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GENERAL ABSTRACT 

Inadequate quantity is a major impediment to the industrial application of peroxidase and other 

industrial enzymes. Consequently, efforts are geared towards increasing peroxidase production by 

searching for new microbes with enhanced production capacity. In this study, three novel 

ligninolytic bacteria: Raoultella ornithinolytica OKOH-1 (KX640917), Ensifer adhaerens 

NWODO-2 (KX640918) and Bacillus sp. FALADE-1 (KX640922) were optimized for peroxidase 

production and their peroxidases characterized using molecular and biochemical approaches. 

Molecular analysis confirmed the presence of peroxidase genes in the three bacteria. BLAST result 

and phylogenetic analysis of the deduced amino acid sequences suggested that Raoultella 

ornithinolytica OKOH-1 peroxidase (RaoPrx) belongs to a DyP-type peroxidase family while 

peroxidases from Ensifer adhaerens NWODO-2 and Bacillus sp. FALADE-1 are catalase-

peroxidases. The peroxidase genes are available in the GenBank with MF370527, MF374336 and 

MF407314 as respective accession numbers. Upon optimization, Raoultella ornithinolytica 

OKOH-1 exhibited the highest peroxidase production at pH 5, 35 oC and 150 rpm. Biochemical 

characterization showed that RaoPrx had a wide substrate specificity as it was able to oxidize all 

the tested substrates in this study (ABTS, veratryl alcohol, guaiacol and pyrogallol), except 2, 6-

Dimethoxyphenol. However, highest activity by the enzyme was recorded with pyrogallol as 

substrate. The enzyme had an optimum activity at pH 6 and 50 oC and was very stable at high 

temperatures (50 oC – 70 oC). Its pH stability was over a pH range of 5.0 – 7.0. Moreover, RaoPrx 

activity was significantly enhanced by Ag+, Cu2+, Zn2+and Fe2+ while Ca2+, Mg2+, Ba2+, Al3+, Co2+, 

NaN3 and EDTA inhibited the activity of the enzyme. Nevertheless, RaoPrx exhibited a remarkable 

dye-decolourizing activity on congo red and melanin, indicating the biotechnological potential of 

the enzyme in dye decolourization and development of cosmetic agent. Generally, the results from 

this study suggest that ligninolytic bacteria hold a great potential for enhanced peroxidase 

production that could meet the increasing industrial demand. 

 

Keywords: Catalase-peroxidase, dyp-type peroxidase, enzyme kinetics, enzyme production, 

enzyme technology, lignin modifying enzymes, lignin degradation, peroxidase gene. 
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1.1. Background to the study 

The recalcitrance of lignin to degradation constitutes an undesirable barrier to the efficient and 

optimum utilization of the abundant lignocellulosic resources. Thus, effective degradation of lignin 

is of prime importance to the industrial sectors utilizing lignocellulose as raw materials for various 

value-added products including ethanol. This has therefore necessitated the exploration of different 

physicochemical pretreatment methods such as steam explosion, ammonia fibre explosion, 

ozonolysis, acid hydrolysis, alkaline hydrolysis, organosolvation etc. However, most of these 

techniques are characterized by demerits such as high cost, high energy input, corrosion, release 

of compounds that may inhibit fermentation and material loss (Chaturvedi and Verma, 2013; 

Huang et al., 2013). Hence, the imperativeness of developing an effective pretreatment method 

with less limitations. Biological methods, involving the use of microorganisms have been 

advocated as cheaper and ecofriendly alternatives (Falade et al., 2017). 

Ligninolytic activities of fungi have been extensively studied. However, commercialization of the 

biocatalytic process of lignin degradation by fungi still remains a challenge, perhaps, due to 

difficulty in the optimization of fungal enzyme production through genetic engineering (Bugg et 

al., 2011). Thus, the search for novel ligninolytic bacteria has continued to increase, partly, owing 

to the maneuverability of the bacterial genome. As well, the emerging role of bacteria in lignin 

degradation has been reported (Bugg et al., 2011).  

Proteobacteria and Bacilli are part of the few classes of bacteria that have shown potential for 

lignin degradation (Ahmad et al., 2010; Bandounas et al., 2011; Chang et al., 2014; Bao et al., 

2015). Proteobacteria are gram-negative bacteria and constitute one of the largest group of the 

prokaryotes (Zinder, 1998; Gupta, 2000). This group of bacteria are also known as “purple 

bacteria” (Olsen et al., 1994), a nomenclature that has been regarded as inappropriate as purple 

colouration is restricted to only a small number of organisms in this group. Based on phylogenetic 

analysis (16S and 23S rRNA), proteobacteria is divided into five sub-classes: α (alpha), β (beta), 

γ (gamma), δ (delta) and ε (epsilon) proteobacteria (Woese et al., 1984 a, b; 1985; Woese, 1987). 

Proteobacteria includes a vast number of known human, animal and plant pathogens (Collier et 

al., 1998). Apart from the biological significance of proteobacteria in pathogenesis, a number of 

bacteria belonging to α-proteobacteria (Novosphingobium sp. strain MBES04 and Rhizobium sp. 

strain YS-1r), β-proteobacteria (Burkholderia sp. strain LIG30 and Cupriavidus basilensis B-8) 
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and γ-proteobacteria (Halomonas sp. strain KO116, Klebsiella sp. strain BRL6-2 and Raoultella 

ornithinolytica strain S12) sub-classes have shown lignin degrading activities (Shi et al., 2013; 

Woo et al., 2014; Bao et al., 2015; O’Dell et al., 2015; Ohta et al., 2015; Prabhakaran et al., 2015; 

Kameshwar and Qin, 2016), hence, their industrial significance in the valorization of 

lignocellulosic biomass to value-added products.  

Proteobacteria have also shown potential for production of products of economic importance such 

as enzymes and chemicals. Novel enzymes including α-galactosidase, β-galactosidase, 

phosphatase, α-amylase, protease and β-glucanase have recently been discovered in proteobacteria 

(Vester et al., 2014). Production of laccase and lipase by proteobacteria has also been reported 

(Kalme et al., 2009; Ghazali and Abdul-Hamid, 2015; Neifar et al., 2016).  

Furthermore, Raoultella species have been employed for production of pullulanase, a debranching 

enzyme hydrolyzing pullulan and branched polysaccharides (Hii et al., 2012); and production of 

biomolecules such as polysaccharide-protein complex and tri-peptide complex (Fiolka et al., 2013; 

2015). Specifically, Raoutella ornithinolytica B6, produced 2,3-Butanediol (2,3 BD) as an 

alternative to the petroleum-based 2,3 BD production (Kim et al., 2016, 2017). It is therefore 

evident that Raoutella species and other proteobacteria hold great biotechnological potentials. 

Bacilli, is another class of bacteria with emerging ligninolytic activities (Chang et al., 2014) and 

enormous industrial applicability. Bacillus species are referred to as the “major workhorse 

industrial microorganisms” (Schallmey et al., 2004).  Bacillus species have received attention as 

an industrial organism, partly due, to their high growth rate, consequently short fermentation cycle 

times. As well, they possess the ability to secrete extracellular proteins and are generally regarded 

as being safe (Schallmey et al., 2004). Bacillus species are important industrial enzyme producers 

as they are capable of producing large quantities of enzyme. Organisms belonging to the genus 

Bacillus have shown the dexterity to synthesize extracellular enzymes including protease, amylase 

and lipase (Sevinc and Demirkan, 2011; Barros et al., 2013; Pant et al., 2015). Likewise, some 

Bacillus species have been employed for the production of cellulolytic and pectinolytic enzymes 

(Soares et al., 2001; Dias et al., 2014; Padilha et al., 2015). 

The emerging role of Proteobacteria and Bacillus species in lignin degradation, a secondary 

metabolic process, is notably accompanied by the production of extracellular lignin modifying 
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enzymes (LMEs) such as laccases and predominantly heme peroxidases (lignin peroxidase, 

manganese peroxidase, versatile peroxidase and dye-decolourizing peroxidase). 

Besides the ligninolytic activities of peroxidases, they have also shown a great potential for 

industrial application in the development of skin-lightening agents (Draelos, 2015; Falade et al., 

2017), removal of endocrine disrupting chemicals (EDCs) in wastewater (Taboada-Puig et al., 

2015) and degradation of synthetic dyes (Kalyani et al., 2011). Nevertheless, the industrial 

application potentials of peroxidases are hampered by high production costs and inadequate 

quantity of enzyme produced (Ferrer et al., 1991; Torres et al., 2003). This has therefore 

necessitated the search for novel ligninolytic organisms with enhanced peroxidase production 

capacity in the freshwater and terrestrial milieux of the Raymond Mhlaba Municipality, Eastern 

Cape, South Africa. 

 

1.2. Statement of the research problem 

Lignin constitutes a barrier to biochemical hydrolysis of cellulose and hemicellulose, making 

biomass inherently resistant to treatment (Huang et al., 2013) and this has been a major bottleneck 

in the industrial application of lignocellulosic biomass. Although several physical and chemical 

methods of pretreatment have been developed to address this challenge, these methods are 

expensive; require significant energy inputs, release compounds that inhibit fermentation, cause 

corrosion and probably lead to loss of materials (Huang et al., 2013). These demerits inform the 

need to explore alternative means of delignification involving the use of ligninolytic microbes or 

immobilized microbial sub-molecules including enzymes. 

The application of fungal enzymes in the delignification of lignocellulosic biomass has been 

explored but yet to be commercialized (Bugg et al., 2011). Perhaps, the insufficiency in the 

maneuverability of the fungal genome for optimum extracellular enzyme yield, as a function of 

production cost to commercial value quotient may have constituted an important factor impeding 

commercialization of the process (Ausec et al., 2011; Bugg et al., 2011). Thus, the need for the 

exploitation of bacteria for production of ligninolytic enzymes including peroxidases is imperative. 

Besides, the interest in the biotechnological applications of peroxidases has continued to increase 

partly, due to their high redox potential for oxidation of recalcitrant compounds including phenolic 

and non-phenolic aromatic compounds.  
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Given the promising industrial application potentials of peroxidases, their production in large 

quantity is of utmost importance as enhanced enzyme production is one of the significant 

requirements for an effective bio-catalytic process. As well the search for novel peroxidases with 

excellent industrial physicochemical characteristics is imperative. 

 

1.3. Hypothesis 

This study was premised on the hypothesis that bacteria strains from freshwater and terrestrial 

environments of the Raymond Mhlaba Municipality, Eastern Cape, South Africa are not capable 

of producing peroxidases with potential industrial applications. 

 

1.4. Aim and objectives 

1.4.1. Research aim 

This study aimed at exploring the freshwater and terrestrial environments of the Raymond Mhlaba 

Municipality, Eastern Cape, South Africa for bacteria strains with enhanced peroxidase production 

capacity. 

1.4.2. Research objectives 

The specific objectives are to: 

i. collect samples from selected freshwater and terrestrial environments for the isolation of 

ligninolytic bacteria species;  

ii. screen isolates for ligninolytic and peroxidase production potentials; 

iii. identify the positive isolates using 16S rDNA sequence analysis; 

iv. optimize the culture conditions for peroxidase production; 

v. characterize the genes encoding peroxidase production; and  

vi. determine the biochemical characteristics and evaluate the peroxidase from the most 

efficient producer for dye decolourization and melanin oxidation. 
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2.1. Introduction 

The espousal for the utilization and perhaps, the utilization of lignocellulosic biomass for the 

production of value-added products is on the increase world over, partly, due to the abundance and 

renewable nature of lignocellulosic biomass. Woody and non-woody plants possess lignocellulose 

as major structural components and two carbohydrate polymers viz. cellulose (~30-50%) and 

hemicelluloses (~15-30%) as well as some non-carbohydrate aromatic polymers (~15-30%) 

constitute lignocellulose (Foyle et al., 2007; Harris and Debolt, 2010; Menon and Rao, 2012). In 

woody or herbaceous plants, the lignocellulose constituent varies in accordance with the species 

and in tandem with the biotic and abiotic stressor factors including environmental distress 

syndromes. 

Several categorizations have applied to lignocellulosic biomass including; waste biomass, virgin 

biomass, and energy crops. Waste biomass are thought to be low value by-products largely 

generated from industrialized forestry activities (sawdust, wood waste, pulp mill waste), 

agricultural practices (corn stover/cob, sugarcane bagasse, wheat straw, rice husks, animal 

droppings) and municipal solid waste. On the other hand, terrestrial plants are classified as virgin 

biomass while energy crops include those generating large amount of lignocellulosic biomass as 

feedstock for second generation biofuel production.  

Increased generation of lignocellulosic wastes from both the industrial and agricultural sectors 

have continued to pose environmental challenge globally due to, in part, poor waste management. 

However, the prospect of the valorization of lignocellulosic wastes for value-added products shall 

suffice as effective waste management strategies. Nonetheless, this proposition is at the moment 

underexplored. 

Besides, valorization of lignocellulosic wastes avails the right set of circumstance for the 

harnessing of value added products from the compositional structures of the lignocellulosic 

biomass. The valorised may be, in effect, the products of interest for end users otherwise they may 

serve as raw materials for the production of commercially viable products. On the converse, 

microbial activities on lignocellulosic biomass during valorization process may also generate 

industrially important products including enzymes, ethanol, organic acids, microbial 

polysaccharides and vitamins. Irrespective of any delineated path that may lead to products of 
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interest, lignin recalcitrance to degradation has remained a major bottleneck to various industrial 

operations. 

 

2.2. Lignin degradation and ligninolytic organisms 

Lignin has constituted a major hindrance in the valorization of lignocellulosic biomass into value-

added products due to its recalcitrance to degradation. Besides the conferral of hydrolytic stability 

and structural rigidity to plant’s cell walls, lignin traps and renders unavailable the saccharides 

constituting the mono-, di-, oligo- and poly-meric units of cellulose necessary for fermentation. 

Lignin is imperative for the survival of plants and its recalcitrance to degradation has been 

attributed to its cross linkages with polysaccharides (cellulose and hemicellulose) via ester 

and ether linkages and as well, its molecular architecture, in which various non-phenolic 

phenylpropanoid units produce a complicated three-dimensional network joined by an array of 

ether and carbon-carbon bonds (Ruiz-Dueñas and Martinez, 2009). 

In a bid to address the challenge of lignin recalcitrance to degradation, several physicochemical 

pre-treatment technologies have been developed to disrupt the non-cellulosic matrix and render 

cellulose and hemicellulose more accessible for enzymatic hydrolysis (Mosier et al., 2005). Some 

of these methods include steam explosion, ammonia fiber explosion, acid hydrolysis, alkaline 

hydrolysis, ozonolysis, organosolvation and oxidative delignification (Chaturvedi and Verma, 

2013). These pretreatment technologies are generally expensive, require high energy inputs, 

generate compounds inhibitory to fermentation, release toxic chemicals which leads to corrosion 

problems and may also lead to material loss (Chaturvedi and Verma, 2013; Huang et al., 2013). 

Nonetheless, the biological method of delignification may serve as an alternative pretreatment 

process as it is saddled with fewer limitations (Kuhar et al., 2008; Huang et al., 2013). Biological 

pretreatment involves the use of microorganisms or immobilized microbial sub-molecules such as 

enzymes. The method may be thought of as cheap and environmental-friendly. However, it is not 

without demerits which include utilization of, part of, the fermentable sugars as carbon source, 

thus consequently lowering product yield (Wan and Li, 2011; Potumarthi et al., 2013). 

Lignin degradation has been extensively studied in wood-rotting organisms, especially white-rot 

basidiomycetes (Hatakka, 1994; Leonowicz et al., 1999; Martinez et al., 2004; Wan and Li, 2012), 

and most of these studies established white-rot fungi as the most effective “delignifyer”. Besides 
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the white-rot and brown-rot fungi, some bacteria have also been reported to possess ligninolytic 

abilities with the potential of producing ligninases. This group of bacteria has been classified as; 

actinomycetes, α-proteobacteria, ᵞ-proteobacteria (Bugg et al., 2011; Paliwal et al., 2012). 

Likewise, members of the Bacillus genus with ligninolytic abilities have recently been reported 

(Bandounas et al., 2011; Chang et al., 2014; Zhu et al., 2017). However, the mechanisms of lignin 

degradation differ by bacteria, while some utilize extracellular enzymes such as dye-decolourizing 

peroxidase, laccase and manganese superoxide dismutase to modify lignin (Majumdar et al., 2014; 

Rashid et al., 2015), others employ the gentisate, benzoic acid and β-ketoadipate degradation 

pathways (Ahmad et al., 2010; Zhu et al., 2017). A list of some reported ligninolytic bacteria and 

their classes is given in Table 2.1. 

 

Table 2.1. Classification of ligninolytic bacteria 

Classes of Bacteria Ligninolytic Bacteria References 

Actinobacteria Streptomyces viridosporus T7A  

Rhodococcus sp.  

Nocardia autotrophica 

Streptomyces coelicolor  

Rhodococcus jostii RHA 1 

Rhodococcus erythropolis  

Arthrobacter globiformis 

Micrococcus luteus 

Microbacterium phyllosphaerae 

Miicrobacterium oxydans 

Microbacterium marinilacus 

Nonomuraea gerenzanensis 

 

Ramachandra et al. (1988) 

Zimmermann (1990) 

Zimmermann (1990) 

Ahmad et al. (2010) 

Ahmad et al. (2010) 

Ahmad et al. (2010) 

Ahmad et al. (2010) 

Taylor et al. (2012) 

Taylor et al. (2012) 

Taylor et al. (2012) 

Taylor et al. (2012) 

Casciello et al. (2017) 

 

α-Proteobacteria Sphingobium sp. SYK-6   

Ochrobactrum rhizosphaerae 

Ochrobactrum pseudogrignonense 

Mesorhizobium sp. PT04. 

Ensifer adhaerens NWODO-2 

Masai et al. (2007) 

Taylor et al. (2012) 

Taylor et al. (2012) 

Tian et al. (2016) 

Falade et al. (2017b) 

 

γ-Proteobacteria Pseudomonas putida mt-2 Ahmad et al. (2010) 
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Acinetobacter sp.  

Raoultella ornithinolytica S12 

Serratia liquefacien PT01  

Pseudomonas chlororaphis PT02 

Stenotrophomonas maltophilia PT03 

Raoultella ornithinolytica OKOH-1 

Ahmad et al. (2010) 

Bao et al. (2015) 

Tian et al. (2016) 

Tian et al. (2016) 

Tian et al. (2016) 

 Falade et al. (2017b) 

 

Bacilli Bacillus sp. LD003 

Bacillus sp. CS-1 

Bacillus sp. CS-2 

Bacillus ligniniphilus L1 

Bandounas et al. (2011) 

Chang et al. (2014) 

Chang et al. (2014) 

Zhu et al. (2017) 

 

2.3. Ligninolytic enzymes 

Ligninolytic activities of microbes have been partly attributed to their ability to produce potent 

extracellular oxidative enzymes (Tien and Kirk, 1983; Glenn et al., 1983) known as lignin 

modifying extracellular enzymes (LMEs). Ligninolytic enzymes have been broadly classified into 

phenol oxidases and heme peroxidases. Enzymes in the phenol oxidases include laccases (EC 

1.10.3.2) while the heme-peroxidases include lignin peroxidase (EC 1.11.1.14), manganese 

peroxidase (EC 1.11.1.13), versatile peroxidase (EC 1.11.1.16) and dyP-type peroxidases (EC 

1.11.1.19). Also implicated in the degradation of lignin are some accessory enzymes such as aryl-

alcohol oxidase (EC 1.1.3.7), glyoxal oxidase (EC 1.2.3.5) and glucose 1-oxidase (EC 1.1.3.4) 

which generate the hydrogen peroxide (H2O2) required by the peroxidases (Kersten and Kirk, 

1987; Guillen et al., 1992; Ander and Marzullo, 1997). 

LMEs have also shown a capability towards the degradation of various xenobiotics including dyes, 

chlorophenols, polycyclic aromatic hydrocarbons (PAHs), organophosphorous compounds and 

phenols (Wesenberg et al., 2003). The high redox potentials of ligninases and their ability to 

oxidize materials recalcitrant to degradation motivates for their prospects in biopulping and 

biobleaching (Call and Call, 2005), bioremediation through textile dye transformation (Husain, 

2010; Mehta, 2012), decolourization of distillery effluent and other waste effluent treatment 

(Rajasundari and Murugesan, 2011) and as well, the degradation of herbicides (Pizzul et al., 2009). 

Consequently, the interest in the application of ligninases for biotechnological purposes continues 

and the imperativeness of the industrial potential is an indication of the value of these enzymes. 
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2.4. Peroxidases 

Peroxidases catalyse the oxidation of various organic and inorganic substrates in the presence of 

hydrogen peroxide as electron acceptor; a typical reaction is as shown below. 

2S + H2O2 + 2e-                     2Sox + 2H2O, 
 

S ≈ substrate (electron donor), Sox ≈ oxidized substrate. 

Peroxidases are distributed widely in nature with vast presence in plants, animals and microbes 

having been documented (Battistuzzi et al., 2010). They are grouped as heme and non-heme 

peroxidases. The heme peroxidases contain a protoporphyrin IX (heme) as prosthetic group while 

the non-heme peroxidases lack such prosthetic group. The report on peroxidase sequences which 

is available in PeroxiBase indicates that the majority of the sequences (over 70%) encode heme-

peroxidases (Passardi et al., 2007; Zamocky and Obinger, 2010). This observation suggests heme-

containing peroxidases as the most abundant as well as most prominent in nature. 

