8.872164  0.217625  1.939196  
GL[24] 0.204164  3.565391  9.05924  0.206216  1.7428  

Cuckoo [24] 0.20573  3.519497  9.036624  0.20573  1.731527  
FF[24] 0.214698  3.655292  8.507188  0.234477  1.864164  
FP[24] 0.205729  3.519502  9.036628  0.20573  1.731528  

ALO[24] 0.177859  4.393466  9.065462  0.20559  1.796793  
GSA[24] 0.219556  4.728342  8.50097  0.271548  2.295076  
MVO[24] 0.199033  3.652944  9.114448  0.205478  1.749834  

Fuzzy single-objective non-linear 
programming [28] 

 

.2444216  3.028584  8.283678  0.2444216  1.858613  

Intuitionistic Fuzzy single-objective non-
linear programming (FSONLP) [28] 

  .0015,C X   1
25,

xg 

 2
25,

xg 
 6

.025,
xg   

.2443950  3.034430  8.287578  0.2443950  1.860125  

Proposed Neutosophic 
optimization(NSO) 

  .0015,C X   1
25,

xg 

 2
25,

xg 
 6

.025,
xg 

  .0024,C X   1
40,

xg 

 2
40,

xg 
 6

.04,
xg 

 

Model-I .2443950  3.034430  8.287578  0.2443950  1.860125  

Model-II .2443950  3.034430  8.287578  0.2443950  1.860125  
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while indeterminant membership tried to be maximize (Model- I) or minimize 
(Model-II) in NSO for this particular problem. 

6 Conclusions and Future Work 

In this paper, a single objective NSO algorithm has been developed by 
defining truth, indeterminacy and falsity membership function, which are 
independent to each other. Using this method firstly optimum height, length, 
depth, width and cost of welding have been calculated and finally the results are 
compared with different deterministic methods.  So illustrated example of welded 
beam design has been provided to illustrate the optimization procedure, 
effectiveness and advantages of the proposed NSO method. The comparison of 
NSO technique with other optimization techniques has enhanced the acceptability 
of proposed method .The proposed procedures has not only validated by the 
existing methods but also it develops a new direction of optimization theory in 
imprecise environment, which is more realistic. 
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Abstract 

This chapter aims to give computational algorithm to solve a multi-
objective non-linear programming problem (MONLPP) using 
neutrosophic optimization method. The proposed method is for 
solving MONLPP with single valued neutrosophic data. A 
comparative study of optimal solution has been made between 
intuitionistic fuzzy and neutrosophic optimization technique. The 
developed algorithm has been illustrated by a numerical example. 
Finally optimal riser design problem is presented as an application 
of such technique. 

Keywords 

Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic 
Optimization, Multi-Objective Riser Design optimization. 

1 Introduction 

The concepts of Fuzzy Sets were introduced by Zadeh in 1965[1]. Since 
the Fuzzy Sets and Fuzzy Logic have been applied in many real applications to 
handle uncertainty. The traditional fuzzy sets uses one real value    0,1AT x  to 
represent the Truth membership function of FS A  defined on universe X

.Sometimes  AT x  itself is uncertain and hard to be defined by a crisp value. So 
the concept of interval valued fuzzy sets was proposed [2] to capture the 
uncertainty of truth membership. In some applications we should consider not 

http://www.sciencedirect.com/science/article/pii/S0020025507002940
http://www.sciencedirect.com/science/article/pii/S0020025507002940
http://www.sciencedirect.com/science/article/pii/S0020025507002940
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only the truth membership supported by the evident but also the falsity 
membership against by the evident. That is beyond the scope of fuzzy sets and 
interval valued fuzzy sets. In 1986, Atanassov introduced the intuitionistic Fuzzy 
Sets [3], [5], which is a generalization of FS. The IFS consider both Truth 
membership and Falsity membership. Intuitionistic Fuzzy set can only handle 
incomplete information not the indeterminate information and inconsistent 
information. In neutrosophic sets indeterminacy is quantified explicitly and truth, 
indeterminacy and falsity membership functions are independent. Neutrosophic 
Set was first introduced by Smarandache in1995 [4, 16-25]. 

The motivation of the present study is to give computational algorithm for 
multi-objective non-linear programming problem by single valued neutrosophic 
optimization approach. We also aim to study the impact of truth, indeterminacy 
and falsity membership functions in such optimization process and thus have 
made comparative study in intuitionistic fuzzy and neutrosophic optimization 
technique. Also as an application of such optimization technique optimal riser 
design problem is presented. 

2 Mathematical Preliminaries 

In the following, we briefly describe some basic concepts and basic 
operational laws related to neutrosophic set  

2.1 Fuzzy Set(FS) 

Let X be a fixed set. A fuzzy set A  of X is an object having the form  

   , AA x T x x X 
                                                                              

(1)
 

where the function  : 0,1AT X   stands for the truth membership of the element 

x X to the set A . 

2.2. Intuitionistic Fuzzy Set(IFS) 

Let a set X be fixed. An intuitionistic fuzzy set or IFS iA in X  is an object 
of the form  

     , ,i i
i

A A
A X T x F x x X 

                                                                       
(2)

 
where  : 0,1iA

T X  and  : 0,1iA
F X   define the truth membership and falsity 

membership respectively, for every element of x X such that
   0 1i iA A

T x F x   . 
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2.3. Single-Valued Neutrosophic Set(SVNS) 

Let a set X be the universe of discourse. A single valued neutrosophic set 
nA   over X is an object having the form  

       , , ,n n n
n

A A A
A x T x I x F x x X 

                                                   
(3)

 

where  : 0,1 ,nA
T X   : 0,1nA

I X  and  : 0,1nA
F X   are truth , indeterminacy 

and falsity membership functions respectively so as to      0 3n n nA A A
T x I x F x     

for all x X .  

2.4. Union of Neutrosophic Sets(NSs) 

The union of two single valued neutrosophic sets nA and nB is a single 
valued neutrosophic set nU denoted by 

       , , ,n n n
n n n

U U U
U A B x T x I x F x x X  

                                       
(4)

 
and is defined by the following conditions 

(i)       max , ,n n nU A B
T x T x T x   

(ii)       max , ,n n nU A B
I x I x I x   

(iii)       min ,n n nU A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  

(i)       max , ,n n nU A B
T x T x T x  

(ii)       min ,n n nU A B
I x I x I x  

(iii)       min ,n n nU A B
F x F x F x for all x X  for Type-II 

where   ,nU
T x    ,nU

I x   nU
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be calculated for  
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Type -I as 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x                    (5) 

and for Type -II as 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x                    (6) 

2.5. Intersection of Neutrosophic Sets 

The intersection of two single valued neutrosophic sets nA and nB is a 
single valued neutrosophic set nE  is denoted  by   

       , , ,n n n
n n n

E E E
E A B x T x I x F x x X  

                                             
(7) 

and is defined by the following conditions 

(i)       min , ,n n nE A B
T x T x T x   

(ii)       min , ,n n nE A B
I x I x I x   

(iii)       max ,n n nE A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  

(i)       min , ,n n nE A B
T x T x T x  

(ii)       max ,n n nE A B
I x I x I x  

(iii)       max ,n n nE A B
F x F x F x for all x X  for Type-II 

where   ,nE
T x    ,nE

I x   nE
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 
neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be measured for 

Type -I as 

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x                   (8) 

and for Type -II as 

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x                    (9) 
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3 Neutrosophic Optimization Technique to solve 

Minimization Type Multi-Objective Non-linear 

Programming Problem 

(P1)  

A non-linear multi-objective optimization problem is of the form 

      1 2, ,..., pMinimize f x f x f x                                                                             (10) 

  ,j jg x b 1,2,...,j q                                                                                        (11) 

Now the decision set ,nD  a conjunction of neutrosophic objectives and 

constraints is defined as       
1 1

, , ,n n n

p q
n n n

k j D D D
k j

D G C x T x I x F x
 

  
     
   

       (12) 

Here  

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

T x T x T x T x T x T x T x for all x X      (13) 

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

I x I x I x I x I x I x I x for all x X              (14) 

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

F x F x F x F x F x F x F x for all x X        (15) 

where      , ,n n nD D D
T x I x F x  are Truth membership function, Indeterminacy 

membership function, Falsity membership function of Neutrosophic decision set 
respectively. Now using the neutrosophic optimization the problem (P2) is 
transferred to the nonlinear programming problem as  

(P2)  

Maximize                                                                                              (16) 

Minimize                                                                                              (17) 

Maximize                                                                                             (18) 

Such that  

 n
kG

T x         (19) 

 n
jC

T x                                                                                           (20) 

 n
jG

I x                                                                                             (21) 
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 n
jC

I x         (22) 

 n
kG

F x         (23) 

 n
jC

F x         (24) 

3;             (25) 

,          (26) 

          (27) 

 , , 0,1            (28) 

Now this non-linear programming problem (P2) can be easily solved by 
appropriate mathematical algorithm to give solution of multi-objective linear 
programming problem (P1) by neutrosophic optimization approach. 

Computational Algorithm 

Step-1 Solve the MONLP(1) as a single objective non-linear problem p 
times for each problem by taking one of the objectives at a time and ignoring the 
others.These solution are known as ideal solutions. Let kx  be the respective 
optimal solution for the k th different objective and evaluate each objective values 
for all these k th optimal solution. 

Step-2  From the result of Step-1,determine the correseponding values for 
every objective for each derived solution .With the values of all objectives at each 
ideal solutions,pay-off matrix can be formulated as follows 

     

     

     

* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

....

....

... ... .... ...

....

p

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
 
 

 

Step-3 For each objective  kf x  , the lower bound T
kL  and upper bound 

T
kU  as 

   *maxT r
k kU f x        (29) 

and   *minT r
k kL f x        (30) 

where 1,2,...,r k  for truth membership function of objectives. 
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Step-4 We represents upper and lower bounds for indeterminacy and 
falsity membership of objectives as follows 

F T
k kU U  and  F T T T

k k k kL L U L  
                                                                                

(31)
 

I T
k kU U  and  I T T T

k k k kL L U L  
                                                                                 

(32)
 

Here t  and s  are predetermined real number in  0,1  

Step-5 Define Truth membership, Inderminacy membership,Falsity 
membership functions as follows 

  

 

 
 

 

1

0

T
k k

T
k k T T

k k k k kT T
k k

T
k k

if f x L
U f x

T f x if L f x U
U L

if f x U

 



  


 


                                          

(33) 

  

 

 
 

 

1

0

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L
U f x

I f x if L f x U
U L

if f x U

 



  


 


                                                      

(34) 

  

 

 
 

 

1

0

F
k k

F
k k F F

k k k k kF F
k k

F
k k

if f x L
f x L

F f x if L f x U
U L

if f x U

 


 
  


 


                                          

(35) 

Step-6 Now neutrosophic optimization method for MONLP problem gives 
an equivalent nonlinear-programing problem as  

(P3)  

 Max                                                                                                        (36) 
Such that 

   ;k kT f x                                                                                                     (37) 

   ;k kI f x 
                                                                                                              

(38) 

   ;k kF f x 
                                                                                                                 

(39)
 

3;    
                                                                                                                      

(40)
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; 
                                                                                                                  

(41)
 

; 
                                                                                                                      

(42) 

 , , 0,1 ;                                                                                                              
(43)

 
  ; 0j jg x b x                                                                                                                

(44)
 

1,2,.., ; 1,2,..,k p j q 
                                                                                              

(45) 

Which is reduced to equivalent non-linear programming problem as  

(P4)  

 Max                                                                                                             (46) 
Such that 

   .T T T
k k k kf x U L U                                                                                      (47) 

   .I I I
k k k kf x U L U  

                                                                                           
(48) 

   .F F F
k k k kf x U L L  

                                                                             
(49)

 
3;    

                                                                                                                
(50)

 
; 
                                                                                                                  

(51)
 

; 
                                                                                                                

(52) 

 , , 0,1 ;                                                                                                            
(53)

 
  ; 0j jg x b x                                                                                         

(54) 

1,2,.., ; 1,2,..,k p j q                                Mathematical Preliminaries
 

4 Illustrated Example 

(P5)  

  1 2
1 1 2 1 2,Min f x x x x          (55) 

  2 3
2 1 2 1 2, 2Min f x x x x         (56) 

Such that 

1 2 1x x         (57) 

1 2, 0x x          (58) 
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Solution: Here 1 6.75,TL   1 1 6.94F TU U   and 1 6.75 0.19 ,FL t 

1 1 6.75,I TL L   and 1 6.75 0.19 ,IU s  2 57.87,TL  2 2 60.78F TL L   and

2 57.87 2.91 ,FL t  2 2 57.87,I TL L   and 2 58.87 2.91IU s   .We take 0.3t   and 
0.4s   

Table 1 : Comparison of optimal solution by IFO and NSO Technique 

Optimization 
Technique 

Optimal 
Decision 
Variables 

* *
1 2,x x  

Optimal 
Objective 
Functions 

* *
1 2,f f  

Aspiration levels of 
Truth, Falsity and 
Indeterminacy 
Membership 
Functions 

Sum of 
Optimal 
Objective 
Values 

Intuitionistic 
Fuzzy 
Optimization(IFO) 

0.3659009  

0.6356811 
6.797078  

58.79110  

* 0.719696   
* 0.022953   

65.588178  

Proposed 
Neutrosophic 
Optimization 
(NSO) 

0.3635224  

0.6364776  

6.790513  

58.69732  

* 0.7156984   
* 0.01653271   

* 0.2892461   

65.487833  

 

Table 1 shows that neutrosophic optimization technique gives better result 
than Intuitionistic Fuzzy Nonlinear Programming Technique. 

5 Application of Neutrosophic Optimization in Riser 

Design Problem 

The function of a riser is to supply additional molten metal to a casting to 
ensure a shrinkage porosity free casting.Shrinkage porosity occurs because of the 
increase in density from the liquid to solid state of metals.To be effective a riser 
must be solidify after casting and contain sufficient metal to feed the casting. 
Casting solidification time is predicted from Chvorinov’s rule. Chvorinov’s rule 
provides guidance on why risers are typically cylindrical.The longest 
solidification time for a given volume is the one where the shape of the part has 
the minimum surface area. From a practical standpoint cylinder has least surface 
area for its volume and easiest to make. Since the riser should solidify 3 

A cylinder side riser which consists of a cylinder of height H and diameter 
D. The theoretical basis for riser design is Chvorinov’s rule which is 

  
2/t k V SA         (59) 

where t   solidification time (minutes/seconds), K   solidification constant for 
molding material(minutes/in2 or seconds/cm2), V   riser volume (in3 or cm3), 
SA   cooling surface area of the riser. 
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The objective is to design the smallest riser such that R Ct t  .where Rt   
solidification time of the riser, Ct   solidification time of the casting, 

   
2 2/ /R R R C C CK V SA K V SA

        (60) 

The riser and casting are assumed to be molded in the same material so that
RK and CK are equal .So    / /R R C CV SA V SA  .        (61) 

The casting has a specified volume and surface area, so /C CV SA Y   
constant, which is called the casting modulus. 

/ ,C CV SA Y 2 / 4,R R RV D H 22 / 4R R R RSA D H D         (62) 

Therefore       2 2/ 4 2 / 4 / 4 2R R R R R R R RD D H D D H H D Y     
       

(63) 

We take 96CV   cubic inch.  2 2.8 2.6 6.8 152CSA      square inch. 

Then, 1 149 24 1
19 19R RD H  

        
(64) 

Therefore Multi-objective cylindrical riser design problem can be stated as 

(P6)  

   2, / 4R R R R RMinimize V D H D H                                                                    (65) 

     , / 4 2R R R R R R RMinimize t D H D H H D                                                      (66) 

Subject to 1 149 24 1
19 19R RD H  

                                                                         
(67) 

, 0R RD H                                                                                                       (68) 

Here pay-off matrix is  

42.75642 0.631579
12.510209 0.6315786

R R

R

R

V T
D
H

 
 
 

 

Table 2 : Values of Optimal Decision Variables and Objective 
Functions by Neutrosophic Optimization Technique 

Optimal Decision 
variables 

Optimal Objective 
Functions 
 

Aspiration levels of 
Truth, Falsity and 
Indeterminacy 
Membership Functions 

* 3.152158RD   
* 3.152158RH   

 * * *, 24.60870R R RV D H   

 * * *, 0.6315787R R Rt D H   

* 0.1428574   
* 0.1428574   
* 0.00001   
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6 Conclusions and Future Work 

In view of comparing the neutrosophic optimization with intuitinistic fuzzy 
optimization method, we also obtained the solution of the numerical problem by 
intuitionistic fuzzy optimization method [14] and took the best result obtained for 
comparison with present study is to give the effective algorithm for neutrosophic 
optimization method for getting optimal solutions to a Multi-objective non-linear 
programming problem. The comparisons of results obtained for undertaken 
problem clearly show the superiority of Neutrosophic Optimization over 
Intuitionistic Fuzzy Optimization. Finally, as an application of Neutrosophic 
Multi-objective Riser Design Problem is presented and using Neutrosophic 
Optimization algorithm an optimization algorithm is obtained. 
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Abstract 

In this paper, we develop a neutrosophic optimization (NSO) 
approach for optimizing the design of plane truss structure with 
single objective subject to a specified set of constraints. In this 
optimum design formulation, the objective functions are the weight 
of the truss and the deflection of loaded joint; the design variables 
are the cross-sections of the truss members; the constraints are the 
stresses in members. A classical truss optimization example is 
presented here in to demonstrate the efficiency of the neutrosophic 
optimization approach. The test problem includes a two-bar planar 
truss subjected to a single load condition. This single-objective 
structural optimization model is solved by fuzzy and intuitionistic 
fuzzy optimization approach as well as neutrosophic optimization 
approach. Numerical example is given to illustrate our NSO 
approach. The result shows that the NSO approach is very efficient 
in finding the best discovered optimal solutions. 

Keywords 

Neutrosophic Set; Single Valued Neutrosophic Set; Neutrosophic 
Optimization; Non-linear Membership Function; Structural 
Optimization. 

 

1 Introduction 

In the field of civil engineering, nonlinear structural design optimizations 
are of great of importance. Therefore, the description of structural geometry and 
mechanical properties like stiffness are required for a structural system. However, 
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the system description and system inputs may not be exact due to human errors 
or some unexpected situations. At this juncture fuzzy set theory provides a 
method which deal with ambiguous situations like vague parameters, non-exact 
objective and constraint. In structural engineering design problems, the input data 
and parameters are often fuzzy/imprecise with nonlinear characteristics that 
necessitate the development of fuzzy optimum structural design method. Fuzzy 
set (FS) theory has long been introduced to handle inexact and imprecise data by 
Zadeh [2], Later on Bellman and Zadeh [4] used the fuzzy set theory to the 
decision making problem. The fuzzy set theory also found application in 
structural design. Several researchers like Wang et al. [8] first applied α-cut 
method to structural designs where the non-linear problems were solved with 
various design levels α, and then a sequence of solutions were obtained by setting 
different level-cut value of α. Rao [3] applied the same α-cut method to design a 
four–bar mechanism for function generating problem. Structural optimization 
with fuzzy parameters was developed by Yeh et al. [9]. Xu [10] used two-phase 
method for fuzzy optimization of structures. Shih et al. [5] used level-cut 
approach of the first and second kind for structural design optimization problems 
with fuzzy resources. Shih et al. [6] developed an alternative α-level-cuts methods 
for optimum structural design with fuzzy resources. Dey et al. [11] used 
generalized fuzzy number in context of a structural design. Dey et al used basic 
t-norm based fuzzy optimization technique for optimization of structure. Dey et 
al. [13] developed parameterized t-norm based fuzzy optimization method for 
optimum structural design. Also, Dey et.al [14] Optimized shape design of 
structural model with imprecise coefficient by parametric geometric 
programming. In such extension, Atanassov [1] introduced Intuitionistic fuzzy 
set (IFS) which is one of the generalizations of fuzzy set theory and is 
characterized by a membership function, a non- membership function and a 
hesitancy function. In fuzzy sets the degree of acceptance is only considered but 
IFS is characterized by a membership function and a non-membership function 
so that the sum of both values is less than one.  A transportation model was solved 
by Jana et al.[15]using multi-objective intuitionistic fuzzy linear programming. 
Dey et al. [12] solved two bar truss non-linear problem by using intuitionistic 
fuzzy optimization problem. Dey et al. [16] used intuitionistic fuzzy optimization 
technique for multi objective optimum structural design. Intuitionistic fuzzy sets 
consider both truth membership and falsity membership. Intuitionistic fuzzy sets 
can only handle incomplete information not the indeterminate information and 
inconsistent information.In neutrosophic sets indeterminacy is quantified 
explicitly and truth membership, indeterminacy membership and falsity 
membership are independent. Neutrosophic theory was introduced by 
Smarandache [7,18-27]. The motivation of the present study is to give 
computational algorithm for solving multi-objective structural problem by single 
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valued neutrosophic optimization approach. Neutrosophic optimization 
technique is very rare in application to structural optimization. We also aim to 
study the impact of truth membership, indeterminacy membership and falsity 
membership function in such optimization process. The results are compared 
numerically both in fuzzy optimization technique, intuitionistic fuzzy 
optimization technique and neutrosophic optimization technique. From our 
numerical result, it is clear that neutrosophic optimization technique provides 
better results than fuzzy optimization and intuitionistic fuzzy optimization.  

