Refined Literal Indeterminacy and the Multiplication Law of SubIndeterminacies

Florentin Smarandache

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

Smarandache, Florentin. "Refined Literal Indeterminacy and the Multiplication Law of SubIndeterminacies." Neutrosophic Sets and Systems 9, 1 (2019). https://digitalrepository.unm.edu/ nss_journal/vol9/iss1/10

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu.

Refined Literal Indeterminacy and the Multiplication Law of Sub-Indeterminacies

Florentin Smarandache ${ }^{1}$
${ }^{1}$ University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA. E-mail: smarand@unm.edu

Abstract

In this paper, we make a short history about: the neutrosophic set, neutrosophic numerical components and neutrosophic literal components, neutrosophic numbers, neutrosophic intervals, neutrosophic hypercomplex numbers of dimension n , and elementary neutrosophic algebraic structures. Afterwards, their generalizations to refined neutrosophic set, respectively refined neutrosophic numerical and literal components, then refined neutrosophic numbers and refined neutrosophic algebraic structures. The aim of this paper is to construct examples of

Abstract

splitting the literal indeterminacy (\boldsymbol{I}) into literal sub-indeterminacies $\left(\boldsymbol{I}_{1}, \boldsymbol{I}_{2}, \ldots, \boldsymbol{I}_{r}\right)$, and to define a multiplication law of these literal sub-indeterminacies in order to be able to build refined I - neutrosophic algebraic structures. Also, examples of splitting the numerical indeterminacy (i) into numerical sub-indeterminacies, and examples of splitting neutrosophic numerical components into neutrosophic numerical sub-components are given.

Keywords: neutrosophic set, elementary neutrosophic algebraic structures, neutrosophic numerical components, neutrosophic literal components, neutrosophic numbers, refined neutrosophic set, refined elementary neutrosophic algebraic structures, refined neutrosophic numerical components, refined neutrosophic literal components, refined neutrosophic numbers, literal indeterminacy, literal sub-indeterminacies, \boldsymbol{I}-neutrosophic algebraic structures.

1 Introduction

Neutrosophic Set was introduced in 1995 by Florentin Smarandache, who coined the words "neutrosophy" and its derivative „neutrosophic". The first published work on neutrosophics was in 1998 see [3].

There exist two types of neutrosophic components: numerical and literal.

2 Neutrosophic Numerical Components

Of course, the neutrosophic numerical components (t, i, f) are crisp numbers, intervals, or in general subsets of the unitary standard or nonstandard unit interval.

Let \mathcal{U} be a universe of discourse, and M a set included in \mathcal{U}. A generic element x from U belongs to the set M in the following way: $x(t, i, f) \in M$, meaning that x 's degree of membership/truth with respect to the set M is t, x 's degree of indeterminacy with respect to the set M is i, and x 's degree of non-membership/falsehood with respect to the set M is f, where t, i, f are independent standard subsets of the interval $[0,1]$, or non-standard subsets of the non-standard interval $]^{-} 0,1^{+}[$in the case when one needs to make distinctions between absolute and relative truth, indeterminacy, or falsehood.

Many papers and books have been published for the cases when t, i, f were single values (crisp numbers), or

t, i, f were intervals.

3 Neutrosophic Literal Components

In 2003, W. B. Vasantha Kandasamy and Florentin Smarandache [4] introduced the literal indeterminacy " I ", such that $I^{2}=I$ (whence $I^{n}=I$ for $n \geq 1, n$ integer). They extended this to neutrosophic numbers of the form: $a+b I$, where a, b are real or complex numbers, and
$\left(a_{1}+b_{1} I\right)+\left(a_{2}+b_{2} I\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) I(1)$
$\left(a_{1}+b_{1} I\right)\left(a_{2}+b_{2} I\right)=\left(a_{1} a_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}+b_{1} b_{2}\right) I(2)$
and developed many I-neutrosophic algebraic structures based on sets formed of neutrosophic numbers.

Working with imprecisions, Vasantha Kandasamy \& Smarandache have proposed (approximated) I^{2} by I; yet different approaches may be investigated by the interested researchers where $I^{2} \neq I$ (in accordance with their believe and with the practice), and thus a new field would arise in the neutrosophic theory.