A recent classification phylogenetically divides heme peroxidases into two superfamilies, 

(peroxidase-cyclooxygenase superfamily and peroxidase-catalase superfamily) and three families 

composed of di-heme peroxidases, dyP-type peroxidases (DyPPrx) and haloperoxidases (HalPrx) 

respectively (Zamocky and Obinger, 2010). 

The peroxidase-cyclooxygenase superfamily is made up of members from all domains of life 

(Zamocky et al., 2015) as against the old nomenclature “animal heme-dependent peroxidases” 

which formerly restricted classification to only peroxidases of animal origin. This superfamily 

seems to dominantly catalyse halide oxidation (Zamocky et al., 2015). Several representatives of 

peroxidase-cyclooxygenase superfamily are involved in the innate immune system (Söderhall, 

1999). This function is not restricted to mammalian peroxidases alone as several peroxidases of 

bacterial origin (Dick et al., 2008) are suspected to be involved in unspecific defence mechanisms 

(Zamocky and Obinger, 2010). The involvement of the peroxidase-cyclooxygenase superfamily 

in immunology would be of clinical significance.  

The peroxidase-catalase superfamily may be further subdivided into three classes (Welinder, 

1992). Class I involves intracellular peroxidases such as yeast cytochrome c peroxidase (CcP) 

which protects against toxic peroxide in the electron transport chain (Dunford, 1999), recent 
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evidences also suggest that this peroxidase functions as a mitochondrial peroxide sensing and 

signaling protein in Saccharomyces cerevisiae (Martins et al., 2013). Ascorbate peroxidase (APx) 

comes next, and it is associated with the removal of hydrogen peroxide in the chloroplast and 

cytosol of higher plants (Dunford, 1999; Battistuzzi et al., 2010) and lastly, the bacterial catalase-

peroxidase (KatG) which is known to exhibit hybrid catalytic activities of both peroxidase and 

catalase and is thought to have cell protective fender under oxidative stress (Smulevich et al., 2006; 

Battistuzzi et al., 2010; Welinder, 1992). Class II, of the peroxidase-catalase superfamily, are 

extracellular fungal peroxidases including lignin peroxidase (LiP), manganese peroxidase (MnP) 

and versatile peroxidase (VP) which are involved in lignin degradation while class III includes 

peroxidases secreted by plants such as horseradish peroxidase (HRP) which have been implicated 

in cell wall biosynthesis, Indole-3-acetic acid catabolism and oxidation of poisonous compounds 

(Veitch and Smith, 2001; Battistuzzi et al., 2010). 

 

2.5. Ligninolytic peroxidases 

Class II heme-peroxidases including MnP, LiP and VP are the major peroxidases implicated in 

ligninolysis and are reported as fungal or bacterial in nature. They are extracellular enzymes 

associated with lignin degradation and, perhaps, portend vital roles in the valorization of 

lignocellulosic biomass to commercializable products. Class II heme-peroxidases play a central 

role in delignification (Ruiz-Dueñas and Martinez, 2009). These peroxidases; MnP, LiP and VP, 

oxidize specific components of the lignin structure and may act in synergy if they are produced by 

the same organism. While MnP oxidizes the phenolic structures of lignin and LiP targets the non-

phenolic components, VP has the capability of oxidizing both phenolic and non-phenolic 

structures. Moreover, lignin-degradation potential of DyP-type peroxidases and catalase-

peroxidase have recently been reported (de Gonzalo et al., 2016). 

 

 2.5.1. Manganese peroxidase (EC.1.11.1.13) 

MnP was discovered by Kuwahara et al. in 1984 and has been described as the most common 

lignin-modifying peroxidase secreted by most white-rot fungi and litter decomposers (Hofrichter, 

2002). Its involvement in lignin degradation has been reported and well-studied in fungi 

(Hofrichter, 2002), however; paucity of information exists on MnP-producing bacteria. The 

mechanism of action of MnP includes the catalytic oxidation of Mn2+ to Mn3+, which is highly 
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reactive and in turn oxidizes a wide range of phenolic substrates including lignin phenolic 

structures (Tuor et al., 1992). The Mn3+, formed from the oxidation of Mn2+ present in 

lignocellulosic materials is stabilized by reacting with a carboxylic acid such as tartrate which 

serves as ion chelator. The resultant complex will in turn oxidize the phenolic component of lignin 

structure which leads to generation of unstable radicals that may breakdown naturally (Hofrichter, 

2002). Nonetheless, MnP also possesses the capability to oxidize or cleave non-phenolic structures 

with the contributions of mediators including thiyl or lipid radicals (Reddy et al., 2003a; Abdel-

Hamid et al., 2013). Moreso, the ability of MnP to oxidize and depolymerize natural and synthetic 

lignin and as well, recalcitrant compounds has been reported (Dehorter and Blondeau, 1993; Bogan 

et al., 1996, Hofrichter et al., 2001; Hofrichter, 2002; Hofrichter et al., 2010). MnPs possess two 

or three residues corresponding to Glu35, Glu39 and Asp175 of Phanerochaete chrysosporium MnP 

1 that binds Mn (Ruiz-Dueñas et al., 2009; Floudas et al., 2012).  

Generally, MnP has a molecular weight range of 38 to 62.5 kDa, with most purified MnPs having 

molecular weights of about 45 kDa (Hatakka, 1994). About 11 various isoforms of MnP have been 

identified in Ceriporiopsis subvermispora (Lobos et al., 1994) with variations in the isoelectric 

point of the different isoforms. 

 

2.5.2. Lignin peroxidase (EC 1.11.1.14) 

Lignin peroxidase (LiP) is also referred to as diaryl propane oxygenase and is a heme-containing 

enzyme that catalyzes hydrogen peroxide-dependent oxidative degradation of lignin (Fig. 2.1). 

Ligninase I, similarly serves the same function as diaryl propane peroxidase. These enzymes are 

inclusive of the peroxidase-catalase superfamily (Zamocky and Obinger, 2010). Structurally, LiP 

is a monomeric hemoprotein. The non-planarity of the heme cofactor of LiP and those in the other 

class-II peroxidases has been well documented (Piontek et al., 1993), and observable in the 

structures of the different ligninolytic peroxidases deposited in the Protein Data Bank (PDB).  

After the discovery of LiP in extracellular medium of white-rot fungus; P. chrysosporium (Tien 

and Kirk, 1983; Glenn et al., 1983), various isozymes have been identified in the following 

organisms: P. chrysosporium (Farrell et al., 1989), Tramates versicolor (Johansson et al., 1993), 

Phlebia radiata (Moilanen et al., 1996) and Phanerochaete sordida (Sugiura et al., 2009). Farrell 

et al. (1989) demonstrated the existence of six (6) isozymes of LiP designated H1, H2, H6, H7, 

H8 and H10 in the extracellular fluid of cultures of P. chrysosporium BKM-F-1767. Another 
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isozyme of lignin peroxidase, Ha was later identified by Dass and Reddy (1990). In the same vein, 

Glumoff et al. (1990) also characterized five (5) isozymes of LiP from P. chrysosporium. The 

study reported that the purified isozymes had different isoelectric points, sugar content, substrate 

specificity and stability. The N-terminal sequences of their amino acids were also reported to be 

different which suggested that they were encoded by different genes. Gene sequencing of a 

lignocellulose degrading fungus; P. chrysosporium strain RP78, revealed about ten lip genes thus 

confirming the existence of isozymes of LiP (Martinez et al. 2004). Furthermore, Morgenstern et 

al. (2008), in consistence with previous studies, reported P. chrysosporium genome to harbour ten 

lip genes designated lip A-J and which respectively encode different isoforms of lignin peroxidase. 

The US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov) receives 

consistent lignocellulolytic fungi genome sequences updates with new genes coding for 

ligninolytic peroxidases, including different LiP isoforms, having been identified as recent as 2015 

(Ruiz-Dueñas et al., 2013; Hori et al., 2014; Couturier et al., 2015). 

 

 

 

 

Fig. 2.1.  Oxidative cleavage of β- 1 linkage in lignin structure by lignin peroxidase (LiP) 

(Falade et al., 2017a). 

 

 

http://www.jgi.doe.gov/
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Structurally, LiP folds to form a globular shape with a size of about 50 x 40 x 40 Å (Piontek et al., 

1993).  It is segregated into proximal and distal domains by the heme which is completely fixed in 

the protein but made accessible through two small channels. The LiP folding motif contains eight 

major α-helices, eight minor helices and three short antiparallel β sheets (Choinowski et al., 1999). 

In the overall, the catalytic cycle of LiP is comparable to that of typical heme-peroxidases. 

However, some structural variations between lignin peroxidase and other heme-peroxidases exist. 

Similarly, the molecular weight range of lignin peroxidase has been documented as 38 kDa to 43 

kDa with an isoelectric point range of 3.3 to 4.7 (Kirk et al., 1986a; Glumoff et al., 1990) and a 

very low optimum pH of around pH 3.0 with veratryl alcohol as the substrate (Tien and Kirk, 1988; 

Furukawa et al., 2014). The low optimum pH of LiP distinguishes it from other peroxidases. 

 Crystallographic studies of cytochrome c peroxidase (CcP) and LiP revealed some structural 

differences; LiP possesses four di-sulphide bonds while CcP has none. LiP is larger in size and 

contains about 343 amino acid residues while CcP is made up of 294 residues (Edwards et al. 

1993). However, CcP is thought to be abundantly endowed with oxidizable amino acids (7 

tryptophans, 14 tyrosine residues, 5 methionines and 1 cysteine) and in contrast, LiP has 3 

tryptophans and 8 methionines. Tyrosine is absent in LiP and, it also does not have free cysteine. 

Nonetheless, a very notable difference between LiP and CcP includes the presence of 

phenylalanines at the contact point between the distal and proximal heme surfaces in LiP and the 

replacement of phenylalanines with tryptophans in the case of CcP. Similarly, Asp183 is hydrogen 

bonded to heme propionate in LiP while, Asn184 plays this role in CcP. This has been suggested to 

partly account for the low pH optimum of lignin peroxidase as the disruption of the aspartic acid-

propionate hydrogen bond would be expected to result in the destabilization of the heme pocket. 

The works of Choinowski et al. (1999) similarly revealed that the bond between the heme iron and 

the Nɛ2 atom of the proximal histidine residue in LiP is longer than that in CcP. The weaker iron-

nitrogen bond in LiP makes the heme more electron deficient thereby destabilizing the high 

oxidation states which has been suggested as a reasonable explanation for the higher redox 

potential of lignin peroxidase when compared to cytochrome c peroxidase. 
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 2.5.2.1. Lignin peroxidase catalytic reactions  

 LiP oxidizes different non-phenolic lignin model compounds including β-O-4 linkage-type 

arylglycerol-aryl ethers. LiP oxidative properties involve the formation of radical cation through 

one electron oxidation and, this action leads to side chain cleavage, demethylation, intramolecular 

addition and rearrangements (Kirk et al., 1986b; Miki et al., 1986; Wong, 2009). Hydroxylation 

of benzylic methylene groups, oxidation of benzyl alcohols to their corresponding aldehydes or 

ketones and phenol oxidation are other mechanistic oxidative processes associated with LiP 

(Paliwal et al., 2012; Furukawa et al., 2014). 

LiP possesses high redox potential for the oxidation of non-phenolic structures which constitute 

up to 90% of lignin (Martinez et al., 2005). It is also characterized with the ability to oxidize a 

wide range of aromatic compounds hence, its role in the enzymatic degradation of lignin. Besides 

the characteristic oxidation of non-phenolic substrates, LiP has also shown the capability to oxidize 

a variety of phenolic compounds such as ring- and N-substituted anilines (Baciocchi et al., 2001). 

Guaiacol, acetosyringone, catechol, vanillyl alcohol and syringic acid are other phenolics 

susceptible to the oxidative potentials of LiP (Harvey and Palmer, 1990; Wong, 2009). At this 

juncture, it would suffice to state that veratryl alcohol, a non-phenolic metabolite and high redox 

potential substrate has been suggested as a redox mediator (Christian et al., 2005) as it has been 

reported to enhance lignin peroxidase activity in lignin degradation (Lundell et al., 1993; 

Schoemaker et al., 1994). The ability of LiP to oxidize lignin and other high redox potential 

compounds has been attributed to its exposed tryptophan residue (Trp171) which forms a 

tryptophanyl radical on the surface of the enzyme through long-range electron transfer (LRET) to 

the heme. Also, variation in the tryptophan environment has been identified as a factor capable of 

modulating the enzyme activity, stability and substrate specificity (Ivancich et al., 2001). This, 

perhaps, accounts for the variation in the catalysis of VP and LiP as LiP is able to oxidize veratryl 

alcohol more effectively than VP, an ability which can be attributed to the acidic environment of 

Trp171 in P. chrysosporium LiP as it facilitates the stabilization of veratryl alcohol cation radical 

(Khindaria et al., 1996). 

The catalytic cycle of lignin peroxidase involves three steps (Fig. 2.2). The first reaction step is 

the oxidation of the resting ferric enzyme [Fe (III)] by hydrogen peroxide (H2O2) as an electron 

acceptor resulting in the formation of compound I oxo-ferryl intermediate. In the second step, the 



22 
 

oxo-ferryl intermediate (deficient of 2e-) is reduced by a molecule of substrate such as non-

phenolic aromatic substrate (S) which donates one electron (1e-) to compound I to form the second 

intermediate, compound II (deficient of 1e-) while the last step involves the subsequent donation 

of a second electron to compound II by the reduced substrate thereby returning LiP to the resting 

ferric oxidation state which indicates the completion of the oxidation cycle (Abdel-Hamid et al., 

2013). 

 

 

 

Fig. 2.2.  Catalytic reaction of lignin peroxidase. Adapted from Abdel- Hamid et al. (2013). 

 

2.5.3. Versatile peroxidase (EC.1.11.1.6) 

Versatile peroxidase (VP) is a heme-containing microbial enzyme belonging to class II of 

peroxidase-catalase superfamily. It is also referred to as “hybrid peroxidase” or “lignin-manganese 

peroxidase” and is largely produced by ligninolytic fungi belonging to certain genera Bjerkandera 

(Heinfling et al., 1998), Pleurotus (Ruiz-Duenas et al., 1999; Palma et al., 2016) and Lepista (Zorn 

et al., 2003). Its production by Phanerochaete chrysosporium has also been reported (Coconi-

Linares et al., 2014). However, there is dearth of information on its production by bacteria. Thus, 
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exploitation of bacteria and other ligninolytic fungi strains for versatile peroxidase production is 

imperative. 

VP is a unique ligninolytic enzyme with the ability to combine the substrate specificity properties 

of two ligninolytic peroxidases (MnP and LiP) and one other fungal peroxidase family, 

Coprinopsis cinerea peroxidase (CIP) (Perez-Boada et al., 2005). Consequently, it is capable of 

oxidizing a range of both high and low redox potential substrates such as Mn2+, phenolic and non-

phenolic lignin model dimers, α-keto-γ-thiomethylbutyric acid (KTBA), veratryl alcohol (VA), 

dimethoxybenzenes, synthetic dyes, substituted phenols and hydroquinones (Caramelo et al., 

1999; Perez-Boada et al., 2005). VP employs the manganese peroxidase (MnP) pathway by 

oxidizing Mn2+ to Mn3+ with hydrogen peroxide as electron acceptor (Fig. 2.3); however, Mn3+ is 

highly reactive but has a very short half-life. Consequently, when VP is utilizing the MnP pathway, 

a dicarboxylic organic acid such as oxalate, tartrate or malonate is required to form a stable 

complex with Mn3+ (Mn3+-oxalate, Mn3+-tartrate or Mn3+-malonate). Thus, with the utilization of 

this mechanism, versatile peroxidase is capable of oxidizing pollutants situated far away from it 

by the action of the metallic ion-complex (Toboada-Puig et al., 2015). The utilization of MnP 

pathway by VP commits it to oxidation of phenolic substrates as it is also able to oxidize non-

phenolic compounds and other typical substrates of LiP using the normal LiP catalytic reaction 

mechanism. However, LiP is able to oxidize veratryl alcohol, a typical LiP substrate more 

effectively than VP. The variation in the catalysis of LiP and VP has been attributed to the variation 

in the tryptophan environment of the enzymes (Khindaria et al., 1996). 

VP also employs the long-range electron transfer (LRET) mechanism in the oxidation of high 

redox-potential aromatic compounds (Ruiz-Dueñas et al., 2009). Specifically, three possible 

LRET pathways for the oxidation of high redox potential aromatic compounds have been revealed 

in two VP isozymes (VPL and VPS 1) of Pleurotus eryngii (Caramelo et al., 1999; Ruiz-Dueñas 

et al., 1999; Perez-Boada et al., 2005). These pathways start at either Trp164 or His232 of VPL and 

at His82 or Trp170 of VPS 1 which is homologous to Trp164 in VPL (Perez-Boada et al., 2005; Ruiz-

Dueñas et al., 2009). Furthermore, the involvement of Trp164 in the oxidation of veratryl alcohol 

and reactive black 5 has been reported. However, the other two pathways (His232 and His82) were 

not involved in LRET (Perez-Boada et al., 2005). Therefore, the ability of VP to oxidize high 

redox potential compounds could perhaps be linked to an exposed catalytic tryptophan: Trp164 
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which forms a radical on the surface of the enzyme through a LRET to the heme (Ruiz-Dueñas et 

al., 2009; Saez-Jimenez et al., 2015). Hence, LRET could suffice as a novel mechanism for EDC 

removal by VP. 
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Fig. 2.3. Exploitation of the VP catalytic cycle for EDC removal.  The VP catalytic cycle is adapted 

from Pérez-Boada et al. (2005) with permission from Elsevier, licence number: 4016930743990 

(Appendix A). C-IA (Compound IA, containing Fe4+-oxo and porphyrin cation radical), C-IIA 

(Compound IIA, containing Fe4+-oxo after reduction of porphyrin), C-IB (Compound IB, containing 

Fe4+-oxo and tryptophanyl (Trp164) radical), C-IIB (Compound IIB, containing Fe3+ and 

tryptophanyl (Trp164) radical), PAH (Polycyclic Aromatic Hydrocarbons). I-III: Reactions 

involved in Mn2+ oxidation mechanism proposed for phenolic EDC removal. Mn3+ generated in 

step III forms a complex with a dicarboxylic acid such as oxalate/malonate/tartrate which is 

responsible for subsequent degradation of phenolic EDC. I, IV-VII: Reactions involved in long 

range electron transfer mechanism proposed for EDC removal. The tryptophanyl radical generated 

on the surface of C-IIB could be exploited for degradation of non-phenolic EDC such as PAH in 

step VII. 
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2.5.4. DyP-type peroxidases (EC.1.11.1.19) 

DyP-type peroxidases (dye decolourizing peroxidases) is another family of heme-peroxidases with 

ligninolytic potential (Sugano, 2009; Colpa et al., 2014; Singh and Eltis, 2015; Yoshida and 

Sugano, 2015). However, its ligninolytic activity is still under discussion as leading scientists in 

the field of lignin degradation who are also involved in the study of DyP-type peroxidases (DyPs) 

consider that a significant contribution of these peroxidases to degradation of lignin is improbable 

perhaps, due to their “low activity on high redox-potential substrates” (Linde et al., 2015). 

Nonetheless, several DyP-type peroxidases have been implicated in lignin degradation as well as 

degradation of lignin model compounds (de Gonzalo et al., 2016).  

The first DyP was purified and characterized from a culture of Bjerkandera adusta (Kim and 

Shoda, 1999) misidentified as Geotrichum candidum (Ruiz-Dueñas et al., 2011).  The name “dye 

decolourizing peroxidase” was derived from the activity of the enzyme on anthraquinone and azo 

dyes (Sugano et al., 2007). 

DyPs are produced by both fungi and bacteria. Unlike other ligninolytic heme-peroxidases: MnP, 

VP and LiP, whose production seem to be restricted to fungi, DyPs are found in relatively large 

amount in bacteria (Van Bloois et al., 2010). More so, a vast number of bacterial DyPs have been 

reported (Lambertz et al., 2016). This is consistent with the assumption that putative genes 

encoding DyPs are amply present in the bacterial genome (Van Bloois et al., 2010). DyPs are 

different from classical peroxidases in primary sequence and structure. On the basis of their 

sequence characteristics, they are classified into four (A, B, C and D) in the peroxidase database: 

PeroxiBase (Fawal et al., 2013). Classes A, B and C comprise bacterial DyPs while extracellular 

fungal DyPs belong to Class D (Yoshida and Sugano, 2015). Class A DyPs are usually 

extracellular as they possess a Tat-signal sequence which is absent in Classes B and C DyPs, hence 

they are intracellular (de Gonzalo et al., 2016). 