2 Single-objective Structural Model 

In sizing optimization problems, the aim is to minimize single objective 
function, usually the weight of the structure under certain behavioral constraints 
on constraint and displacement. The design variables are most frequently chosen 
to be dimensions of the cross sectional areas of the members of the structures. 
Due to fabrications limitations the design variables are not continuous but 
discrete for belongingness of cross-sections to a certain set. A discrete structural 
optimization problem can be formulated in the following form 

 Minimize WT A        (1) 

  0, 1,2,...,isubject to A i m        (2) 

, 1,2,...,d
jA R j n        (3) 

where  WT A represents objective function,  i A is the behavioral constraints, 
m and n are the number of constraints and design variables respectively. A given 
set of discrete value is expressed by dR and in this paper objective function is 
taken as   1

m
i i ii

WT A l A


 and constraint are chosen to be stress of structures as 

follows  i iA   with allowable tolerance 0
i for 1,2,.........,i m where i and 

il are weight of unit volume and length of thi element respectively, m  is the 
number of structural element, i  and 0

i  are the thi stress ,allowable stress 
respectively. 

2 Mathematical Preliminaries 

In the following, we briefly describe some basic concepts and basic 
operational laws related to neutrosophic set  

2.1 Fuzzy Set (FS) 

Let X be a fixed set. A fuzzy set A  of X is an object having the form  
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   , AA x T x x X 
       

(4)
 

where the function  : 0,1AT X   stands for the truth membership of the element 

x X to the set A . 

2.2. Intuitionistic Fuzzy Set (IFS) 

Let a set X be fixed. An intuitionistic fuzzy set or IFS iA in X  is an object 
of the form      , ,i i

i
A A

A X T x F x x X 
    

(5)
 

where  : 0,1iA
T X  and  : 0,1iA

F X   define the truth membership and falsity 

membership respectively, for every element of x X such that
   0 1i iA A

T x F x   . 

2.3. Single-Valued Neutrosophic Set (SVNS) 

Let a set X be the universe of discourse. A single valued neutrosophic set 
nA   over X is an object having the form  

       , , ,n n n
n

A A A
A x T x I x F x x X 

     
(6)

 

where  : 0,1 ,nA
T X   : 0,1nA

I X  and  : 0,1nA
F X   are truth , indeterminacy 

and falsity membership functions respectively so as to 

     0 3n n nA A A
T x I x F x     for all x X .  

2.4. Union of Neutrosophic Sets (NSs) 

The union of two single valued neutrosophic sets nA and nB is a single 
valued neutrosophic set nU denoted by 

       , , ,n n n
n n n

U U U
U A B x T x I x F x x X  

   
(7)

 
and is defined by the following conditions 

(i)       max , ,n n nU A B
T x T x T x   

(ii)       max , ,n n nU A B
I x I x I x   

(iii)       min ,n n nU A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  
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(i)       max , ,n n nU A B
T x T x T x  

(ii)       min ,n n nU A B
I x I x I x  

(iii)       min ,n n nU A B
F x F x F x for all x X  for Type-II 

where   ,nU
T x    ,nU

I x   nU
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be calculated for  

Type -I as 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x                   (8) 

and for Type -II as 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x               (9) 

2.5.   Intersection of Neutrosophic Sets 

The intersection of two single valued neutrosophic sets nA and nB is a 
single valued neutrosophic set nE  is denoted  by   

       , , ,n n n
n n n

E E E
E A B x T x I x F x x X  

    
(10) 

and is defined by the following conditions 

(i)       min , ,n n nE A B
T x T x T x   

(ii)       min , ,n n nE A B
I x I x I x   

(iii)       max ,n n nE A B
F x F x F x for all x X for Type-I  

Or  in another way by defining following conditions  

(i)       min , ,n n nE A B
T x T x T x  

(ii)       max ,n n nE A B
I x I x I x  
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(iii)       max ,n n nE A B
F x F x F x for all x X  for Type-II 

where   ,nE
T x    ,nE

I x   nE
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be measured for 

Type -I as 

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x                (11) 

and for Type -II as 

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x                (12) 

3 Mathematical Analysis 

3.1. Neutrosophic Optimization Technique to Solve Minimization Type 
Single-Objective Non-linear Programming Problem 

Let a nonlinear single-objective optimization problem be 

 Minimize f x                                                                                    (13) 

Such that 

  1,2,...,j jg x b j m     

0x   

Usually constraints goals are considered as fixed quantity .But in real life 
problem, the constraint goal cannot be always exact. Therefore, we can consider 
the constraint goal for less than type constraints at least jb  and it may possible 

to extend to 0
j jb b .This fact seems to take the constraint goal as a neutrosophic 

fuzzy set and which will be more realistic descriptions than others. Then the NLP 
becomes NSO problem with neutrosophic resources, which can be described as 
follows 

 Minimize f x                                                                                             (14) 

Such that 
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  1,2,....,n
j jg x b j m   

0x   

To solve the NSO (13), we are presenting a solution procedure for single-
objective NSO problem (13) as follows 

Step-1: Following warner’s approach solve the single objective non-linear 

programming problem without tolerance in constraints   . j ji e g x b , with 

tolerance of acceptance in constraints (i.e   0
j j jg x b b  ) by appropriate non-

linear programming technique  

Here they are  

Sub-problem-1  

 Minimize f x                                                                                                         (15) 

Such that 

  1,2,...,j jg x b j m   

0x   

Sub-problem-2  

 Minimize f x                                                                                                                 (16) 

Such that 

  0 , 1,2,...,j j jg x b b j m    

0x   

We may get optimal solution    * 1 * 1,x x f x f x  and 

   * 1 * 1,x x f x f x    

Step-2: From the result of step 1 we now find the lower bound and upper 
bound of objective functions. If      

, ,T I F
f x f x f xU U U  be the upper bounds of truth, 

indeterminacy , falsity function for the objective respectively and      
, ,T I F

f x f x f xL L L

be the lower bound of truth, indeterminacy, falsity membership functions of 
objective respectively.  

then  



Editors: Prof. Florentin Smarandache 
Dr. Mohamed Abdel-Basset 
Dr. Victor Chang 

120 

 

                , 0F T F T T T
f x f x f x f x f x f x f x f xU U L L where U L        

                , 0F T F T T T
f x f x f x f x f x f x f x f xU U L L where U L         

                , 0I T I T T T
f x f x f x f x f x f x f x f xL L U L where U L         

Step-3:  In this step we calculate membership for truth, indeterminacy and 
falsity  membership function of objective as follows 

 
    

   

   

   
     

   

1

1 exp

0

T
f x

T
f x T T

f x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

     

       
     




       (17)

 

    

   

   

   
     

   

1

exp

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

    

    
   




         

(18) 

    

   

 
   

       

   

0

1 1 tanh
2 2 2

1

F
f x

F F
f x f x F F

f x f x f x f x

F
f x

if f x L

U L
F f x f x if L f x U

if f x U



 

     

       
     


          

(19) 

where ,  are non-zero parameters prescribed by the decision maker.  

Step-4:  In this step using exponential and hyperbolic membership 
function we calculate truth , indeterminacy and falsity membership function for 
constraints as follows 

    

 

   

   

 

 

0

0

1

1 exp

0

j

j

j j

j j

T
jg x

j j j j jg x T T
g x g x

j j j

if g x b

U g x
T g x if b g x b b

U L

if g x b b



 


             
     


 

    

(20) 

    

 

    

 

   

   

1

exp

0

j

j j

j

j

j j

j jg x

j j j jg x g x
g x

j j g x

if g x b

b g x
I g x if b g x b

if g x b








 

   
  

     
  

 
  


  

(21) 
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    

   

 
 

     

 

0
0

0

0

21 1 tanh
2 2 2

1

j

j

j j j

j j g x

j j g x
j j j j j jg x g x g x

j j j

if g x b

b b
F g x g x if b g x b b

if g x b b




 

  

               

     


 


        (22) 

where ,  are non-zero parameters prescribed by the decision maker and for 

   
01,2,....., 0 ,

j j jg x g xj m b    .   

Step-5:  Now using NSO for single objective optimization technique the 
optimization problem (13) can be formulated as 

 Maximize                                                                                   (23) 

Such that  

    ;f xT x                                                                                             (24) 

  ;
jgT x 

                                                                                               
(25) 

 
  ;

f x
I x                                                                                                 (26) 

 
  ;

jgI x 
                                                                                              

(27) 

 
  ;

f x
F x                                                                                               (28) 

  ;
jgF x 

                                                                                               
(29) 

3;                                                                                                (30) 

; ;                                                                                                 (31) 

       , , 0,1                                                                                         (32) 

where  

            min ,n
j jf x g xD

T x T f x T g x                                               (33) 

for 1,2,...,j m  

            min ,n
j jf x g xD

I x I f x I g x  
                                              

(34)
 

for 1,2,...,j m    and  

            min ,n
j jf x g xD

F x F f x F g x    for 1,2,...,j m                (35) 



Editors: Prof. Florentin Smarandache 
Dr. Mohamed Abdel-Basset 
Dr. Victor Chang 

122 

 

are the truth ,indeterminacy and falsity membership function of decision 

set    
1

m
n n n

j
j

D f x g x


 . Now if non-linear membership be considered the above 

problem (23-35) can be reduced to following crisp linear programming problem 

 Maximize                                                                                        (36) 

Such that  

 
    

 
;

T T
f x f x T

f x

U L
f x U




                                                                    (37) 

     
;T

f x f xf x U 
                                                                                 

(38) 

 
 

      ;
2

T T
f x f x f x

f x

U L
f x





 
 

                                                             
(39) 

 
0

0 ;j
j j j

b
g x b b


  

                                                                              
(40) 

      
0 ;

j jj jg x g xg x b   
                                                                    

(41) 

 
 

 
02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                             
(42) 

                     3;                                                                                             (43) 

                     ; ;                                                                                                    (44) 

                   , , 0,1                                                                                                (45) 

where  ln 1 ;                                                                                   (46) 
4;                                                                                                                               (47) 

 

    
6 ;f x F F

f x f xU L
 


                                                                                                       

(48)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 


                                                                          

(49)

 
ln ;                                                                                                                        (50) 

 1tanh 2 1 .                                                                                           (51) 
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This crisp nonlinear programming problem can be solved by appropriate 
mathematical algorithm. 

4 Solution of Single-objective Structural Optimization 

Problem (SOSOP) by Neutrosophic Optimization 

Technique 

To solve the SOSOP (1), step 1 of 3 is used and we will get optimum 
solutions of two sub problem as 1A  and 2A .After that according to step 2 we find 
upper and lower bound of  membership function of objective function as 

     , ,T I F
WT A WT A WT AU U U and      

, ,T I F
WT A WT A WT AU U U  where 

             1 2 1 2max , , min , ,T T
WT A WT AU WT A WT A L WT A WT A 

  
(52)

 
 

                , 0F T F T T T
WT A WT A WT A WT A WT A WT A WT A WT AU U L L where U L      

  
(53)

 
 

                , 0I T I T T T
WT A WT A WT A WT A WT A WT A WT A WT AL L U L where U L      

  
(54) 

Let the non-linear membership function for objective function  WT A  be  

    

   

   

   
     

   

1

1 exp

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U



 

     

       
     




 (55) 

    

   

   

   
     

   

1

exp

0

I
WT A

I
WT A I I

WT A WT A WT AI I
WT A WT A

I
WT A

if WT A L

U WT A
I WT A if L WT A U

U L

if WT A U

 

    

    
   




  

(56) 
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    

 

    

 

   

   

1

exp

0

j

i i

i

i

i i

i ig x

i i i iA x
x

i i x

if A

A
I A if A

if A

 





 

  
    



  

 


   
  

     
  

 
  


 

 

(57) 

    

   

     

 

0
0

0

0

21 1 tanh
2 2 2

1

i

i

ii i

i i A

j j
i i i i i iA A

i i i

if A

b b
F A A if A

if A





 

  


       

  

  

      

          
    


 
  

(58) 

where ,  are non-zero parameters prescribed by the decision maker and for 

   
01,2,....., 0 ,

i i iA Aj m
 
     , then  neutrosophic optimization problem can be 

formulated as  

 Max                                                                                                      (59) 

such that  

     ;WT AT WT A                                                                                    (60) 

     ;
i iAT A


 

                                                                                                 
(61) 

 
   ;

WT A
I WT A 

                                                                                                      
(62)

 

     ;
i iAI A


 

                                                                                                              
(63)

 

 
   ;

WT A
F WT A 

                                                                                                   
(64)

 

    
i iAF A


                                                                                                (65) 

  3; , ;                                                                                                   (66) 

   , , 0,1                                                                                                            (67) 

The above problem can be reduced to following crisp linear programming 
problem, for non-linear membership as 

 Maximize                                                                                             (68) 

such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                         
(69)

 



Neutrosophic Operational Research 
Volume II 

125 

 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                      
(70) 

     
;T

WT A WT AWT A U 
                                                                              

(71) 

 
0

0 ;i
i i iA


   


  

                                                                                    
(72)

 

     
0 ;

i ii iA AA
 

     
                                                                               

(73)
 

 
 

 
02

;
2

i

i

i i A
i

A

A 



  




 
 

                                                                 
(74) 

3;     ; ;                                                                                         (75) 

 , , 0,1                                                                                                  (76) 

where 

 ln 1 ;                                                                                                         (77) 
4;                                                                                                                   (78) 

 

    
6 ;WT A F F

WT A WT AU L
 


                                                                                      

(79)

 
ln ;                                                                                                        (80) 

 1tanh 2 1 .                                                                                                 (81) 

 

    
6 ;A F F

A A

and
U L



 

 


                                                                                 

(82) 

This crisp nonlinear programming problem can be solved by appropriate 
mathematical algorithm. 

5 Numerical illustration 

A well-known two-bar [17] planar truss structure is considered. The design 
objective is to minimize weight of the structural  1 2, , BWT A A y of a statistically 
loaded two-bar planar truss subjected to stress  1 2, ,i BA A y constraints on each 
of the truss members 1, 2i  . 
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Figure 1. Design of the two-bar planar truss 

 

The multi-objective optimization problem can be stated as follows  

    22 2 2
1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y    

                                     
(83) 

Such that                                                                       

 
 

22

AB 1 2
1

, , ;B B T
B AB

P x l y
A A y

lA
 

 
    

                                                
(84) 

 
2 2

BC 1 2
2

, , ;B B C
B BC

P x y
A A y

lA
 


    

                                                                   
(85) 

                             0.5 1.5By                                                                    (86) 

                             1 20, 0;A A   

where P   nodal load ;   volume density ; l  length of AC ; Bx   

perpendicular distance from AC to point B . 1A  Cross section of bar- AB ; 2A 

Cross section of bar- BC .  T   maximum allowable tensile stress ,  C 

maximum allowable compressive stress and By y -co-ordinate of node B . 

Input data for crisp model (10) is in table 1. 

Solution : According to step 2 of 4,we find upper and lower bound of  
membership function of objective function as  
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     
, ,T I F

WT A WT A WT AU U U  

and      
, ,T I F

WT A WT A WT AL L L  where 

   
14.23932T F

WT A WT AU U 
          

(87)
 

   
12.57667T I

WT A WT AL L 
         

(88)
 

   
12.57667F

WT A WT AL  
,  

0 1.66265WT A 
      

(89)
 

     
,I T

WT A WT A WT AU L    
0 1.66265WT A          (90) 

Now using the bounds we calculate the membership functions for objective 
as follows 

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 12.57667

14.23932 , ,
, , 1 exp 4 12.57667 , , 14.23932

1.66265

0 , , 14.23932

B

B

B
B BWT A A y

B

if WT A A y

WT A A y
T WT A A y if WT A A y

if WT A A y

 


    
        

    




    

(91)

 

    

 

   
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 12.57667

12.57667 , ,
, , exp 12.57667 , , 12.57667

0 , , 12.57667

B

B

WT B
B B WTWT A A y

WT

B WT

if WT A A y

WT A A y
I WT A A y if WT A A y

if WT A A y








 


    
     

   
  

 

(92)

 

    

 

 
 

 

 

1 2

1 2

1 2 1 2 1 2, ,

1 2

0 , , 12.57667

26.815991 1 6, , tanh , , 12.57667 , , 14.23932
2 2 2 1.66265

1 , , 14.23932

B

B WT

WT
B B WT BWT A A y

WT

B

if WT A A y

F WT A A y WT A A y if WT A A y

if WT A A y








  


    
              




 

(93)

  Similarly the membership functions for tensile stress are   

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 130

150 , ,
, , 1 exp 4 130 , , 150

20

0 , , 150

T B

T B

T B
T B T BA A y

T B

if A A y

A A y
T A A y if A A y

if A A y






 



 


    
        

    




    (94) 

    

 

   
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 130

130 ,
, , exp 130 , , 130

0 , , 130

T

TT B

T

T

T B

T B
T B T BA A y

T B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 


     
     
   


 

   

(95) 
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    

 

   

 

1 2

1 2

1 2 1 2 1 2, ,

1 2

0 , , 130

2801 1 6, , tanh , , 130 , , 150
2 2 2 20

1 , , 150

T

T

TT B

T

T B

T B T B T BA A y

T B

if A A y

F A A y A A y if A A y

if A A y









 


   





  


      
                




0 , 20
T T

where                 (96) 

and the membership functions for compressive stress constraint are 

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 90

100 , ,
, , 1 exp 4 90 , , 100

10

0 , , 100

C B

C B

C B
C B C BA A y

C B

if A A y

A A y
T A A y if A A y

if A A y






 



 


    
        

    




    

(97) 

    

 

   
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 90

90 , ,
, , exp 90 , , 90

0 , , 90

C

CC B

C

C

C B

C B
C B C BA A y

C B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 


     
     
   


 

    

(98)

 

    

 

   

 

1 2

1 2

1 2 1 2 1 2, ,

1 2

0 , , 90

1901 1 6, , tanh , , 90 , , 100
2 2 2 10

1 , , 100

C

C

CC B

C

C B

C B C B C BA A y

C B

if A A y

F A A y A A y if A A y

if A A y









 


   





  


      
                 




    

(99)

 0 , 10
C C

where     . 

Now , using above mentioned  truth, indeterminacy and falsity membership 
function NLP (83-86) can be solved by NSO technique for different values of 

, ,
T CWT     and , ,

T CWT     . The optimum solution of SOSOP(83-86) is given in 

table (2) and the solution is compared with fuzzy and intuitionistic fuzzy 
optimization technique 

 

Table 1: Input data for crisp model (83-86) 

Applied 
load

 
 P KN  

Volume 
density

 
 3/KN m  

Length  
 l m  

Maximum 
allowable   
tensile stress 

T    Mpa  

Maximum 
allowable 
compressive 
stress C  

 Mpa  

Distance 
of Bx from
AC   m

 

100 7.7 2 130 with 
tolerance 20 

90 with 
tolerance 10 

1 
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Table 2: Comparison of Optimal solution of SOSOP (83-86) based on different 
methods 

 

Methods  2
1A m   2

2A m    1 2,WT A A KN   By m  

Fuzzy single-objective non-
linear programming 
(FSONLP) 
with non-linear membership 
functions 

.5883491 .7183381 14.23932 1.013955 

Intuitionistic fuzzy single-
objective nonlinear 
programming (IFSONLP) 
with non-linear membership 
functions

1 2 30.8, 16, 8      

.6064095 .6053373 13.59182 .5211994 

Neutosophic 
optimization(NSO) with 
non-linear membership 
functions 

1 2 30.8, 16, 8    

1 2 30.66506, 8, 4      

.5451860 .677883 13.24173 .7900455 

 

Here we get best solutions for the different tolerance 1 2,   and 3  for 
indeterminacy exponential membership function of objective functions for this 
structural optimization problem. From the table 2, it shows that NSO technique 
gives better Pareto optimal result in the perspective of Structural Optimization. 