The neutrosophic number $N=a+b I$ can be interpreted as: " a " represents the determinate part of number N, while " $b I$ " the indeterminate part of number N.

For example, $\sqrt{7}=2.6457 \ldots$ that is irrational has infinitely many decimals. We cannot work with this exact number in our real life, we need to approximate it. Hence, we
may write it as $2+I$ with $I \in(0.6,0.7)$, or as $2.6+3 I$ with $I \in(0.01,0.02)$, or $2.64+2 I$ with $I \in(0.002,0.004)$, etc. depending on the problem to be solved and on the needed accuracy.

Jun Ye [9] applied the neutrosophic numbers to decision making in 2014.

4 Neutrosophic Intervals

We now for the first time extend the neutrosophic number to (open, closed, or half-open half-closed) neutrosophic interval. A neutrosophic interval A is an (open, closed, or half-open half-closed) interval that has some indeterminacy in one of its extremes, i.e. it has the form $A=[a, b] \cup\{c I\}$, or $A=\{c I\} \cup[a, b]$, where $[a, b]$ is the determinate part of the neutrosophic interval A , and I is the indeterminate part of it (while a, b, c are real numbers, and \cup means union). (Herein I is an interval.)
We may even have neutrosophic intervals with double indeterminacy (or refined indeterminacy): one to the left $\left(I_{l}\right)$, and one to the right $\left(I_{2}\right)$:

$$
\begin{equation*}
A=\left\{\mathrm{c}_{1} I_{1}\right\} \cup[a, b] \cup\left\{c_{2} I_{2}\right\} \tag{3}
\end{equation*}
$$

A classical real interval that has a neutrosophic number as one of its extremes becomes a neutrosophic interval. For example: $[0, \sqrt{7}]$ can be represented as $[0,2] \cup I$ with $I=$ (2.0, 2.7), or $[0,2] \cup\{10 I\}$ with $I=(0.20,0.27)$, or $[0,2.6]$ $\cup\{10 I\}$ with $I=(0.26,0.27)$, or $[0,2.64] \cup\{10 I\}$ with $I=$ ($0.264,0.265$), etc. in the same way depending on the problem to be solved and on the needed accuracy.

We gave examples of closed neutrosophic intervals, but the open and half-open half-closed neutrosophic intervals are similar.

5 Notations

In order to make distinctions between the numerical and literal neutrosophic components, we start denoting the $n u$ merical indeterminacy by lower case letter " i " (whence consequently similar notations for numerical truth " t ", and for numerical falsehood " f "), and literal indeterminacy by upper case letter " I " (whence consequently similar notations for literal truth " T ", and for literal falsehood " F ").

6 Refined Neutrosophic Components

In 2013, F. Smarandache [3] introduced the refined neutrosophic components in the following way: the neutrosophic numerical components t, i, f can be refined (split) into respectively the following refined neutrosophic numerical sub-components:

$$
\begin{equation*}
\left\langle t_{1}, t_{2}, \ldots t_{p} ; i_{1}, i_{2}, \ldots i_{r} ; f_{1}, f_{2}, \ldots f_{s}\right\rangle, \tag{4}
\end{equation*}
$$

where p, r, s are integers ≥ 1 and $\max \{p, r, s\} \geq 2$, meaning that at least one of p, r, s is ≥ 2; and t_{j} represents types of numeral truths, i_{k} represents types of numeral indeterminacies, and f_{l} represents types of numeral falsehoods, for $j=1,2, \ldots, p ; k=1,2, \ldots, r ; l=1,2, \ldots, s$.
t_{j}, i_{k}, f_{l} are called numerical subcomponents, or respectively numerical sub-truths, numerical sub-indeterminacies, and numerical sub-falsehoods.