It is worthy of note that DyPs from bacteria seem to possess a lower oxidizing ability than the 

fungal DyPs as they appear to oxidize only less recalcitrant phenolic lignin model compounds and 

monophenolic substrates (de Gonzalo et al., 2016). Nevetheless, bacterial DyPs have exhibited 

significant activity for oxidation of the non-phenolic veratryl alcohol (Santos et al., 2014; Yu et 

al., 2014; Min et al., 2015). Other substrates of DyPs include Mn2+ and β-carotenes but their 
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physiological substrate is yet unknown (de Gonzalo et al., 2016). In other words, DyPs are 

characterized by very wide substrate specificity.  

Liers et al. (2014) compared the oxidation of selected high-redox potential phenolic substrates by 

DyPs and other types of peroxidases including soybean peroxidase, Coprinopsis cinerea 

peroxidase and lignin peroxidase. The study observed that DyPs possess a high affinity for 

recalcitrant phenolic compounds such as P-nitrophenol. More so, a redox potential ranging 

between 1.10 ± 0.02 V and 1.20 ± 0.1 V was estimated for the DyPs studied. Interestingly, the 

estimated redox potential for DyPs was comparable to that of lignin peroxidase (1.26 ± 0.17V), 

which is regarded as a high redox potential enzyme. It is worthy of note that oxidation of phenolic 

compounds by DyPs do not necessitate the use of a redox-mediator as required by lignin 

peroxidase and manganese peroxidase (Liers et al., 2014). Therefore, their catalytic efficiency in 

this regard, resembles that of versatile peroxidase (Martinez et al., 1996). As in LiP and VP, DyPs 

employ the LRET pathway for its oxidation process as recent studies have identified Tyr337 

(Strittmatter et al., 2013), Tyr391, Tyr403 and Tyr388 (Liers et al., 2014) as amino acid residues that 

play the role of Trp171 and Trp164 in LRET pathways of P. chrysosporium LiP and P. eryngii VP 

respectively. 

DyPs are majorly active in an acidic environment (acidic pH) and possess a molecular weight of 

about 40-60 kDa (de Gonzalo et al., 2016). Structurally, they are not similar to the common 

peroxidases of fungal origin, nevertheless, they are related in terms of their catalytic reactions. In 

spite of the structural variation, the physical and chemical properties of DyPs are comparable to 

those of typical heme peroxidases (Liers et al., 2010).  

 

2.5.5. Catalase-peroxidase (EC.1.11.1.21) 

Catalase-peroxidases (KatGs) belong to Class I peroxidases of the peroxidase-catalase superfamily 

of heme-peroxidases (Zamocky and Obinger, 2010), also known as the superfamily of plant, 

bacterial and fungal heme-peroxidases (EC 1.11.1.7). The first catalase-peroxidase was reported 

as hydroperoxidase I (HPI) from Escherichia coli and was originally categorized as a catalase with 

a wide range of peroxidase activity (Claiborne and Fridovich, 1979; Singh et al., 2008). Further 

characterization of the gene encoding HPI (katG) showed similarity to plant peroxidases (Triggs-

Raine et al., 1988). Hence, its categorization in Class I peroxidases. Nevertheless, KatGs are either 
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homodimers or homotetramers of approximately 80 kDa subunits which is different from typical 

peroxidases which exist as monomers (Singh et al., 2008). They are exceptional bifunctional 

enzymes found in both prokaryotes and eukaryotes. 

The phylogenetic analysis of katG gene sequences in PeroxiBase by Passardi et al. (2007) showed 

that the genes were found in approximately 40% of bacterial genomes. The study also observed 

that, occasionally, species that are closely related differ as they possess katG genes of diverse 

sources or lack any catalase peroxidase gene. In eukaryotes, katG genes exist in different 

evolutionary lines: algae and fungi lines. However, both evolutionary lines are likely to have 

originated from horizontal gene transfer from bacteria (Passardi et al., 2007; Zamocky et al., 

2007). 

KatGs are unique bifunctional enzyme characterized by predominant catalase activity and 

significant peroxidase activity (Zamocky et al., 2008). Although KatGs are like other members of 

class I (cytochrome c peroxidases and ascorbate peroxidases) in their sequences and structures, 

they are the only heme-peroxidase with the ability to reduce and efficiently oxidize hydrogen 

peroxide at the same rate as a “typical” (monofunctional) catalases (Vlasits, 2009). They oxidize 

typical peroxidase substrates including pyrogallol, guaiacol, o-dianisidine and ABTS [2-2'-azino-

bis (3-ethylbenzthiazoline-6-sulphonic acid)]. However, the naturally occurring peroxidase 

substrate is not known. Biochemical characterization of KatG showed that its peroxidase activity 

was optimum at around pH 5.5 (Vlasits, 2009). Moreover, KatGs have also been reported to have 

“halogenation” (Jakopitsch et al., 2001) and “NADH oxidase” (Singh et al., 2004) activity. In spite 

of the number of reactions catalyzed by this enzyme, its actual physiological function, besides 

removal of hydrogen peroxide, is not clear and has remained unknown (Singh et al., 2008). 

Nonetheless, catalase-peroxidase from Mycobacterium tuberculosis has been reported to activate 

isoniazid, an anti-tuberculosis drug (Zhao et al., 2006) in physiological conditions.  

Interestingly, a recent review has implicated bacterial catalase-peroxidases in lignocellulose 

degradation (de Gonzalo et al., 2016). Brown et al. (2011) used a proteomic approach to observe 

the secretion of catalase-peroxidase (Amyco 1) by Amycolatopsis sp. 75iv2 when incubated with 

lignocellulosic material. To confirm the involvement of Amyco 1 in lignin degradation, the 

secreted enzyme was produced using recombinant technology and purified. The study revealed 

that Amyco 1 was able to convert a phenolic lignin-model compound. The ability of catalase-
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peroxidase from Amycolatopsis sp. 75iv2 to act on lignin-like compound indicates its potential in 

lignin modification. However, further research is required to ascertain the involvement of bacterial 

catalase-peroxidases in lignin degradation. 

  

2.6. Peroxidase functionalities and prospective applications 

2.6.1. Contemporary and prospective functionalities of peroxidases 

Generally, peroxidases have been applied in soil detoxification (Mougin et al., 1994), treatment of 

phenols and chlorophenols polluted wastewaters (Duarte-Vazquez et al., 2003; Cheng et al., 2006), 

biopulping and biobleaching (Hatakka et al., 2003), development of biosensors to determine the 

presence of hydrogen peroxide and other related compounds (Jia et al., 2002; Hamid and Khalil, 

2009) and in the development of skin-lightening cream (Draelos, 2015). Most of these applications 

are yet to be commercialized. Worthy of note is the fact that biopulping, which is regarded as an 

effective alternative to chemical and mechanical pulping, is one of the oldest applications of 

peroxidases (Koshy and Nambisan, 2011).  Catabolizing lignin in processed wood for paper 

production is the major role of LiP and other lignin modifying enzymes in the pulp and paper 

industry (Michael et al., 1991; Jaspers et al., 1994).  

Recently, the applications of peroxidases have extended to development of cosmeceutical and 

dermatological products. Most notable of these products are MelanozymeTM (lignin peroxidase 

based product) which is marketed as “elureTM skin brightening cream” (www.elureskin.com) and 

Luminase, which serves as a catalytic skin tone illuminator, both manufactured by Syneron 

Medical Ltd, Irvine, California, USA for the treatment of hyperpigmentation (sun spots or age 

spots) and skin lightening. The LiP used in the development of these skin lightening products has 

solely been derived from P. chrysosporium.    

The potential applications of peroxidases in various other sectors have been envisaged (Hamid and 

Khalil, 2009), and interests in further exploit of these enzymes for industrial applications are on 

the increase. The, supposedly, high redox potential which bestows the desired functionality has 

been the reason for the endeared interest (Maciel et al., 2010). In the light of this knowledge, it 

becomes obvious that the prospective applications of peroxidases span through vast sectors of 

human endeavour including the bio-refinery, textile, bioremediation, cosmetology and 

dermatology. An overview of some functionalities is presented in succeeding sections. 
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2.6.2. Delignification of feedstock for ethanol production 

 Ethanol is a good alternative to fossil fuel and as such, the use of lignocellulosic biomass as cheap 

source of feedstock for production of ethanol has continued to receive attention globally due to, in 

part, their renewable and eco-friendly nature. Delignification of lignocellulose is an imperative 

step in the bioconversion of lignocellulose to ethanol and this process remains a challenge in 

lignocellulose biomass valorization. A biological method of delignification has been suggested as 

promising due to its mild reaction conditions, higher product yield and low energy demand 

(Sánchez et al., 2011). But on the downside, it is saddled with long incubation period (in the order 

of several weeks to months) before reaching the same product (cellulose) recovery as it’s obtained 

with the physical and chemical pre-treatment methods (Khuong et al., 2014). Additionally, the 

utilization of carbohydrate as carbon source by the de-lignifying microbes has been shown to 

impact adversely on the quantity of recovered products (Sun et al., 2011).  

In a bid to overcome some of the challenges associated with microbial mediated bio-conversion of 

lignocellulose, novel “lignocellulolytic enzyme system” has been suggested as an effective 

treatment strategy (Mukhopadhyay et al., 2011; Wang et al., 2013). The suggested 

lignocellulolytic enzyme system includes LiP, MnP and laccase among others and the associated 

merits of reaction specificity and, high product yield occasioned by the non-utilization of products 

as source of energy (Wang et al., 2013; Ma and Ruan, 2015). This makes the system a very 

promising model for industrial application. To buttress this position, Asgher et al. (2013) showed 

that ligninolytic enzymes (LiP, MnP and Laccase) isolated from P. ostreatus IBL-02 exhibited 

appreciable performance in sugarcane bagasse delignification as compared to sodium hydroxide 

(NaOH). However, the delignification functions attributed to the ligninolytic enzymes system 

(LiP, MnP and laccases) from P. ostreatus, by Asgher et al. (2013), may not be associated to LiP 

as this fungus does not possess lip genes in its genome (Ruiz-Dueñas et al., 2011). However, if the 

position is to hold true, then, lip coding genes associated with the ligninolytic enzymes system 

shown by P. ostreatus would have been plasmid born. Otherwise, the delignification effect can 

only be attributed to laccases, MnP and VP with MnP/LiP hybrid catalytic properties (Fernandez-

Fueyo et al., 2014). 
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2.6.3. Textile effluent treatment and dye decolourization 

The textile industry consumes synthetic dyes significantly (Singh et al., 2015), and these dyes are 

major sources of environmental pollution. Synthetic dyes such as azo, diazo, acidic, basic, reactive, 

disperse, metal-complex and anthraquinone-based dyes are divers in structural variability 

(Christian et al., 2005). Understandably so, estimates of about 10-15% of dyes are lost in water 

during the process of textile dyeing (Asad et al., 2007; Yanto et al., 2014). Subsequent release as 

effluent into various environments has also been estimated to amount to about 2-20% thereby 

portending a huge threat to public health (Yanto et al., 2014). To further highlight the danger posed 

by these textile dyes in the environment; many of these dyes and their degradation products have 

been declared toxic (Xu et al., 2007; Singh et al., 2015). Hence, their presence in the environment 

should be a major concern. Therefore, effective and efficient removal strategy in the environment 

should be imperative. Consequently, various methods for dye decolourization and treatment of 

textile effluents have been developed. Some of these methods include adsorption, chemical 

treatment, ion-pair extraction, coagulation and flocculation techniques (Singh et al., 2015). These 

methods are effective but also costly and, they generate a great amount of sludge which may 

eventually create secondary pollution problem (Parshetti et al., 2012). On the converse, biological 

methods for dye treatment and removal including the use of microbes and macro-molecular 

structures (enzymes) have been effective and are saddled with less limitation. Studies on the 

applications of fungi and bacteria in dye abasement abound (Singh and Pakshirajan, 2010; Kumar 

and Sumangala, 2011; Shah et al., 2013; Singh et al., 2014) however, little attention has been given 

to the oxidative extracellular enzymes as an independent acting entity thus, against this backdrop  

Ollikka et al. (1993) investigated the ability of some lignin peroxidase isozymes, isolated from P. 

chrysosporium, to decolourize azo, triphenyl methane, heterocyclic and polymeric dyes in 

comparison with crude enzyme. The capability of the isolated isozymes of lignin peroxidase [LiP 

4.65 (H2), LiP 4.15 (H7) and LiP 3.85 (H8)] to decolourize the test dyes in the presence of veratryl 

alcohol as a mediator was comparable to that of the crude enzyme which exhibited over 75% 

decolourization rate on the dyes. In another study by Abadulla et al. (2000), the ability of enzyme 

preparations from some fungi (Pleurotus ostreatus; Schizophyllum commune; Sclerotium rolfsii; 

Neurospora crassa; Polyporus sp; Trametes villosa; and Myceliophtora thermophile) to 

decolourize a range of structurally different dyes was evaluated. It was discovered that the enzyme 

preparations effectively decolourize azo, triarylmethane, anthraquinone and indigo dyes. 
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Interestingly, the presence of lignin peroxidase increased the rate of decolourization by laccase in 

the study. Ferreira-Leitao et al. (2007) compared the efficiency of fungal lignin peroxidase and 

plant horseradish peroxidase (HRP) for decolourization of methylene blue and its demethylated 

derivatives. It was shown that both enzymes were able to oxidize methylene blue and its 

derivatives. However, lignin peroxidase was reported to be more effective as its oxidation potential 

was almost double that of HRP. The authors (Ferreira-Leitao et al., 2007) suggested that lignin 

peroxidase would be more suitable for degradation of phenothyazine dyes and decolourization of 

wastewater. Also, Shakeri and Shoda (2008) reported the decolourization of an anthraquinone dye, 

Remazol Brilliant Blue R (RBBR) by a recombinant dye decolourizing peroxidase. Moreover, a 

lignin peroxidase produced from sewage sludge treatment plant was reported to exhibit potential 

for textile effluent treatment and dye decolourization (Alam et al., 2009; Singh et al., 2015). This 

was corroborated by Singh and Pakshirajan (2010) who attributed the high potential of P. 

chrysosporium in decolourization of coloured wastewaters to efficient peroxidase enzyme system. 

In a study by Parshetti et al. (2012), purified peroxidase from Kocuria rosea MTCC 1532 

decolourized eleven (11) different dyes belonging to various structural groups: azo, triphenyl-

methane, heterocyclic, polymeric and metal-complexes. Likewise, Osuji et al. (2014) reported the 

efficient decolourization of Vat Yellow 2, Vat Orange 11 and Vat Black 27 by partially purified 

peroxidase. Furthermore, detoxification and decolourization of industrial waste by oxidative 

enzymes from bacteria and fungi have been reported (Rajasundari and Murugesan, 2011). The 

enzymes oxidize phenolic compounds to aryl-oxy radicals creating insoluble complexes (Abdel-

Hamid et al., 2013). Other mechanisms of action of these enzymes include polymerization of 

contaminants and/or copolymerization with other non-toxic substrates to promote easy removal of 

the contaminants by other purification methods such as sedimentation, filtration and adsorption 

(Gainfreda et al., 2006). This further indicates the potential of peroxidases and other oxidative 

enzymes in textile and other industrial effluent treatment. 

 

2.6.4. Coal depolymerisation and degradation of other xenobiotics 

The ligninolytic enzyme system of microbes has been implicated in the degradation of several 

xenobiotics including chlorophenols, polycyclic aromatic hydrocarbons (PAHs), 

organophosphorus and phenols (Wesenberg et al., 2003; Tisma et al., 2010; Marco-Urrea and 

Reddy, 2012). These compounds which are released from different anthropogenic sources are 
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categorised as major environmental pollutants. Some of these compounds are active components 

of pesticides, disinfectants, herbicides, explosives and dyes among others which are found in daily 

industrial application. Consequently, accumulation in the soil, ground water and air constantly 

contaminates the environment and portend nuisance to public health (Wesenberg et al., 2003). 

Therefore, effective removal of these environmental pollutants is of utmost importance to 

stakeholders as well as the imperativeness for environmental health. Worthy of note is that 

extracellular peroxidases, from ligninolytic microbes, have been reported to play a significant role 

in the degradation of xenobiotic compounds (Duran et al., 2002). LiP, as part of the ligninolytic 

enzyme system of both fungi and bacteria, has been reported to mineralize different types of 

recalcitrant aromatic compounds including three- and four-ring polycyclic aromatic hydrocarbons 

(Gunther et al., 1998; Wesenberg et al., 2003), polychlorinated biphenyl (Krcmar and Ulrich, 

1998; Wesenberg et al., 2003), chlorophenols (Antonopoulos et al., 2001) and synthetic dyes 

(Chivukula et al., 1995; Wesenberg et al., 2003). These articulated data show the suitability of 

peroxidases in bioremediation.  

Furthermore, studies have shown that unburnt coal can have negative effect on water quality and 

the functioning of the aquatic ecosystem (Ahrens and Morrisey, 2005). Countries in the 

categorization of large coal producing, consuming and/or exporting are confronted with the 

challenge of managing the impact of coal in the environment. The presence of coal in water has 

been suggested as a source of increased salinity, acidity, trace metals, hydrocarbons and chemical 

oxygen demand (Milani et al., 1999; Ward, 2002; Stephan, 2010). Toxic polycyclic aromatic 

hydrocarbons (PAHs) from unburnt coal have also been suggested as an important source of 

contamination in the aquatic environment (Achten and Hofmann, 2009). PAHs from the 

incomplete combustion of coal have been implicated in the pollution of abandoned coal 

gasification site (Sutherland et al., 1995) and soil pollution. They are also found at high 

concentration in the bottom of sediments of water bodies. The presence of coal particles in soils 

and sediments can result from coal mining and transportation (Johnson and Bustin, 2006; Achten 

et al., 2011). Given the increased coal mining operations in coal-producing and consuming 

countries; toxic PAHs as contaminants in water, sediments and soil are continually emerging. 

Consequently, investigation into the potentials of peroxidases and other ligninolytic enzymes in 

the degradation of polycyclic aromatic hydrocarbons, known and emerging in the environment 
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should be explored. Perhaps, of great interest shall be the depolymerisation of PAHs emanating 

from coal industrial applications and utilizations. 

 

2.6.5. Melanin oxidation - novel cosmetic lightening agents 

Melanin, produced by melanocytes in a process termed melanogenesis and stored in melanosomes, 

is the dark pigment responsible for human skin and hair colouration. The melanosomes are 

transferred to keratinocytes (epidermal cells) for onward transportation to the upper layer of the 

epidermis to confer on the skin its typical colour (Mauricio et al., 2011). Its deficiency can lead to 

various diseases and disorders including albinism which is the absence of melanin pigment in an 

individual. Pigmentation disorders such as hyperpigmentation, a common dermatologic condition 

(Kindred et al., 2013) that affects all skin types, have been attributed to the accumulation of 

melanin in the upper layer of the epidermis (Simon et al., 2009; Mauricio et al., 2011). Basically, 

melanin is divided into two types: eumelanin (brown and black) and pheomelanin (red or yellow). 

Eumelanin is reported to be the more ubiquitous melanin type in mammals, as it is found in 

different parts of the body such as hair, skin, inner ear, eye and brain (Khammuang and Sarnthima, 

2013).  

The impact and distribution of melanin is not limited to mammals, it is also found in many other 

life forms including plants and microbes where they serve different functions. Some of the reported 

biological functions of melanin include protection against environmental stress (Kogej et al., 2007; 

Liu and Nizet, 2009); increased antibiotic resistance in bacteria (Lin et al., 2005); and involvement 

in fungal pathogenesis of plants (Butler et al., 2005; Khammuang and Sarnthima, 2013). Melanin 

is known to be very durable and its durability has been attributable to its complex structure. Its 

basic structural unit is represented by covalently linked indoles. In addition, melanin is a 

heterogenous polymer composed majorly of dihydroxyindole units which exist as a mixture of 

both catechol and quinone (Prota, 1992; Woo et al., 2004). The structural characteristics of 

melanin are comparable to those of lignin and coal wherein the polymers are made up of indole 

and phenolic subunits (Woo et al., 2004) hence its resistance to degradation. 

Although one of the biological functions of melanin in humans may be to protect the underlying 

tissues from harmful ultra violet (UV) radiation (Krol and Liebler, 1998), many hyper-pigmented 

women in Africa and other black nations desire a light face and skin as the Caucasians desire a 
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spotless skin. To achieve this desire, cosmeceutical and dermatological industries have developed 

treatments for skin lightening employing the following mechanisms of action: prevention of 

melanogenesis by inhibiting tyrosinase, an enzyme that catalyzes the rate-limiting step [conversion 

of tyrosine to dihydroxyphenylalanine (DOPA)] in melanin biosynthesis (Kim and Uyama, 2005) 

as illustrated in Fig. 2.4, preventing the stimulation of melanocytes by ultraviolet A radiation, 

activation of cell turn-over (Woo et al., 2004) and blocking the transfer of melanosomes to 

keratinocytes (Mauricio et al., 2011). 

Hydroquinone, described as the gold standard in the treatment of hyperpigmentation (Kindred et 

al., 2013) has been the most effective skin-lightening agent. However, its safety has generated a 

lot of controversy and concern. This has motivated research into exploration of alternative agents 

for the treatment of skin pigmentation disorders including melasma. Currently, some of the 

available alternative skin-lightening agents include mequinol, topical retinoids, azelaic acid, 

arbutin and deoxyarbutin, kojic acid, licorice extract, ascorbic acid, soy, aleosin, niacinamide and 

N-acetylglucosamine (Kindred et al., 2013).  