7 Conclusions 

The main objective of this work is to illustrate how neutrosophic 
optimization technique using non-linear membership function can be utilized to 
solve a nonlinear structural problem. The concept of neutrosophic optimization 
technique allows one to define a degree of truth membership, which is not a 
complement of degree of falsity; rather, they are independent with degree of 
indeterminacy. The numerical illustration shows the superiority of neutrosophic 
optimization over fuzzy optimization as well as intuitionistic fuzzy optimization. 
The results of this study may lead to the development of effective neutrosophic 
technique for solving other model of nonlinear programming problem in other 
engineering field.  
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Abstract 

In this paper, we develop a multi-objective non-linear neutrosophic 
optimization (NSO) approach for optimizing the design of plane 
truss structure with multiple objectives subject to a specified set of 
constraints. In this optimum design formulation, the objective 
functions are the weight of the truss and the deflection of loaded 
joint; the design variables are the cross-sections of the truss 
members; the constraints are the stresses in members. A classical 
truss optimization example is presented here in to demonstrate the 
efficiency of the neutrosophic optimization approach. The test 
problem includes a three-bar planar truss subjected to a single load 
condition.This multi-objective structural optimization model is 
solved by neutrosophic optimization approach. With linear and non-
linear membership function. Numerical example is given to 
illustrate our NSO approach. 

Keywords 

Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic 
Optimization, Structural model. 

1 Introduction 

The research area of optimal structural design has been receiving 
increasing attention fromboth academia and industry over the past three decades 
in order to improve structural performance and to reduce design costs. However, 
in the real world, uncertainty or vagueness is prevalent in the Engineering 
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Computations. In the context of structural design the uncertainty is connected 
with lack of accurate data of design factors. This tendency has been changing due 
to the increase in the use of fuzzy mathematical algorithm for dealing with this 
class of problems.Fuzzy set (FS) theory has long been introduced to handle 
inexact and imprecise data by Zadeh [2], Later on Bellman and Zadeh [4] used 
the fuzzy set theory to the decision making problem. The fuzzy set theory also 
found application in structural design. Several researchers like Wang et al. [8] 
first applied α-cut method to structural designs where the non-linear problems 
were solved with various design levels α, and then a sequence of solutions were 
obtained by setting different level-cut value of α. Rao [3] applied the same α-cut 
method to design a four–bar mechanism for function generating problem. 
Structural optimization with fuzzy parameters was developed by Yeh et al. [9]. 
Xu [10] used two-phase method for fuzzy optimization of structures. Shih et al. 
[5] used level-cut approach of the first and second kind for structural design 
optimization problems with fuzzy resources. Shih et al. [6] developed an 
alternative α-level-cuts methods for optimum structural design with fuzzy 
resources. Dey et al. [11] used generalized fuzzy number in context of a structural 
design. Dey et al.[14]used basic t-norm based fuzzy optimization technique for 
optimization of structure. Dey et al. [13] developed parameterized t-norm based 
fuzzy optimization method for optimum structural design. In such extension, 
Atanassov [1] introduced Intuitionistic fuzzy set (IFS) which is one of the 
generalizations of fuzzy set theory and is characterized by a membership 
function, a non- membership function and a hesitancy function. In fuzzy sets the 
degree of acceptance is only considered but IFS is characterized by a membership 
function and a non-membership function so that the sum of both values is less 
than one.  A transportation model was solved by Jana et al.[15]using multi-
objective intuitionistic fuzzy linear programming. Dey et al. [12] solved two bar 
truss non-linear problem by using intuitionistic fuzzy optimization problem. Dey 
et al. [16] used intuitionistic fuzzy optimization technique for multi objective 
optimum structural design. Intuitionistic fuzzy sets consider both truth 
membership and falsity membership. Intuitionistic fuzzy sets can only handle 
incomplete information not the indeterminate information and inconsistent 
information.In neutrosophic sets indeterminacy is quantified explicitly and truth 
membership, indeterminacy membership and falsity membership which are 
independent. Neutrosophic theory was introduced by Smarandache [7,17-26]. 
The motivation of the present study is to give computational algorithm for solving 
multi-objective structural problem by single valued neutrosophic optimization 
approach. Neutrosophic optimization technique is very rare in application to 
structural optimization. We also aim to study the impact of truth exponential 
membership, indeterminacy exponential membership and falsity hyperbolic 
membership function in such optimization process. The results are compared 
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numerically linear and nonlinear neutrosophic optimization technique. From our 
numerical result, it has been seen that there is no change between the result of 
linear and non-linear neutrosophic optimization technique in the perspective of 
structural optimization technique. 

2 Multi-objective Structural Model 

In the design problem of the structure i.e. lightest weight of the structure 
and minimum deflection of the loaded joint that satisfies all stress constraints in 
members of the structure. In truss structure system ,the basic parameters 
(including allowable stress ,etc) are  known and the optimization’s target is that 
identify the optimal bar truss cross-section area so that the structure is of the 
smallest total weight with minimum nodes displacement in a given load 
conditions . 

The multi-objective structural model can be expressed as  

 

 Minimize WT A                                                                                                     (1) 

 minimize A                                                                                                    (2) 

   subject to A                                                                                                    (3) 

min maxA A A   

where  1 2, ,.... T
nA A A A are the design variables for the cross section, n is 

the group number of design variables for the cross section bar ,  
1

n

i i i
i

WT A A L




is the total weight of the structure ,  A is the deflection of the loaded joint ,where 
,i iL A and i are the bar length, cross section area and density of the thi group bars 

respectively.  A is the stress constraint and   is allowable stress of the group 

bars under various conditions, minA and maxA  are the lower and upper bounds of 
cross section area A respectively 

3 Mathematical Preliminaries 

In the following, we briefly describe some basic concepts and basic 
operational laws related to neutrosophic set  

2.1 Fuzzy Set(FS) 

        Let X be a fixed set. A fuzzy set A  of X is an object having the form  

   , AA x T x x X 
                                                                                                

(4)
 



Editors: Prof. Florentin Smarandache 
Dr. Mohamed Abdel-Basset 
Dr. Victor Chang 

136 

 

where the function  : 0,1AT X   stands for the truth membership of the 

element x X to the set A . 

2.2.    Intuitionistic Fuzzy Set(IFS) 

         Let a set X be fixed. An intuitionistic fuzzy set or IFS iA in X  is an 
object of the form      , ,i i

i
A A

A X T x F x x X 
                                

(5)
 

where  : 0,1iA
T X  and  : 0,1iA

F X   define the truth membership and 
falsity membership respectively, for every element of x X such that

   0 1i iA A
T x F x   . 

 

2.3.    Single-Valued Neutrosophic Set(SVNS) 

         Let a set X be the universe of discourse. A single valued 
neutrosophic set nA   over X is an object having the form  

       , , ,n n n
n

A A A
A x T x I x F x x X 

                                             
(6)

 

where  : 0,1 ,nA
T X   : 0,1nA

I X  and  : 0,1nA
F X   are truth , indeterminacy 

and falsity membership functions respectively so as to 
     0 3n n nA A A

T x I x F x     for all x X .  

 

2.4.   Union of Neutrosophic Sets(NSs) 

The union of two single valued neutrosophic sets nA and nB is a single 
valued neutrosophic set nU denoted by 

       , , ,n n n
n n n

U U U
U A B x T x I x F x x X  

     
(7)

 
and is defined by the following conditions 

(i)       max , ,n n nU A B
T x T x T x   

(ii)       max , ,n n nU A B
I x I x I x   

(iii)       min ,n n nU A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  

(i)       max , ,n n nU A B
T x T x T x  

(ii)       min ,n n nU A B
I x I x I x  
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(iii)       min ,n n nU A B
F x F x F x for all x X  for Type-II 

where   ,nU
T x    ,nU

I x   nU
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example : 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 
neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be calculated for  

Type -I as 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x                   (8) 

and for Type -II as 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x                   (9) 

 

2.5.   Intersection of Neutrosophic Sets 

        The intersection of two single valued neutrosophic sets nA and nB is 
a single valued neutrosophic set nE  is denoted  by   

       , , ,n n n
n n n

E E E
E A B x T x I x F x x X  

     
(10) 

and is defined by the following conditions 

(i)       min , ,n n nE A B
T x T x T x   

(ii)       min , ,n n nE A B
I x I x I x   

(iii)       max ,n n nE A B
F x F x F x for all x X for Type-I  

Or  in another way by defining following conditions  

(i)       min , ,n n nE A B
T x T x T x  

(ii)       max ,n n nE A B
I x I x I x  

(iii)       max ,n n nE A B
F x F x F x for all x X  for Type-II 

where   ,nE
T x    ,nE

I x   nE
F x  represent truth membership, 

indeterminacy-membership and falsity-membership functions of union of 
neutrosophic sets   
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Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 
neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be measured for 

Type -I as 

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x                (11) 

and for Type -II as 

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x                (12) 

4 Mathematical Analysis 

4.1. Neutrosophic Optimization Technique to Solve Minimization Type 
Multi-Objective Non-linear Programming Problem 

Decision making is a process of solving the problem involving the goals 
under constraints.The outcome is a decision which should in an action .Decision 
making plays an important role in engineering science.It is difficult process due 
to factors like incomplete and imprecise information which tend to presented real 
life situations.In the decision making process ,our main target is to find the value 
from the selected set with the highest degree of membership in the decision set 
and these values support the goals under constraints only.But there may be 
situations where some values from selected set cannot support i.e such values 
strongly against the goals under constraints which are non-admissible.In this case 
we find such values from selected set with last degree of non –membership in the 
decision sets.Intuitionistic fuzzy sets can only handle incomplete information not 
the indeterminate information and inconsistent information which exists 
commonly in belief systems .In neutrosophic set ,indeterminacy is quantified 
explicitely and truth membership ,indeterminacy –membership and falsity 
membership are independent.So it is natural to adopt the purpose the value from 
the selected set with highest degree of truth-membership,indeterminacy-
membership and least degree of falsity membership on the decision set.These 
factors indicate that a decision making process takes place in neutrosophic 
environment.  

A nonlinear multi-objective optimization of the problem is of the form  

      1 2, ,...., pMinimize f x f x f x

                                                          

(13)

 
  1,2,...,j jg x b j q                                                                                          (14) 

Now the decision set nD , a conjunction of Neutrosophic objectives and 
constraints is defined 
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       
1 1

, ,n n n

p q
n n n

k j D D D
k j

D G C x T x I x F x
 

  
     
       

(15) 

Here  

 
       

       
1 2 3

1 2 3

, , ,..., ;
min

, , ,...,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

T x T x T x T x
T x for all x X

T x T x T x T x

 
 

  
    

(16) 

 
       

       
1 2 3

1 2 3

, , ,..., ;
min

, , ,...,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

I x I x I x I x
I x for all x X

I x I x I x I x

 
 

  
     

(17) 

 
       

       
1 2 3

1 2 3

, , ,..., ;
min

, , ,...,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

F x F x F x F x
F x for all x X

F x F x F x F x

 
 

  
     

(18) 

 Where      , ,n n nD D D
T x I x F x are truth-membership function, 

indeterminacy membership function,falsity membership function of neutrosophic 
decision set respectively .Now using the neutrosophic optimization, problem (13-
14) is transformed to the non-linear programming problem as 

Max          (19)  

Max          (20) 

Min          (21) 

such that
 

  ;n
kG

T x         (22) 

  ;n
jC

T x 
       

(23) 

  ;n
kG

I x 
       

(24)
 

  ;n
jC

I x 
       

(25) 

  ;n
kG

F x 
        

(26) 

  ;n
jC

F x 
       

(27) 

3;             (28) 

; ;             (29) 

 , , 0,1           (30) 
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Now this non-linear programming problem (19-30) can be easily solved by 
an appropriate mathematical programming to give solution of multi-objective 
non-linear programming problem (13-14) by neutrosophic optimization 
approach. 

Computational Algorithm  

Step-1: Solve the MONLP problem (13-14) as a single objective non-
linear problem p times for each problem by taking one of the objectives at a time 
and ignoring the others.These solution are known as ideal solutions. Let kx be the 
respective optimal solution for the thk different objective and evaluate each 
objective values for all these thk optimal solution. 

Step-2: From the result of step-1, determine the corresponding values for 
every objective for each derived solution, pay-off matrix can be formulated as 
follows 

     

     

     

* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

.......

........

...... ........ ........ .......

........

p

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
 
 

 

Step-3: For each objective  kf x  find lower bound kL  and the upper 
bound kU   

  *maxT r
k kU f x and

           

(31)

 
  *min 1,2,...,T r

k kL f x where r k      (32) 

For truth membership of objectives. 

Step-4:We represent upper and lower bounds for indeterminacy and falsity 
membership of objectives as follows : 

1,2,...for k p

  ;F T F T T T
k k k k k kU U and L L t U L                                                                (33) 

 I T I T T T
k k k k k kL L and U L s U L                                                               (34) 

Here ,t s are predetermined real numbers in  0,1  

Step-5: Define truth membership, indeterminacy membership and falsity 
membership functions as follows  

1,2,...,for k p  
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    

   

   

   
     

   

1

1 exp

0

k

k

k k k

k k

k

T
k f x

T
kf x T T

k kf x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

     

       
     




  

(35) 

    

   

   

   
     

   

1

exp

0

k

k k k

k k

k

I
k f x

I
kf x I I

k kf x f x f xI I
f x f x

I
k f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

    

    
   




    

(36) 

    

   

 
   

       

   

0

1 1 tanh
2 2 2

1

F
f x

F F
f x f x F F

f x f x f x f x

F
f x

if f x L

U L
F f x f x if L f x U

if f x U



 

     

       
     




 

(37) 

Step-6:Now neutosophic optimization method for MONLP problem gives 
a equivalent nonlinear programming problem as:  

 Maximize                                                                                                       (38) 

such that  

   ;k kT f x 
                                                                                                    

(39)
 

   ;k kI f x 
                                                                                                             

(40)
 

   ;k kF f x 
                                                                                                            

(41) 

3;                                                                                                               (42) 
; ;                                                                                                                         (43) 

 , , 0,1 ;                                                                                                                 (44) 

  0,j jg x b x                                                                                                          (45) 
1,2,..., ;k p 1,2,...,j q  

which is reduced to equivalent non linear programming problem as 

 Maximize                                                                                                           (46) 

such that  
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 
 

;
4

T T
k k T

k k

U L
f x L

 
 

         
(47) 

  ;
2

k

k

T T
k k f

k
f

U L
f x





 
 

         
(48)

 
  ; 1,2,....,

k k

T
k f k ff x L for k p    

       (49) 

 log 1 ,where    

       
(50)

                                                                                                                                  
log ,                                                                                               (51) 

 1tanh 2 1 ,                                                                                  (52) 

4,                                                                                                    (53) 

6
kf F F

k kU L
 


                                                                                        (54)                                                                                                                                             

3;                                                                                             (55) 
; ;                                                                                                (56) 

  , , 0,1 ;            (57) 
  ;j jg x b

 

0,x        (58) 

This crisp nonlinear programming problem can be solved by appropriate 
mathematical algorithm. 

5 Solution of Multi-objective Structural Optimization 

Problem (MOSOP) by Neutrosophic Optimization 

Technique 

To solve the MOSOP (1), step 1 of 4is used .After that according to step to 
pay off matrix is formulated. 

   

   

   

* 1 11

2 2 * 2

WT A A

WT A AA
A WT A A







 
 
 
 

 

According to step-2 the bound of weight objective , ;T T
WT WTU L ,I I

WT WTU L and 
,F F

WT WTU L for truth, indeterminacy and falsity membership function respectively. 
Then  

  ;T T
WT WTL WT A U     ;I I

WT WTL WT A U    F F
WT WTL WT A U  . Similarly the 

bound of deflection  objective  are , ; , ,T T I I F FU L U L and U L     
are respectively for 
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truth, indeterminacy  and falsity membership function. Then   ;T TL A U    
  ;I IL A U     F FL A U   .Where ,F T

WT WTU U  ;F T
WT WT WTL L    

,I T
WT WTL L  I T

WT WT WTU L                                                                                                            (59) 

and ,F TU U   ;F TL L                                                                          (60) 

,I TL L   I TU L                                                                                                    (61) 

such that  

 0 T T
WT WT WTU L   and  0 T TU L     . 

Therefore the truth, indeterminacy and falsity membership functions for 
objectives are  

    

   

   

   
     

   

1

1 exp

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U



 

     

       
     




         (62) 

    

   

    
     

   

1

exp

0

T
WT A

T
WTWT A T T

WTWT A WT A WT A
WT

T
WTWT A

if WT A L

L WT A
I WT A if L WT A L

if WT A L








 

     

     
  

 
 



   

(63) 

    

   

 
    

     

   

0

1 1 tanh
2 2 2

1

T
WTWT A

T T
WTWT A WT A T T

WT WTWT A WT A WT A

T
WT A

if WT A L

U L
F WT A WT A if L WT A U

if WT A U




 

  

               

   
  

 


(64)

 0 , T T
WT WT WT WTwhere U L   

and

    

 

 
 

 

1

1 exp

0

T

T
T T

A T T

T

if A L

U A
T A if L A U

U L

if A U





 

 






  



 


    
            




                  (65) 
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    

 

   
 

 

1

exp

0

T

T
T T

A

T

if A L

L A
I A if L A L

if A L



 

  



 



 
  



 

 


     
     
   


 
         

(66) 

    

 

 
 

 

 

0

1 1 tanh
2 2 2

1

T

T T
T T

A

T

if A L

U L
F A A if L A U

if A U

 

  

   



 


    



  


              
     




   

(67) 

where ,  are non-zero parameters prescribed by the decision maker and 

for  0 , T Twhere U L        

 According to neutrosophic optimization technique considering truth, 
indeterminacy and falsity membership function for MOSOP (1), crisp non-linear 
programming problem can be formulated as 

 Maximize                                                                                    (68) 

 Subject to 

   ;WTT WT A                                                                                    (69) 

   ;T A  
                                                                                        

(70) 

   ;WTI WT A 
                                                                                      

(71)
 

   ;I A  
                                                                                         

(72)
 

   ;WTF WT A                                                                                   (73) 

   ;F A  
                                                                                      

(74) 

   ;A                                                                                             (75) 

3;     ;  ;                                                                      (76) 

 , , 0,1 ,                                                                                           (77) 

min maxA A A                                                                                        (78)  

which is reduced to equivalent non linear programming problem as 

 Maximize                                                                                  (79)   

Such that 
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  
 

;
T T
WT WT T

WT

U L
WT A U




 

                                                                                 
(80) 

  ;
2

T T
WT WT WT

WT

U L
WT A





 
 

                                                                             
(81) 

  ;T
WT WT WTWT A L                                                                                         (82) 

 
 

;
T T

T
U L

A U 

 



 

                                                                                   
(83) 

  ;TA L                                                                                                  (84) 

  ;
2

T T
WT WTU L

A 








 
 

                                                                          
(85) 

3;                                                                                                                   (86) 

; ;                                                                                                                  (87) 

 , , 0,1                                                                                                          (88) 

where  ln 1 ;              (89) 

4;                                                                                     (90) 

 
6 ;WT F F

WT WTU L
 


                                                                                  

(91) 

 
6 ;

i

i i

F FU L


 

 


                                                                                                              

(92) 

ln ;                                                                                                                                (93) 

 1tanh 2 1 .                                                                                                             (94) 

Solving the above crisp model (79-94) by an appropriate mathematical 
programming algorithm we get optimal solution and hence objective functions i.e 
structural weight and deflection of the loaded joint will attain Pareto optimal 
solution. 

6 Numerical Illustration  

A well known three bar planer truss is considered to minimize weight of 
the structure  1 2,WT A A and minimize the deflection  1 2,A A  at a loading point 
of a statistically loaded three bar planer truss subject to stress constraints on each 
of the truss members 
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Fig. 1. Design of the three-bar planar truss 

 

The multi-objective optimization problem can be stated as follows 

   1 2 1 2, 2 2Minimize WT A A L A A                                                                  (95) 

 
 

1 2

1 2

,
2

PLMinimize A A
E A A

 


                                                               

(96) 

Subject to  

 
 

 
1 2

1 1 2 12
1 1 2

2
, ;

2 2
T

P A A
A A

A A A
 


    


                                                            

(97) 

 
 

2 1 2 2

1 2

, ;
2

TPA A
A A

     


                                                                    

(98) 

 
 

2
3 1 2 32

1 1 2

, ;
2 2

CPAA A
A A A

     


                                                         

(99) 

min max 1,2i i iA A A i                                                                                   (100) 

 where P   applied load ;  material density ; L  length ; E  Young’s 
modulus ; 1A  Cross section of bar-1 and bar-3; 2A Cross section of bar-2;   

is deflection of loaded joint. 1
T 

  and 2
T 

  are maximum allowable tensile 

stress for bar 1 and bar 2 respectively, 3
C 

  is maximum allowable compressive 
stress for bar 3. 

 

 

 



Neutrosophic Operational Research 
Volume II 

147 

 

Table 1: Input data for crisp model (79-94) 
 

Applied 
load
P

  KN  

Volume 
density 

 
 3/KN m  

Length 
L 
 m  

Maximum 
allowable   
tensile  
stress

1
T 

   
 2/KN m  

Maximum 
allowable 
compressive 
stress

3
C 

   
 2/KN m  

Young’s 
modulus E

 
 2/KN m  

min
iA  

and  
max
iA  

of cross 
section of 
bars 

 4 210 m  

20  100  1  20  15  72 10  

min
1 0.1A 

 
max
1 5A   
min
2 0.1A 
max
2 5A   

 

Solution: According to step 2 of 4, pay-off matrix is formulated as follows 

   1 2 1 2

1

2

, ,

2.638958 14.64102
19.14214 1.656854

WT A A A A

A
A



 
 
 

. 