Similarly, the neutrosophic literal components T, I, F can be refined (split) into respectively the following neutrosophic literal subcomponents:

$$
\begin{equation*}
\left\langle T_{1}, T_{2}, \ldots T_{p} ; I_{1}, I_{2}, \ldots I_{r} ; F_{1}, F_{2}, \ldots F_{s}\right\rangle, \tag{5}
\end{equation*}
$$

where p, r, s are integers ≥ 1 too, and $\max \{p, r, s\} \geq 2$, meaning that at least one of p, r, s is ≥ 2; and similarly T_{j} represent types of literal truths, I_{k} represent types of literal indeterminacies, and F_{l} represent types of literal falsehoods, for $j=1,2, \ldots, p ; k=1,2, \ldots, r ; l=1,2, \ldots, s$.
T_{j}, I_{k}, F_{l} are called literal subcomponents, or respectively literal sub-truths, literal sub-indeterminacies, and literal sub-falsehoods.

Let consider a simple example of refined numerical components.

Suppose that a country C is composed of two districts D_{1} and D_{2}, and a candidate John Doe competes for the position of president of this country C. Per whole country, $N L($ Joe Doe $)=(0.6,0.1,0.3)$, meaning that 60% of people voted for him, 10% of people were indeterminate or neutral - i.e. didn't vote, or gave a black vote, or a blank vote -, and 30% of people voted against him, where $N L$ means the neutrosophic logic values.

But a political analyst does some research to find out what happened to each district separately. So, he does a refinement and he gets:

$$
\left(\begin{array}{cccccc}
0.40 & 0.20 \tag{6}\\
t_{1} & t_{2}
\end{array} ;{ }_{i_{1}}^{0.08} \quad i_{2} i_{2} ;{\underset{f}{1}}_{0.05}^{f_{1}} \quad f_{2}\right)
$$

which means that 40% of people that voted for Joe Doe were from district D_{1}, and 20% of people that voted for Joe Doe were from district D_{2}; similarly, 8% from D_{1} and 2% from D_{2} were indeterminate (neutral), and 5% from D_{1} and 25% from D_{2} were against Joe Doe.

It is possible, in the same example, to refine (split) it in a different way, considering another criterion, namely: what percentage of people did not vote $\left(i_{1}\right)$, what percentage of people gave a blank vote - cutting all candidates on the ballot $-\left(i_{2}\right)$, and what percentage of people gave a blank vote - not selecting any candidate on the ballot $\left(i_{3}\right)$. Thus, the numerical indeterminacy (i) is refined into i_{1}, i_{2}, and i_{3} :

$$
\left(\begin{array}{ccc}
0.60 \tag{7}\\
t
\end{array} ; \begin{array}{ccc}
0.05 & 0.04 & 0.01 \\
i_{1} & i_{2} & i_{3}
\end{array} ; \begin{array}{c}
0.30 \\
f
\end{array}\right)
$$

7 Refined Neutrosophic Numbers

In 2015, F. Smarandache [6] introduced the refined literal indeterminacy (I), which was split (refined) as $I_{1}, I_{2}, \ldots, I_{r}$, with $r \geq 2$, where I_{k}, for $k=1,2, \ldots, r$ represent types of literal sub-indeterminacies. A refined neutrosophic number has the general form:

$$
\begin{equation*}
N_{r}=a+b_{1} I_{1}+b_{2} I_{2}+\cdots+b_{r} I_{r} \tag{8}
\end{equation*}
$$

where $a, b_{1}, b_{2}, \ldots, b_{r}$ are real numbers, and in this case N_{r} is called a refined neutrosophic real number; and if at least one of $a, b_{1}, b_{2}, \ldots, b_{r}$ is a complex number (i.e. of the form $\alpha+\beta \sqrt{-1}$, with $\beta \neq 0$, and α, β real numbers), then N_{r} is called a refined neutrosophic complex number.

An example of refined neutrosophic number, with three types of indeterminacies resulted from the cubic root $\left(I_{1}\right)$, from Euler's constant $e\left(I_{2}\right)$, and from number $\pi\left(I_{3}\right)$:
$N_{3}=-6+\sqrt[3]{59-2 e+11 \pi}$
Roughly
$N_{3}=-6+\left(3+I_{1}\right)-2\left(2+I_{2}\right)+11\left(3+I_{3}\right)$
$=(-6+3-4+33)+I_{1}-2 I_{2}+11 I_{3}=26+I_{1}-2 I_{2}+11 I_{3}$
where $\mathrm{I}_{1} \in(0.8,0.9), \mathrm{I}_{2} \in(0.7,0.8)$, and $\mathrm{I}_{3} \in(0.1,0.2)$, since $\sqrt[3]{59}=3.8929 \ldots, \mathrm{e}=2.7182 \ldots, \pi=3.1415 \ldots$.
Of course, other 3-valued refined neutrosophic number representations of N_{3} could be done depending on accuracy.