Hydroquinone and most of these alternatives operate through tyrosinase inhibition mechanism 

(Grime, 2009), probably by binding directly to the enzyme or interacting with the copper 

molecules at its active site (Sheth and Pandya, 2011) thereby reducing the conversion of DOPA to 

melanin. However, skin-lightening by inhibition of melanin synthesis is slow in achieving the 

desired results (Woo et al., 2004). Hence, there is the need to explore alternative agents with the 

potential to directly decolourize melanin pigment through oxidation as a means of skin-lightening 

potential. Perhaps, the ability of ligninolytic enzymes to oxidize a wide range of structurally 

different substrates makes them suitable candidates for the oxidation of melanin which is 

structurally similar to lignin. Thus, ligninolytic enzymes with melanolytic ability have the potential 

for application in the cosmetics industry. 
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Fig. 2.4.  Pathway of melanin biosynthesis (Falade et al., 2017a). 
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Woo et al. (2004) demonstrated that crude peroxidase from P. chrysosporium could decolourize 

synthetic melanin thus suggesting its application in the development of new cosmetic lightening 

agents. Furthermore, Mohorčič et al. (2007) produced melanolytic enzyme capable of degrading 

human skin melanin from Sporotrichum pruinosum. Peroxidases from Ceriporiopsis sp. strain 

MD-1 have also been reported to decolourize synthetic and human hair melanins (Nagasaki et al., 

2008). Similarly, the study reported by Khammuang and Sarnthima (2013) showed that crude 

laccase from Lentinus polychrous Lév. was able to decolourize synthetic melanins. The enzyme 

was reported to be more effective in the presence of ABTS as a mediator. Perhaps, it would be 

noteworthy to state that all the previously studied melanolytic enzymes are of fungal origin thus, 

an exploration into bacterial melanolytic enzymes for application in the development of skin care 

products shall be a novel concept. 

As the proposition for the use of lignin peroxidase as an alternative to hydroquinone cream 

increases, efforts are being made to ascertain efficacy and safety of these compounds both at an 

acute and chronic phase. Consequently, Mauricio et al. (2011) evaluated the skin-lightening 

efficacy and safety of lignin peroxidase (LiP) constituted cream in comparison with 2% 

hydroquinone cream in Asian women. It was observed in the study that the application of LiP 

cream provided a significantly faster and observable skin-lightening effect than 2% hydroquinone 

cream which led to the overall preference of LiP creams. LiP has demonstrated a skin-lightening 

effect comparable to that of hydroquinone, with no observable adverse effect, and with superiority 

in skin texture and roughness (Draelos, 2015). However, more studies are required to compare LiP 

based cream with higher concentrations of hydroquinone and its efficiency in the treatment of 

other pigmentary disorders. The mechanism of action of LiP as cosmetic lightening agent involves 

five steps (Fig. 2.5). The first reaction step is the oxidation of LiP (the active component of 

cosmetic lightening cream) by hydrogen peroxide (an activator, which activates the enzyme on 

application on the skin) as in a typical catalytic reaction of LiP. Step 2 involves the reduction of 

oxidized LiP by a molecule of veratryl alcohol (VA), a substrate specific for LiP, leading to the 

production of a veratryl alcohol radical (VA o+) which in turn mediates the oxidation of melanin 

on the skin in step 3. In step 4, LiP is inactivated by change in pH which occurs as a result of 

application of the enzyme on the skin, thereby becoming a simple glycoprotein which is 

subsequently hydrolysed into amino acids by proteases and other glycosidases naturally present in 

the skin in the last step (step 5). 
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Fig. 2.5. Mechanism of action of lignin peroxidase as cosmetic lightening agent. Step 1; oxidation 

of LiP by hydrogen peroxide, Step 2; reduction of oxidized LiP by one molecule of veratryl alcohol 

(VA), Step 3; oxidation of melanin, Step 4; inactivation of LiP by change in pH to become a simple 

glycoprotein, Step 5; hydrolysis of glycoprotein into amino acids by proteases and other 

glycosidases naturally present in the skin (Falade et al., 2017a). 

 

2.6.6. Removal of endocrine disrupting chemicals in wastewater 

The occurrence of endocrine disrupting chemicals (EDC) as organic contaminants in surface 

waters including rivers has become an environmental and public health concern due to their 

potential health effects and ecological risks (Boxall et al., 2012; You et al., 2015). 

There are recent reports of occurrence of organic micropollutants (Ratola et al., 2012) and EDC in 

wastewater and the receiving waterbodies around the world (Olujimi et al., 2012; Barber et al., 

2015; Komesli et al., 2015; Noutsopoulos et al., 2015; Salgueiro-González et al., 2015; Vajda et 

al., 2015). The presence of EDC in freshwaters has been attributed to indiscriminate and direct 
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municipal wastewater effluent discharge from wastewater treatment plants (You et al., 2015), as 

most treatment plants do not possess the technology for complete removal of EDC. Other sources 

of EDC include different anthropogenic activities, agricultural activities, pharmaceuticals, 

personal care products, spraying of pesticides and herbicides, artificial chemicals, use of air 

fresheners, sunscreens, beverage cans etc.   

EDC possess inherent ability to alter the endocrine system thereby interfering with the organism’s 

hormonal coordination, consequently affecting the development, behaviour and reproductive 

system of the organisms (Caliman and Gavrilescu, 2009; You et al., 2015). Major classes of EDC 

include but not limited to pharmaceuticals and personal care products (PPCPs), phthalates, 

polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), 

alkylphenol ethoxylates (APEs), pesticides including dichlorodiphenyltrichloroethane (DDT) and 

plastic additives such as Bisphenol A (Annamalai and Namasivayam, 2015). The high 

environmental and health risk posed by exposure of human to EDC and the inefficiency of the 

conventional treatment approaches for complete removal of EDC in wastewater, as well as some 

challenges that characterized the conventional treatment processes have led to an increased interest 

in the exploration of alternative treatment processes for EDC removal in wastewater. 

Enzymatic treatment process for EDC removal based on the use of ligninolytic oxidative enzymes 

(Table 2.2) has recently attracted interest as an environmental friendly alternative. The potential 

of some enzymes including LiP, MnP, VP, laccases, tyrosinase and lipase for efficient removal of 

EDC in water has recently been reported (Wen et al., 2009, 2010; Zhang and Geissen, 2010; Diano 

and Mita, 2011; Taboada-Puig et al., 2011; Touahar et al., 2014; Ramirez-Cavazos et al., 2014; 

Garcia-Morales et al., 2015). However, among the studied enzymes, VP seems to be the most 

promising, given its peculiar attribute of hybrid molecular architecture and its ability to oxidize 

both high and low redox potential substrates. This assertion is justified by Rodriguez et al. (2004) 

in their study of the role of ligninolytic enzymes (laccase and VP) in the degradation of phenolic 

and non-phenolic aromatic pollutants, 2,4-Dichlorophenol (2,4-DCP) and Benzo[a] pyrene (B[a]P) 

by four Pleurotus species (Pleurotus eryngii, Pleurotus ostreatus, Pleurotus pulmonarius and 

Pleurotus sajor-caju) wherein it was reported that versatile peroxidase oxidized  2,4-DCP faster 

than laccase with 100 % transformation after 1 h and 60 % transformation after 6hr respectively. 
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The same trend was observed in the oxidation of B[a]P as VP showed 40% transformation of B[a]P 

after 6 h while laccase exhibited 25% transformation in the presence of a mediator after 8 h.  

Davila-Vazquez et al. (2005) studied the potential of purified VP from Bjerkandera adusta UAMH 

8258 to transform several pesticides such as pentachlorophenol (PCP). The study showed that VP 

was able to transform dichlorophen, bromoxynil and PCP in the presence and absence of 

Manganese (II) and further suggested its potential use in the enzymatic transformation of 

halogenated toxic compounds.  

Taboada-Puig et al. (2011) produced a combined cross-linked enzyme aggregate from versatile 

peroxidase and glucose oxidase (combined CLEAs) and investigated its ability to eliminate the 

following endocrine disruptors: bisphenol A, nonylphenol, triclosan, 17α-ethinylestradiol and 17β-

estradiol. It was reported that co-aggregation of versatile peroxidase with glucose oxidase resulted 

in an increased activity recovery of 89 % from the initial activity of 67 % and an increased stability 

of VP against H2O2. The combined CLEAs were able to remove all the endocrine disrupting 

chemicals except triclosan while the removal of their estrogenic activity was more than 55 % for 

all the EDC except triclosan. The exploration of other H2O2–producing enzymes with more 

appropriate substrates in water treatment other than glucose in the case of glucose oxidase which 

might support the unwanted growth of microorganisms has been suggested. Adoption of this 

concept for other ligninolytic peroxidases for EDC removal and other applications is also 

desirable.  

Furthermore, Touahar et al. (2014) investigated the ability of a combined cross-linked enzyme 

aggregates (combi-CLEA) {comprising laccase, versatile peroxidase and glucose oxidase} to 

transform a cocktail of pharmaceutically active compounds (PhACs) in a mixed solution and 

synthetic wastewater. The free enzymes and combi-CLEA showed the ability to efficiently 

transform non-steroidal anti-inflammatory drugs (acetaminophen, naproxen, mefenamic acid, 

diclofenac and indometacin) in a mixed solution and eliminate acetaminophen in municipal 

wastewater. However, combi-CLEA exhibited a more improved removal efficiency. The study 

also demonstrated that versatile peroxidase had a wider removal spectrum than laccase. 

Toboada-Puig et al. (2015) in a recent study, utilized the oxidant, Mn3+-malonate generated by VP 

in a two-stage (TS) system for continuous removal of the following endocrine disrupting 

compounds: bisphenol A, triclosan, estrone, 17β-estradiol and 17α-ethinylestradiol from synthetic 
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and real wastewaters at degradation rates ranging from 28 to 58 µg/L.min, with little enzyme 

inactivation observed. Interestingly, a 14-fold increase in the EDC removal efficiency of VP in a 

TS system was observed when compared with a regular enzymatic membrane reactor (EMR) 

system. Also, some of the operational challenges encountered during EDC removal in an EMR 

system were prevented, as the TS system was able to separate the complex formation stage from 

the contaminant oxidation stage. It is noteworthy that VP in a TS enzymatic system exhibited 

100% removal efficiency for all the EDC studied, therefore demonstrating the practicability of this 

approach for removing endocrine disrupting chemicals at both high and environmental 

concentrations.  

 

Table 2.2. EDC removal by enzymatic approach 

Water Source  Classes of EDC Percentage 

Removal (%) 

EDC Removal 

Approach 

References 

Wastewater 

 

 

 

 

Bisphenol A (BPA) 

Triclosan 

Estrone (E1) 

17β-estradiol (E2) 

17α-ethinylestradiol 

(EE2) 

 

100 Versatile peroxidase 

using two stage system 

(TSS) 

Taboada-Puig et al. (2015). 

Synthetic and 

ground water 

 

Bisphenol A 

4-nonylphenol 

17α-ethynlestradiol 

Triclosan 

89 

93 

100 

90 

 

Free laccase cocktail Garcia-Morales et al. 

(2015) 

Wastewater Acetaminophen 

Mefenamic acid 

Carbamazepine 

93 Cross-linked laccase 

aggregates and 

polysulfone hollow fibre 

microfiltre membrane 

 

Ba et al. (2014) 

Wastewater Estrone 

17β-estradiol (E2) 

17α-ethinylestradiol 

(EE2) 

83.6 

94 

93.6 

Laccase using enzymatic 

membrane reactor (EMR) 

Lloret et al. (2013) 
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Aqueous 

system 

Estrone 

17β-estradiol (E2) 

17α-ethinylestradiol 

(EE2) 

 

65 

80 

80 

Immobilized Laccase in a 

packed-bed reactor 

Lloret et al. (2012) 

Aqueous 

system 

Diclofenac and estrogen 

hormones 

Sulfamethoxazole and 

Naproxen 

 

100 

 

80 

Versatile peroxidase Eibes et al. (2011) 

Wastewater 

 

Bisphenol A, B, F 

Bisphenol A, B, F 

100 

92, 93, 94 

Immobilized laccase 

Immobilized tyrosinase 

 

Diano and Mita (2011) 

Wastewater Estrone 

Estriol 

17β-estradiol (E2) 

17α-ethinylestradiol 

 

100 Horseradish peroxidase 

and laccase 

Auriol et al. (2008) 

Simulated 

wastewater 

Nonylphenol 

Bisphenol A 

Triclosan 

100 

100 

65 

 

Laccase Cabana et al. (2007b) 

Simulated 

wastewater 

Nonylphenol 

Bisphenol A 

Triclosan 

 

100 Immobilized laccase in 

fluidized bed reactor  

Cabana et al. (2007a) 

Aqueous 

system 

Natural steroidal 

hormone, estrone 

 

98 Manganese peroxidase 

and laccase 

Tamagawa et al. (2006) 

Aqueous 

system 

Genistein 93 Manganese peroxidase 

and laccase 

 

Tamagawa et al. (2005) 

Aqueous 

system 

Bisphenol A 

Nonylphenol 

 

100 Manganese peroxidase 

and laccase-1-

hydroxybenzotriazole 

(laccase-HBT) system 

Tsutsumi et al. (2001) 
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2.6.6.1. Proposed mechanisms for EDC removal by VP 

• Mn2+ Oxidation 

In this mechanism, VP employs the MnP reaction pathway for the removal of EDC in 

wastewater. This mechanism is proposed as the most appropriate for the removal of 

phenolic EDC including Bisphenol A and Nonylphenol. Mn2+ Oxidation involves the 

following steps: 

Step 1: Enzyme Activation: This step involves oxidation of VP by hydrogen peroxide 

(H2O2) as in a typical peroxidase catalytic reaction (Fig. 2.3). 

Step 2: Reduction of VP: The oxidized VP is reduced by a molecule of Manganese II 

Sulphate (MnSO4), a typical substrate for manganese peroxidase, leading to the production 

of Mn3+. 

Step 3: Formation of oxidizing complex: The Mn3+ produced in step 2 is stabilized by 

forming a complex with a dicarboxylic organic acid such as malonate, oxalate and tartrate 

which is present in the reaction mixture as buffer (sodium malonate, sodium oxalate or 

sodium tartrate). 

Step 4: Degradation of EDC by Mn3+-complex: Endocrine disrupting chemicals and 

other emerging organic micropollutants are degraded by Mn3+ in a displacement reaction. 

• Long Range Electron Transfer (LRET) 

LRET mechanism of VP is hereby proposed for the removal of EDC in wastewater. This 

mechanism involves electron transfer from the exposed catalytic tryptophan, Trp164 to the 

heme thereby generating a tryptophanyl radical on the surface of versatile peroxidase. The 

tryptophanyl radical subsequently attacks the endocrine disrupting chemicals and other 

emerging pollutants. LRET mechanism takes care of non-phenolic EDC and high redox 

potential aromatic compounds. A scheme of VP catalytic reactions for EDC removal is 

presented in Fig. 2.3. 
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2.6.6.2. Proposed scheme of wastewater treatment process for EDC removal by VP 

The present wastewater treatment technology involves three different stages including primary 

treatment, secondary treatment and tertiary treatment. Each stage has specific units for specified 

treatment (Fig. 2.6). However, no specific unit is designed to remove endocrine disrupting 

chemicals during wastewater treatment. Therefore, a scheme of wastewater treatment process that 

includes a specific unit for the removal of endocrine disrupting chemicals at the tertiary treatment 

stage is proposed (Fig. 2.6). In most cases, the tertiary wastewater treatment stage involves only 

nutrient removal after which the effluent is discharged into the receiving water bodies. There are 

several reports of occurrence of endocrine disrupting chemicals in wastewater treatment plant 

effluents (Ra et al., 2011; Ifelebuegu, 2011; Martin et al., 2012; Huang et al., 2014; Pessoa et al., 

2014). Furthermore, Zhang et al. (2016a) gave a detailed report of the occurrence and distribution 

of endocrine disrupting chemicals in wastewater treatment plants worldwide.  

Before the final effluent is discharged into the aquatic environment, the effluent from the nutrient 

removal unit is passed through an enzymatic membrane reactor unit where EDC are removed by 

versatile peroxidase using the Mn2+ oxidation or LRET mechanisms under optimized conditions. 

The choice of mechanism is based on the type of EDC in the effluent, while Mn2+ oxidation is best 

for removal of phenolic EDC, LRET is more appropriate for removal of non-phenolic EDC.
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Fig. 2.6.  Proposed scheme of wastewater treatment process for EDC removal by versatile peroxidase. Final Effluent 
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Malonate Buffer + 
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2.7.  Peroxidase production  

The major commercially available peroxidase, horseradish peroxidase (HRP) is of plant origin and 

cannot meet the increasing industrial demand on peroxidases. Hence, the imperativeness of 

searching for new and efficient sources of peroxidases.  

The interest in microbial peroxidases has continued to increase as microbial enzymes seem to be 

more stable than enzymes of plant and animal origin (Anbu et al., 2013). More so, peroxidases 

from plants and animals are intracellular in nature, consequently, their isolation and purification is 

complex and time-consuming as against extracellular peroxidase whose recovery and purification 

is simplified. The ability of microbes to produce extracellular enzymes has therefore led to the 

exploration of the microbial diversity for production of various enzymes of industrial significance. 

White rot fungi have been described as the most efficient producers of lignocellulolytic enzymes 

such as cellulases, xylanase, laccase and peroxidases. Peroxidase production by fungi has been 

extensively reported (Ikehata et al. 2004; Urek and Pazarlioglu, 2007; Irshad and Asgher, 2011; 

Hariharan and Nambisan, 2013; Kong et al., 2016; Zhang et al., 2016b). However, peroxidase 

production by some bacteria, predominantly, Streptomyces species and very few Bacillus species 

have also been reported (Tuncer et al., 2009; Nour El-Dein et al., 2014; Musengi et al., 2014). The 

fact that bacteria can easily be cultivated in a defined medium and their ability to undergo genetic 

manipulation make them more promising for enhanced peroxidase production.  

Ligninolytic bacteria hold a great potential for peroxidase production as lignin degradation activity 

of these organisms is particularly accompanied by the production of extracellular LMEs, 

predominantly, peroxidases, as secondary metabolites which can easily be harvested and exploited 

for various biotechnological applications. 

The increased industrial applications of peroxidases as well as their increasing market demand 

have necessitated the need for increased enzyme production. Several efforts have been made to 

increase peroxidase production by microbes. These efforts largely involved optimization of culture 

and nutritional conditions of microbes for peroxidase production using the conventional method 

or response surface methodology (RSM). 

In conventional method, optimal fermentation process parameters (medium pH, incubation 

temperature and agitation speed), which are significant for optimum growth and metabolic 
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activities of an organism are determined one after the other as the continuous secretion of 

ligninolytic enzymes into the fermentation medium has been associated with bacterial growth 

(McCarthy, 1987; Niladevi and Prema, 2008; Musengi et al. 2014). Besides, another important 

element that affects the growth of an organism is the nutritional composition of the cultivation 

medium including carbon source and nitrogen source. Carbon source selection is an important 

factor in enzyme production (Brito-Cunha et al., 2013) as it serves as the source of energy for the 

organism. Most bacteria use simple sugars such as glucose, fructose, sucrose, lactose etc as sources 

of carbon in a minimal salt medium but this might not be the most appropriate source of carbon 

for enhanced peroxidase production as LMEs are inducible enzymes whose production requires 

the presence of an inducer as the sole carbon source in the fermentation medium. Therefore, lignin 

and lignin-allied compounds are the most appropriate sources of carbon that may enhance the 

production of LMEs. However, considering the cost implication of synthetic lignin, there is need 

to explore cheap and alternative sources of lignin for fermentation, and lignocellulosic biomass 

may serve this purpose. Abundance, availability and renewable nature bestow lignocellulosic 

biomass the status of near perfect candidature of a cheap carbon source. Consequently, a variety 

of lignocellulosic materials have been valorized for different enzyme production processes (Reddy 

et al., 2003b; Kang et al., 2004; Asgher et al., 2012a, b; Knezevic et al., 2013), and a conspectus 

of some of these processes has been articulated in Table 2.3.  

The choice of nitrogen sources is another important factor that affects microbial growth and 

subsequent enzyme production. Consequently, the effects of form and concentration of nitrogen 

sources on production of LMEs have been studied extensively (Kachlishvili et al., 2005; 

Mikiashvili et al., 2006; Stajic´ et al., 2006; Prasher and Chauhan, 2015), but there are 

discrepancies in the findings from these studies. Some studies have reported increased production 

of LMEs with adequate amount of nitrogen (Kaal et al., 1995). On the other, ligninolytic enzyme 

production was improved under limited nitrogen (Mester and Field, 1997; Gianfreda et al., 1999; 

Galhaup et al., 2002). More so, increased concentration of nitrogen may also repress the 

production of ligninolytic enzymes. The effect of different forms of nitrogen (organic and 

inorganic) seems to be different with organisms. Mikiashvili et al. (2006) reported that inorganic 

nitrogen sources decreased the production of LMEs including peroxidase whereas in a study by 

Prasher and Chauhan (2015), inorganic nitrogen sources supported maximum enzyme activity as 

organic nitrogen sources repressed ligninolytic enzyme activities. Considering the peculiarity of 



47 
 

LMEs, care must be taken to select the appropriate form of nitrogen that would enhance the 

enzyme production. 