Here 

19.14214,F T
WT WTU U                                                                                          (101) 

1 12.638958 ;F T
WT WTL L                                                                         (102) 

2.638958,I T
WT WTL L                                                                                                      (103) 

1 12.638958I T
WT WTU L                                                                                         (104) 

such that  1 10 , 19.14214 2.638958    ; 

14.64102,F TU U                                                                                         (105) 
2 21.656854 ;F TL L                                                                                   (106) 

1.656854,I TL L                                                                                                          (107) 
2 21.656854I TU L                                                                                                 (108)

 such that  2 20 , 14.64102 1.656854     
. 

Here truth, indeterminacy, and falsity membership function for objective 
functions    1 2 1 2, , ,WT A A A A are defined as follows  
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    

 

 
 

 

1 2

1 2

1 2
1 2 1 2,

1 2

1 , 2.638958

19.14214 ,
, 1 exp 4 2.638958 , 19.14214

16.503182

0 , 19.14214

WT A A

if WT A A

WT A A
T WT A A if WT A A

if WT A A

 


    
        

    




     

         

(109) 

    

 

   
 

 

1 2

1 2

1 1 2
1 2 1 2 1,

1

1 2 1

1 , 2.638958

2.638958 ,
, exp 2.638958 , 2.638958

0 , 2.638958

WT A A

if WT A A

WT A A
I WT A A if WT A A

if WT A A








 


    
     

   
  

     

         

(110) 

    

 

 
 

 

 

1 2

1 2

1
1 2 1 2 1 2,

1

1 2

0 , 2.638958

21.7810981 1 6, tanh , 2.638958 , 19.14214
2 2 2 16.503182

1 , 19.14214

WT A A

if WT A A

F WT A A WT A A if WT A A

if WT A A





 


    
       

    
 

     

      

(111) 

1 10 , 16.503182  

 

and  

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2,

1 2

1 , 1.656854

14.64102 ,
, 1 exp 4 1.656854 , 14.64102

12.984166

0 , 14.64102

A A

if A A

A A
T A A if A A

if A A






 



 


    
        

    




     

           

(112) 

 

    

 

   
 

 

1 2

1 2

2 1 2
1 2 1 2 2,

2

1 2 2

1 , 1.656854

1.656854 ,
, exp 130 , 1.656854

0 , 1.656854

T
A A

if A A

A A
I A A if A A

if A A





 
  



 

 


    
     

   
  

     

             

(113) 

    

 

   

 

1 2

1 2 2

2
1 2 1 2 2 1 2,

2

1 2

0 , 1.656854

16.2978741 1 6, tanh , 1.656854 , 14.64102
2 2 2 12.984166

1 , 14.64102

A A

if A A

F A A A A if A A

if A A



 


   





  


  
        

  
 

     

    

(114) 

 

2 20 , 12.9842    
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According to neutrosophic optimization technique the MOSOP (95-100) 
can be formulated as 

 Maximize                                                                                            (115) 

Such that 

 1 22 2 4.1257 19.14214;A A   
                                                               

(116) 

 
   1 1

1 2

16.503182 21.781098
2 2 ;

6 2
A A

   
  

                                     
(117) 

   1 2 1 12 2 2.638958 ;A A     
                                                     

(118) 

 1 2

20 3.2460415 14.64102;
2A A

 


                                                                

(119) 

 
   2 2

1 2

12.984166 16.29787420 ;
6 22A A

   
 


                                      

(120) 

 
 2 2

1 2

20 1.656854 ;
2A A

   


                                                                

(121) 

 
 

1 2

2
1 1 2

20 2
20;

2 2

A A

A A A





                                                                                          

(122) 

 1 2

20 20;
2A A




                                                                                                            

(123) 

 
2

2
1 1 2

20 15;
2 2

A
A A A




                                                                                                  

(124) 

3;                                                                                                                         (125) 
;                                                                                                                                 (126) 

                                                                                                                                       (127) 

1 20.1 5A A                                                                                              (128) 

Now , using above mentioned  truth, indeterminacy and falsity membership 
function NLP (95-100) can be solved by NSO technique for different values of 

1 2,  and 1 2,  . The optimum solution of  MOSOP(95-100) is given in table (2) .
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Table 2: Comparison of Optimal solution of MOSOP (95-100) based on 
different method 

Methods 1
4 210

A
m

 
 

2
4 210

A
m

 
 1 2

2

,

10

WT A A

KN
  1 2

7

,

10

A A

m




 

Neutosophic optimization 
(NSO) with linear 

membership function  
1 23.30064, 2.59696  

1 21.65032, 1.29848    

.5777658 2.655110 4.289278 2.955334 

Neutosophic optimization 
(NSO) with nonlinear 
membership function

1 23.30064, 2.59696    

1 21.65032, 1.29848    

.5777658 2.655110 4.289278 2.955334 

 

Here we get same solutions for the different tolerance 1 2,   and 3  for 
indeterminacy membership function of objective functions. From the table 2, it 
shows that NSO technique gives same Pareto optimal result for linear and non-
linear membership functions in the perspective of Structural Optimization. 

7 Conclusion 

The main objective of this work is to illustrate how neutrosophic 
optimization technique can be utilized to solve a nonlinear structural problem. 
The concept of neutrosophic optimization technique allows one to define a degree 
of truth membership, which is not a complement of degree of falsity; rather, they 
are independent with degree of indeterminacy. In this problem, actually, we 
investigate the effect of non-linear truth, indeterminacy and falsity membership 
function of neuotrosophic set in perspective of multi-objective structural 
optimization. Here we have considered a non-linear three bar truss design 
problem. In this test problem, we find out minimum weight of the structure as 
well as minimum deflection of loaded joint. The comparisons of results obtained 
for the undertaken problem clearly show the superiority of neutrosophic 
optimization over fuzzy optimization. The results of this study may lead to the 
development of effective neutrosophic technique for solving other model of 
nonlinear programming problem in different field. 
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Abstract 

This paper investigates multi–objective Neutrosophic Goal 
Optimization (NSGO) approach to optimize the cost of welding and 
deflection at the tip of a welded steel beam, while the maximum 
shear stress in the weld group, maximum bending stress in the beam, 
and buckling load of the beam have been considered as constraints. 
The problem of designing an optimal welded beam consists of 
dimensioning a welded steel beam and the welding length so as to 
minimize its cost, subject to the constraints as stated above. The 
classical welded bream design structure is presented here in to 
demonstrate the efficiency of the neutrosophic goal programming 
approach. The model is numerically illustrated by generalized 
NSGO technique with different aggregation method. The result 
shows that the Neutrosophic Goal Optimization technique is very 
efficient in finding the best optimal solutions.   

Keywords 

Neutrosophic Set; Single Valued Neutrosophic Set; Generalized 
Neutrosophic Goal Programming; Arithmetic Aggregation; 
Geometric Aggregation; Welded Beam Design Optimization. 

1 Introduction 

Welding, a process of joining metallic parts with the application of heat or 
pressure or the both, with or without added material, is an economical and 
efficient method for obtaining permanent joints in the metallic parts. This welded 
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joints are generally used as a substitute for riveted joint or can be used as an 
alternative method for casting or forging. The welding processes can broadly be 
classified into following two groups, the welding process that uses heat alone to 
join two metallic parts and the welding process that uses a combination of heat 
and pressure for joining (Bhandari. V. B). However, above all the design of 
welded beam should preferably be economical and durable one. Since decades, 
deterministic optimization has been widely used in practice for optimizing 
welded connection design. These include mathematical optimization algorithms 
(Ragsdell & Phillips 1976) such as APPROX (Griffith & Stewart’s) successive 
linear approximation, DAVID (Davidon Fletcher Powell with a penalty function), 
SIMPLEX (Simplex method with a penalty function), and RANDOM 
(Richardson’s random method) algorithms, GA-based methods (Deb 1991, Deb 
2000, Coello 2000b, Coello 2008), particle swarm optimization (Reddy 2007), 
harmony search method (Lee & Geem 2005), and Big-Bang Big-Crunch (BB-
BC) (O. Hasançebi, 2011) algorithm. SOPT (O. Hasançebi, 2012), subset 
simulation (Li 2010), improved harmony search algorithm (Mahadavi 2007), 
were other methods used to solve this problem. Recently a robust and reliable  
H∞ static output feedback (SOF) control for nonlinear systems (Yanling Wei 
2016) and for continuous-time nonlinear stochastic systems (Yanling Wei 2016) 
with actuator fault in a descriptor system framework have been studied. All these 
deterministic optimizations aim to search the optimum solution under given 
constraints without consideration of uncertainties. So, while a deterministic 
optimization approach is unable to handle structural performances such as 
imprecise stresses and deflection etc. due to the presence of uncertainties, to get 
rid of such problem fuzzy (Zadeh, 1965), intuitionistic fuzzy (Atanassov,1986), 
Neutrosophic [7,21-30] play great roles.Traditionally structural design 
optimization is a well known concept and in many situations it is treated as single 
objective form, where the objective is known the weight or cost  function. The 
extension of this is the optimization where one or more constraints are 
simultaneously satisfied next to the minimization of the weight or cost function. 
This does not always hold good in real world problems where multiple and 
conflicting objectives frequently exist. In this consequence a methodology known 
as multi-objective optimization (MOSO) is introducedSo to deal with different 
impreciseness such as stresses and deflection with multiple objective , we have 
been motivated to incorporate the concept of neutrosophic set in this problem, 
and have developed multi-objective neutrosophic optimization algorithm to 
optimize the optimum design.Usually Intuitionistic fuzzy set, which is the 
generalization of fuzzy sets, considers both truth membership and falsity 
membership that can handle incomplete information excluding the indeterminate 
and inconsistent information while neutrosophic set can quantify indeterminacy 
explicitly by defining  truth, indeterminacy and falsity membership function 
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independently. Therefore, Wang et.al (2010) presented such set as single valued 
neutrosophic set (SVNS) as it comprised of generalized classic set, fuzzy set, 
interval valued fuzzy set, intuitionistic fuzzy set and Para-consistent set. As 
application of SVNS optimization method is rare in welded beam design, hence 
it is used to minimize the cost of welding by considering shear stress, bending 
stress in the beam, the buckling load on the bar, the deflection of the beam as 
constraints. Therefore the result has been compared among three cited methods 
in each of which impreciseness has been considered completely in different 
way.Moreover using above cited concept, a multi-objective neutrosophic 
optimization algorithm has been developed to optimize three bar truss design 
(Sarkar 2016), and to optimize riser design problem (Das 2015). In early 1961 
Charnes and Cooper first introduced Goal programming problem for a linear 
model.  

Usually conflicting goal are presented in a multi-objective goal 
programming problem. Dey et al.(2015) used intuitionistic goal programming on 
nonlinear structural model.However, the factors governing of former constraints 
are height and length of the welded beam, forces on the beam, moment of load 
about the centre of gravity of the weld group, polar moment of inertia of the weld 
group respectively.  

While, the second constraint considers forces on the beam, length and size 
of the weld, depth and width of the welded beam respectively.  Third constraint 
includes height and width of the welded beam. Fourth constraints consists of 
height, length, depth and width of the welded beam. Lastly fifth constraint 
includes height of the welded beam. Besides, flexibility has been given in shear 
stress, bending stress and deflection only, hence all these parameters become 
imprecise in nature so that it can be considered as neutrosophic set to from truth, 
indeterminacy and falsity membership functions Ultimately, neutrosophic 
optimization technique has been applied on the basis of the cited membership 
functions and outcome of such process provides the minimum cost of welding 
,minimum deflection for nonlinear welded beam design.  

The comparison of results shows difference between the optimum value 
when partially unknown information is fully considered or not. This is the first 
time NSGO technique is in application to multi-objective welded beam design. 
The present study investigates computational algorithm for solving multi-
objective welded beam problem by single valued generalized NSGO technique. 
The results are compared numerically for different aggregation method of NSGO 
technique. From our numerical result, it has been seen that the best result obtained 
for geometric aggregation method for NSGO technique in the perspective of 
structural optimization technique. 
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2 Multi-objective Structural Model 

In sizing optimization problems, the aim is to minimize multi objective 
function, usually the cost of the structure, deflection under certain behavioural 
constraints which are displacement or stresses. The design variables are most 
frequently chosen to be dimensions of the height, length, depth and width of the 
structures. Due to fabrications limitations the design variables are not continuous 
but discrete for belongingness of cross-sections to a certain set. A discrete 
structural optimization problem can be formulated in the following form 

(P1)  

( )Minimize C X                                                                                                    (1) 

 Minimize X                                                                                                                 (2) 

    , 1,2,.....,i isubject to X X i m                                                            
(3) 

, 1,2,.....,d
jX R j n                                                                                             (4) 

where ( ),C X  X  and  i X as represent cost function, deflection and the 
behavioural constraints respectively whereas  i X  

 denotes the maximum 

allowable value , ‘m’ and ‘n’ are the number of constraints and design variables 
respectively. A given set of discrete value is expressed by dR and in this paper 
objective functions are  taken as  

 
1 1

mT
tn

t n
t n

C X c x
 

   and  X   

and constraint are chosen to be stress of structures as follows 

  i iA   with allowable tolerance 0
i for 1,2,....,i m

 

where tc is the cost coefficient of tth side and nx is the  thn design variable 

respectively, 
m  is the number of structural element, i  and 0

i  are the thi stress, 
allowable stress respectively 

3 Mathematical Preliminaries 

In the following, we briefly describe some basic concepts and basic 
operational laws related to neutrosophic set  

3.1 Fuzzy Set (FS) 

Let X be a fixed set. A fuzzy set A  of X is an object having the form  
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   , AA x T x x X 
                                                                                                        

(5)
 

where the function  : 0,1AT X   stands for the truth membership of the element 

x X to the set A . 

3.2 Intuitionistic Fuzzy Set(IFS) 

Let a set X be fixed. An intuitionistic fuzzy set or IFS iA in X  is an object 
of the form      , ,i i

i
A A

A X T x F x x X 
                                                                      

(6)
 

where  : 0,1iA
T X  and  : 0,1iA

F X   define the truth membership and falsity 

membership respectively, for every element of x X such that
   0 1i iA A

T x F x   . 

3.3 Single-Valued Neutrosophic Set (SVNS) 

Let a set X be the universe of discourse. A single valued neutrosophic set 
nA   over X is an object having the form  

       , , ,n n n
n

A A A
A x T x I x F x x X 

                                                                       
(7)

 

where  : 0,1 ,nA
T X   : 0,1nA

I X   and  : 0,1nA
F X   are truth , indeterminacy 

and falsity membership functions respectively so as to      0 3n n nA A A
T x I x F x     

for all x X .  

3.4 Union of Neutrosophic Sets (NSs) 

The union of two single valued neutrosophic sets nA and nB is a single 
valued neutrosophic set nU denoted by 

       , , ,n n n
n n n

U U U
U A B x T x I x F x x X  

                                         
(8)

 
and is defined by the following conditions 

(i)       max , ,n n nU A B
T x T x T x   

(ii)       max , ,n n nU A B
I x I x I x   

(iii)       min ,n n nU A B
F x F x F x for all x X for Type-I  

Or in another way by defining following conditions  
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(i)       max , ,n n nU A B
T x T x T x  

(ii)       min ,n n nU A B
I x I x I x  

(iii)       min ,n n nU A B
F x F x F x for all x X  for Type-II 

where   ,nU
T x    ,nU

I x   nU
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be calculated for  

Type -I as 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x                  (9) 

and for Type -II as 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x                (10) 

3.5 Intersection of Neutrosophic Sets 

The intersection of two single valued neutrosophic sets nA and nB is a 
single valued neutrosophic set nE  is denoted by   

       , , ,n n n
n n n

E E E
E A B x T x I x F x x X  

                                             
(11) 

and is defined by the following conditions 

(i)       min , ,n n nE A B
T x T x T x   

(ii)       min , ,n n nE A B
I x I x I x   

(iii)       max ,n n nE A B
F x F x F x for all x X for Type-I  

Or  in another way by defining following conditions  

(i)       min , ,n n nE A B
T x T x T x  

(ii)       max ,n n nE A B
I x I x I x  
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(iii)       max ,n n nE A B
F x F x F x for all x X  for Type-II 

where   ,nE
T x    ,nE

I x   nE
F x  represent truth membership, indeterminacy-

membership and falsity-membership functions of union of neutrosophic sets   

Example: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two 

neutrosophic sets. Then the union of nA and nB is a single valued neutrosophic 
set can be measured for 

Type -I as 

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x                (12) 

and for Type -II as 

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x                 (13) 

4 Mathematical Analysis 

4.1 Neutrosophic Goal Programming 

Goal programming can be written as  

(P2)  

Find  1 2, ,..., T
nx x x x

                                                                                              (14) 

to achieve:  

i iz t 1,2,...,i k                                                                                             (15) 

Subject to x X  where it are scalars and represent the target achievement 
levels of the objective functions that the decision maker wishes to attain provided, 
X is feasible set of constraints.  

The nonlinear goal programming problem can be written as  

Fin  1 2, ,..., T
nx x x x

                                                                                                   (16) 

So as to  

iMinimize z  with target value it ,acceptance tolerance ia ,indeterminacy 
tolerance id  rejection tolerance ic  
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x X                                                                                                                       (17) 

 j jg x b , 1,2,.....,j m                                                                                                (18) 

0,ix  1,2,.....,i n with truth-membership, indeterminacy-membership and 
falsity-membership functions 

  1

1

0

i i

i i i
i i i i i i

i

i i i

if z t

t a z
T z if t z t a

a
if z t a



  

    
 
  

                                                           

(19) 

 1

0

0

i i

i i
i i i i

i
i i

i i i
i i i i i

i i

i i i

if z t

z t
if t z t a

d
I z

t a z
if t d z t a

a d
if z t a




     
 

 
  

      
  

                                        

(20) 

 1

0

1

i i

i i
i i i i i i

i

i i i

if z t

z t
F z if t z t c

c
if z t c



 

    
 
  

                                                         

(21) 

To maximize the degree of acceptance and indeterminacy of nonlinear goal 
programming (NGP) objectives and constraints also to minimize degree of 
rejection of of NGP objectives and constraints, 

(P3)  

  , 1,2,....,
iz iMaximize T z i k                                                                        (22) 

  , 1,2,....,
iz iMaximize I z i k

                                                                   (23) 

  , 1,2,....,
iz iMinimize F z i k

                                                                 (24) 

Subject to  

     0 3, 1,2,....,
i i iz i z i z iT z I z F z i k                                                  (25) 

     0, 0, 1,2,...,
i i iz i z i z iT z I z F z I k  

                                                    (26) 
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    , 1,2,....,
i iz i z iT z I z I k 

                                                                    (27) 

    , 1,2,...,
i iz i z iT z F z i k 

                                                                    (28) 

 j jg x b , 1,2,.....,j m                                                                         (29) 

0,ix  1,2,.....,i n                                                                                    (30) 

where  
iz iT z ,  

iz iI z  and  
iz iF z  are truth  membership function  indeterminacy 

membership function ,falsity membership function of neutrosophic decision set 
respectively. 