Then F. Smarandache [6] defined the refined I-neutrosophic algebraic structures in 2015 as algebraic structures based on sets of refined neutrosophic numbers.

Soon after this definition, Dr. Adesina Agboola wrote a paper on refined I-neutrosophic algebraic structures [7].

They were called " I-neutrosophic" because the refinement is done with respect to the literal indeterminacy (I), in order to distinguish them from the refined (t, i, f)-neutrosophic algebraic structures, where " (t, i, f)-neutrosophic" is referred to as refinement of the neutrosophic numerical components t, i, f.

Said Broumi and F. Smarandache published a paper [8] on refined neutrosophic numerical components in 2014.

8 Neutrosophic Hypercomplex Numbers of Dimension n

The Hypercomplex Number of Dimension n (or n-Complex Number) was defined by S. Olariu [10] as a number of the form:
$u=x_{o}+h_{1} x_{1}+h_{2} x_{2}+\ldots+h_{n-1} x_{n-1}$
where $n \geq 2$, and the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}$ are real numbers, while $h_{1}, h_{2}, \ldots, h_{n-1}$ are the complex units, $h_{o}=1$, and they are multiplied as follows:
$h_{j} h_{k}=h_{j+k}$ if $0 \leq j+k \leq n-1$, and $h_{j} h_{k}=h_{j+k-n}$ if $n \leq j+k \leq 2 n-2$.
We think that the above (11) complex unit multiplication formulas can be written in a simpler way as:
$h_{j} h_{k}=h_{j+k(\bmod n)}$
where $\bmod n$ means modulo n.
For example, if $n=5$, then $h_{3} h_{4}=h_{3+4(\bmod 5)}=h_{7(\bmod 5)}=h_{2}$.
Even more, formula (12) allows us to multiply many complex units at once, as follows:
$h_{j 1} h_{j 2} \ldots h_{j p}=h_{j 1+j 2+\ldots+j p(\bmod n)}$, for $p \geq 1$.

We now define for the first time the Neutrosophic Hypercomplex Number of Dimension n (or Neutrosophic n-Complex Number), which is a number of the form:
$u+v I$,
where u and v are n-complex numbers and $I=$ indeterminacy.
We also introduce now the Refined Neutrosophic Hyper-
complex Number of Dimension n (or Refined Neutrosophic n-Complex Number) as a number of the form:
$u+v_{1} I_{I}+v_{2} I_{2}+\ldots+v_{r} I_{r}$
where $u, v_{l}, v_{2}, \ldots, v_{r}$ are n-complex numbers, and I_{1}, I_{2}, \ldots, I_{r} are sub-indeterminacies, for $r \geq 2$.

Combining these, we may define a Hybrid Neutrosophic
Hypercomplex Number (or Hybrid Neutrosophic n-Complex Number), which is a number of the form $u+v I$, where either u or v is a n-complex number while the other one is different (may be an m-complex number, with $m \neq n$, or a real number, or another type of number).
And a Hybrid Refined Neutrosophic Hypercomplex Number (or Hybrid Refined Neutrosophic n-Complex Number), which is a number of the form $u+v_{1} I_{l}+v_{2} I_{2}+\ldots+v_{r} I_{r}$, where at least one of $u, v_{l}, v_{2}, \ldots, v_{r}$ is a n-complex number, while the others are different (may be m-complex numbers, with $m \neq n$, and/or a real numbers, and/or other types of numbers).

9 Neutrosophic Graphs

We now introduce for the first time the general definition of a neutrosophic graph [12], which is a (directed or undirected) graph that has some indeterminacy with respect to its edges, or with respect to its vertexes (nodes), or with respect to both (edges and vertexes simultaneously). We have four main categories of neutrosophic graphs:

1) The (t, i, f)-Edge Neutrosophic Graph.