Some of the research efforts toward improving peroxidase production by bacteria using the 

conventional approach of “one variable at a time” include the work of Nour El-Dein et al. (2014), 

where the optimal conditions for peroxidase production by Streptomyces sp. K37 were determined. 

The study reported pH 7, incubation temperature of 40oC and agitation speed of 150 rpm as the 

culture conditions that supported maximum peroxidase production by Streptomyces sp. K37 while 

oat spelt xylan (1% w/v) and yeast extract (0.2% w/v) were used as sources of carbon and nitrogen 

respectively. It is noteworthy that increased concentration of yeast extract above 0.2% w/v 

significantly decrease peroxidase production by the bacteria. 

Musengi et al. (2014) also optimized peroxidase production by Streptomyces sp. BSII#1, up to 31 

culture volumes. The authors reported 1.30 ± 0.04 U mL-1 in 10 mL culture volume as the 

maximum peroxidase production at pH 8, temperature of 37 oC and 160 rpm agitation speed in the 

presence of 0.1 mmoL-1 veratryl alcohol. The study reported wheat bran (1.5%) as the only natural 

lignocellulosic compound that improved peroxidase production by Streptomyces sp. BSII#1. The 

optimum peroxidase production achieved in the study was claimed to be higher than what was 

reported by previous related studies (Musengi et al., 2014). 

Furthermore, RSM has also been employed for optimization of ligninolytic enzyme production. 

This approach involves the use of a Plackett-Burman design to identify the variables that have 

significant effects on enzyme production during the initial screening. The identified variables are 

then selected for further optimization using an appropriate design such as central composite design 

(CCD), Box-Behnken Design (BBD) etc. Bonugli-Santos et al. (2010) employed 22 statistical 

experimental design and CCD for peroxidase production by some marine-fungi. Also, Yasmeen et 

al. (2013) were able to enhance peroxidase production by Schyzophyllum commune and 

Gonaderma lucidum using RSM with CCD in a solid-state fermentation (SSF) using corn stover 

as a substrate. 
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Table 2.3. Valorization of some lignocellulosic biomass for ligninolytic and cellulolytic enzyme production. 

Lignocellulosic 

Biomass     

       Microorganism Enzyme Produced  References 

Rice straw P. chrysosporium; 

T. versicolor;              

Trichoderma reesei;  

Aspergillus niger KK2.  

LiP, MnP, Laccase, 

Cellulases, 

Hemicellulases. 

Kang et al. (2004), Iqbal et al. 

(2011), Asgher et al. (2011), 

Saratale et al. (2014). 

 

Sugarcane 

bagasse 

Thermoascus aurantiacus; 

Bacillus circulans; Trametes 

villosa. 

Xylanase and MnP       Milagres et al. (2004), Bocchini et 

al. (2005), Silva et al. (2014). 

 

Wheat straw Phlebia radiata; 

Trichoderma viride; 

Trametes suaveolens; 

Raoultella ornithinolytica 

OKOH- 1;  

Ensifer adhaerens NWODO-2. 

LiP, MnP, Laccase, 

Cellulase, 

 

Peroxidase. 

Vares et al. (1995), Iqbal et al. 

(2011), Knezevic et al. (2013), 

 

This study. 

    

 

Banana waste P. ostreatus; 

P. sajor-caju; 

Schizophyllum commune IBL-06             

LiP, MnP, Laccase, 

Xylanase, 

Endoglucanase, 

Exoglucanase. 

Reddy et al. (2003b), Irshad and 

Asgher (2011), Asgher et al. 

(2012c). 

Corn cobs Trametes versicolor LiP, MnP, Laccase. Asgher et al. (2012a, b) 

Sawdust Trametes suaveolens; 

Raoultella ornithinolytica 

OKOH- 1; Ensifer adhaerens 

NWODO-2. 

MnP, Laccase, 

Peroxidase. 

Knezevic et al. (2013). 

This study 

Pea pods  Aspergillus niger HN-1 Filter Paper 

Cellulase (FPase) 

and  

β- glucosidase 

(BGL). 

Sharma et al. (2015). 

Corn stover Raoultella ornithinolytica 

OKOH- 1;  

Ensifer adhaerens NWODO-2. 

Peroxidase This study. 

LiP: Lignin Peroxidase, MnP: Manganese Peroxidase. 
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2.7.1. Gene detection: towards molecular optimization  

Molecular optimization and genetic engineering approach seems to be the best option in solving 

the problem of low enzyme production yields, which is one of the major obstacles in the 

biotechnological applications of enzymes. Hence, the imperativeness of detecting the gene 

encoding the expression of the enzyme of interest in an organism as well as characterizing the 

biosynthetic pathway which could be engineered for large scale production. Identifying the genes 

encoding microbial enzymes may enhance their expression through metabolic engineering 

approaches such as “gene disruption” and “overexpression” (Tamano, 2014) employing genetic 

modification tools (Andrio and Demain, 2010). In case the genes involved in the biosynthesis of a 

metabolite are not known, the production yield can be improved by random chromosomal mutation 

of the producing organism through ultraviolet irradiation or introduction of mutagens (Andiro and 

Demain, 2006; Tamano, 2014).  

The genes encoding microbial enzymes can possibly be identified using the N-terminal amino acid 

sequences and molecular weights of purified enzymes as well as the genomic data of the 

synthesizing microbes (Tamano, 2014). Consequently, the overexpression of the identified gene 

could then be induced in the original producing organism or another host to enhance the enzyme 

production. This approach has been employed to enhance the production of some enzymes and 

metabolites as reported in literature. For instance, overexpression of the gene encoding 

phosphoenolpyruvate carboxylase (ppc) in E. coli led to a 3.5-fold increase in succinic acid 

production (Millard et al., 1996). Sekhon et al. (2011) were able to increase biosurfactant 

production by cloning biosurfactant genes from a Bacillus species in E. coli. Likewise, Velez et 

al. (2013) enhanced lipase production in E. coli through recombinant DNA technology. 

Furthermore, fatty acids production by Aspergillus oryzae was increased by 2.8-fold when the fatty 

acid synthase genes were overexpressed (Tamano et al., 2013). It is therefore clear that this 

approach could also be employed to enhance the production of peroxidases. Thus, the need to 

detect the genes encoding peroxidases in the producing organisms. 

 

2.8. Conclusion 

The prospects of peroxidase in bio refinery, bioremediation, cosmetology and dermatology 

amongst other endeavours of human activities cannot be over emphasized, its potential as a suitable 

alternative to hydroquinone in the development of skin-lightening cream and treatment of 
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hyperpigmentation as well as its potential in the removal of EDCs in wastewater have been 

properly synopsized in this review. Besides, the prospects of other ligninolytic enzymes systems, 

not yet known, abound in all the aforementioned industries and beyond. In view of the articulated 

importance and prospective applications of peroxidase, the exploration of the underexplored 

microbial diversity for novel peroxidase with enhanced capabilities in solving problems as 

envisaged in this review becomes pertinent. Besides the need of peroxidase for remediation of 

toxic phenolics amongst others in the environment and its application in cosmetics and wastewater 

treatment, jobs and economy will be boosted thus, improving upon the social standing of any 

community with significant inroad into this lucrative bio-economic sector. 
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Abstract 

Interest in novel ligninolytic bacteria has remained topical due to, in part, the maneuverability of 

the bacterial genome. Conversely, the fungal genome lacks the dexterity for similar 

maneuverability thus, posing challenges in the fungal enzyme yield optimization process. Some 

impact of this situation includes the inability to commercialize the bio-catalytic process of lignin 

degradation by fungi. Consequently, this study assessed some freshwater bacteria isolates for 

ligninolytic and peroxidase properties through the utilization and degradation of model lignin 

compounds (guaiacol and veratryl alcohol) and the decolourization of selected ligninolytic 

indicator dyes; Azure B (AZB), Remazol Brilliant Blue R (RBBR) and Congo Red (CR). Bacterial 

strains with appreciable ligninolytic and peroxidase production potentials were identified through 

16S rDNA sequence analysis and the nucleotide sequences deposited in the GenBank. About 5 

isolates were positive for the degradation of both guaiacol (GA) and veratryl alcohol (VA) thus, 

accounting for about 17% of the test isolates. Similarly, AZB, RBBR and CR were respectively 

decolorized by 3, 2 and 5 bacterial strains thus, accounting for 10, 7 and 17 % of the test isolates. 

Two of the test bacterial strains were able to decolourize AZB, RBBR and CR, respectively and 

these bacterial strains were identified as Raoultella ornithinolytica OKOH-1 and Ensifer 

adhaerens NWODO-2 with respective accession numbers as KX640917 and KX640918. Upon 

quantitation of the peroxidase activities; 5.25 U mL-1 was recorded against Raoultella 

ornithinolytica OKOH-1 and 5.83 U mL-1 against Ensifer adhaerens NWODO-2. The ligninolytic 

and dye decolourization properties of Raoultella ornithinolytica OKOH-1 and Ensifer adhaerens 

NWODO-2 marks for novelty particularly, as dyes with arene substituents were decolourized. 

Consequently, the potentials for the industrial applicability of these test bacterial strains abound as 

there is a dearth of information on organisms with such potentials.  

 

Keywords: Dye decolourization, ligninolytic bacteria, lignin degradation, peroxidase, 

proteobacteria.  
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Chemical compounds studied in this article: 

Azure B (PubChem CID: 68275) 

Congo red (PubChem CID: 11313) 

Guaiacol (PubChem CID: 460) 

Pyrogallol (PubChem CID: 1057) 

RBBR, Remazol Brilliant Blue R (PubChem CID: 17409) 

Veratryl alcohol (PubChem CID: 7118). 
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3.1. Introduction 

Lignin; the aromatic, non-carbohydrate, component of lignocellulose is recalcitrant to degradation.  

Thus, effective degradation of lignin is of prime importance to the industrial sectors utilizing 

lignocellulose as raw materials for various value-added products (de Gonzalo et al., 2016). More 

so, the recalcitrance of lignin to degradation constitutes an undesirable barrier to the efficient and 

optimum utilization of the abundant lignocellulosic materials. On the same note, the large amount 

of lignin generated during industrial production of ethanol, pulp and paper making processes, 

accumulates and, thus, constitutes serious environmental challenge hence, the need for effective 

and eco-friendly lignin degradation techniques (Falade et al., 2017).  

The biological means of lignin degradation involves microbial or/and microbial enzymes 

degradative activities. This technique is advocated over the physical and chemical methods which 

are generally expensive and saddled with lots of other limitations (Chaturvedi and Verma, 2013; 

Huang et al., 2013). 

Fungal degradation of lignin, particularly, the white-rot basidiomycetes have been studied 

extensively (Ruttimann-Johnson et al., 1993; Martinez et al., 2004; Wan and Li, 2012) and, white-

rot fungi have been reported as the most effective microbial lignin-degrader. Effectiveness in 

lignin degradation has been attributed to some extracellular enzymes produced by the white-rot 

fungi (Abdel-Hamid et al., 2013). These extracellular enzymes include laccases (EC 1.10.3.2), 

some heme-peroxidases such as lignin peroxidase (EC 1.11.1.14), manganese peroxidase (EC 

1.11.1.13), versatile peroxidase (EC 1.11.1.16) and dye-decolourizing peroxidase (EC 1.11.1.19). 

Nonetheless, industrialization of white-rot fungal bio-catalytic/extracellular enzyme process for 

the de-polymerization of lignin is yet to be achieved. Perhaps, the insufficiency in the 

maneuverability of the white-rot fungal genome for optimum extracellular enzyme yield, as a 

function of production cost to commercial value quotient may have constituted an important factor 

impeding industrialization of the process (Bugg et al., 2011; Ausec et al., 2011).  

Bacteria, on the other hand, hold very strong potential considering their striking resilience in 

diverse environments and, as well, their biotechnological significance following, faster growth rate 

and high dexterity in genome maneuverability (Ausec et al., 2011; Tian et al., 2016). Hence, the 

imperativeness in the exploration of bacteria species for lignin depolymerization potentials. 

Besides, the evolving significance of bacteria in the degradation of lignin has been severally 
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documented (Bugg et al., 2011). Bacteria species classed into the actinomycetes, α-proteobacteria 

and γ-proteobacteria have been reported to possess lignin degrading ability (Bugg et al., 2011; 

Paliwal et al., 2012; Furukawa et al., 2014). Documented ligninolytic bacteria includes 

Streptomyces viridosporus T7A, Rhodococcus sp, Nocardia autotrophica (Zimmermann, 1990), 

Microbacterium sp, Brucella melitensis, Ochrobactrum sp, Sphingomonas sp (Wenzel et al., 

2002), Streptomyces coelicolor, Arthrobacter globiformis, Rhodococcus jostii RHA1, 

Pseudomonas putida mt-2 (Ahmad et al., 2010), Serratia sp. JHT01, Serratia liquefacien PT01, 

Pseudomonas chlororaphis PT02, Stenotrophomonas maltophilia PT03 and Mesorhizobium sp. 

PT04 (Tian et al., 2016). 

Ligninolytic bacteria similarly produce extracellular oxidative enzymes including peroxidases 

which have been implicated in lignin degradation. Besides the association of these extracellular 

peroxidases in lignin degradation, they have applications in the removal of phenolic pollutants 

(Cheng et al., 2006), synthetic dye decolourization (Singh et al., 2014), and the synthesis of natural 

aromatic flavours (Santos et al., 2004; Barbosa et al., 2008). Other applications have likewise 

included deodourization of manure (Govere et al., 2007), applications in peroxidase biosensors 

(Jia et al., 2002), analysis and diagnostic kits (Agostini et al., 2002) and development of skin 

lightening agents (Mauricio et al., 2011; Draelos, 2015). Given, the diverse applications of 

peroxidases in different industrial sectors, the exploration of bacteria species with novel 

ligninolytic abilities and high potentials for peroxidase production is of prime importance. 

Consequently, the reported study evaluated bacterial isolates from freshwater milieu of the 

Raymond Mhlaba Municipality, Eastern Cape, South Africa for peroxidase production potentials 

and ligninolytic activities. 

 

3.2. Materials and methods 

3.2.1. Chemicals and reagents 

Hydrogen peroxide, Pyrogallol, Magnesium sulphate, Manganese II sulphate, Sodium chloride, 

Ammonium nitrate, Potassium dihydrogen phosphate, Dipotassium hydrogen phosphate, Nystatin, 

Nalidixic acid, yeast extract, Agar bacteriological, Azure B, Remazol Brilliant Blue R and Congo 

red were sourced from Merck KGaA, Darmstadt, Germany while Guaiacol, Veratryl alcohol and 

Kraft lignin were sourced from Sigma-Aldrich, South Africa. Unless stated otherwise, all other 

chemicals are of analytical grade while the water was glass distilled. 
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3.2.2. Sample collection and sampling site  

Water samples and sediments (Table 3.1) were collected from Tyhume river courses in Raymond 

Mhlaba Municipality, Eastern Cape, South Africa and transported on ice to Applied and 

Environmental Microbiology Research Group (AEMREG) Laboratory, University of Fort Hare, 

Alice, South Africa for analysis.  

Tyhume River is situated in the Raymond Mhlaba Municipality of the Eastern Cape Province, 

South Africa. It originates from the Amathole mountains in Hogsback and flows through the lower 

coastal escarpment down to Alice, a small town with several suburbs. Sample collection was on 

the courses of Tyhume River, with reduced anthropogenic activities, in Alice.  

 

3.2.3. Isolation and preliminary screening of ligninolytic bacteria 

Ligninolytic bacteria were isolated by enrichment method as described by Sasikumar et al. (2014) 

with minor modifications. Briefly, a phosphate buffered (pH 7) minimal salts medium (MSM) 

containing 4.55 g/L K2HPO4, 0.53 g/L KH2PO4, 0.5 g/L MgSO4 and 5 g/L NH4NO3 (Chandra et 

al., 2008) was supplemented with 1 g/L of commercially available kraft lignin (Sigma-Aldrich, 

South Africa) and 0.1 g/L yeast extract (MSM-L). The components were mixed and the resulting 

broth autoclaved at 121 oC for 15 min. Enrichment culture was performed in 250 mL Erlenmeyer 

flask by placing 5 g of sample in 95 mL MSM-L and the culture was incubated in an orbital shaking 

incubator at 30 oC and 140 rpm for 168 h (Sasikumar et al., 2014). Enriched sample of 1 mL was 

transferred to 9 mL of sterile normal saline and stirred vigorously at room temperature. Using 1 

mL of the liquid mixture, serial dilutions were prepared. Thereafter, 100 µL of serially diluted 

sample was spread on MSM-L agar plate amended with 50 mg/L nystatin (to inhibit the growth of 

fungi) and the plates were incubated at 30 oC for 168 h until colonies developed. Subsequently, 

the cultures were purified and presumptive ligninolytic bacteria stored in 20 % glycerol at −80 °C 

for further analysis. 

 

3.2.4. Evaluation of ligninolytic activity 

The ligninolytic activities of isolates were assessed through the utilization and degradation of 

model lignin compounds (guaiacol and veratryl alcohol) using the modified method of Taylor et 

al. (2012). Briefly, 5 µL of standard inoculum of the bacterial suspension (O.D. 600 nm ≈ 1.0) was 

aseptically inoculated onto guaiacol and veratryl alcohol plates composed of the following: 
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K2HPO4 (4.55 g/L), KH2PO4 (0.53 g/L), MgSO4 (0.5 g/L), NH4NO3 (5 g/L), yeast extract (0.1 

g/L), guaiacol or veratryl alcohol (0.1 % v/v), and agar (15 g/L). The plates were incubated at 30 

oC for 168 h and subsequently flooded with Gram’s iodine solution to determine the zone of 

degradation. 

 

3.2.5. Arene subsituent dye decolourization assay 

Decolourization of selected dyes; Azure B (AZB), Remazol Brilliant Blue R (RBBR) and Congo 

Red (CR) is indicative of ligninolytic activity. Consequently, isolates with ligninolytic activity 

(section 2.4) were assessed following the methods of Bandounas et al. (2011). In brief, 5 µL of 

18h culture was aseptically inoculated onto dye agar plate composed of: K2HPO4 (4.55 g/L), 

KH2PO4 (0.53 g/L), MgSO4 (0.5 g/L), NH4NO3 (5 g/L), yeast extract (0.1 g/L), glycerol (40 mM), 

dye (100 mg/L AZB and RBBR; 50 mg/L CR), and agar (15 g/L). The plates were then incubated 

at 30 oC for 168 h and examined daily for growth and development of decolourization zones. 

 

3.2.6. Qualitative determination of peroxidase activity 

The peroxidase activity was determined qualitatively using the method proposed by Rayner and 

Boddy (1988) as reported by López et al. (2006). Briefly, isolates were inoculated in nutrient agar 

and incubated at 30oC for 48 h. Thereafter, 30 µL of 0.4% (v/v) hydrogen peroxide (H2O2) and 1% 

pyrogallol in water were added to colonies. Colonies with yellow-brown colour were recorded as 

positive.  

 

3.2.7. Peroxidase production and crude enzyme preparation 

Peroxidase was produced in a submerged fermentation; about 2% standard inoculum of bacterial 

suspension in normal saline (O.D. 600 nm ≈ 1.0) was aseptically inoculated in 250 mL Erlenmeyer 

flasks containing 100 mL of the fermentation media composed of the following: K2HPO4 (4.55 

g/L), KH2PO4 (0.53 g/L), MgSO4 (0.5 g/L), NH4NO3 (5 g/L), yeast extract (0.1 g/L) and 0.1 % w/v 

kraft lignin (Sigma-Aldrich, South Africa) at pH 7. The culture was subsequently incubated in an 

orbital shaking incubator at 30 oC and 140 rpm for 48 h, the period initially used for the qualitative 

determination of peroxidase activity. Thereafter, cultures were aseptically withdrawn and 

centrifuged at 15000 rpm for 10 min at 4 oC using benchtop centrifuge (SIGMA 1-14K) to remove 

the cells. Recovered supernatant was subsequently utilized as crude enzyme for peroxidase assays. 
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3.2.8. Peroxidase activity assay 

Peroxidase activity was measured by the rate of hydrogen peroxide-dependent oxidation of 

pyrogallol to purpurogallin as described by Chance and Maehly (1955) with slight modification. 

Reaction mixture (350 μL) contained 5 % w/v pyrogallol in 100 mM potassium phosphate buffer 

(pH 6) and 25 μL of culture supernatant. The reaction mixture without the crude enzyme served 

as the blank. The reaction was activated through the addition of 0.5 % v/v hydrogen peroxide (30% 

w/w) and the linear increase in absorbance at 420 nm was monitored per 34 s at 25 oC using 

SynergyMx 96-well microtitre plate reader (BioTeK Instruments). The peroxidase activity was 

subsequently calculated (Appendix D). 