Now the neutrosophic goal programming (NGP) in model (P3) can be 
represented by crisp programming model using truth membership, indeterminacy 
membership,and falsity membership functions as 

(P4)  

, ,Maximize Maximize Minimize                                                             (31) 

  , 1,2,...,
iz iT z i k 

                                                                               (32) 

  , 1,2,...,
iz iI z i k 

                                                                               (33) 

  , 1,2,...,
iz iF z i k 

                                                                               (34) 

, 1,2,.....,i iz t i k                                                                                     (35) 

0 3;                                                                                             (36) 

, 0, 1;                                                                                               (37) 

  , 1,2,.....,j jg x b j m                                                                              (38) 

0, 1,2,....,ix i n                                                                                      (39) 

4.2 Generalized Neutrosophic Goal Programming 

The generalized neutrosophic goal programming can be formulated as 

(P5)  

  , 1,2,....,
iz iMaximize T z i k                                                                             (40) 

  , 1,2,....,
iz iMaximize I z i k

                                                                                     (41) 
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  , 1,2,....,
iz iMinimize F z i k

                                                                                  (42) 

Subject to  

      1 2 30 , 1,2,....,
i i iz i z i z iT z I z F z w w w i k                                           (43) 

     0, 0, 1,2,...,
i i iz i z i z iT z I z F z I k  

                                                              (44) 

    , 1,2,....,
i iz i z iT z I z I k 

                                                                                    (45) 

    , 1,2,...,
i iz i z iT z F z i k 

                                                                                    (46) 

1 2 30 3w w w                                                                                                     (47) 

 1 2 3, , 0,1w w w                                                                                                       (48) 

 j jg x b , 1,2,.....,j m                                                                                    (49) 

0,ix  1,2,.....,i n                                                                                         (50) 

 Equivalently 

(P6)  

, ,Maximize Maximize Minimize                                                              (51)  

  , 1,2,...,
iz iT z i k 

                                                                                          (52) 

  , 1,2,...,
iz iI z i k 

                                                                                               (53) 

  , 1,2,...,
iz iF z i k 

                                                                               (54) 

, 1,2,.....,i iz t i k                                                                                       (55) 

1 2 30 ;w w w                                                                               (56) 

     1 2 30, , 0, , 0, ;w w w                                                                 (57) 

     1 2 30,1 , 0,1 , 0,1 ;w w w                                                                     (58) 

1 2 30 3;w w w                                                                                     (59) 

  , 1,2,.....,j jg x b j m                                                                               (60) 

0, 1,2,....,jx j n 
                                                                                 (61) 
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Equivalently 

(P7)  

, ,Maximize Maximize Minimize                                                            (62) 

1

1 , 1,2,...,i i iz t a i k
w
 

    
                                                                     

(63) 

2

, 1,2,...,i
i i

d
z t i k

w
  

                                                                              
(64) 

 
2

, 1,2,...,i i i i iz t a a d i k
w


    

                                                         
(65) 

 3

, 1,2,...,i
i i

c
z t i k

w
  

                                                                           
(66) 

, 1,2,.....,i iz t i k                                                                                      (67) 

1 2 30 ;w w w                                                                                (68) 

     1 2 30, , 0, , 0, ;w w w                                                                 (69) 

     1 2 30,1 , 0,1 , 0,1 ;w w w                                                                      (70) 

1 2 30 3;w w w                                                                                      (71) 
With the help of generalized truth, indeterminacy, falsity membership 

function the generalized neutrosophic goal programming based on arithmetic 
aggregation operator can be formulated as 

(P8)  

   1 1
3

Minimize
       

 
  

                                                                (72)  

Subject bject to the same constraints as (P7) 

With the help of generalized truth, indeterminacy, falsity membership 
function the generalized neutrosophic goal programming based on geometric 
aggregation operator can be formulated as 

(P9)  

   3 1 1Minimize                                                                                          (73) 

Subjected to same constraints as (P7) 
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Now this non-linear programming problem (P7 or P8 or P9) can be easily 
solved by an appropriate mathematical programming to give solution of multi-
objective non-linear programming problem (P1) by generalized neutrosophic 
goal optimization approach. 

5 Solution of Multi-objective Welded Beam Optimization 

Problem (MOWBP) by Generalized Neutrosophic Goal 

Optimization Technique 

The multi-objective neutrosophic fuzzy structural model can be expressed 
as  

(P10)  

 Minimize C X  with target value 0C  ,truth tolerance Ca  ,indeterminacy 

tolerance Cd and rejection tolerance Cc                                                                                (74) 

 Minimize X  with target value 0  ,truth tolerance 
0

a
 ,indeterminacy 

tolerance 
0

d
and rejection tolerance 

0
c                                                                           (75)  

   subject to X                                                                               (76)  

min max
i i ix x x                                                                                          (77)  

where  1 2, ,...., T
nX x x x

                                                                                (78)   
are the design variables, n is the group number of design variables for the 

welded beam design. 

To solve this problem we first calculate truth, indeterminacy and falsity 
membership function of objective as follows  

  

 

 
 

 

1

1 0

0
1 0 0

00

Cw
C C

C

C

w if C X C

C a C X
T C X w if C C X C a

a

if C X C a

 


  
      
  
  

  

(79) 



Neutrosophic Operational Research 
Volume II 

165 

 

    

 

 
 

 
 

 

2

0

0
2 0 0

0
2 0 0

0

0

0

C
Cw

C X
C

C C
C C

C

if C X C

C X C
w if C C X C a

d
I C X

C a C X
w if C d C X C a

a d

if C X C a

 


 
     

 
 

  
       

  
            

(80) 

 

where 1

1 2
C

C C

wd
w w
a c





              

                                                                  (81) 

 

    

 

 
 

 

3

0

0
3 0 0

3 0

0

w
CC X

C

C

if C X C

C X C
F C X w if C C X C c

c

w if C X C c

 


 
      
  
  

                      

(82)  

And 

    

 

 
 

 

01

0

0

0

1 0

0
1 0 0

00

w
X

w if X

a X
T X w if X a

a

if X a









 

 
   

 

 


  
      
  


 
                

(83)  

    

 

 
 

 
 

 

2

0

0
2 0 0

0
2 0 0

0

0

0

w
X

if X

X
w if X a

d
I X

a WT X
w if d X a

a d

if X a









 

 



 

 
  




  

 

 


 
     

 
 

  
       

  
       

(84)  

 
1

1 2

wd
w w
a c



 





 

    

 

 
 

 

3

0

0
3 0 0

3 0

0

w
X

if X

X
F X w if X c

c

w if X c







 

 
   

 

 


 
      
  
  

                         

(85)    
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According to generalized neutrosophic goal optimization technique using 
truth, indeterminacy and falsity membership function, MOSOP (P1) can be 
formulated as 

Model -I  
, ,Maximize Maximize Minimize                                                             (86)    

  0
1

1 ,CC X C a
w
 

   
                                                                            

(87)   

  0
2

,Cd
C X C

w
 

                                                                                   
(88)   

   0
2

,C C CC X C a a d
w


   

                                                                  
(89)  

  0
3

,Cc
C X C

w
 

                                                                                     
(90)  

  0 ,C X C                                                                                               (91)  

  0
1

1 ,X a
w


 

 
   

                                                                             
(92)  

  0
2

,
d

X
w
   

                                                                                   
(93)  

   0
2

,X a a d
w  


    

                                                                    
(94)  

  0
3

,
c

X
w
   

                                                                                     
(95)  

  0 ,X                                                                                                 (96)  

1 2 30 ;w w w                                                                                (97)  
     1 2 30, , 0, , 0, ;w w w                                                                  (98)  

     1 2 30,1 , 0,1 , 0,1 ;w w w                                                                    (99)  

1 2 30 3;w w w                                                                                      (100)  

   , 1,2,.....,i X i m                                                                           (101) 

0, 1, 2,....,jx j n                                                                                (102)  
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With the help of generalized truth, indeterminacy, falsity membership 
function the generalized neutrosophic goal programming based on arithmetic 
aggregation operator can be formulated as: 

Model -II  

   1 1
3

Minimize
       

 
                                                                       

(103) 
 

Subjected to same constraint as Model I 

With the help of generalized truth, indeterminacy, falsity membership 
function the generalized neutrosophic goal programming based on geometric 
aggregation operator can be formulated as 

Model -III  

   3 1 1Minimize    
                                                                         

(104) 
 

Subjected to same constraint as Model I 

Now these  non-linear programming Model-I,II,III can be easily solved 
through  an appropriate mathematical programming to give solution of multi-
objective non-linear programming problem (8) by  generalized neutrosophic goal 
optimization approach. 

6 Numerical Illustration  

Welding, a process of joining metallic parts with the application of heat or 
pressure or the both, with or without added material, is an economical and 
efficient method for obtaining permanent joints in the metallic parts. This  welded 
joints are generally used as a substitute for riveted joint or can be used as an 
alternative method for casting or forging. The welding processes can broadly be 
classified into following two groups, the welding process that uses heat alone to 
join two metallic parts and the welding process that uses a combination of heat 
and pressure for joining (Bhandari. V. B). However, above all the design of 
welded beam should preferably be economical and durable one.  

6.1 WBD Formulation 

The optimum welded beam design(Fig. 1) can be formulated considering 
some design criteria such as cost of welding i.e cost function, shear stress, 
bending stress and deflection, derived as follows: 
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Cost Function Formulation 

The performance index appropriate to this design is the cost of weld 
assembly. The major cost components of such an assembly are (i) set up labour 
cost, (ii) welding labour cost, (iii) material cost, i.e 

  0 1 2C X C C C                                                                                          (105) 

where,  C X   cost function; 0C   set up cost; 1C   welding labour cost; 2C   
material cost. Now: 

 

Set up cost 0C : The company has chosen to make this component a 
weldment , because of the existence of a welding assembly line. Furthermore, 
assume that fixtures for set up and holding of the bar during welding are readily 
available. The cost 0C  can therefore be ignored in this particular total cost model. 

 

Welding labour cost 1C : Assume that the welding will be done by machine 
at a total cost of $10/hr (including operating and maintenance expense). 
Furthermore suppose that the machine can lay down a cubic inch of weld in 6 
min. The labour cost is then 

 1 3 3

$ 1 $ min $10 6 1
60 min w wC V V

hr in in
     

      
     

                                                (106) 

Where wV   weld volume, in3  

 

Material cost 2C : 2 3 4w BC C V C V                                                       (107) 

Where 3C   cost per volume per weld material,$/in3 (0.37)(0.283)  ; 4C   
cost per volume of bar stock,$/in3 (0.37)(0.283)  ; BV   volume of bar,in3. 

From geometry 2
wV h l  ; volume of the weld material,in3

 ;
2
1 2weldV x x  and 

 BV tb L l   ; volume of bar ,in3
  3 4 2barV x x L x   . 

Therefore cost function become 

     2 2 2
3 4 1 2 3 4 21.10471 0.04811 14.0C X h l C h l C tb L l x x x x x          (108) 
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Constraints Derivation from Engineering Relationship 

 
Fig. 1 Shear stresses in the weld group. 

Maximum shear stress in weld group 

To complete the model it is necessary to define important stress states 

Direct or primary shear stress i.e  

 1
1 22 2

Load P P P
Throat area A hl x x

    

                                                              
(109) 

Since the shear stress produced due to turning moment  
.M P e  at any 

section, is proportional to its radial distance from centre of gravity of the joint 
‘G’, therefore stress due to M  is proportional to R  and is in a direction at right 

angles to  R  . In other words  2

R r
 

   constant                                                             (110) 

Therefore   
22 2 2

1 32

2 2 4 4
x xxl h tR
   

      
                                  

(111) 

Where, 2  is the shear stress at the maximum distance R  and  is the shear 

stress at any distance r . Consider a small section of the weld having area dA  at 
a distance r  from ‘G’. Therefore shear force on this small section dA   and 
turning moment of the shear force about centre of gravity is 

22dM dA r dA r
R


     

                                                                 
(112) 

Therefore total turning moment over the whole weld area  
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22 2 .M dA r J
R R
 

  
                                                                                   

(113)
 

where J   polar moment of inertia of the weld group about centre of gravity.  

Therefore, shear stress due to the turning moment i.e.  

secondary shear stress, 2
MR
J

 

                                                                         
       (114) 

In order to find the resultant stress, the primary and secondary shear 
stresses are combined vectorially. Therefore the maximum resultant shear stress 

that will be produced at the weld group, 2 2
1 2 1 22 cos        ,            (115) 

where,    angle between 1  and 2  . 

As 22cos ;
2
xl

R R
  

                                                                                                      
(116)

 

2 2 2
1 2 1 22

2
x
R

        .                                                                       (117) 

Now the polar moment of inertia of the throat area  A  about the centre of 
gravity is obtained by parallel axis theorem,  

 
222 2

1 32 2 2 2
1 22 2 2 2 2

12 12 12 2xx

x xxA l lJ I A x A x A x x x
       

               
          

(118) 

Where, A   throat area 1 22x x  , 
l  Length of the weld,  

x Perpendicular distance between two parallel axes  

1 3

2 2 2
x xt h 

            (119) 

Maximum bending stress in beam 

Now Maximum bending moment PL , maximum bending stress
T
Z

 , 

where ;T PL
 

Z   section modulus ;I
y

 I  moment of inertia
3

;
12
bt

 y   distance of 

extreme fibre from centre of gravity of cross section ;
2
t

 Therefore 
2

6
btZ  . 
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So bar bending stress   2 2
4 3

6 6 .T PL PLx
Z bt x x

   

                                         
(120) 

 

Maximum deflection in beam 

Maximum deflection at cantilever tip  
3 3 3 3

3 3 2
4 3

4 4
3 3

12

PL PL PL PLx
EI bt Ebt Ex xE

    

    

(121) 

Buckling load of beam 

Buckling load can be approximated by 

  2

4.013 1C
EIC a ElP x

l Cl
 

   
           

(122) 

2 6

2

4.013
36 1

2 4

t bE t E
L GL

 
   

 

6 6
3 4 3

2

4.013 /36
1

2 4
EGx x x E

L GL
 

   
          

(123) 

where, I  moment of inertia
3

;
12
bt

 torsional rigidity 31 ;
3

C GJ tb G  ; .
2
tl L a    

6.2 Crisp Formulation of WBD 

In design formulation  a welded beam (Fig. 2) has to be designed at 
minimum cost whose constraints are shear stress in weld    ,bending stress in 

the beam    ,buckling load on the bar  P ,and deflection of the beam   .The 

design variables are 
1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is the weld size, l  is the length of the weld 

, t is the depth of the welded beam, b is the width of the welded beam.  
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Fig. 2 Design of the welded beam 

The single-objective crisp welded beam optimization problem can be 
formulated as follows: 

(P11)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                         (124) 

such that  

   1 max 0g x x                                                                                       (125)
 

   2 max 0g x x                                                                                        (126)
 

 3 1 4 0g x x x                                                                                                             (127)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x                                                 (128) 

 5 10.125 0g x x                                                                                                      (129)
 

   6 max 0g x x                                                                                                   (130)
 

   7 0Cg x P P x                                                                                                       (131)
 

 1 2 3 4, , , 0,1x x x x                                                                                                           (132) 

where   2 22
1 1 2 22

2
xx
R

        ; 1
1 22

P
x x

  ; 2
MR
J

  ; 2

2
xM P L 

  
 

;

22
1 32

4 2
x xxR
 

  
 

;
22

1 31 2 2 ;
12 22

x xx x xJ
    

    
     

  2
4 3

6 ;PLx
x x

   
3

2
4 3

4 ;PLx
Ex x

 

 
6 6
3 4 3

2

4.013 / 36
1

2 4C

EGx x x EP x
L GL

 
   

 

 as derived as Eq.(109), Eq.(114), 

Eq.(113), Eq.(111), Eq.(118), Eq.(120), Eq.(121), , Eq.(123), respectively. Again 
P  Force on beam ; L  Beam length beyond weld; 1x   Height of the welded 
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beam; 2x   Length  of the welded beam; 3x   Depth of the welded beam; 4x   
Width of the welded beam;  x  Design shear stress;  x  Design normal 

stress for beam material; M   Moment of P  about the centre of gravity of the 
weld , J  Polar moment of inertia of weld group; G   Shearing modulus of 

Beam Material; E   Young modulus; max   Design Stress of the weld; max   

Design normal stress for the beam material; max   Maximum deflection; 1   

Primary stress on weld throat , 2 Secondary torsional stress on weld.  

 

 

                      Table 1: Input data for crisp model (P11) 

 

Applied 
load P

  lb  

Beam 
length 
beyond 
weld 
L

 
 in  

Young 
Modulus 
E  
 psi  

Value of  
G   
 psi  

Maximum 
allowable   
shear  
stress max

 
 psi  

Maximum 
allowable 
normal 
stress max

 
 psi  

Maximum 
allowable 
deflection 

max  
 

 in  

6000  14  
63 10  

 
 

612 10  

13600  
 with fuzzy 
region 
50   
 

30000  
 with fuzzy 
region 
50   
 

0.25  
with fuzzy 
region 
0.05   
  
 

 
This multi objective structural model can be expressed as neutrosophic 

fuzzy model as 

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x    with target value 3.39  ,truth 

tolerance 5  ,indeterminacy tolerance 1

1 20.2 0.14
w

w w
and rejection tolerance 7    

(133) 

 
3

2
4 3

4 ;PLMinimize x
Ex x

  with target value 0.20  ,truth tolerance 0.23   

,indeterminacy tolerance 1

1 24.34 4.16
w

w w
and rejection tolerance 0.24            (134) 

Subject to  

   1 max 0;g x x                                                                                             (135)
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   2 max 0;g x x                                                                                              (136)
 

 3 1 4 0;g x x x                                                                                                         (137)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x                                               (138) 

 5 10.125 0;g x x                                                                                                (139) 
   6 max 0;g x x                                                                                                   (140)

 
   7 0;Cg x P P x                                                                                                      (141)

 
1 40.1 , 2.0x x                                                                                                               (142) 

2 30.1 , 2.0x x                                                                                                                 (143) 

where   2 22
1 1 2 22

2
xx
R

        ; 1
1 22

P
x x

  ; 2
MR
J

  ; 2

2
xM P L 

  
 

;

22
1 32

4 2
x xxR
 

  
 

;
22

1 31 2 2 ;
12 22

x xx x xJ
    

    
     

  2
4 3

6 ;PLx
x x

   
3

2
4 3

4 ;PLx
Ex x

 

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L GL

 
   

 

 

According to generalized neutrosophic goal optimization technique using 
truth, indeterminacy and falsity membership function, MOWBP (P11) can be 
formulated as 

Model -I  
, ,Maximize Maximize Minimize                                                              (144) 

 2
1 2 2 3 4

1

1.10471 0.04811 14 3.39 5 1 ,x x x x x
w
 

     
                                       

(145) 

 
 

2 1
1 2 2 3 4

2 1 2

1.10471 0.04811 14 3.39 ,
0.2 0.14

wx x x x x
w w w

   


             (146) 

 
 

2 1
1 2 2 3 4

2 1 2

1.10471 0.04811 14 3.39 5 2 ,
0.2 0.14

wx x x x x
w w w
  

      
     

(147) 

 2
1 2 2 3 4

3

71.10471 0.04811 14 3.39 ,x x x x x
w

   

                                
(148) 

 2
1 2 2 3 41.10471 0.04811 14 3.39,x x x x x                                                   (149) 



Neutrosophic Operational Research 
Volume II 

175 

 

3

2
14 3

4 0.20 0.23 1 ,PL
wEx x
 

   
                                                                               

(150) 

 

3
1

2
2 1 24 3

4 0.20 ,
4.3 4.1

wPL
w w wEx x

 


                                                                       
(151) 

 

3
1

2
2 1 24 3

4 0.20 0.23 0.23 ,
4.3 4.1

wPL
w w wEx x
  

    
                                              

(152) 

3

2
34 3

4 0.240.20 ,PL
wEx x

 

                                                                                       
(153) 

3

2
4 3

4 0.20,PL
Ex x



                                                                                                
(154) 

1 2 30 ;w w w                                                                                       (155) 
     1 2 30, , 0, , 0, ;w w w                                                              (156) 

     1 2 30,1 , 0,1 , 0,1 ;w w w                                                                                    (157) 

1 2 30 3;w w w                                                                                                 (158) 

   1 max 0;g x x                                                                                                (159)
 

   2 max 0;g x x                                                                                                 (160)
 

 3 1 4 0;g x x x                                                                                                               (161)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x                                                (162) 

 5 10.125 0;g x x                                                                                      (163) 
   6 max 0;g x x                                                                                                (164)

 
   7 0;Cg x P P x                                                                                                     (165)

 
1 40.1 , 2.0x x                                                                                                             (166) 

2 30.1 , 2.0x x                                                                                                       (167) 

where   2 22
1 1 2 22

2
xx
R

        ; 1
1 22

P
x x

  ; 2
MR
J

  ; 2

2
xM P L 

  
 

;

22
1 32

4 2
x xxR
 

  
 

;
22

1 31 2 2 ;
12 22

x xx x xJ
    

    
     

  2
4 3

6 ;PLx
x x

   
3

2
4 3

4 ;PLx
Ex x

 
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 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L GL

 
   

 

 

With the help of generalized truth, indeterminacy, falsity  membership 
function the generalized neutrosophic goal programming problem (P11)based on 
arithmetic aggregation operator can be formulated as  

Model -II  

   1 1
3

Minimize
       

 
                                                                                       

(168)
 

subjected to same constraints as Model-I 

With the help of generalized truth, indeterminacy, falsity membership 
function the generalized neutrosophic goal programming problem (10) based on 
geometric aggregation operator can be formulated as 

Model -III  

   3 1 1Minimize    
                                                                                               

(169)
 

subjected to same constraints as Model-I 

Now these non-linear programming problem Model-I,II,III can be easily 
solved by an appropriate mathematical programming to give solution of multi-
objective non-linear programming problem (P11) by  generalized neutrosophic 
goal optimization approach and the results are shown in the table 1 is given in 
table 2.Again value of membership function in GNGP technique for MOWBP 
(P11) based on different Aggregation is given in Table 3. 