In such a graph, the connection between two vertexes A and B, represented by edge $A B$:

$$
A \circ \quad \circ B
$$

has the neutroosphic value of (t, i, f).

2) I-Edge Neutrosophic Graph.

This one was introduced in 2003 in the book "Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps", by Dr. Vasantha Kandasamy and F. Smarandache, that used a different approach for the edge:

```
A \odot }\bullet
```

which can be just $I=$ literal indeterminacy of the edge, with $I^{2}=I$ (as in I-Neutrosophic algebraic structures). Therefore, simply we say that the connection between vertex A and vertex B is indeterminate.
3) Orientation-Edge Neutrosophic Graph. At least one edge, let's say AB, has an unknown orientation (i.e. we do not know if it is from A to B, or from B to A).

4) I-Vertex Neutrosophic Graph.

Or at least one literal indeterminate vertex, meaning we do not know what this vertex represents.

5) (t, i, f)-Vertex Neutrosophic Graph.

We can also have at least one neutrosophic vertex, for example vertex A only partially belongs to the graph (t), indeterminate appurtenance to the graph (i), does not partially belong to the graph (f), we can say $A(t, i, f)$.

And combinations of any two, three, four, or five of the above five possibilities of neutrosophic graphs.

If (t, i, f) or the literal I are refined, we can get corresponding refined neurosophic graphs.

10 Example of Refined Indeterminacy and Multiplication Law of Sub-Indeterminacies

Discussing the development of Refined I-Neutrosophic Structures with Dr. W.B. Vasantha Kandasamy, Dr. A.A.A. Agboola, Mumtaz Ali, and Said Broumi, a question has arisen: if I is refined into $I_{1}, I_{2}, \ldots, I_{r}$, with $r \geq 2$, how to define (or compute) $I_{j} * I_{k}$, for $j \neq k$?

We need to design a Sub-Indeterminacy $*$ Law Table.
Of course, this depends on the way one defines the algebraic binary multiplication law $*$ on the set:

$$
\begin{equation*}
\left\{N_{r}=a+b_{1} I_{1}+b_{2} I_{2}+\cdots+b_{r} I_{r} \mid a, b_{1}, b_{2}, \ldots, b_{r} \in M\right\}, \tag{16}
\end{equation*}
$$

where M can be \mathbb{R} (the set of real numbers), or \mathbb{C} (the set of complex numbers).

We present the below example.
But, first, let's present several (possible) interconnections between logic, set, and algebra.

	Logic	Set	Algebra
	$\begin{aligned} & \text { Disjunction } \\ & \text { (or) } \mathrm{V} \end{aligned}$	Union U	Addition
	Conjunction (and) \wedge	Intersection ก	Multiplication
	Negation ᄀ	Complement C	Subtraction
	$\xrightarrow[\rightarrow]{\text { Implication }}$	Inclusion \subseteq	Subtraction, Addition $-,+$
	Equivalence \leftrightarrow	Identity \equiv	Equality

Table 1: Interconnections between logic, set, and algebra.
In general, if a Venn Diagram has n sets, with $n \geq 1$, the number of disjoint parts formed is 2^{n}. Then, if one combines the 2^{n} parts either by none, or by one, or by $2, \ldots$, or by 2^{n}, one gets:

$$
\begin{equation*}
C_{2^{n}}^{0}+C_{2^{n}}^{\prime}+C_{2^{n}}^{2}+\cdots+C_{2^{n}}^{2^{n}}=(1+1)^{2^{n}}=2^{2^{n}} \tag{17}
\end{equation*}
$$

Hence, for $n=2$, the Venn diagram, with literal truth

(T), and literal falsehood (F), will make $2^{2}=4$ disjoint parts, where the whole rectangle represents the whole uni-

Venn Diagram for $n=2$.
verse of discourse (\mathcal{U}).
Then, combining the four disjoint parts by none, by one, by two, by three, and by four, one gets

$$
\begin{gather*}
C_{4}^{0}+C_{4}^{1}+C_{4}^{2}+C_{4}^{3}+C_{4}^{4}=(1+1)^{4}=2^{4}=16 \tag{18}\\
=2^{2^{2}} .
\end{gather*}
$$

For $n=3$, one has $2^{3}=8$ disjoint parts,

Venn Diagram for $n=3$.
and combining them by none, by one, by two, and so on, by eight, one gets $2^{8}=256$, or $2^{2^{3}}=256$.