 

3.2.9. Bacterial identification using 16S rDNA sequence analysis 

Bacterial isolates with the best ligninolytic and peroxidase production potentials were 

characterized by 16S rDNA sequence analysis. Briefly, bacterial DNA was extracted using the ZR 

Fungal/Bacterial DNA KitTM (Zymo Research). Thereafter the 16S target region was amplified 

using DreamTaqTM DNA polymerase (Thermo ScientificTM) and the following universal primers: 

16S-27F (5' AGAGTTTGATCCTGGCTCAG 3') and 16S-1492R (5' 

CGGTTACCTTGTTACGACTT 3'). Subsequently, the polymerase chain reaction (PCR) products 

were gel extracted using ZymocleanTM Gel DNA Recovery Kit (Zymo Research), and sequenced 

in the forward and reverse directions on the ABI PRISMTM 3500xl Genetic Analyser. The 

sequencing products which were further purified by ZR-96 DNA Sequencing Clean-up KitTM 

(Zymo Research) were analysed using CLC Main Workbench 7 followed by a BLAST search in 

National Centre for Biotechnology Information (NCBI) (Altschul et al., 1997). Subsequently, the 

phylogenetic tree showing the evolutionary relationships among selected ligninolytic bacteria 

available at the NCBI database was constructed by neighbour-joining method using Molecular 

Evolutionary Genetics Analysis software, version 7.0.21 (Kumar et al., 2016). Similarly, the 16S 

rRNA gene sequences of the isolates were deposited in the NCBI GenBank as Raoultella 

ornithinolytica strain OKOH-1 (accession number KX640917) and Ensifer adhaerens strain 

NWODO-2 (accession number KX640918), respectively. 
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3.2.10. Data analysis 

Results of replicates were pooled and expressed as mean ± standard deviation (STD) using 

Microsoft Excel Spreadsheet. Data were subsequently subjected to one-way analysis of variance 

(ANOVA) using GraphPad Prism 7 and the least significant difference was carried out (Zar et al., 

2010). Significance was accepted at P ≤ 0.05. 

 

3. 3. Results and discussion 

3.3.1. Ligninolytic bacteria isolation and identification  

A total of thirty (30) potential ligninolytic bacteria were isolated from the samples collected from 

the Tyhume River (Table 3.1) and, the 16S rDNA sequence analysis of the two bacteria strains 

with the best ligninolytic and peroxidase production potentials revealed T1CS3D as having 99% 

similarity to Raoultella ornithinolytica strain G.W-CD.10 (KP418804) while T2BW31 had 99% 

similarity to Ensifer adhaerens strain S4-6 (KY496256). The respective nucleotide sequences of 

the organisms were deposited in a GenBank as Raoultella ornithinolytica OKOH-1 (accession 

number KX640917) and Ensifer adhaerens NWODO-2 (accession number KX640918).  

These ligninolytic bacteria are classified into the alpha-proteobacteria (Ensifer adhaerens 

NWODO-2) and gamma-proteobacteria (Raoultella ornithinolytica OKOH-1), respectively. This 

finding is consistent with earlier classification of ligninolytic bacteria into Actinomycetes, α-

Proteobacteria and γ-Proteobacteria (Bugg et al., 2011). However, the ligninolytic potential of 

some Bacillus sp. has also been reported (Bandounas et al., 2011; Chang et al., 2014). Some of 

the reported Proteobacteria with ligninolytic activity include but not limited to, Sphingobium sp. 

SYK-6 (Masai et al., 2007), Pseudomonas putida mt-2, Acinetobacter sp. (Ahmad et al., 2010) 

and Raoultella ornithinolytica S12 (Bao et al., 2015). Genome sequencing analysis of Raoultella 

ornithinolytica strain S12 (CP010557) isolated in China has revealed many genes involved in 

aromatic compound degradation and other pathways implicated in lignin degradation mechanism 

(Bao et al., 2015; Kameshwar and Qin, 2016). This further confirms the lignin degradation 

potential of Raoultella ornithinolytica OKOH-1 as claimed in this study. Furthermore, Fig. 3.1 

showed the phylogenetic relationships between the ligninolytic bacteria in this study and some of 

those previously reported. The ligninolytic bacteria in this study (indicated with green tips) are, 

perhaps, more closely related. 
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Table 3.1. Isolated ligninolytic bacteria from freshwater milieu of Raymond Mhlaba Municipality, Eastern Cape, 

South Africa. 

S/N Isolate code Isolation source Guaiacol 

degradation 

Veratryl Alcohol        

degradation 

1. T1CS31 Sediment - - 

2. T1CS32 Sediment - + 

3. T1CS33 Sediment - - 

4. T1CS34 Sediment - - 

5. T1B2S31 Sediment - + 

6. T1B2S32 Sediment - + 

7. T1B2S33 Sediment - + 

8. T1B1S31 Sediment + + 

9. T1B1S32 Sediment - - 

10. T1B1S33 Sediment - - 

11. T1B1S34 Sediment + + 

12. T1B1S35 Sediment + - 

13. T1B1W31 Water + + 

14. T1B1W32 Water - + 

15. T1B2W31 Water - - 

16. T1B2W32 Water - - 

17. T1B2W33 Water - - 

18. T1CW31 Water - - 

19. T1CW32 Water - - 

20. T1CW33 Water + - 

21. T2BS21 Sediment - + 

22. T2BS31 Sediment - + 

23. T2BS32 Sediment - - 

24. T2BW31 Water + + 

25. T2BW32 Water - + 

26. T2BW33 Water - - 

27. T1CS3B Sediment - - 

28. T1CS3C Sediment - - 

29. T1CS3D Sediment + + 

30. T1CS3A Sediment - - 
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Fig. 3.1. Phylogenetic tree showing the relationship between ligninolytic bacteria in this study and 

some previously reported ligninolytic bacteria in the NCBI database. The tips shown in green 

represent the ligninolytic bacteria isolated and sequenced in this study while the tips with other 

colours (red, black and blue) indicate the previously reported ligninolytic bacteria. Red tips 

indicate Bacilli; blue tips represent Actinobacteria while the green and black tips indicate 

Proteobacteria. 

 

3.3.2. Ligninolytic activities  

The utilization of lignin monomers; guaiacol (2-methoxyphenol) and veratryl alcohol (3, 4-

Dimethoxybenzyl alcohol), was indicative of lignin utilization and degradation potentials of the 

isolates. Guaiacol and veratryl alcohol utilization serves as ligninolysis indicator and as well, lignin 

oxidation (Bandounas et al., 2011). Only 17% (5 isolates) of the test isolates were able to degrade 

both guaiacol (phenolic substrate) and veratryl alcohol (non-phenolic substrate). However, all the 

test isolates grew either on guaiacol or on veratryl alcohol. Isolates substrates utilization intensity 

 Bacillus sp. CS-2 (AB795827.1)

 Bacillus sp. CS-1 (AB795826.1)

 Bacillus sp. LD003 (HQ713575.1)

 Sphingobium sp. SYK-6 (NR 074396.1)

 Ochrobactrum pseudogrignonense strain 4-4DEP (GQ203110.1)

 Ochrobactrum rhizosphaerae strain PR17 (AM490632.1)

 Rhodococcus jostii RHA1 (NR 074610.1)

 Micrococcus luteus strain M-S-TSA 31 (JQ795852.1)

 Microbacterium marinilacus (AB286020.1)

 Microbacterium phyllosphaerae strain P 369/06 (NR 025405.1)

 Pseudomonas putida mt-2 (L11583.1)

 Raoultella ornithinolytica strain OKOH-1 (KX640917)

 Ensifer adhaerens strain NWODO-2 (KX640918)

 Streptomyces viridosporus T7A (AJFD01000018.1)
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was determined by the zone of degradation (Table 3.2) which became visual after flooding with 

Grams’ iodine. The reaction of hydrogen iodide (HI) with the substrates in the presence of oxygen 

resulted in a brown coloration of the un-degraded part of the medium while the degraded part was 

revealed as a clear halo zone around the colony. Isolate T2BW31 showed the highest halo zone on 

both substrates (32 mm against guaiacol and 34 mm against veratryl alcohol) while isolate 

T1B1W31 had the least (25 mm). However, about 80% of the positive isolates showed halo zones 

of over 25 mm. 

 

  Table 3.2. Degradation of guaiacol and veratryl alcohol by bacterial isolates 

S/N Isolate Code Diameter of halo zone for GA (mm) Diameter of halo zone for VA 

(mm) 

1. T1B1S31 26.00 ± 2.00a 27.00 ± 1.00a 

2. T1B1S34 27.00 ± 1.00a 30.00 ± 0.00b 

3. T1B1W31 25.00 ± 3.00a 25.00 ± 1.00c 

4. T1CS3D 28.00 ± 0.00a 31.00 ± 1.00d 

5. T2BW31 32.00 ± 0.00b 34.00 ± 0.00e 

   GA: Guaiacol; VA: Veratryl Alcohol. Values represent mean ± standard deviation, number of replicate, 

n = 3. Values with the same superscript letter along the same column are not significantly different (P> 

0.05). 

 

3.3.3. Decolourization of dyes with different arene substituents  

The structural complexity of dyes is somewhat similar to those of lignin and the recalcitrance of 

dyes to degradation has been variously documented (Bandounas et al., 2011). The enzymatic 

decomposition of the phenolic compounds in lignin leads to effective degradation and this is only 

possible due to the hydrophilic attack at the arene substituents (Srebotnik and Hammel, 2000; 

Christopher et al., 2014). Consequently, application of such enzyme system in the decolourization 

of dye would only be effective if the arene substituents of the dye are susceptible to hydrolyzation 

(Goszczynski et al., 1994).  
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Isolates showing ligninolytic activity on guaiacol and veratryl alcohol were evaluated for dye 

decolourization using Azure B (AZB), Remazol Brilliant Blue R (RBBR) and Congo Red (CR). 

Azure B, a thiazine dye, can only be decolourized by high redox potential agents, particularly 

lignin peroxidases (Archibald, 1992; Aguiar and Ferraz, 2007; Arantes and Ferreira-Milagres, 

2007). On the other hand, manganese peroxidase and laccase alone cannot oxidize Azure B 

(Archibald, 1992; Arora and Gill, 2001). The inclusion of dyes with ortho and para arene (phenolic 

and non-phenolic) substituents (Fig. 3.2), was motivated by the quest to ascertain the broad 

spectrum of activity and specificity of the oxidative enzyme systems produced by these organisms.  

Congo red has two azo groups (-N=N-) which impacts the chromophore properties shown by the 

dye and, the azo groups are attached at the ortho position. Conversely, Remazol Brilliant Blue R 

is an anthraquinone dye with a para position arene substituent and this dye is recalcitrant to 

degradation. The carbonyl group (C=O), which constitutes the structural backbone of the dye, has 

been shown to impact the chromophore properties of the dye. The arene substituents position on 

the aromatic rings is the factor impacting degradation recalcitrant to the dyes. As such, the effective 

cleavage of the arene substituents at the ortho, meta and para positions marks for novelty. Thus, 

the natures of the enzymes produced by the organisms are, perhaps, novel and the kinetics as well 

as the properties shall be further investigated.  

Dye decolourization (Table 3.3) showed 10% (3 bacteria strains) of the isolates as positive against 

AZB, 7% (2) against RBBR and 17% (5) against CR. Quite remarkable were isolates T1CS3D and 

T2BW31 which showed competence in the decolourization of dyes with the representative ortho, 

meta and para positions arene substituent. Perhaps, the extracellular oxidative enzymes produced 

by these organisms are novel or, are, known enzymes with a blend of properties including 

peroxidases and laccases. Nonetheless, extracellular oxidative enzyme decolourization of Azure B 

has been associated with lignin peroxidase (Pointing, 1991), while decolourization of azo and 

anthraquinone dyes are linked with the activity of DyP-type peroxidases (Sugano et al., 2007; 

Santos et al., 2014). 
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Fig. 3.2. Structures of dyes used in this study.  

Ortho positions are shown in red circles, Meta positions in black circles while Para position is 

indicated in blue circle. 
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                  Table 3.3. Decolourization of dyes with different arene substituents 

S/N Isolate Code AZB RBBR CR 

1. T1B1S31 - - + 

2. T1B1S34 - - + 

3. T1B1W31 + - + 

4. T1CS3D + + + 

5. T2BW31 + + + 

            +: positive; -: negative; AZB: Azure B; RBBR: Remazol Brilliant Blue R; CR: Congo Red. 

 

3.3.4. Peroxidase activity  

Isolates; T1CS3D and T2BW31, which respectively showed activity against representative dyes 

with ortho, meta and para substituents, similarly hold high potentials as peroxidase producers. 

These ligninolytic bacteria strains were qualitatively positive for peroxidase production (Fig. 3.3), 

as was reflected in the appearance of yellowish-brown colouration of the bacterial colony after 

interaction with 0.4% v/v hydrogen peroxide (H2O2) and 1% w/v pyrogallol (Lopez et al., 2006).   

 

 

Fig. 3.3. Qualitative peroxidase activity of ligninolytic bacteria. 

 

Upon quantitation of peroxidase production (Table 3.4), T1CS3D showed activity of 5.25 U mL-1 

and T2BW31 showed 5.83 U mL-1 activity at 48 h incubation timeline. Some related investigation 

reported similar result however, the peroxidase activity achieved with T1CS3D and T2BW31 were 

significantly higher than what has been reported in previous studies; Streptomyces strain EC22 had 

an extracellular peroxidase activity of 0.27 U mL-1 (Mercer et al., 1996) and Streptomyces sp. 

F6616 showed peroxidase activity of 0.535 U mL-1 (Tuncer et al., 2009). The reason for the marked 
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difference in the peroxidase activity observed with these isolates in comparison with documented 

report is unclear however, it is a motivation for further investigation. Perhaps, it would be pertinent 

to note that the peroxidase activities shown by T1CS3D and T2BW31 are consistent with their 

ligninolytic activities as shown with model lignin compounds degradation (Table 3.2) and 

decolourization of dyes with varied arene substituent (Table 3.3). This, therefore, may be 

suggestive of the production of lignin modifying enzymes by the test bacterial strains including 

peroxidases. 

 

 

                         Table 3.4. Evaluation of ligninolytic bacteria for peroxidase production 

S/N Isolate code Peroxidase Activity (U mL-1) 

1. T1CS3D 5.25 ± 0.00 

2. T2BW31 5.83 ± 0.00   

                          Values represent mean ± standard deviation, number of replicate, n = 3. 

 

3.4. Conclusion 

The bacterial strains; T1CS3D and T2BW31, isolated from the freshwater milieu of the Raymond 

Mhlaba Municipality, Eastern Cape, South Africa which have shown novel ligninolytic activities 

were identified as Raoultella ornithinolytica OKOH-1 and Ensifer adhaerens NWODO-2 with 

KX640917 and KX640918 as respective accession numbers. These Proteobacteria strains 

produced extracellular enzymes with the capacity to degrade dyes with ortho, meta and para arene 

substituent and as such, decolourize the model dyes. Consequently, Raoultella ornithinolytica 

OKOH-1 and Ensifer adhaerens NWODO-2 hold high potentials for industrial applications, 

particularly in the dye-wastewater management process. Besides their potential industrial 

relevance on industrial treatment, they may serve important purpose on the pretreatment of 

lignocellulosic biomass, a significant step in the bioconversion of lignocellulose to ethanol. 

Nevertheless, further study on the mechanism(s) of action of these novel bacterial strains for 

lignin-degradation is imperative as this is significant to their scalability and commercial 

application in the future. 
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CHAPTER FOUR 

 

Peroxidase produced by ligninolytic Bacillus species isolated from marsh 

and grassland decolourized anthraquinone and azo dyes 
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Abstract 

The biotechnological relevance of the biomolecules produced by Bacillus species remains topical 

and, may not diminish in the foreseeable future. The enzyme battery produced by members of the 

Bacillus genus including ligninolytic enzymes has shown immense industrial relevance. 

Consequently, some bacterial isolates from the marsh and grassland in Hogsback forest reserve of 

the Eastern Cape Province of South Africa were studied for ligninolytic activities. The utilization 

and degradation potential of lignin model compounds (guaiacol and veratryl alcohol), and the 

decolourization of lignin-mimicking dyes: Congo Red (CR) and Remazol Brilliant Blue R 

(RBBR), were assessed. Isolates with significant ligninolytic potential were identified through 16S 

rRNA gene sequence analysis, and respective nucleotide sequences were deposited in the GenBank 

with accession numbers as; Bacillus sp. NWODO-3 (KX640919), Bacillus sp. MABINYA-1 

(KX640920), Bacillus sp. MABINYA-2 (KX640921) and Bacillus sp. FALADE-1 (KX640922). 

About 6.53 U mL-1 peroxidase activity was recorded against Bacillus sp. FALADE-1 while 

Bacillus sp. MABINYA-2 and Bacillus sp. NWODO-3 showed 4.08 U mL-1 and 3.03 U mL-1 

peroxidase activity, respectively. Bacillus sp. MABINYA-1 produced 1.52 U mL-1. Conversely, 

maximum dye decolourization was observed with the crude peroxidase from Bacillus sp. 

NWODO-3; CR (69.89 ± 2.64 %) and RBBR (72.12 ± 0.38 %). Dye decolourisation reading for 

the crude peroxidases from other test isolates are; CR: 55.06 ± 5.48 %, RBBR: 70.45 ± 0.0 % 

(Bacillus sp. MABINYA-1), 42.62 ± 5.55 % and 42.42 ± 4.82 % against CR for Bacillus sp. 

MABINYA-2 and Bacillus sp. FALADE-1, respectively. RBBR was less susceptible to the attack 

by the crude peroxidase produced by Bacillus sp. FALADE-1 and Bacillus sp. MABINYA-2 as 

the dye decolourization activities observed were 1.19 ± 0.0 % and 4.91 ± 0.36 %, respectively. 

The dye decolourization activities shown by the peroxidases produced by the ligninolytic Bacillus 

strains were remarkably novel as both ortho and para arene substituent dyes were decolourized 

hence, an indication of industrial relevance in bioremediation.   

 

Keywords: Dye decolourization, ligninolytic bacteria, microbial enzyme, peroxidase. 
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4.1. Introduction 

Lignin constitutes a major hassle in the conversion of lignocellulosic-carbonoclastic materials to 

value-added products. Example of such valorization process is the utilization of lignocellulose as 

feedstock for biofuel production. Hence, efficient delignification of lignocellulosic biomass is 

imperative. The biological approach to delignification involves the use of microbes or microbial 

products such as enzymes (Falade et al., 2017a) due to, perhaps, the mild reaction conditions, 

increased yield and low energy requirements (Sánchez et al., 2011). 

The lignin degradation potentials of several fungal species have been severally studied and their 

effectiveness vastly documented (Hatakka, 1994; Leonowicz et al., 1999; Martinez et al., 2004; 

Wan and Li, 2012). However, the emergence of some classes of bacteria as ligninolytic microbes 

is quite nascent and requires adept combination of biotechnological tools to unravel the immense 

potentials possessed by the microbes. Some classes of bacteria whose emerging role in lignin 

degradation has been reported include actinomycetes, α-proteobacteria and γ-proteobactria (Bugg 

et al., 2011). Similarly, members of the Bacillus genus have been reported to possess ligninolytic 

abilities (Bandounas et al., 2011; Chang et al., 2014), and these members include Bacillus sp. 

LD003 (Bandounas et al., 2011), Bacillus sp. CS-1 and Bacillus sp. CS-2 (Chang et al., 2014). 

The lignin-degradation activities shown by these microbes have been partly attributed to the 

production of oxidative enzymes, predominantly peroxidases (Falade et al., 2017b). 

Besides the delignification activity of peroxidases, the unique oxidative properties of the enzymes 

have seen other applications including dye decolourization and xenobiotic degradation emerge 

(Falade et al., 2017a). The high redox potentials of microbial peroxidases and the ability to oxidize 

recalcitrant phenolic compounds underscore the relevance of these microbes to humanity.  

Synthetic dyes are recalcitrant to degradation, thus, constitute environmental nuisance upon 

discharge as industrial effluent. Consequently, the effective removal from the environment through 

partial or complete degradation remains a challenge.  

Physico-chemical treatment approach has been applied for the removal of the noxious substances 

(dye) from the environment. However, these approaches among others; adsorption and flocculation 

have high limitations and are inefficient (Singh et al., 2015). The other downside of these 

techniques includes high operational cost and the creation of secondary pollution (Parshetti et al., 

2012). The biological approach, which includes the use of microorganisms and sub-molecules such 
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as enzymes, in the degradation of dye in effluents, has been effective and it is saddled with less 

limitations (Falade et al., 2017a). Hence, the exploration of microbial diversity, besides the already 

known species, for dye decolourization potentials becomes imperative. Consequently, the 

ligninolytic bacteria species isolated from marsh and grassland of Hogsback forest reserve were 

evaluated for peroxidase production and the decolourization of dyes with varied arene substituents. 

 

4.2. Materials and methods 

4.2.1. Sampling site and sample collection 

Samples of decaying wood, soil, sediment, moist rock scrapings and water were collected from 

marsh and grassland in Hogsback forest reserve of the Raymond Mhlaba Municipality, Eastern 

Cape, South Africa and transported on ice to Applied and Environmental Microbiology Research 

Group (AEMREG) Laboratory, University of Fort Hare, Alice, South Africa for analysis. 