 

Table 2: Comparison of GNGP solution of MOWBP (9) based on 
different Aggregation 

Methods 1x in  2x in
  3x in  4x in

 
 C X

  X  

Generalized Fuzzy 
Goal 
programming(GFGP) 

1 0.15w   
1.297612

 
0.9717430

 
1.693082

 

 
1.297612  

 
3.39  0.20

 

Generalized 
Intuitionistic Fuzzy 
Goal 
programming(GIFGP) 

1 0.15w  3 0.8w   

1.297612  0.9717430  1.693082  

 
1.297612  
 

 
3.39  

0.20  
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Generalized 
Neutrosophic Goal 
programming (GNGP) 

1 2 30.4, 0.3, 0.7w w w    
1.347503  0.7374240  2  

 
 
1.347503  

 
 
3.39  

2  

Generalized 
Intuitionistic Fuzzy 
optimization (GIFGP) 
based on  Arithmetic 
Aggregation  

1 30.15, 0.8w w   

1.297612  0.9717430  1.693082  

 
 
1.297612  

 
 
3.39  
 

0.20  

 
Generalized 
Neutosophic 
optimization (GNGP) 
based on  Arithmetic 
Aggregation  

1 2 30.4, 0.3, 0.7w w w    

1.347503  0.7374240  2  

 
 
 
1.347503  

 
 
 
3.39  0.20  

 
Generalized 
Intuitionistic Fuzzy 
optimization (GIFGP) 
based on  Geometric 
Aggregation  

1 30.15, 0.8w w   

 
 
1.372  

 
 
0.697176  

 
 
2  

 
 
1.37200  

 
 
3.39   

 
0.2  

 
Generalized 
Neutosophic  
optimization (GNGP) 
based on  Geometric 
Aggregation  

1 2 30.4, 0.3, 0.7w w w    

1.372  0.6971  2  

 
 
1.372  

 
 
3.39  

0.2  

 

Here we almost same solutions for the different value of 1 2 3, ,w w w  in 
different aggregation method for objective functions. From Table .2 it is clear that 
the cost of welding and deflection are almost same in fuzzy and intuitionistic 
fuzzy as well as neutrosophic optimization technique. Moreover it has been seen 
that desired value obtained in different aggregation method have not affected by 
variation of methods in perspective of welded beam design optimization. 

7 Conclusion 

The research study investigates that neutrosophic goal programming can 
be utilized to optimize a nonlinear welded beam design problem. The results 
obtained for different aggregation method of the undertaken problem show that 
the best result is achieved using geometric aggregation method. The concept of 
neutrosophic optimization technique allows one to define a degree of truth 
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membership, which is not a complement of degree of falsity; rather, they are 
independent with degree of indeterminacy. As we have considered a non-linear 
welded beam design problem and find out minimum cost of welding of the 
structure as well as minimum deflection, the results of this study may lead to the 
development of effective neutrosophic technique for solving other model of 
nonlinear programming problem in different field.  

Acknowledgement 

The research work of Mridula Sarkar is financed by Rajiv Gandhi National 
Fellowship (F1-17.1/2013-14-SC-wes-42549/(SA-III/Website)), Govt of India. 

 

References 
[1] Zadeh, L.A.  Fuzzy set. Information and Control, 1965:8(3): 338-353. 
[2] Coello, C.A.C. 2000b. Use of a self-adaptive penalty approach for engineering 

optimization problems. Comput. Ind., 41: 113-127. DOI: 10.1016/S0166-3615 
(99)00046-9. 

[3] Reddy, M. J.; Kumar, D. N.An efficient multi-objective optimization algorithm 
based on swarm intelligence for engineering design. Engineering Optimization. 
2007:39(1) :49–68.  

[4] Carlos A. Coello Coello, Solving Engineering Optimization Problems with the 
Simple Constrained Particle Swarm Optimizer, Informatica .2008:32: 319–326. 

[5] Lee, K.S., Geem, Z.W. A new meta-heuristic algorithm for continuous 
engineering optimization: harmony search theory and practice’’Comput. Methods Appl. 
Mech. Engrg. .2005:194: 3902–3933. 

[6] S. Kazemzadeh Azada, O. Hasançebia and O. K. Erol Evaluating efficiency of 
big-bang big-crunch algorithm in benchmark engineering optimization problems,Int. J. 
Optim. Civil Eng., 2011:3:495-505. 

[7] Hasançebi, O. and Azad, S.K.An efficient metaheuristic algorithm for engineering 
optimization: SOPT’’ int. j. optim. civil eng., 2012:2(4):479-487. 

[8] Mahdavi, M., Fesanghary, M., Damangir, E. An improved harmony search 
algorithm for solving optimization problems.Applied Mathematics and 
Computation.2007:188: 1567–1579. 

[9] Atanassov, K. T.  Intuitionistic fuzzy sets. Fuzzy Sets and Systems.1986:20(1): 
87-96. 

[10] Smarandache, F. Neutrosophy, neutrosophic probability, set and logic, Amer. 
Res. Press, Rehoboth, USA,105.1995. 

[11] Shuang Li,G. and Au,S.K.Solving constrained optimization problems via Subset 
Simulation.2010 4th International Workshop on Reliable Engineering Computing (REC 
2010),doi:10.3850/978-981-08-5118-7 069. 

[12] Yanling Wei, Jianbin Qiu, Hamid Reza Karimi, Reliable Output Feedback 
Control of Discrete-Time Fuzzy Affine Systems with Actuator Faults. Doi: 
10.1109/TCSI.2016.2605685,2016,1-12. 

[13] Yanling Wei, Jianbin Qiu,  Hak-Keung Lam, and Ligang Wu, Approaches to T-
S Fuzzy-Affine-Model-Based Reliable Output Feedback Control for Nonlinear Itˆo 
Stochastic Systems.2016, DOI 10.1109/TFUZZ.2016.2566810,pp-1-14. 



Neutrosophic Operational Research 
Volume II 

179 

 

[14] Sarkar, M., Dey, Samir, Roy, T.K. Multi-Objective Neutrosophic Optimization 
Technique and its Application to Structural Design’’, International Journal of Computer 
Applications.2016:148(12) :(0975 – 8887) . 

[15] Das, P., Roy, T.K. Multi-objective non-linear programming problem based on 
Neutrosophic Optimization Technique and its application in Riser Design Problem. 
Neutrosophic Sets and Systems.2015:9:88-95. 

[16] K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA 
Journal .1991:29 (11): 2013–2015. 

[17] Deb, K., Pratap, A. and Moitra, S., Mechanical component design for multiple 
objectives using elitist non-dominated sorting GA. In Proceedings of the Parallel Problem 
Solving from Nature VI Conference, Paris. 2000: 16–20 : 859–868. 

[18] K.M. Ragsdell, D.T. Phillips, Optimal design of a class of welded structures 
using geometric programming, ASME Journal of Engineering for Industries .1976:98 (3): 
1021–1025, Series B. 

[19] Charns, A., & Cooper, R.  Management Models and Industrial Application of 
Linear Programming.1961. 

[20] Dey, S., & Roy, T. K. Intuitionistic Fuzzy Goal Programming Technique for 
Solving Non-Linear Multi-objective Structural Problem. Journal of Fuzzy Set Valued 
Analysis:2015:(3):179-193. 

[21] Abdel-Basset, Mohamed, et al. "A novel group decision-making model based on 
triangular neutrosophic numbers." Soft Computing (2017): 1-15. DOI: 
https://doi.org/10.1007/s00500-017-2758-5 

[22] Hussian, Abdel-Nasser, et al. "Neutrosophic Linear Programming Problems." 
Peer Reviewers: 15. 

[23] Abdel-Basset, Mohamed, Mai Mohamed, and Arun Kumar Sangaiah. 
"Neutrosophic AHP-Delphi Group decision making model based on trapezoidal 
neutrosophic numbers." Journal of Ambient Intelligence and Humanized Computing 
(2017): 1-17. DOI: https://doi.org/10.1007/s12652-017-0548-7 

[24] Mohamed, Mai, et al. "A Critical Path Problem in Neutrosophic Environment." 
Peer Reviewers: 167. 

[25] Mohamed, Mai, et al. "A Critical Path Problem Using Triangular Neutrosophic 
Number." Peer Reviewers: 155. 

[26] Mridula Sarkar, Samir Dey, Tapan Kumar Roy: Truss Design Optimization using 
Neutrosophic Optimization Technique, Neutrosophic Sets and Systems, vol. 13, 2016, 
pp. 62-69. doi.org/10.5281/zenodo.570869 

[27] Pintu Das, Tapan Kumar Roy: Multi-objective non-linear programming problem 
based on Neutrosophic Optimization Technique and its application in Riser Design 
Problem, Neutrosophic Sets and Systems, vol. 9, 2015, pp. 88-95. 
doi.org/10.5281/zenodo.571480 

[28] Mohamed, Mai, et al. "Using Neutrosophic Sets to Obtain PERT Three-Times 
Estimates in Project Management." Peer Reviewers: 143. 

[29] Mohamed, Mai, et al. "Neutrosophic Integer Programming Problem." 
Neutrosophic Sets & Systems 15 (2017). 

[30] Abdel-Baset, Mohamed, Ibrahim M. Hezam, and Florentin Smarandache. 
"Neutrosophic goal programming." Neutrosophic Sets Syst 11 (2016): 112-118. 

[31] Hezam, Ibrahim M., Mohamed Abdel-Baset, and Florentin Smarandache. 
"Taylor series approximation to solve neutrosophic multiobjective programming 
problem." Neutrosophic Sets and Systems 10 (2015): 39-46. 

[32] Mona Gamal Gafar, Ibrahim El-Henawy: Integrated Framework of Optimization 
Technique and Information Theory Measures for Modeling Neutrosophic Variables, 
Neutrosophic Sets and Systems, vol. 15, 2017, pp. 80-89. doi.org/10.5281/zenodo.570939 



Editors: Prof. Florentin Smarandache 
Dr. Mohamed Abdel-Basset 
Dr. Victor Chang 

180 

 

[33] Naga Raju I, Rajeswara Reddy P, Dr. Diwakar Reddy V, Dr. Krishnaiah G: Real 
Life Decision Optimization Model, Neutrosophic Sets and Systems, vol. 14, 2016, pp. 
71-79. doi.org/10.5281/zenodo.570889 

[34] Wenzhong Jiang, Jun Ye: Optimal Design of Truss Structures Using a 
Neutrosophic Number Optimization Model under an Indeterminate Environment, 
Neutrosophic Sets and Systems, vol. 14, 2016, pp. 93-97. doi.org/10.5281/zenodo.570888 

[35] El-Hefenawy, Nancy, et al. "A review on the applications of neutrosophic sets." 
Journal of Computational and Theoretical Nanoscience 13.1 (2016): 936-944. 

[36] Rittik Roy, Pintu Das: Neutrosophic Goal Programming applied to Bank - Three 
Investment Problem, Neutrosophic Sets and Systems, vol. 12, 2016, pp. 97-104. 
doi.org/10.5281/zenodo.571139 

 
 

 



Neutrosophic Operational Research 
Volume II 

181 

 

IX 

Neutrosophic Modules 

Necati Olgun1 ▪ Mikail Bal2 

1Gaziantep University, Faculty of Science and Art, Department of Mathematics, Gaziantep, 27310, Turkey. 
Email: olgun@gantep.edu.tr  

2Gaziantep University, Faculty of Science and Art, Department of Mathematics, Gaziantep, 27310, Turkey. 
Email: mikailbal46@hotmail.com 

 

Abstract 

This paper is devoted to the study of neutrosophic modules and 
neutrosophic submodules. Neutrosophic logic is an extension of the 
fuzzy logic in which indeterminancy is included. Neutrosophic Sets 
are a significant tool of describing the incompleteness, indeter-
minacy, and inconsistency of the decision-making information. 
Modules are one of fundemental and rich algebraic structure with 
respect to some binary operation in the study of algebra. In this 
paper, for the first time, we study to some basic definition of 
neutrosophic R-modules and neutrosophic submodules in algebra 
are generalized. Some properties of neutrosophic R-modules and 
neutrosophic submodules are presented. In this study, we utilized 
classical modules and neutrosophic rings. Consequently, we 
introduced neutrosophic R- modules which is completely different 
from the classical module in the structural properties. In addition, 
neutrosophic quotient modules and neutrosophic R-module 
homomorphism are explained and some definitions, theorems are 
given. Finally, some useful examples are given to verify the validity 
of the proposed definitions and results. 

Keywords 

Neutrosophic group; Neutrosophic ring; Neutrosophic R-module; 
Weak neutrosophic R-module; Strong neutrosophic R-module; 
Neutrosophic R-module homomorphism. 

1 Introduction 

Neutrosophy is a new branch of philosophy, which studies the nature, 
origin and scope of neutralities as well as their interaction with ideational spectra. 
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Neutrosophy is the base of neutrosophic logic which is an extension fuzzy logic 
in which indeterminancy is included. Florentin Smarandanche [6] introduced the 
Notion of neutrosophy as a new branch of philosophy in 1980. After, he 
introduced the concept of neutrosophic logic and neutrosophic set where each 
proposition in neutrosophic logic is approximoted to have the percantage of truth 
in a subset T, the percentage of indeterminacy in a subset I and the percantage of 
falsity in a subset F so that this neutrosophic logic is called an extension of fuzzy 
logic especially to intutionistic fuzzy logic.   

In fact neutrosophic set is the generalization of classical set, neutrosophic 
group and neutrosophic ring the genaralization of classical group and ring etc. 
Same way neutrosophic R-module is the generalization of classical R-module. 
By utilizing the idea of neutrosophic theory Vasantha Kanadasamy and Florentin 
Samarandanche studied neutrosophic algebraic structures in by inserting an 
indeterminate element I in the algebric structure and then combine ‘I’ with each 
element of the structure with respect to corresponding binary operation. They call 
it neutrosophic element and the generated algebraic structure is then termed as 
neutrosophic algebraic structure. They further study several neutrosophic 
algebraic structure such as neutrosophic fields, neutrosophic groups, 
neutrosophic rings, neutrosophic semigroups, neutrosophic vector spaces, 
neutrosophic N-groups, neutrosophic N-semigroups, neutrosophic N loops, 
neutrosophic biloops, neutrosophic N-loops etc. 

Groups are so much important in algebraic structures as they effective in 
almost all algebraic structures theory. Groups are thought as old algebra due to 
its rich structure than any other notion. Same way neutrosophic groups are much 
important in neutrosophic notions formation. Because they are basic structure 
almost all neutrosophic notions. Neutrosophic logic has wide applications in 
science, engineering, politics, economics, etc. Therefore, neutrosophic structures 
are very important and widely area of study. If reader wanted to see details of 
neutrosophy and neutrosophic algebraic structures, the reader should see [3-21].  

2 Preliminaries 

Definition 2.1: [9] Let (G,*) be any group and <G∪I>={a+bI : a,bG}. 

N(G)={<G∪I>,*} is called  a neutrosophic group generated by G and I under the 

binary operation *. I is called the neutrosophic element wıth the property I2=I. 
For an integer n, n+1, and nI are neutrosophic elements and 0.I=0.I-1, the inverse 
of I is not defined and hence does not exist.  

Example 1: (N(Z),+) is a neutrosophic group of integers and (N(Q),+) is a 
neutrosophic group of rational numbers. 
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Example 2: Let Z5={0,1,2,3,4,5} be a group under addition modulo 5. 

N(G)={ <Z5∪I>,’+’ modulo 5} is a neutrosophic group which is a group. For 

N(G) ={a+bI | a,b  Z5} is a group under ‘+’ modulo 5. Thus, this Neutrosophic 
group is also a group. 

Theorem 2.2: [1] Let (G,*) be any group, N(G)={<G∪I>,*} be the 

neutrosophic group. 

(1) N(G) in general is not a group. 
(2) N(G) always contain a group. 

Proof: (1) Suppose that N(G) is in general a group. Let XN(G) be 
arbitrary. If x is a neutrosophic element then X-1N(G) and consequently N(G) 
is not a group, a contradiction. 

 (2) Since a group G and an indeterminate I genarate N(G) , it follows that 

G ⊆ N(G) and N(G) always contain a group. 

Teorem 2.3. [9] N(G) be any neutrosophic group. (N(G),*) is commutative 
neutrosophic group if  

 ∀ a,bN(G), ab=ba. 

Definition 2.4. [9] Let N(G) = 〈G∪I〉 be a neutrosophic group generated 
by G and I. A proper subset P(G) is said to be a neutrosophic subgroup if  P(G) 
is a neutrosophic group i.e. P(G) must contain a (sub) group.  

Teorem 2.5. [1] Let N(M) and N(P) be any two neutrosophic subgroups of 
a commitative neutrosophic group N(G). 

(1) N(M) ∩ N(P) is a neutrosophic subgroup of N(G). 
(2) N(M).N(P) is a neutrosophic subgroup of N(G). 

(3) N(M) ∪ N(P) is a neutrosophic subgroup of N(G) if and only if N(M) ⊆ N(P) 

or N(P) ⊆ N(M). 

Definition 2.6: [9] A neutrosophic group N(G) which has no nontrivial 
neutrosophic normal subgroups is called a simple neutrosophic group. 

Definition 2.7: [2] Let (R,+,*) be any ring. The set  <R∪I>={a+bI | a,bR} 

is neutrosophic ring generated by R and I under the operation of R. 

Example 3: Let Z be the ring of integer <Z∪I>={a+bI | a,bZ}. <Z∪I> is 

a ring called the neutrosophic ring of integer. Also Z ⊆ <Z∪I>. 
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Example 4: Let Q be the ring of rational numbers <Q∪I>={a+bI | a,bQ}. 

<Q∪I> is a ring called the neutrosophic ring of rational numbers. Also Q ⊆ 

<Q∪I>. 

Example 5: Let Zn={0,1,2,…,n-1} be the ring of integers modulo n. 

<Zn∪I> is the neutrosophic ring of modulo integers n. 

Theorem 2.8:[9]  Let <R∪I> be a neutrosophic ring. Then <R∪I> is a ring. 

Note: We have said in teorem 2.2. and teorem 2.8. that a neutrosophic ring  
is a ring; but neutrosophic group may not have a group structure. This is a big 
difference between these two algebraic structures. 

Theorem 2.9:[2] Let <R∪I> be a neutrosophic ring. <R∪I> is 

commutative neutrosophic ring if  ∀ a,b <R∪I>, ab=ba. 

Definition 2.10: [9] Let 〈R∪I〉 be a neutrosophic ring. A proper subset K 
of 〈R∪I〉 is said to  be  a  neutrosophic  subring  if  K itself is a neutrosophic ring 
under the operations of 〈R∪I〉. It is essential that K = 〈S∪nI〉,  n  a  positive  integer  
where S is a subring of R. i.e. {P is generated by the subring S together  with  n 
I. (n∈Z+)}. 

Definition 2.11: [9] Let 〈R∪I〉 be a neutrosophic ring. We say 〈R∪I〉 is a 
neutrosophic ring of characteristic zero if nx = 0 (n an integer) for all x ∈ 〈R∪I〉 
is possible only if n = 0, then we call the neutrosophic ring to be a neutrosophic 
ring of characteristic zero.  

Example 6: Let 〈Q∪I〉 be the neutrosophic ring of rationals. 〈Q∪I〉 is the 
neutrosophic ring of characteristic zero.  

Example 7: Consider 〈C∪I〉 the neutrosophic ring of complex numbers. 
〈C∪I〉 is the neutrosophic ring of characteristic zero.  

3 Neutrosophic Modules 

Definition 3.1: Let (M,+,.) be any R-module over a commutative ring R 

and let M(I)=<M∪I> be a neutrosophic set generated by M and I. The triple 

(M(I),+,.) is called a weak neutrosophic R-module over a ring R. If M(I) is a 
neutrosophic R-module over a neutrosophic ring R(I), then M(I) is called a strong 
neutrosophic R-module. The elements of M(I) are called neutrosophic elements 
and the elements of R(I) are called neutrosophic scalars. 
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If   m = x+yI ,  mı = z+tI ∈ M (I ) where x,y,z, t are elements in M and 

 α = u+vI ∈ R(I) where u, v are scalars in R, we define: 

m+mı = (x+yI)+(z+tI) = (x+z)+(y+t)I,   

and      αm = (u+vI).(x+yI) = ux+(uy+xv+vy)I. 

Example 1: Let R be a commutative ring, and let J be an ideal of R. 

 (3.1) A very important example of an neutrosphic R-module is R(I) 
itself: R(I) is, of  course, an neutrosophic abelian group, the multiplication in R 
gives us a mapping  

. : RxR(I) —> R(I), 

and the neutrosphic ring axioms ensure that this scalar multiplication' turns 
R into an neutrosophic R-module. 

(3.2) Since J is closed under addition and under multiplication by  
arbitrary elements of R(I), it follows that J too is an neutrosophic R-module under 
the addition and multiplication of R. 