For the case when $n=2=\{T, F\}$ one can make up to 16 sub-indeterminacies, such as:

$$
I_{1}=C=\text { contradiction }=\text { True and False }=T \wedge F
$$

$$
I_{2}=Y=\text { uncertainty }=\text { True or False }=T \vee F
$$

$I_{3}=S=$ unsureness $=$ either True or False $=T \underline{\vee} F$

$I_{4}=H=$ nihilness $=$ neither True nor False $=\neg T \wedge \neg F$

$I_{5}=V=$ vagueness $=$ not True or not False $=\neg T \vee \neg F$

$I_{6}=E=$ emptiness $=$ neither True nor not True $=\neg T \wedge \neg(\neg T)=\neg T \wedge T$

Let's consider the literal indeterminacy (I) refined into
only six literal sub-indeterminacies as above.
The binary multiplication law
$*:\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}\right\}^{2} \rightarrow\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}\right\}$

defined as:

$I_{j} * I_{k}=$ intersections of their Venn diagram representations; or $I_{j} * I_{k}=$ application of \wedge operator, i.e. $I_{j} \wedge I_{k}$.

We make the following:

$*$		I_{1}	I_{2}	I_{3}	I_{4}	I_{5}
I_{1}	I_{1}	I_{1}	I_{6}	I_{6}	I_{6}	I_{6}
I_{2}	I_{1}	I_{2}	I_{3}	I_{6}	I_{3}	I_{6}
I_{3}	I_{6}	I_{3}	I_{3}	I_{6}	I_{3}	I_{6}
I_{4}	I_{6}	I_{6}	I_{6}	I_{4}	I_{4}	I_{6}
I_{5}	I_{6}	I_{3}	I_{3}	I_{4}	I_{5}	I_{6}
I_{6}						

Table 2: Sub-Indeterminacies Multiplication Law

11 Remark on the Variety of Sub-Indeterminacies Diagrams

One can construct in various ways the diagrams that represent the sub-indeterminacies and similarly one can define in many ways the $*$ algebraic multiplication law, $I_{j} *$ I_{k}, depending on the problem or application to solve.

What we constructed above is just an example, not a general procedure.

Let's present below several calculations, so the reader gets familiar:
$I_{1} * I_{2}=\left(\right.$ shaded area of $\left.I_{1}\right) \cap\left(\right.$ shaded area of $\left.I_{2}\right)=$ shaded area of I_{1},
or $I_{1} * I_{2}=(T \wedge F) \wedge(T \vee F)=T \wedge F=I_{1}$.
$I_{3} * I_{4}=\left(\right.$ shaded area of $\left.I_{3}\right) \cap\left(\right.$ shaded area of $\left.I_{4}\right)=$ empty set $=I_{6}$,
or $\quad I_{3} * I_{4}=(T \vee F) \wedge(\neg T \wedge \neg F)=[T \wedge(\neg T \wedge$ $\neg F)] \underline{\vee}[F \wedge(\neg T \wedge \neg \bar{F})]=(T \wedge \neg T \wedge \neg F) \underline{\vee}(F \wedge$ $\neg T \wedge \neg F)=$ (impossible) $\underline{\vee}$ (impossible)
because of $T \wedge \neg T$ in the first pair of parentheses and because of $F \wedge \neg F$ in the second pair of parentheses
$=($ impossible $)=I_{6}$.
$I_{5} * I_{5}=\left(\right.$ shaded area of $\left.I_{5}\right) \cap\left(\right.$ shaded area of $\left.I_{5}\right)=$ (shaded area of I_{5}) $=I_{5}$,
or $I_{5} * I_{5}=(\neg T \vee \neg F) \wedge(\neg T \vee \neg F)=\neg T \vee \neg F=$ I_{5}.