Hogsback lies on the Amathole Mountains of the Eastern Cape Province of South Africa, with 

geographical coordinates as S32°.598' E26°.938'. The pristine forest reserve has waterfalls and 

trout fishing is common. The Hogsback forest reserve has been described as the second-largest per 

unit area in South Africa comprising indigenous forests, with pockets of Afromontane rain forests 

covering a large area. Additionally, marsh and grassland are other features of Hogsback. 

   

4.2.2. Isolation of ligninolytic bacteria 

Lignin degrading bacteria was isolated using standard techniques (Sasikumar et al., 2014) with 

slight modification as previously described by Falade et al. (2017b).  

 

4.2.3. Lignin degradation assay 

The isolates were further evaluated for ligninolytic potential using the modified method of Taylor 

et al. (2012) as described by Falade et al. (2017b) in a previous study. 

  

4.2.4. Bacterial identification  

Isolates with promising ligninolytic activity were characterized using 16S rRNA gene sequence 

analysis as previously described elsewhere (Falade et al., 2017b). Phylogenetic analysis was 

conducted by neighbour-joining method using MEGA 7.0.21 (Kumar et al., 2016). 
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4.2.5. Peroxidase activity screening 

Qualitatively peroxidase activity was determined as described by López et al. (2006). Briefly, 

isolates were inoculated in nutrient agar and incubated at 30 oC for 48 h. Thereafter, 30 µL of equal 

parts of 0.4 % (v/v) hydrogen peroxide (H2O2) and 1% pyrogallol in water was added to the colony. 

Colonies with yellow-brown colour were recorded as positive. 

  

4.2.6. Peroxidase production and enzyme preparation 

Peroxidase was produced in a submerged fermentation system using the method described by 

Falade et al. (2017b). Fermented broth was centrifuged (15000 rpm) for 10 min at 4 oC using 

benchtop cold centrifuge (SIGMA 1-14K). The supernatant was subsequently utilized for 

peroxidase assay. 

 

4.2.7. Peroxidase activity quantitation 

Peroxidase activity was quantified through the measurement of the rate of hydrogen peroxide-

dependent oxidation of pyrogallol to purpurogallin in line with standard methods (Chance and 

Maehly, 1955; Park, 2006) but with slight modification reported elsewhere (Falade et al., 2017b). 

  

4.2.8 Dye decolourization assay   

Lignin-mimicking dyes; Remazol Brilliant Blue R (RBBR) and Congo Red (CR) were assessed 

for decolourization (Bandounas et al., 2011). About 5 µL of an 18 h culture was aseptically 

inoculated in dye-agar with the following composition; K2HPO4 (4.55 g/L), KH2PO4 (0.53 g/L), 

MgSO4 (0.5 g/L), NH4NO3 (5 g/L), yeast extract (0.1 g/L), glycerol (40 mM), dye (100 mg/L 

RBBR; 50 mg/L CR), and agar (15 g/L). The cultures were incubated at 30°C and examined daily 

for growth and development of decolourization zones. The total incubation time was 168 h. 

Furthermore, the rate of decolourization of the dyes was similarly evaluated in line with the 

modified method of Kalyani et al. (2011). The reaction mixture (400 μL) contained dye (100 

mg/L), potassium phosphate buffer (0.1 M, pH 6) and culture supernatant (crude enzyme). The 

reaction was initiated via the addition of 0.5 % hydrogen peroxide (30 % w/w) and subsequently 

incubated at 25 ± 2 oC for 30 min. Absorbance was read at 490 nm and 590 nm being the maximum 

wavelength for CR and RBBR, respectively (Ollikka et al., 1993) using SynergyMx 96-well 
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microtitre plate reader (BioTeK Instruments). A reaction mixture without the crude enzyme served 

as the control. Dye decolourization was measured by monitoring the decrease in absorbance of 

each dye and expressed as percentage decolourization: 

 

  

4.2.9. Data analysis 

All data including absorbance readings and halo zones were subjected to analysis of variance 

(ANOVA) using GraphPad Prism 7 at a 5% (P ≤ 0.05) confidence interval. Where applicable, 

results were presented as mean values ± standard deviation (STD). 

 

4.3. Results and discussion 

4.3.1. Isolation of ligninolytic bacteria 

A total of forty-nine (49) ligninolytic bacteria were isolated from marsh and grassland in Hogsback 

located in Raymond Mhlaba Municipality, Eastern Cape, South Africa (Table 4.1). The isolates 

were presumed to be ligninolytic due to their ability to utilize alkali lignin as sole carbon source 

in an enrichment medium. Isolation of bacteria with ligninolytic potential has previously been 

reported (Raj et al., 2007; Chandra et al., 2008; Bandounas et al., 2011; Taylor et al., 2012; Chang 

et al., 2014). However, this is the first-time isolation of ligninolytic bacteria from Hogsback forest 

reserve in South Africa is being reported. Organisms with ligninolytic potential are promising 

candidates for delignification of feedstock for bioethanol production (Falade et al., 2017a). They 

are as well significant in the valorization of lignocellulose to other value-added products. Besides 

the importance of ligninolytic organisms in the valorization of lignocellulosic biomass, they also 

have the potential for the production of ligninolytic enzymes including peroxidases with 

significant prospective industrial applications. 

 

 

 

…….………...Eqn. 1. 
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Table 4.1. Colonial morphology of isolated bacteria on alkali lignin plate 

S/N Isolate ID Isolation source Form Pigmentation Elevation Margin 

1. HBB1A Decaying wood Circular Creamy Raised Entire 

2. HBB1B Decaying wood Circular Yellowish Raised Entire 

3. HBB2A Decaying wood Circular Transparent Flat Undulate 

4. HBB2B Decaying wood Circular Milky Raised Entire 

5. HBB4A Soil Circular Creamy Flat Entire 

6. HBB4B Soil Irregular Creamy Flat Undulate 

7. HBB4C Soil  Irregular Transparent Flat Undulate 

8. HBB5A Soil  Irregular Creamy Flat Undulate 

9. HBB5B Soil Irregular Creamy Flat Undulate 

10. HBB6A Sediment Circular Transparent Raised Entire 

11. HBB7A Sediment Irregular Creamy Flat Undulate 

12. HBB8A Sediment Irregular Brownish Flat Undulate 

13. HBB8B Sediment Circular Transparent Raised Entire 

14. HBB9A Soil scrapping Circular Creamy Raised Entire 

15. HBB10A Soil scrapping Circular Creamy Raised Entire 

16. HBB11A Soil scrapping Circular Creamy Raised Entire 

17. HBB11B Soil scrapping Circular Creamy Flat Entire 

18. HBB12A Decaying wood Circular Creamy Raised Entire 

19. HBB13A Soil scrapping  Circular Creamy Raised Entire 

20. HBB13B Soil scrapping Circular Yellowish Raised Entire 

21. HBB13C Soil scrapping Circular Whitish Raised Entire 

22. HBB14A Decaying wood Irregular Creamy Flat Undulate 

23. HBB15A Moist soil Irregular Whitish Flat Undulate 

24. HBB16A Decaying wood Irregular Milky Flat Undulate 

25. HBB18A Decayed wood Circular Yellowish Raised Entire 

26. HBB19A Water Circular Creamy Raised Entire 

27. HBB20A Water Circular Creamy Raised Entire 

28. HBB21A Sediment Irregular Whitish Flat Undulate 

29. HBB21B Sediment Circular Yellowish Raised Entire 

30. HBB22A Water Circular Yellowish Raised Entire 

31. HBB22B Water Circular Creamy Raised Entire 

32. HBB23A Sediment Circular Yellowish Raised Entire 

33. HBB23B Sediment Circular Creamy Raised Entire 

34. HBB24A Sediment Circular Yellowish Raised Entire 
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35. HBB25A Rock scrapping Circular Creamy Raised Entire 

36. HBB26A Waterfall sediment Circular Yellowish Flat Entire 

37. HBB27A Waterfall sediment Circular Yellowish Raised Entire 

38. HBB27B Waterfall sediment Irregular Creamy Flat Undulate 

39. HBB28A Rock scrapping Circular Yellowish Raised Entire 

40. HBB29A Rock scrapping Irregular Creamy Flat Undulate 

41. HBB29B Rock scrapping Circular Yellowish Raised Entire 

42. HBB29C Rock scrapping Circular Creamy Raised Entire 

43. HBB30A Decayed wood Circular Yellowish Raised Entire 

44. HBB31A Soil particles Irregular Transparent Flat Undulate 

45. HBB32A Sediment Circular Creamy Flat Entire 

46. HBB32B Sediment Irregular Creamy Flat Undulate 

47. HBB34A Decayed wood Circular Creamy Raised Entire 

48. HBB35A Moist decayed wood Irregular Transparent Flat Undulate 

49. HBB35B Moist decayed wood Irregular Creamy Flat Undulate 

 

4.3.2. Lignin degradation potential 

The ligninolytic potential of the isolates was also assessed using their ability to utilize and degrade 

some lignin model compounds including 2-methoxyphenol (guaiacol) and 3,4-Dimethoxybenzyl 

alcohol (veratryl alcohol). Lignin model compounds and aromatic monomers such as guaiacol and 

veratryl alcohol are usually used for screening of organisms for ligninolytic potentials (Bandounas 

et al., 2011; Taylor et al., 2012). Table 4.2 showed that 13 isolates (26.5 %) were able to utilize 

and degrade both guaiacol and veratryl alcohol. The degree of degradation of the compounds by 

the isolates was measured by the diameter of the halo zone with isolate HBB1A having the highest 

zone of degradation for the two compounds (guaiacol: 42.0 ± 0.0 mm, veratryl alcohol: 41.0 ± 1.0 

mm) and HBB29C having the least zone of degradation (guaiacol: 9.0 ± 1.0 mm, veratryl alcohol: 

7.0 ± 1.0 mm). The degraded part was revealed as a clear zone around the bacterial colony on plate 

while the brown colouration of the un-degraded part resulted from the interaction of hydrogen 

iodide (generated from dissolving potassium iodide and iodine in water) with the two aromatic 

alcohols in the presence of oxygen after being flooded with Gram’s iodine (Falade et al., 2017b) 

at 168 h of incubation. The clear zone around the bacterial colony in this study could either be as 

a result of utilization of the compounds or their degradation by extracellular enzymes including 

lignin modifying enzymes. Furthermore, the capability of bacterial strains to utilize and degrade 
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guaiacol and veratryl alcohol as observed in this study might also be attributed in part to the activity 

of alcohol dehydrogenase which is required to oxidize aromatic alcohols.  

The ligninolytic activity of certain aromatic compound degraders including Pseudomonas sp. and 

Burkholderia sp. has been reported (Bandounas et al., 2011). However, our result contradicts the 

findings of Bandounas et al. (2011) who reported that certain bacterial strains including Pandoraea 

norimbergensis LD001, Pseudomonas sp. LD002 and Bacillus sp. LD003 were not able to utilize 

or degrade the alcoholic forms of the aromatic monomers investigated including guaiacol and 

veratryl alcohol. The seemingly discrepancies may be due to ecological reasons as strains studied 

by Bandounas et al. (2011) were isolated from soil beneath decomposing wood logs in the 

Netherlands while the bacterial isolates used in this study were from different environments in 

South Africa. In order to clearly understand these discrepancies, the metagenomics analysis of the 

samples is imperative. 

 

 

            Table 4.2. Lignin degradation potential of bacterial isolates 

 

 

GA: Guaiacol; VA: Veratryl Alcohol. Values represent mean ± standard deviation, number of replicate, n = 3. Values 

with the same superscript letter along the same column are not significantly different (P> 0.05). 

 

S/N Positive isolates Diameter of halo zone for GA 

(mm) 

Diameter of halo zone for VA 

(mm) 

1. HBB1A 42.0± 0.0
a
 41.0 ± 1.0

a 
 

2. HBB1B 40.0 ± 2.0
a
 39.0 ± 1.0

a
 

3. HBB4A 24.0 ± 0.0
b
 23.0± 1.0

b
  

4. HBB5A 26.0 ± 0.0
c
 29.0 ± 1.0

c
 

5. HBB5B 20.0 ± 0.0
d
 25.0 ± 1.0

d
 

6. HBB7A 22.0 ± 2.0
d
 32.0 ± 0.0

c
 

7. HBB10A 12.0 ± 2.0
e
 13.0 ± 1.0

e
 

8. HBB11B 18.0 ± 2.0
f
 20.0 ± 0.0

f
 

9. HBB22A 31.0 ± 1.0
g
 21.0 ± 1.0

f
 

10. HBB29A 31.0 ± 1.0
g
 34.0 ± 0.0

g
 

11. HBB29B 30.0 ± 2.0
g
 34.0 ± 0.0

g
 

12. HBB29C 9.0 ± 1.0
h
 7.0 ± 1.0

h
 

13. HBB30A 17.0 ± 1.0
i
 10.0 ± 0.0

i
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4.3.3. Bacterial identity 

Four bacterial isolates with promising ligninolytic potential (HBB5A, HBB5B, HBB7A and 

HBB29A) were identified using 16S rRNA gene sequence analysis and the results showed that all 

the isolates belong to Bacillus genus. The results of the BLAST search of the respective nucleotide 

sequences in the NCBI database revealed that HBB5A, HBB5B and HBB29A had 99 % similarity 

to Bacillus lentus strain FJAT-10603 (JN450800), Bacillus sp. strain NC62 (KY454505) and 

Bacillus sp. strain FJAT-25753 (KR077842) respectively. However, HBB7A was 100% similar to 

Bacillus sp. strain HP5F2 (KM187486) and [Brevibacterium] frigoritolerans strain Hb-1 

(KC139406) as it also showed 99 % similarity to several strains of Bacillus species. The respective 

16S rRNA gene sequences of the identified organisms are available in the NCBI database with the 

following names and accession numbers: HBB5A: Bacillus sp. strain NWODO-3 (KX640919), 

HBB5B: Bacillus sp. strain MABINYA-1 (KX640920), HBB7A: Bacillus sp. strain MABINYA-

2 (KX640921) and HBB29A: Bacillus sp. strain FALADE-1 (KX640922). The unrooted 

phylogenetic tree indicating the evolutionary relationships of the Bacillus strains in this study with 

other Bacillus species available in the NCBI database is shown in Fig. 4.1. The evolutionary 

analysis shows that Bacillus strains studied (indicated with black tips) are more closely related to 

one another than other Bacillus species.  

The identity of these organisms as Bacillus spp. further confirms the emerging role of Bacillus 

species in lignin degradation. This finding is consistent with previous studies on the ligninolytic 

activities of Bacillus species where Bandounas et al. (2011) reported the ligninolytic potential of 

Bacillus sp. LD003 isolated from soil beneath decomposing wood logs in Netherlands. Recently, 

Chang et al. (2014) also reported the lignin-degrading activity of Bacillus sp. CS-1 and Bacillus 

sp. CS-2 from forest soils in Japan. However, this is perhaps the first report of ligninolytic Bacillus 

species from Hogsback forest in South Africa. The emerging ligninolytic activity of Bacillus 

species confers on this class of bacteria the potential for application in biological delignification 

of lignocellulosic biomass, consequently enhancing valorization of lignocellulosic biomass to 

value added products of economic importance.   
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Fig. 4.1. Phylogenetic tree showing the evolutionary relationships of ligninolytic Bacillus strains 

in this study and selected Bacillus species in the NCBI database. The ligninolytic bacteria isolated 

and sequenced in this study are shown in black tips with ID Numbers 19-22. The bootstrap values 

of 1000 replicates are shown next to the branches while accession numbers are indicated in 

parentheses. 

 

4.3.4. Peroxidase production by novel ligninolytic Bacillus species 

Bacillus species have been described as one of the most significant industrial producers of enzymes 

partly owing to their capacity to produce large amount of extracellular enzymes (Schallmey et al., 

2004). To assess the potential of the newly isolated ligninolytic Bacillus species to produce 

extracellular peroxidases, the qualitative peroxidase activity of the organisms was determined. The 

results revealed that all the ligninolytic Bacillus species assessed showed peroxidase activity on 

plate (Fig. 4.2) with the presence of yellowish-brown colouration on the bacterial colony after its 

reaction with 0.4 % (v/v) hydrogen peroxide (H2O2) and 1 % pyrogallol at 48 h of incubation on 

nutrient agar (Lopez et al., 2006). To further evaluate the peroxidase production potentials of these 
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organisms, the level of extracellular peroxidase produced by the ligninolytic Bacillus species was 

determined using a quantitative assay as described in the method and the result is presented in 

Table 4.3. Bacillus sp. FALADE-1 exhibited the highest potential for peroxidase production with 

6.53 U mL-1 followed by Bacillus sp. MABINYA-2 and Bacillus sp. NWODO-3 with 4.08 U mL-

1 and 3.03 U mL-1 of peroxidase respectively while Bacillus sp. MABINYA-1 produced 1.52 U 

mL-1 of peroxidase. However, all the ligninolytic Bacillus species in this study showed promising 

potential for peroxidase production.  

The quantity of peroxidase produced by these organisms is higher than what was reported by Rao 

and Kavya (2014) and Musengi et al. (2014) where Bacillus subtilis and Streptomyces sp. BSII#1 

produced 0.00045 U mL-1 and 1.30 U mL-1 of peroxidase, respectively. This indicates that the 

studied Bacillus strains hold a high potential for enhanced peroxidase production.  

 

 

Fig. 4.2. Qualitative peroxidase activity screening. HBB5A: Bacillus sp. NWODO-3, HBB5B: 

Bacillus sp. MABINYA-1, HBB7A: Bacillus sp. MABINYA-2, HBB29A: Bacillus sp. FALADE-

1. 

                    

                   Table 4.3. Peroxidase production by novel ligninolytic Bacillus species 

S/N Organisms Peroxidase activity (U mL-1) 

1. Bacillus sp. NWODO-3 3.03                                                                                           

2. Bacillus sp. MABINYA-1 1.52  

3. Bacillus sp. MABINYA-2 4.08 

4. Bacillus sp. FALADE-1 6.53                                                
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4.3.5. Dye decolourization  

Decolourization of lignin-like dyes such as Azure B, Methylene Blue, Toluidine Blue O, Malachite 

Green, Indigo Carmine, Remazol Brilliant Blue R, Congo Red etc. has been used to determine the 

ligninolytic potential of bacteria (Bandounas et al., 2011). To further confirm the ligninolytic 

potential of the isolates, the thirteen (13) positive isolates for the degradation of lignin model 

compounds (guaiacol and veratryl alcohol) were evaluated for their abilities to decolourize two 

ligninolytic indicator dyes: Remazol Brilliant Blue R (RBBR) and Congo Red (CR), with different 

arene substituent attachment positions. RBBR is a recalcitrant anthraquinone dye with its aromatic 

substituent attached at the para position of its structural backbone (anthraquinone) while CR is an 

azo dye having its two azo groups (-N=N-) which serve as the chromophore attached at the ortho 

position. The position of attachment of the various arene rings might probably contribute to the 

recalcitrance of synthetic dyes to degradation. Consequently, degradation of dyes with ortho, meta 

and para arene substituents would suffice as a novel mechanism of dye degradation. 

The results of the qualitative assessment of the bacterial isolates for dye decolourization as 

revealed in Table 4.4 showed that 5 isolates (38.46 %) decolourized RBBR while 11 isolates (84.62 

%) were positive for decolourization of CR within 72 h. This finding suggests that CR (azo dye) 

is more susceptible to decolourization than RBBR, an athraquinone dye. However, only Bacillus 

sp. NWODO-3, Bacillus sp. MABINYA-1, Bacillus sp. MABINYA-2 and Bacillus sp. FALADE-

1 were able to decolourize both RBBR and CR in this study. The dye decolourization observed in 

this study could either be as a result of dye adsorption to the bacterial colonies or oxidation of the 

dyes by enzymes (laccases and peroxidases) secreted by the bacteria.  
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            Table 4.4. Qualitative assessment of bacteria for dye decolourization 

 

S/N Isolates RBBR CR  

1. HBB1A - +  

2. HBB1B - +  

3. HBB4A - +  

4. HBB5A + +  

5. HBB5B + +  

6. HBB7A + +  

7. HBB10A + -  

8. HBB11B - +  

9. HBB22A - +  

10. HBB29A + +  

11. HBB29B - -  

12. HBB29C - +  

13. HBB30A - +  

 

    +: positive; -: negative; RBBR: Remazol Brilliant Blue R; CR: Congo Red. 

 

Furthermore, enzyme-based dye decolourization is of greater interest, partly, due to its efficiency, 

greater specificity and non-dependence on the growth rates of organisms (Husain et al., 2009; 

Kalyani et al., 2011). The involvement of microbial enzymes including peroxidases, laccases and 

azo reductase in biodegradation of dyes has been suggested (Kalyani et al., 2011). Moreover, crude 

and purified forms of bacterial peroxidase have been used in dye decolourization (Dawkar et al., 

2009; Ghodake et al., 2009). Therefore, the potential activity of crude peroxidase produced by the 

new ligninolytic Bacillus species in dye decolourization was evaluated by incubating the culture 

supernatant from the organisms with the dyes (Congo Red-CR and Remazol Brilliant Blue R-

RBBR) at 25 ± 2 oC for 30 min in a reaction mixture containing phosphate buffer (pH 6) and 

hydrogen peroxide. The results (Fig. 4.3) revealed that crude peroxidase from Bacillus sp. 