(3.3) R(I) is a weak neutrosophic R-module over a ring Q and it is a strong 
neutrosophic R-module over a neutrosophic ring Q(I).  

 (3.4) Rn (I) is a weak neutrosophic R-module over a ring R and it is a strong 
neutrosophic R-module over a neutrosophic ring R(I). 

 (3.5)  M m×n (I) ={[aij ]: aij ∈ Q(I)} is a weak neutrosophic R-module over 

a ring Q and it is a strong neutrosophic R-module over a neutrosophic ring Q(I) 

Theorem 3.2. Every strong neutrosophic R-module  is a weak 
neutrosophic R-module. 

Proof: Suppose that M(I) is a strong neutrosophic module over a 

neutrosophic ring R(I). Since R ⊆ R (I) for every ring R, it follows that M(I) is a 

weak neutrosophic R-module. 

Theorem 3.3. Every weak (strong) neutrosophic R-module is a R-module. 

Proof: Suppose that M(I) is a strong neutrosophic module over a 
neutrosophic ring R(I). Obviously, (M(I),+,.) is an abelian   group.   Let   m = 

x+yI , mı = z + tI ∈ M(I ) , α = a+bI,  β = c+dI ∈ R(I) where  x,y,z,t ∈ M and 

a, b, c, d ∈ R. Then 
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 (1)  α (m + mı) = (a + bI )(x + yI + z + tI )  
   = ax + az + [ay + at + bx + by + bz + bt]I 

= (a+ bI)(x + yI) + (a+bI)(z + tI)  

=αm+αmı. 

 (2)  (α + β )m = (a +bI + c+dI)(x+yI) 

= ax + cx + [ay + cy + bx + dx + by + dy]I 

= (a + bI)(x +yI) + (c + dI)(x +yI)  

=αm+βm 

 (3)    (αβ )m = ((a+ bI)(c+dI))(x+yI) 

   = acx +[acy + adx + bcx + bdx + ady +bcy + bdy]I 

= (a + bI)((c + dI)(x + yI))  

=α(βm) 

 (4)  For 1+1+0I ∈ R(I ) , we have  

           1m = (1 + 0I)(x + yI ) 

        = x(y + 0+ 0)I 

    = x+yI. 

Accordingly, M(I)  is a R-module. 

Lemma 3.4. Let M(I) be a strong neutrosophic R-module 
over a neutrosophic ring R(I) and let m=x+yI, mı =z + tI, mıı = u+vI 

∈ M(I), α = a + bI ∈ R(I). Then: 

(1)  m+ mıı= mı + mıı  implies m= mı. 

(2)  α0=0. 

 (3) 0m=0. 

 (4) (-α)m=α(-m)=-(αm) 

Definition 3.5: Let M(I) be a strong neutrosophic R- module over a 
neutrosophic ring R(I) and let N(I) be a nonempty subset of M(I). N(I) is called 
a strong neutrosophic submodule of M(I) if N(I) is itself a strong neutrosophic R- 
module over R(I). It is essential that N(I) contains a proper subset which is a R-
module. 
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Definition 3.6: Let M(I) be a weak neutrosophic R-module over  a ring R 
and let N(I) be a nonempty subset of M(I). N(I) is called a weak neutrosophic 
submodule of M(I), if N(I) is itself a weak neutrosophic R-module over R. It is 
essential that N(I) contains a proper subset  which is a R-module. 

Theorem 3.7: Let M(I) be a strong neutrosophic R-module over a 
neutrosophic ring R(I) and let N(I) be a nonempty subset of M(I). N(I) is a strong 
neutrosophic submodule of M(I) if and only if the following conditions hold: 

(1) m, mı ∈N(I) implies m + mı ∈N(I) . 

(2) m ∈N(I) implies αm ∈N(I) for all α= a+bI∈R(I) a,b∈R. 

(3) N(I) contains a proper subset which is a R-module. 

 
Corollary 3.8 : Let M(I) be a strong neutrosophic R-module over a 

neutrosophic ring R(I) and let N(I) be a nonempty subset of M(I). N(I) is a strong 
neutrosophic submodule of M(I) if and only if the following conditions hold: 

          (1) m, mı ∈N(I) implies αm+βmı ∈N(I)  for all α,β∈R(I). 

          (2) N(I) contains a proper subset which is a R-module. 

Example 2. Let M(I) be a weak (strong) neutrosophic R-module. M(I) is a 
weak (strong) neutrosophic submodule called a trivial weak (strong) neutrosophic 
submodule. 

Example 3. Let M(I) = R3(I)be a strong neutrosophic R-module over a 
neutrosophic ring R(I ) and let  

N(I) ={(m=a+bI, mı = c+dI, 0 = 0+0I) ∈ M(I): a,b,c,d ∈M}. 

Then N(I) is a strong neutrosophic submodule of  M(I). 

Example 4. Let M(I) = Mm*n (I) = {[ aij]: aij ∈R(I)} be  a  strong  

neutrosophic  R- module over     R(I)  and let 

N(I) = Am*n (I) ={[ bij ]: bij ∈R(I) 

 and trace (A) = 0}. Then N(I) is a strong neutrosophic submodule of  M(I). 

Theorem 3.9: Let M(I) be a strong neutrosophic R-module over a 

neutrosophic ring R(I) and let {Nn(I)}n∈ be a family of strong neutrosophic 

submodules of M(I). Then  ∩Nn(I) is a strong neutrosophic submodule of  M(I). 
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Proof: Clearly 0M ∩Nn(I) and ∩Nn(I) ≠ Ø. Since, for  ∀n0M Nn(I  

Let bex,y ∩Nn(I) and let be aR-module. Then x-y, ax∩Nn(I). Since, 
for  ∀nx-yNn(Iand axNn(IHence ∩Nn(I) is a strong neutrosophic 
submodule of M(I). 

Remark 1. Let M(I) be a strong neutrosophic R-module over a 
neutrosophic ring R(I) and let N1(I) and N2(I) be two distinct strong 

neutrosophic submodule of M(I). Generally, N(I)∪N(I) is not a strong 

neutrosophic submodule of M(I). However, if N1(I) ⊆ N2(I) or N2(I) ⊆ N1(I), 

then N1(I) ∪ N2(I) is a strong neutrosophic submodule of  M(I). 

Definition 3.10: Let M(I) and N(I) be strong neutrosophic R-modules over 
a neutrosophic ring R(I) and let :M (I )N(I) be a mapping of  M(I) into N(I). 
is called a neutrosophic R-module homomorphism if the following conditions 
hold: 

(1) is a R-module homomorphism. 

(2) (I ) I.  

If is a bijective neutrosophic R-module homomorphism, then is called 
a neutrosophic  

R-module isomorphism and we write M(I ) N(I). 

Definition 3.11: Let M(I) and N(I) be strong neutrosophic R-modules over 
a neutrosophic ring R(I) and let :M (I )N(I) be a neutrosophic R-module 
homomorphism. 

(1) The kernel of denoted by Keris defined by the set {mM(I ) :(m) 
0} . 

(2) The image of denoted by Imis defined by the set {nN(I) :(m) 
n  

for some mM (I )}. 

Example 5. Let M(I) be a strong neutrosophic R-module over a 
neutrosophic ring R(I). 

(1) The mapping :M (I )M (I ) defined by (m) m for all mM (I ) 
is neutrosophic R-module homomorphism and Ker=0. 

(2) The mapping :M (I )M (I ) defined by (m) 0 for all mM (I ) 
is neutrosophic R-module homomorphism since I M (I ) but (I ) 0 . 
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Definition 3.12: Let M(I) and N(I) be strong neutrosophic R-modules over 
a neutrosophic ring R(I) and let :M (I )N(I) be a neutrosophic R-module 
homomorphism. Then: 

(1) Keris not a strong neutrosophic submodule of M(I) but a submodule 
of M. 

(2) Imis a strong neutrosophic submodule of N(I). 

Proof.      (1) Obviously, I M (I ) but (I ) 0 . That Keris a submodule 
of  M is clear. 

   (2) Clear. 

Example 6. Let M be a module over the  commutative ring R.  

Suppose that N is a second neutrosophic R-module, and that f : M(I)  
N(I) is a homomorphism of neutrosophic R-modules. The kernel of f, denoted by 
Ker f, is the set {mM : f(m) = 0N}.  Ker f is a submodule of M(I). Kerf = 0 if 
and only if f is a monomorphism. 

Theorem 3.13: Let N(I) be a strong neutrosophic submodule of a strong 
neutrosophic R-module M(I) over a neutrosophic ring R(I). Let 
:M(I)M(I)/N(I) be a mapping defined by (m) m N(I) for all mM (I ) . 
Then is not a neutrosophic R-module homomorphism. 

Proof.  Obvious since (I ) I N(I) N(I) I . 

Theorem 3.14: Let N(I) be a strong neutrosophic submodule of a strong 
neutrosophic R-module M(I) over a neutrosophic ring R(I) and let : M 
(I)K(I) be a neutrosophic R-module homomorphism from M(I) into a strong 
neutrosophic R-module K(I) over R(I).   

If   N(I)N(I) K(I) is the restriction of to N(I) is defined by  N(I)n) 
n)  for all, then: 

(1)  N(I)is a neutrosophic R-module homomorphism. 

(2) N(I) Ker N(I)KerN(I) . 

(3)  Im  N(I) (N(I))  .

Remark 2. If M(I) and N(I) are strong neutrosophic R-modules over a 
neutrosophic ring R(I) and ,:M (I )N(I) are neutrosophic R-module 
homomorphisms, then () and () are not neutrosophic R-module 
homomorphisms since 

 ()(I )  (I ) (I ) I I 2I I and 
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 ()(I )  (I ) I I for all R(I ).  

Hence, if Hom(M (I ),N(I)) is the collection of all neutrosophic R-module 
homomorphisms from M(I) into N(I), then Hom(M (I ),N(I)) is not a neutrosophic 
R-module over R(I). This is different from what is obtainable in the classical R-
module. 

Definition 3.15: Let K(I), M(I) and N(I) be strong neutrosophic R-modules 
over a neutrosophic ring R(I) and let  

:K(I )M(I ), :M(I )N(I)  

be neutrosophic R-module homomorphisms. The composition :K(I 
)N(I) is defined by (k) ((k)) for all kK(I ). 

Theorem 3.16: Let K(I), M(I) and N(I) be strong neutrosophic R-modules 
over a neutrosophic ring R(I) and let 

 :K(I )M (I ), :M (I )N(I)  

be neutrosophic R-module homomorphisms. Then the composition :K(I 
)N(I) is a neutrosophic R-module homomorphism. 

Proof: Clearly, is a R-module homomorphism. For k I K(I ) , we 
have: 

(I ) ((I )) 

(I ) 

I. 

Hence is a neutrosophic R-module homomorphism. 

Corrolary 3.17: Let P(M(I)) be the collection of all neutrosophic R-
module homomorphisms from M(I) onto M(I). Then  

() ()for all ,, P(M (I )) .  

Theorem 3.18: Let K(I), M(I) and N(I) be strong neutrosophic R-modules 
over a neutrosophic ring R(I) and let :K(I )M (I ), :M (I )N(I) be 
neutrosophic R-module homomorphisms. Then 

(1) If is injective, then is injective. 

(2) If is surjective, then is surjective. 

(3) If and are injective, then is injective. 
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4 Conclusion 

In this paper we ispired from the neutrosophic philosophy which F. 
Smarandanche introduced the theory of neutrosophy in 1995. Basically we 
defined neutrosophic R-modules and neutrosophic submodules which are 
completely different from the classical module and submodule in the structural 
properties. It was shown that every weak neutrosophic R-module is a R-module 
and every strong neutrosophic R-module is a R-module. Finally, neutrosophic 
quotient modules and neutrosophic R-module homomorphism are explained and 
some definitions and theorems are given. 
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Abstract 

In this paper, the notion of neutrosophic triplet inner product is given 
and properties of neutrosophic triplet inner product spaces are 
studied. Furthermore, we show that this neutrosophic triplet notion 
is different from the classical notion. 

Keywords 

Neutrosophic triplet inner product; Neutrosophic triplet metric 
spaces; Neutrosophic triplet vector spaces; Neutrosophic triplet 
normed spaces. 

1 Introduction 

The concept of neutrosophic logic and neutrosophic set were introduced 
by Smarandache in [1]. In this concept, sets have truth function, falsity function 
and indeterminancy function. These functions defined as independent on each 
other. Therefore, the concept overcomes many uncertainties in our daily life. In 
fact, Zadeh introduced the concept of fuzzy set in [2] and Atanassov introduced 
the concept of intuitionistic fuzzy set in [3] to overcome uncertainties. The fuzzy 
set has only truth (membership) function. The intuitionistic fuzzy set has truth 
function, falsity function and indeterminancy function. But these functions 
defined as dependent on each other. Therefore, neutrosophic set is the 
generalization of fuzzy set and intuitionistic fuzzy set. Smarandache at al. 
introduced neutrosophic algebraic structures in [4, 5] using the neutrosophic 
theory; Smarandache at al. introduced neutrosophic triplet theory and 
neutrosophic triplet groups in [6-8]. The neutrosophic triplet set is completely 
different from the classical sets,  since for each element “a” in  neutrosophic 
triplet set N together with a binary operation *; there exist a neutral of “a” called 
neut(a) where a*neut(a)=neut(a)*a=a and an opposite of “a”  called anti(a) where 
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a*anti(a)=anti(a)*a=neut(a). The “neut(a)” is  different from the classical 
algebraic unitary element. A neutrosophic triplet is of the form <a, neut(a), 
anti(a)>. Also; Smarandache at al. studied the neutrosophic triplet ring in [9] and 
the neutrosophic triplet field in [10]. Şahin at al. studied neutrosophic triplet 
metric space, neutrosophic triplet vector space and neutrosophic triplet normed 
space in [11]. Recently some researchers have been dealing with neutrosophic set 
theory. For example; Smarandache at al. studied the single valued neutrosophic 
graphs in [12,30-39], interval valued neutrosophic graphs in [13] and SV-
Trapezoidal neutrosophic numbers in [14]. Liu at al. studied interval neutrosophic 
hesitant set in [15], neutrosophic uncertain linguistic number in [16], some power 
generalized aggregation operators based on the interval neutrosophic numbers in 
[17], multi-criteria group decision-making based on interval neutrosophic 
uncertain linguistic variables in [18], interval neutrosophic prioritized OWA 
operator and aggregation operators based on Archimedean t-conorm and t-norm 
for the single valued neutrosophic numbers in [19], multiple attribute decision 
making method based on normal neutrosophic generalized weighted power 
averaging operator in [20] and multi-valued neutrosophic number bonferroni 
mean operators in [21]. Also, in [22-29] neutrosophic set theory was studied. 

In this paper, we introduced neutrosophic triplet inner product space. Also, 
we give new properties and new definitions for this structure. In this paper, in 
section 2, some preliminary results for neutrosophic triplet sets, neutrosophic 
triplet ring and field, neutrosophic triplet metric space, neutrosophic triplet vector 
space and neutrosophic triplet normed space are given. In section 3, neutrosophic 
triplet inner product space is defined and some properties of a neutrosophic triplet 
inner product space are given. It is show that neutrosophic triplet inner product 
different from the classical inner product. Also, it is show that if certain 
conditions are met; every neutrosophic triplet inner product space can be a 
neutrosophic triplet normed space and neutrosophic triplet metric space at the 
same time. Furthermore, the convergence of a sequence and a Cauchy sequence 
in a neutrosophic triplet inner product space are defined. In section 4, conclusions 
are given.  

2 Preliminaries 
Definition 2.1: (Smarandache at al. [2016]) Let N be a set together with 

a binary operation *. Then, N is called a neutrosophic triplet set if for any a∈ N, 
there exists a neutral of “a” called neut(a), different from the classical algebraic 
unitary element, and an opposite of “a” called anti(a), with neut(a) and anti(a) 
belonging to N, such that: 

a*neut(a)= neut(a)* a=a, 
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and 

a*anti(a)= anti(a)* a=a. 

The elements a, neut(a) and anti(a) are collectively called as neutrosophic 
triplet, and we denote it by (a, neut(a), anti(a)). Here, we mean neutral of “a” and 
apparently, “a” is just the first coordinate of a neutrosophic triplet and it is not a 
neutrosophic triplet. For the same element “a” in N, there may be more neutrals 
to it neut(a) and more opposites of it anti(a). 

Definition 2.2 (Smarandache at al. [2016]): Let (N,*) be a neutrosophic 
triplet set. Then, N is called a neutrosophic triplet group, if the following 
conditions are satisfied. 

1) If (N,*) is well-defined, i.e. for any a, b∈N, one has a*b∈N. 

2) If (N,*) is associative, i.e. (a*b)*c= a*(b*c) for all a, b, c∈N. 

The neutrosophic triplet group, in general, is not a group in the classical 
algebraic way. 

One can consider that neutrosophic neutrals are replacing the classical 
unitary element, and the neutrosophic opposites are replacing the classical inverse 
elements. 

Definition 2.3: (Smarandache at al. [2016]) Let (N,*) be a neutrosophic 
triplet group. Then N is called a commutative neutrosophic triplet group if for all 
a, b∈N, we have a*b=b*a. 

Proposition 2.4: (Smarandache at al. [2016]) Let (N,*) be a neutrosophic 
triplet group with respect to * and a,b,c ∈ N; 

1) a*b= a*c if and only if neut(a)*b=neut(a)*c 
2) b*a= c*a if and only if b*neut(a)=c*neut(a) 
3) if anti(a)*b=anti(a)*c, then  neut(a)*b=neut(a)*c 
4) if b*anti(a)=c*anti(a), then b*neut(a)=c*neut(a) 

Theorem 2.5: (Smarandache at al. [2016]) Let (N,*) be a commutative 
neutrosophic triplet group with respect to * and         a, b∈ N; 

i) neut(a)*neut(b)= neut(a*b); 
ii) anti(a)*anti(b)= anti(a*b); 

Theorem 2.6: (Smarandache at al. [2016]) Let (N,*) be a commutative 
neutrosophic triplet group with respect to * and  a ∈N; 

i) neut(a)*neut(a)= neut(a); 
ii) anti(a)*neut(a)=neut(a)* anti(a)= anti(a); 
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Definition 2.7: (Smarandache at al. [2017]) Let (NTF,*,#) be a 
neutrosophic triplet set together with two binary operations * and #. Then (NTF,*, 
#) is called neutrosophic triplet field if the following conditions hold. 

1. (NTF,*) is a commutative neutrosophic triplet group with respect to *. 

2. (NTF, #) is a neutrosophic triplet group with respect to #. 

3. a#(b*c)= (a#b)*(a#c) and  (b*c)#a = (b#a)*(c#a) for all a,b,c ∈ NTF. 

Theorem 2.8: (Şahin at al. [2017]) Let (N,*) be a neutrosophic triplet 
group with no zero divisors and with respect to *. For a ∈ N; 

If a = neut(a), then there exists an anti(a) such that neut(a) = anti(a) = a. 

Theorem 2.9: (Şahin at al. [2017]) Let (N,*) be a neutrosophic triplet 
group with no zero divisors and with respect to *. For a ∈ N; 

i) neut(neut(a))= neut(a) 
ii) anti(neut(a))= neut(a)) 
iii) anti(anti(a))= a 
iv) neut(anti(a))= neut(a) 

Definition 2.10: (Şahin at al. [2017]) Let (N,*) be a neutrosophic triplet 
set and let x*y∊N for all x, y∊N. If the function  

d: NxN→ ℝ+∪{0}  satisfies the following conditions; d is called a 
neutrosophic triplet metric. For all x, y, z ∈ N; 

a) d(x, y)≥0; 

b) If x=y; then d(x, y)=0 

c) d(x, y)= d(y, x) 

d) If there exists any element y ∊N such that d(x, z)≤ d(x, z*neut(y)), then  
d(x, z*neut(y))≤ d(x, y)+ d(y, z).  

Furthermore; ((N,*), d) space is called neutrosophic triplet metric space. 

Definition 2.11:(Şahin at al. [2017]) Let (NTF,∗1, #1) be a  neutrosophic 
triplet field  and let  (NTV,∗2, #2) be a neutrosophic triplet  set together with 
binary operations “∗2 " and “#2”. Then (NTV,∗2, #2) is called a neutrosophic 
triplet vector space if the following conditions hold. For all u, v ∈ NTV and for 
all k∈ NTF; such that   u∗2v∈NTV and  u #2k ∈ NTV   ; 

1) (u∗2v) ∗2t= u∗2 (v∗2t), for every  u, v, t ∈NTV  

2) u∗2v = v∗2u, for every  u, v∈NTV  

3) (v∗2u) #2k= (v#2k) ∗2(u#2k), for all k∈ NTF  and  for all u, v∈NTV   
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4) (k∗1t) #2u= (k#2v) ∗1(u#2v), for all k,t ∈ NTF  and  for all   u∈NTV   

5) (k#1t) #2u= k#1(t#2u), for all  k,t ∈ NTF and for all    u∈NTV  

6) For all u∈NTV; such that u #2 neut(k)= neut(k) #2 u = u, there exists 
any neut(k) ∈ NTF   

 Here; the condition 1) and 2) indicate that the neutrosophic triplet set 
(NTV, ∗2) is a commutative neutrosophic triplet group. 