Now we are able to build refined I-neutrosophic algebraic structures on the set

$$
S_{6}=\left\{a_{0}+a_{1} I_{1}+a_{2} I_{2}+\cdots+a_{6} I_{6}, \text { for } a_{0}, a_{1}, a_{2}, \ldots a_{6} \in\right.
$$

$$
\begin{equation*}
\mathbb{R}\} \tag{20}
\end{equation*}
$$

by defining the addition of refined I-neutrosophic numbers:

$$
\begin{align*}
& \left(a_{0}+a_{1} I_{1}+a_{2} I_{2}+\cdots+a_{6} I_{6}\right)+\left(b_{0}+b_{1} I_{1}+b_{2} I_{2}+\right. \\
& \left.\cdots+b_{6} I_{6}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) I_{1}+\left(a_{2}+b_{2}\right) I_{2}+ \\
& \cdots+\left(a_{6}+b_{6}\right) I_{6} \in S_{6} . \tag{21}
\end{align*}
$$

And the multiplication of refined neutrosophic numbers:

$$
\begin{align*}
& \left(a_{0}+a_{1} I_{1}+a_{2} I_{2}+\cdots+a_{6} I_{6}\right) \cdot\left(b_{0}+b_{1} I_{1}+b_{2} I_{2}+\right. \\
& \left.\cdots+b_{6} I_{6}\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) I_{1}+\left(a_{0} b_{2}+\right. \\
& \left.a_{2} b_{0}\right) I_{2}+\cdots+\left(a_{0} b_{6}+a_{6} b_{0}\right) I_{6}+ \\
& +\sum_{j, k=1}^{6} a_{j} b_{k}\left(I_{j} * I_{k}\right)=a_{0} b_{0}+\sum_{k=1}^{6}\left(a_{0} b_{k}+\right. \\
& \left.a_{k} b_{0}\right) I_{k}+\sum_{j, k=1}^{6} a_{j} b_{k}\left(I_{j} * I_{k}\right) \in S_{6}, \tag{22}
\end{align*}
$$

where the coefficients (scalars) $a_{m} \cdot b_{n}$, for $m=$ $0,1,2, \ldots, 6$ and $n=0,1,2, \ldots, 6$, are multiplied as any real numbers, while $I_{j} * I_{k}$ are calculated according to the previous Sub-Indeterminacies Multiplication Law (Table 2).

Clearly, both operators (addition and multiplication of refined neutrosophic numbers) are well-defined on the set S_{6}.

References

[1] L. A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 338353.
[2] K. T. Atanassov, Intuitionistic Fuzzy Set. Fuzzy Sets and Systems, 20(1) (1986) 87-96.
[3] Florentin Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105 p., 1998.
[4] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211 p., 2003.
[5] Florentin Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143-146, Vol. 4, 2013.
[6] Florentin Smarandache, (t, i, f)-Neutrosophic Structures and INeutrosophic Structures, Neutrosophic Sets and Systems, 310, Vol. 8, 2015.
[7] A.A.A. Agboola, On Refined Neutrosophic Algebraic Structures, mss., 2015.
[8] S. Broumi, F. Smarandache, Neutrosophic Refined Similarity Measure Based on Cosine Function, Neutrosophic Sets and Systems, 42-48, Vol. 6, 2014.
[9] Jun Ye, Multiple-Attribute Group Decision-Making Method under a Neutrosophic Number Environment, Journal of Intelligent Systems, DOI: 10.1515/jisys-2014-0149.
[10] S. Olariu, Complex Numbers in n Dimensions, Elsevier Publication, 2002.
[11] F. Smarandache, The Neutrosophic Triplet Group and its Application to Physics, seminar Universidad Nacional de Quilmes, Department of Science and Technology, Bernal, Buenos Aires, Argentina, 02 June 2014.
[12] F. Smarandache, Types of Neutrosophic Graphs and neutrosophic Algebraic Structures together with their Applications in Technology, seminar, Universitatea Transilvania din Brasov, Facultatea de Design de Produs si Mediu, Brasov, Romania, 06 June 2015.

Received: June 2, 2015. Accepted: August 12, 2015.