Example 2.12: (Şahin at al. [2017]) Let X={1,2} be a set and P(X)={ ∅, 
{1}, {2}, {1, 2}} be power set of X and let (P(X), *) be a neutrosophic triplet set. 
Where *=∪,  neut(∅)= neut({1})= neut({2}) = ∅, neut({1, 2})= {1} and anti(A)= 
A for A ∈ P(X) and for  “*”. Then (P(X), ∪, ∩) is a neutrosophic triplet field, 
since for neut(A)= A, anti(A)= A for “∪, ∩”. Now, we show that (P(X), *, ∩) is 
a neutrosophic triplet vector space on (P(X), ∪, ∩) neutrosophic triplet field. 

Definition 2.13: (Şahin at al. [2017]) Let (NTV,∗2, #2) be a neutrosophic 
triplet vector space on (NTF,∗1, #1) neutrosophic triplet field. If ‖. ‖:NTV → 
ℝ+∪{0}  function satisfies following condition; ‖.‖ is called neutrosophic triplet 
normed on (NTV,∗2, #2). 

Where;  f: NTF X NTV  → ℝ+∪{0}, f(α,x)= f(anti(α), anti(x)) is a function 
and for every  x, y ∈ NTV  and α ∈ NTF; 

  a) ‖x‖ ≥0; 

  b) If x=neut(x), then ‖x‖ =0 

  c) ‖α#2 x‖ = f(α,x).‖x‖ 

  d) ‖anti(x)‖= ‖x‖ 

 e) If ‖x∗2 y‖ ≤ ‖x∗2 y∗2neut(k)‖; then ‖x∗2y∗2neut(k)‖≤‖x‖+‖y‖, for any k ∈ 
NTV. 

 Furthermore on (NTV, ∗2, #2), the neutrosophic triplet vector space 
defined by ‖.‖ is called a neutrosophic triplet normed space  and is denoted by 
((NTV, ∗2, #2), ‖.‖). 

Proposition 2.14: (Şahin et al. [2017])Let ((NTV, ∗2, #2), ‖.‖) be a 
neutrosophic triplet normed space on (NTF,∗1, #1)neutrosophic triplet field. 
Then, the function d: NTV x NTV→ ℝ defined by  d(x, y) =  ‖x∗2 anti(y)‖ provides 
neutrosophic triplet metric space conditions. 
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3 Neutrosophic Triplet Inner Product Space 

Now let’s define the neutrosophic triplet inner product spaces on the 
neutrosophic triplet vector space.  

Definition 3.1: Let (NTV,∗2, #2) be a neutrosophic triplet vector space on 
(NTF,∗1, #1) neutrosophic triplet field. If <., .> :NTV x NTV → ℝ+∪{0}  
function satisfies following condition;   <., .> is called neutrosophic triplet inner 
product on (NTV,∗2, #2). 

Where;  f: NTF X NTV X NTV  → ℝ+∪{0}, f(α, x, y)= f(anti(α), anti(x), 
anti(y)) and f(α, x, y)= f(α,y, x),  is a function and for every  x, y ∈ NTV  and α, 
β ∈ NTF; 

  a) <x, x> ≥0; 

  b) If x=neut(x), then <x, x> =0 

  c) <(α#2 x)∗2 (β#2 y), 𝑧> = f(α, x, z). <x, z>+ f(β,y,z). <y, z> 

  d) <anti(x), anti(x)>= <x, x> 

 e) <x, y>=<y , x> 

 Furthermore on (NTV, ∗2, #2), the neutrosophic triplet vector space 
defined by <. , .>  is called a neutrosophic triplet inner product space  and is 
denoted by ((NTV, ∗2, #2), <. , .>). 

Corollary 3.2: It is clear by definition 3.1 that neutrosophic triplet inner 
product spaces are generally different from classical inner product spaces, since 
for there is not any “f” function in classical inner product space. 

Example 3.3: From example 2.12; (P(X), *, ∩) is a neutrosophic triplet 
vector space on  (P(X), ∪, ∩) neutrosophic triplet field. Then taking f: P(X) X 
P(X) X P(X) → ℝ+∪{0}, f(A,B,C)= s((A∩B)\C)/s(B\C),  ‖.‖:P(X) → ℝ+∪{0}. 
Now we show that, <A, B>= s((A\B)∪(B\A)) is a neutrosophic triplet inner 
product and ((P(X),*, ∩), ‖.‖) is a neutrosophic triplet normed space. Where; s(A) 
is number of elements in A ∈P(X)and neut(A)= ∅ , anti(A)= A for “*” and A*B= 
A ∪B 

a) <A, B>= s(A∩B) ≥0. 

b) If A=neut(A)= ∅, then <A , A>= 0. 

c) It is clear that <(A∩B )∗ (C ∩ D), 𝐸> = f(A, B, E). <B, E> + f(C, D, E). 
<D, E> 

d) As, A= anti(A), it is clear that <anti(A), anti(A)>= <A , A>.                      
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e) It is clear that <A, B>= s((A\B)∪(B\A))= s((B\A)∪(A\B))= <B , A> . 

Theorem 3.4: Let (NTV,∗2, #2) be a neutrosophic triplet vector space on 
(NTF,∗1, #1) neutrosophic triplet field and let ((NTV, ∗2, #2), <. , .>) be a 
neutrosophic triplet inner product space on (NTV,∗2, #2) and f: NTF X NTV X 
NTV  → ℝ+∪{0}, f(α,x,y)= f(anti(α), anti(x), anti(y)) is a function and for every  
x, y ∈ NTV  and α, β ∈ NTF; Then;  

 <(α#2 x)∗2 (β#2 y), (α#2 x)∗2 (β#2 y)>= 

 f(α, (α#2 x)∗2 (β#2 y), x,).f(α, x, x,).<x, x>+ 

[ f(α, (α#2 x)∗2 (β#2 y), x,). f(β, x, y,)+ f(β, (α#2 x)∗2 (β#2 y), y).f(α, x, 
y,)].<x, y>+ 

f(β, (α#2 x)∗2 (β#2 y), y). f(β, y, y,).<y, y> 

Proof.         

<(α#2 x)∗2 (β#2 y), (α#2 x)∗2 (β#2 y)>= f(α,x, (α#2 x)∗2 (β#2 y)).<x, 
(α#2 x)∗2 (β#2 y) >+  

f(β,y, (α#2 x)∗2 (β#2 y)).<y, (α#2 x)∗2 (β#2 y) >. From the definition 
3.1; since <x, y>= <x, y> and f(α,x,y)= f(α,y, x);                                         

f(α,x, (α#2 x)∗2 (β#2 y)).<x, (α#2 x)∗2 (β#2 y) >+ 

f(β,y, (α#2 x)∗2 (β#2 y)).<y, (α#2 x)∗2 (β#2 y) >= 

 f(α, (α#2 x)∗2 (β#2 y), x,).< (α#2 x)∗2 (β#2 y), x >+ 

f(β, (α#2 x)∗2 (β#2 y), y).< (α#2 x)∗2 (β#2 y), y > = 

 f(α, (α#2 x)∗2 (β#2 y), x,).[ f(α, x, x,).<x, x>+ f(β, x, y,).<x, y>] + 

 f(β, (α#2 x)∗2 (β#2 y), y).[ f(α, x, y,).<x, y>+ f(β, y, y,).<y, y>] = 

f(α, (α#2 x)∗2 (β#2 y), x).f(α, x, x,).<x, x>+ 

[ f(α, (α#2 x)∗2 (β#2 y), x,). f(β, x, y,)+ f(β, (α#2 x)∗2 (β#2 y), y).f(α, x, 
y,)].<x, y>+ 

f(β, (α#2 x)∗2 (β#2 y), y). f(β, y, y,).<y, y> 

Theorem 3.5: Let (NTV,∗2, #2) be a neutrosophic triplet vector space on 
(NTF,∗1, #1) neutrosophic triplet field and let ((NTV, ∗2, #2), <. , .>) be a 
neutrosophic triplet inner product space on (NTV,∗2, #2) and f: NTF X NTV X 
NTV  → ℝ+∪{0}, f(α,x,y)= f(anti(α), anti(x), anti(y)) is a function and for every  
x,y ∈ NTV  and α ∈ NTF. If  neut(x)= neut(y) then;  

(< x, y >)2≤ <x, x>.<y, y>  
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Proof: It is clear that if x = neut(x) or y = neut(y) then; (< x, y >)2≤ <x, 
x>.<y, y>. We suppose that x ≠ neut(x). From the theorem 3.4; if  

f(α, (α#2 x)∗2 (β#2 y), x,) = f(α, x, x)= f(α, x, x)= −<𝑥,𝑦>

<𝑥,𝑥>
,  

 f(β, (α#2 x)∗2 (β#2 y), y)= f(β, y, y,)= f(β, x, y,) =1 are taken;  

0≤ <(α#2 x)∗2 (β#2 y), (α#2 x)∗2 (β#2 y) > =  

f(α, (α#2 x)∗2 (β#2 y), x).f(α, x, x,).<x, x>+ 

[ f(α, (α#2 x)∗2 (β#2 y), x,). f(β, x, y,)+ f(β, (α#2 x)∗2 (β#2 y), y).f(α, x, 
y,)].<x, y>+ 

f(β, (α#2 x)∗2 (β#2 y), y). f(β, y, y,).<y, y>= 

(
<𝑥,𝑦>

<𝑥,𝑥>
)2 . <x, x>- <𝑥,𝑦>.<𝑥,𝑦>

<𝑥,𝑥>
 - <𝑥,𝑦>.<𝑥,𝑦>

<𝑥,𝑥>
+ <y, y>= 

(<𝑥,𝑦>)2

<𝑥,𝑥>
 -  (<𝑥,𝑦>)2

<𝑥,𝑥>
 - (<𝑥,𝑦>)2

<𝑥,𝑥>
 +<y, y>= <y, y> - (<𝑥,𝑦>)2

<𝑥,𝑥>
. Thus; we have 

0≤<y, y> - (<𝑥,𝑦>)2

<𝑥,𝑥>
 and  

0≤< 𝑥, 𝑥 >.<y, y> - < 𝑥, 𝑥 >.
(<𝑥,𝑦>)2

<𝑥,𝑥>
 

(< 𝑥, 𝑦 >)2 ≤< 𝑥, 𝑥 >.<y, y>. 

Theorem 3.6: Let (NTV,∗2, #2) be a neutrosophic triplet vector space on 
(NTF,∗1, #1) neutrosophic triplet field and let ((NTV, ∗2, #2), <. , .>) be a 
neutrosophic triplet inner product space on (NTV,∗2, #2) and f: NTF X NTV X 
NTV  → ℝ+∪{0}, f(α,x,y)= f(anti(α), anti(x), anti(y)) is a function and for every  
x, y ∈ NTV  and α ∈ NTF. If f(α,x,x)= f(α,x) and ‖𝑥‖= < x, x >

1
2⁄ . Then; 

((NTV, ∗2, #2), ‖. ‖) is  a neutrosophic triplet normed space on (NTV,∗2, #2). 

Proof: As ((NTV, ∗2, #2), <. , .>) is a  neutrosophic triplet inner product 
space and f(α,x,x)= f(α,x),  we have; 

a) ‖𝑥‖= < x, x >
1

2⁄  ≥ 0. 
b) If x= neut(x) then; < x, x >

1
2⁄ = ‖𝑥‖= 0. 

c) ‖α#2x‖= < α#2x, α#2x >
1

2⁄ = f(α, x, x)
1

2⁄ . f(α, x, x)
1

2⁄ . < x, x >
1

2⁄ = 
f(α, x, x). < x, x >

1
2⁄ = 

f(α, x). ‖𝑥‖ 

d) ‖anti(x)‖ = < anti(x), anti(x) >
1

2⁄  =< x, x >
1

2⁄ = ‖x‖   
e)  From the theorem 3.4; if  

f(α, (α#2 x)∗2 (β#2 y), x,) = f(α, x, x)= f(α, x, x)= f(β, (α#2 



Neutrosophic Operational Research 
Volume II 

201 

 

x)∗2 (β#2 y), y)= f(β, y, y,)= f(β, x, y,) =1 and <(α#2 x)∗2 (β#2 y), (α#2 
x)∗2 (β#2 y)> = <x∗2 𝑦, x∗2 𝑦 >  are taken; 

‖x#2y‖
2= <(α#2 x)∗2 (β#2 y), (α#2 x)∗2 (β#2 y)> = <x∗2 𝑦, 

x∗2 𝑦 > = f(α, (α#2 x)∗2 (β#2 y), x).f(α, x, x,).<x, x>+ [ f(α, (α#2 x)∗2 (β#2 y), 
x,). f(β, x, y,)+ f(β, (α#2 x)∗2 (β#2 y), y).f(α, x, y,)].<x, y>+f(β, (α#2 
x)∗2 (β#2 y), y). f(β, y, y,).<y, y>= <x,x> + 2.<x,y>+<y,y>= 

‖x‖2+ 2.<x,y>+ ‖y‖2. From the theorem 3.5; if neut(x)= neut(y) then;  

(< x, y >)2≤ <x, x>.<y, y>  

 ‖x‖2+ 2.<x,y>+ ‖y‖2 ≤  

‖x‖2+ 2‖x‖‖y‖+ ‖y‖2= (‖x‖ + ‖y‖)2.  

Since neut(x)= neut(y); it is clear that ‖x∗2 y‖ ≤ ‖x∗2 y∗2neut(k)‖. Where 
we can take neut(k)= neut(x).Thus;  ‖x∗2y∗2neut(k)‖≤‖x‖+‖y‖  

Corollary 3.7: Let ((NTV, ∗2, #2), ‖.‖) be a neutrosophic triplet normed 
space on (NTF,∗1, #1)neutrosophic triplet field and let  ((NTV, ∗2, #2), <. , .>) 
be a neutrosophic triplet inner product space on (NTF,∗1, #1)neutrosophic triplet 
field such that ‖𝑥‖= < x, x >

1
2⁄ . Then, the function d: NTV x NTV→ ℝ defined 

by d(x, y) =  ‖x∗2 anti(y)‖ = < x ∗2  anti(y), x ∗2  anti(y) >
1

2⁄ provides 
neutrosophic triplet metric space conditions. 

Proof: It is clear that from proposition 2.14.  

Corollary 3.8: Every neutrosophic triplet metric space is reduced by a 
neutrosophic triplet inner product space. But the opposite is not always true. 
Similarly; Every neutrosophic triplet normed space is reduced by a neutrosophic 
triplet inner product space. But the opposite is not always true. 

Definition 3.9: Let ((NTV, ∗2, #2), ‖.‖) be a ((NTV, ∗2, #2), <. , .>) normed 
space on  

(NTF,∗1, #1)neutrosophic triplet field and ((NTV, ∗2, #2), <. , .>) be a 
neutrosophic triplet inner product space such that ‖𝑥‖= < x, x >

1
2⁄ .  d: NTVx 

NTV→ ℝ  neutrosophic triplet metric define by d(x, y)=  ‖ x ∗2 anti(y)‖ = 
< x ∗2  anti(y), x ∗2  anti(y) >

1
2⁄  is called the neutrosophic triplet inner product  

space reduced  by (NTV, ∗2, #2). 

Now let’s define the convergence of a sequence and a Cauchy sequence 
in the neutrosophic triplet inner space with respect to neutrosophic triplet metric 
which is reduced by neutrosophic triplet inner space. 
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Definition 3.10: Let ((NTV,∗2, #2), <. , .>) be a neutrosophic triplet inner 
product space on  (NTF,∗1, #1)  neutrosophic triplet field, {𝑥𝑛} be a sequence in 
this space and d be a neutrosophic triplet metric reduced by ((NTV,∗2, #2), <. , 
.>). For all ε>0, x∊NTV such that for all n ≥M 

 d(x, {𝑥𝑛})= < x ∗2  anti({𝑥𝑛}), x ∗2  anti({𝑥𝑛}) >
1

2⁄  < ε 

if there exists a M∊ ℕ; {𝑥𝑛} sequence converges to  x. It is denoted by  

lim
𝑛→∞

𝑥𝑛= x or 𝑥𝑛→ x  

Definition 3.11: Let ((NTV,∗2, #2), <. , .>) be a neutrosophic triplet inner 
product space on  (NTF,∗1, #1)  neutrosophic triplet field, {𝑥𝑛} be a sequence in 
this space and d be a neutrosophic triplet metric reduced by ((NTV,∗2, #2), <. , 
.>). For all ε>0, x∊NTV such that for all n ≥M 

 d(({𝑥𝑚}, {𝑥𝑛})= ‖x ∗2 anti({𝑥𝑛} )‖ <

({𝑥𝑚} ∗2  anti({𝑥𝑛}), ({𝑥𝑚} ∗2  anti({𝑥𝑛}) >
1

2⁄  < ε 

if there exists a M∊ ℕ; {𝑥𝑛}  sequence is called  Cauchy sequence. 

 Definition 3.12: Let ((NTV,∗2, #2), <. , .>) be a neutrosophic triplet inner 
product space on  (NTF,∗1, #1)  neutrosophic triplet field, {𝑥𝑛} be a sequence in 
this space and d be a neutrosophic triplet metric reduced by ((NTV,∗2, #2), <. , 
.>). If each {𝑥𝑛} cauchy sequence in this space is convergent to d reduced 
neutrosophic triplet metric; ((NTV,∗2, #2), <. , .>)  is called neutrosophic triplet 
Hilbert space.  

Theorem 3.13: Let ((NTV,∗2, #2), <. , .>) be a neutrosophic triplet inner 
product space on (NTF,∗1, #1) neutrosophic triplet field, and  {𝑥𝑛} and {𝑦𝑛} be 
sequences in ((NTV,∗2, #2), <. , .>) such that {𝑥𝑛} → x ∊ NTV and  {𝑦𝑛} → y 
∊NTV, then; 

lim
𝑛→∞

< 𝑥𝑛 , 𝑦𝑛 >= <x,y> 

Proof: |< 𝑥𝑛 , 𝑦𝑛 > −< 𝑥, 𝑦 >|=|< 𝑥𝑛, 𝑦𝑛 > −< 𝑥𝑛, y > +< 𝑥𝑛, y >

−< 𝑥, 𝑦 >| ≤|< 𝑥𝑛, 𝑦𝑛 > −< 𝑥𝑛, y >|+|< 𝑥𝑛, y > −< 𝑥, 𝑦 >| = |< 𝑥𝑛, 𝑦𝑛 −

𝑦 >|+|< 𝑥𝑛 − 𝑥, y >|. From theorem 3.5; as (< x, y >)2≤ <x, x>.<y, y> and 
from definition 3.9; as 

 d(x, y)=  ‖ x ∗2 anti(y)‖ = < x ∗2  anti(y), x ∗2  anti(y) >
1

2⁄ ,  

|< 𝑥𝑛, 𝑦𝑛 − 𝑦 >|+|< 𝑥𝑛 − 𝑥, y >|≤ ‖𝑥𝑛‖‖𝑦𝑛 − 𝑦‖+‖𝑥𝑛 − 𝑥‖‖𝑦‖.  

As {𝑥𝑛} → x and {𝑦𝑛} → y; lim
𝑛→∞

< 𝑥𝑛, 𝑦𝑛 >= <x, y> 
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4 Conclusion 

In this paper, we introduced neutrosophic triplet inner product space. We 
also show that this neutrosophic triplet notion different from the classical notion. 
This neutrosophic triplet notion has several extraordinary properties compared to 
the classical notion. We also studied some interesting properties of this newly 
born structure. We give rise to a new field or research called neutrosophic triplet 
inner product space. 
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This book treats all kind of data in neutrosophic environment, with 
real-life applications, approaching topics as linear programming 
problem, linear fractional programming, integer programming, 
triangular neutrosophic numbers, single valued triangular neutrosophic 
number, neutrosophic optimization, goal programming problem, Taylor 
series, multi-objective programming problem, neutrosophic geometric 
programming, neutrosophic topology, neutrosophic open set, 
neutrosophic semi-open set, neutrosophic continuous function, 
cylindrical skin plate design, neutrosophic MULTIMOORA, alternative 
solutions, decision matrix, ratio system, reference point method, full 
multiplicative form, ordinal dominance, standard error, market 
research, and so on. The selected papers deal with the alleviation of 
world changes, including changing demographics, accelerating 
globalization, rising environmental concerns, evolving societal 
relationships, growing ethical and governance concern, expanding the 
impact of technology; some of these changes have impacted negatively 
the economic growth of private firms, governments, communities, and 
the whole society. 
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