NWODO-3 showed the highest decolourization activity for both CR (69.89 ± 2.64 %) and RBBR 

(72.12 ± 0.38 %) followed by peroxidase from Bacillus sp. MABINYA-1 (CR: 55.06 ± 5.48 %, 

RBBR: 70.45 ± 0.0 %). However, there was no significant difference (P˃0.05) in the 
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decolourization of CR by peroxidases from Bacillus sp. MABINYA-2 (42.62 ± 5.55 %) and 

Bacillus sp. FALADE-1 (42.42 ± 4.82 %). Although there was a significant difference (P<0.05) 

in the decolourization of RBBR by peroxidases from Bacillus sp. MABINYA-2 (4.91 ± 0.36 %) 

and Bacillus sp. FALADE-1 (1.19 ± 0.0 %), their activities were insignificant. The disparity 

observed in the decolourization of CR and RBBR by peroxidases from the Bacillus species may 

probably be due to the structural variation of the dyes. The result indicates that crude peroxidases 

from Bacillus sp. NWODO-3 and Bacillus sp. MABINYA-1 showed the best potential activity for 

arene substituent dye decolourization. This finding is comparable to previous related study by 

Kalyani et al. (2011) who reported the decolourization of various textile dyes (such as methyl 

orange, reactive red 2, reactive blue 59 etc.) by peroxidase from Pseudomonas sp. SUK 1 with 

highest decolourization activity of 72% on methyl orange. 

 

 

 

Fig. 4.3. Decolourization of anthraquinone and azo dyes by peroxidases from new Bacillus strains. 

Error bars with the same alphabet are not significantly different (P> 0.05). POX: Peroxidase. 
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4.4. Conclusion 

In conclusion, the four novel ligninolytic Bacillus strains identified in this study have shown 

promising potentials for delignification and production of peroxidases with industrial relevance in 

bioremediation. The ability of peroxidases from Bacillus sp. NWODO-3 and Bacillus sp. 

MABINYA-1 to decolourize dyes with ortho and para arene substituents confers on them the 

potential for application in textile effluent treatment and synthetic dye transformation. However, 

detailed characterization of the enzymes is imperative for practical applications.  
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Abstract 

This study sought to optimize peroxidase production by a bacillus species (Bacillus sp. FALADE-

1-KX640922) isolated from Hogsback forest reserve in South Africa and determine the gene 

encoding peroxidase activity in the organism. We optimized peroxidase production by 

manipulating the environmental and nutritional parameters under submerged fermentation. 

Subsequently, the gene encoding peroxidase activity was determined using nested polymerase 

chain reaction and Sanger DNA sequencing. Optimum peroxidase production by Bacillus sp. 

FALADE-1 was attained at pH 8, 30 oC and 150 rpm. The addition of guaiacol to lignin 

fermentation medium enhanced peroxidase production by over 100 % in Bacillus sp. FALADE-1. 

However, the other lignin model compounds (veratryl alcohol, vanillin, vanillic acid and feriluc 

acid) repressed the enzyme production by the organism. Supplementation of the fermentation 

medium with ammonium sulphate gave the maximum peroxidase yield (8.87 U mL-1). Under 

optimized conditions, the maximum peroxidase production by Bacillus sp. FALADE-1 was 

attained at 48 h (8.32 U mg-1). Interestingly, the blast search of the nucleotide sequence of the 

amplified gene in PeroxiBase database showed 100% similarity to Sporotrichum thermophile 

catalase-peroxidase gene (katG), as well, the deduced protein sequence clustered with bacterial 

catalase-peroxidases and had a molecular weight of 11.445 kDa with 7.01 as the isoelectric point. 

Subsequently, the nucleotide sequence was deposited in the GenBank as Bacillus sp. FALADE-1 

catalase-peroxidase gene under the accession number MF407314. In conclusion, peroxidase 

production by Bacillus sp. FALADE-1 increased by 2.22-fold as katG seemed to be responsible 

for the peroxidase activity expressed in the organism. 

  

Keywords: Bifunctional enzyme, catalase-peroxidase, enzyme production, ligninolytic enzymes, 

optimization, peroxidase. 
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5.1.  Introduction 

Oxidative enzymes are topical perhaps, due to, their biotechnological potentials in various 

industrial biocatalytic processes including but not limited to bioremediation, biodegradation, 

delignification, biobleaching and biopulping.  

Peroxidases, are major oxidative enzymes which have recently received increased attention, 

probably, owing to their high redox potentials and the ability to oxidize recalcitrant compounds 

(Falade et al., 2017a). These characteristics have motivated for their application potentials in the 

development of biosensors and diagnostic kits for detection of hydrogen peroxide (Jia et al., 2002; 

Agostini et al., 2002), decolourization of synthetic dyes (Kalyani et al., 2011), development of 

skin-lightening agents (Draelos, 2015; Falade et al., 2017a) and removal of emerging pollutants 

and micropollutants in wastewater (Taboada-Puig et al., 2015).  

Nevertheless, the industrial applicability of peroxidases is being hampered by inadequate amount 

of enzyme produced and high cost of production (Ferrer et al., 1991; Torres et al., 2003). More so, 

the commercially available peroxidases such as horseradish peroxidase (HRP), peroxidase from 

Bjerkandera adusta and streptavidin: peroxidase from Streptomyces avidinii could not probably 

meet the increasing industrial demand for peroxidases. Hence, the imperativeness of new sources 

of peroxidase to satisfy the growing industrial demands. 

Production of peroxidases from plant and white-rot fungi have been extensively studied (Lavery 

et al., 2010; Kharatmol and Pandit, 2012; Rathnamsamy et al., 2014; Kong et al., 2016; Zhang et 

al., 2016). Peroxidase production by a number of bacteria, predominantly, actinobacteria (Tuncer 

et al., 2009; Nour El-Dein et al., 2014; Musengi et al., 2014) and very few belonging to Bacillus 

genus (Dawkar et al., 2009; Rajkumar et al., 2013; Patil, 2014; Rao and Kavya, 2014) have also 

been reported. Moreover, bacteria seem to be more promising for enhanced peroxidase production, 

perhaps, due to their high genetic maneuverability which is difficulty in fungi. More so, detection 

of the gene encoding peroxidase in bacteria is another step that could be explored for improved 

peroxidase production through molecular optimization and genetic engineering.  

Bacillus species are described as the “major workhorse industrial microorganisms” (Schallmey et 

al., 2004), with enhanced enzyme production potential. They are characterized by high growth 

rate, ability to produce extracellular proteins in large quantity and general safety (Schallmey et al., 

2004). Moreover, Bacillus species have shown great potential for production of various 
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extracellular enzymes (Sevinc and Demirkan, 2011; Barros et al., 2013; Pant et al., 2015). Also, 

some Bacillus species have been employed for production of cellulolytic and pectinolytic enzymes 

(Soares et al., 2001; Dias et al., 2014; Padilha et al., 2015). Nonetheless, there is dearth of 

information on the production of ligninolytic enzymes, particularly, peroxidases by Bacillus 

species. Therefore, this study seeks to optimize peroxidase production by Bacillus sp. FALADE-

1 (KX640922) and determine the gene encoding peroxidase activity in the organism. 

 

5.2. Materials and methods 

5.2.1. Organism source, screening and identification  

The organism (Bacillus sp. FALADE-1) was isolated from rock scrappings collected from 

Hogsback forest reserve in Eastern Cape, South Africa using the method described by Sasikumar 

et al. (2014) with some modifications. Then, the organism was screened for ligninolytic and 

peroxidase production potentials [Unpublished results] and subsequently identified as a Bacillus 

sp. using 16S rDNA partial sequence analysis. 

 

5.2.2. Enzyme production using submerged fermentation technique 

Submerged fermentation for peroxidase production was carried out as described by Falade et al. 

(2017b) where 100 mL of the fermentation medium: K2HPO4 (4.55 g L-1), KH2PO4 (0.53 g L-1), 

MgSO4 (0.5 g L-1), NH4NO3 (5 g L-1), yeast extract (0.1 g L-1) and 0.1 % w/v lignin (Sigma-

Aldrich, SA) was aseptically inoculated with 2 % inoculum of the bacterial suspension in normal 

saline (O.D. 600 nm ≈ 1.0) at pH 7 using uninoculated media as control. The culture was 

subsequently incubated at 30 oC and 140 rpm for 48 h, afterwards, the crude enzyme was prepared 

as reported by Falade et al. (2017b). 

 

5.2.3. Enzyme activity assay 

Peroxidase production was evaluated by determining the peroxidase activity using the rate of 

hydrogen peroxide-dependent oxidation of pyrogallol to purpurogallin as described by Park (2006) 

with some modifications reported by Falade et al. (2017b). 
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5.2.4. Optimization studies on peroxidase production by Bacillus sp. FALADE-1 

The optimized conditions for peroxidase production by the Bacillus species were determined as 

described by Fatokun et al. (2016). Briefly, peroxidase production was optimized by adjusting the 

various culture conditions such as pH, temperature and agitation rate as well as manipulating the 

fermentation medium composition using conventional method.  The observed optimum parameters 

were then employed for subsequent fermentation (Fatokun et al., 2016). 

 

5.2.4.1. Determination of initial pH for optimum peroxidase production 

The initial medium pH for optimum peroxidase production was determined by growing the 

Bacillus strain in a lignin fermentation medium with varying pH (3 to 11), which was adjusted 

using 1M HCl or 1M NaOH. The culture was subsequently incubated at the conditions earlier 

described. 

 

5.2.4.2. Determination of incubation temperature for optimum peroxidase production 

The incubation temperature for optimum peroxidase production was determined by cultivating the 

test strain in a lignin fermentation medium with initial pH 8; and incubating the culture at 

temperatures ranging from 20 to 45 oC at 5 oC intervals while other conditions earlier described 

remained constant. 

 

5.2.4.3. Determination of agitation rate for optimum peroxidase production 

The agitation rate for optimum peroxidase production by the test bacteria was determined by 

incubating the culture at static and different agitation rates ranging from 50 – 200 rpm at 50 rpm 

interval using the predetermined-optimized culture conditions (pH: 8, temperature: 30 oC) for 48 

h. 

 

5.2.4.4. Effect of lignin model compounds on peroxidase production 

The bacteria strain under investigation was cultivated in a lignin fermentation medium 

supplemented with 1 mmol L-1 of different lignin model compounds (guaiacol, veratryl alcohol, 

vanillin, vanillic acid and ferulic acid) with the potential for induction of lignin modifying enzymes 

(Musengi et al., 2014) using the predetermined-optimized culture conditions (pH 8, 30 oC, 150 

rpm) for 48 h. The lignin fermentation medium without the supplements served as the control. 
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5.2.4.5. Effect of nitrogen supplementations on peroxidase production 

The effect of nitrogen supplementations on peroxidase production by the Bacillus strain was 

determined by cultivating the test bacteria in a lignin fermentation medium where yeast extract 

was supplemented with different inorganic nitrogen sources (ammonium nitrate, ammonium 

chloride and ammonium sulphate) at the pre-optimized fermentation conditions for 48 h. The 

medium without nitrogen supplementation was used as the control. 

 

5.2.5. Kinetics of enzyme production and bacterial growth  

The kinetics of peroxidase production by the Bacillus strain and the cell growth were determined 

using the modified method described by Tuncer et al. (1999). Briefly, the strain was grown in a 

lignin fermentation medium under optimized culture conditions for 120 h. Thereafter, the culture 

was withdrawn every 24 h (Tuncer et al., 1999) and assayed for peroxidase activity. As well, the 

cell growth was monitored by measuring the optical density (OD) of the culture at 600 nm. 

 

5.2.6. Estimation of extracellular protein 

The extracellular protein produced by the test organism was estimated using Bradford method 

(Bradford, 1976). Briefly, 250 µL of Bradford reagent was added to 10 µL of the supernatant in a 

96-well microtitre plate while 10 µL of distilled water was used to replace the sample in the blank. 

Then, the mixture was incubated at room temperature (25 ± 2 oC) for 15 min. Subsequently, the 

absorbance was measured at 595 nm using SynergyMx 96-well microtitre plate reader (BioTeK 

Instruments, USA). The concentration of the secreted protein was later extrapolated from the curve 

constructed using bovine serum albumin (BSA) as standard protein. The specific enzyme activity 

was expressed as U mg-1 protein. 

 

5.2.7. DNA extraction 

Genomic DNA was extracted from the test organism using boiling method as described by 

Maugeri et al. (2006). A number of colonies of the test strain was suspended in 200 µL of nuclease-

free water and heated at 100 oC for 10 min using Dri Block DB-BD (TECHNE, Lasec, SA). 

Thereafter, the mixture was centrifuged at 20000 x g for 5 min (HERMLE Z 233 M-2, Lasec, SA) 

and the recovered supernatant was used as DNA template for polymerase chain reaction (PCR). 
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5.2.8. Nested PCR 

The target gene was amplified using the set of primers listed in Table 5.1 in a nested PCR assay. 

The oligonucleotide primers which were designed using the DNA sequence of Bacillus sp. ABP14 

(CP017016), were synthesized by Inqaba Biotech, South Africa. A total of 25 µL reaction mixture 

which comprised 12.5 µL of master mix (BioLabs, SA), 1µL each of both forward (Baprx F1) and 

reverse (Baprx R) primers, 5.5 µL of nuclease-free water and 5 µL of extracted DNA was used for 

the first PCR assay under the following optimized conditions: initial denaturation at 95 oC (5 min), 

denaturation at 94 oC (1 min), annealing at 55 oC (1 min), extension at 72 oC (1 min) for 35 cycles 

and final extension at 72 oC (5 min). The amplicon from the first PCR assay was then used as the 

DNA template for the second PCR experiment using the second forward primer, Baprx F2 and the 

reverse primer, Baprx R under the same PCR conditions in a thermocycler apparatus (G-STORM, 

UK). Thereafter, the amplified product was visualized by electrophoresis using a 1.5 % agarose 

gel (Merck, SA) stained with ethidium bromide (Sigma-Aldrich, SA) at 100 V for 45 min in 0.5X 

TBE buffer through ultraviolet illumination (Alliance 4.7, France). The PCR product was 

subsequently analysed after being purified, using Sanger dideoxy sequencing method followed by 

a BLAST search in PeroxiBase database (peroxibase.toulouse.inra.fr) using blastn. 

 

Table 5.1. List of oligonucleotide primers for detection of heme-peroxidase gene in Bacillus sp. 

Primer name  Primer sequence (5'-3') Target 

gene 

Expected 

band size 

(bp) 

Reference 

Baprx F1 GCAAAAAAGGGCAGTCACGCAA Hprx 465/461 This study  

Baprx F2 AAAAGGGCAGTCACGCAATGTA 

Baprx R TTGAAGAACATCGTCAGCGAATAAT 

 

 

5.2.9. Phylogenetic analysis 

Phylogenetic analysis of the deduced protein sequence from Bacillus sp. FALADE-1 peroxidase 

gene and selected bacterial heme-peroxidases in the PeroxiBase was conducted using neighbour-

joining method (Saito and Nei, 1987) in MEGA 7.0 software (Kumar et al., 2016) while the 

physicochemical properties were determined using geneious 10.2.2. 
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5.2.10. Data analysis 

Data were analyzed using one-way ANOVA and Tukey’s Multiple Comparison Test where 

applicable. Significance was accepted at P ≤ 0.05. 

 

5.3. Results and discussion 

Given the diverse applications of peroxidase in various industrial processes, enhancement of its 

production has become imperative. This has therefore necessitated the search for novel sources 

with increased production capacity. In this study, we assessed peroxidase production by a Bacillus 

strain isolated from Hogsback forest reserve in the Eastern Cape, South Africa under optimized 

culture conditions including initial medium pH, incubation temperature, and agitation rate. Also, 

the composition of the production medium was amended for optimum peroxidase production by 

the organism. Subsequently, the kinetics of enzyme production and bacterial growth were assessed 

as the gene encoding peroxidase activity was also determined.   

The peroxidase production was determined in this study by measuring the peroxidase activity of 

the supernatant recovered from the organisms. 

 

5.3.1. Determination of initial pH for optimum peroxidase production 

The pH of the cultivation environment exerts a significant influence on microbial growth and 

metabolism (Saini et al., 2014) as nutrient absorption is determined by the charge on the microbial 

cells (Salehizadeh and Shojaosadati, 2001). It is therefore important to determine the medium pH 

that is most favourable for metabolic activities of an organism. The results of the initial medium 

pH for optimum peroxidase production by Bacillus sp. FALADE-1 as presented in Fig. 5.1 showed 

that the organism was able to produce peroxidase over a wide pH range (5.0 – 10.0) with optimum 

peroxidase production observed at pH 8 (3.15 U mL-1). However, no peroxidase activity was 

detected at pH 3, 4 and 11. Although there exists a significant difference (P < 0.05) in peroxidase 

production by Bacillus sp. FALADE-1 at the optimal pH when compared to other pH values, there 

was no significant difference (P > 0.05) in peroxidase production by the organism at pH 6, 7, 9, 

10 respectively. This finding agrees with previous related study by Rajkumar et al. (2013), in 

which optimum peroxidase production by a Bacillus sp. was recorded at pH 8. However, Rao and 

Kavya (2014) reported pH 6 as the optimal for peroxidase production by Bacillus subtilis. This 
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indicates that pH plays a significant role in peroxidase production (McCarthy, 1987; Niladevi and 

Prema, 2008). 

 

 

 

Fig. 5.1. Determination of initial pH for optimum peroxidase production by Bacillus sp. FALADE-

1. Each column represent mean ± standard deviation. Error bars with the same alphabet are not 

significantly different (P> 0.05). 

 

5.3.2. Determination of incubation temperature for optimum peroxidase production 

Microorganisms can grow only within certain limits of temperatures. This environmental factor 

tends to influence the growth rate, macromolecular composition, levels of intracellular metabolites 

and enzyme production. It is therefore expedient to determine the temperature that best supports 

the growth of an organism and optimum enzyme production.  

The incubation temperature for optimum peroxidase production by the Bacillus strain is presented 

in Fig. 5.2. The results showed a significant difference (P < 0.05) in peroxidase production across 

the temperatures: 20 – 45 oC with optimum peroxidase production observed at 30 oC (3.15 U mL-

1). However, there was no significant difference (P > 0.05) in peroxidase production at 20, 35 and 
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45 oC. Nevertheless, there was a significant decrease (P < 0.05) in peroxidase production at lower 

and higher temperatures, suggesting a reduction in metabolic activities of the organism (Tandon 

and Sharma, 2014), which may subsequently inhibit its growth and enzyme biosynthesis (Ray et 

al., 2007).  

This finding is in accordance with the work of Rajkumar et al. (2013) where optimum peroxidase 

production by a Bacillus sp. was also attained at 30 oC. On the contrary, Rao and Kavya (2014) 

reported optimum peroxidase production by Bacillus subtilis at 37 oC. Moreover, optimum 

peroxidase production by other bacterial species at 37 and 40 oC have been reported (Nour El-Dein 

et al., 2014; Musengi et al., 2014), indicating that incubation temperature for optimum peroxidase 

production may be strain-dependent (Gautam et al., 2011).  

 

 

Fig. 5.2. Determination of incubation temperature for optimum peroxidase production by Bacillus 

sp. FALADE-1. Each column represent mean ± standard deviation. Error bars with the same 

alphabet are not significantly different (P> 0.05). 

 

5.3.3. Determination of agitation rate for optimum peroxidase production 

Agitation is another critical factor that affects microbial growth and secretion of extracellular 
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(Satyanarayana and Adhikari, 2006). To improve peroxidase production by the test organism, it is 

therefore important to determine the agitation rate that is most suitable for optimum peroxidase 

production by the bacteria. The agitation rate for optimum peroxidase production by Bacillus sp. 

FALADE-1 is presented in Fig. 5.3. The results revealed a significant difference (P < 0.05) in 

peroxidase production by the organism, in static condition, and across all agitation rates (50-200 

rpm), with the optimum peroxidase production observed at agitation rate of 150 rpm (3.04 U mL-

1). In other words, peroxidase production by the test strain was more favourable at a high agitation 

rate. In this case, optimum peroxidase production may be attributed to increased aeration of the 

cultivation medium which could lead to sufficient supply of dissolved oxygen in the medium 

(Kumar and Takagi, 1999; Sepahy and Jabalameli, 2011) as well as increased nutrient uptake by 

the organism (Sepahy and Jabalameli, 2011; Beg et al., 2003). The decrease observed in 

peroxidase production at agitation rate higher than 150 rpm, may probably, be due to enzyme 

denaturation (Geok et al., 2003) as high agitation may result in cell damage, consequently reducing 

the number of peroxidase producers. 

 

 

Fig. 5.3. Determination of agitation rate for optimum peroxidase production by Bacillus sp. 

FALADE-1. Each column represent mean ± standard deviation. Error bars with the same alphabet 

are not significantly different (P> 0.05). 
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This finding contradicts previous related study by Patil (2014) who reported 180 rpm as the optimal 

agitation rate for lignin peroxidase production by Bacillus megaterium. Moreover, several other 

studies have reported different optimal agitation rates for production of different lignocellulolytic 

enzymes by different Bacillus strains. Sepahy et al. (2011) reported maximum xylanase production 

by Bacillus mojavensis AG137 at 200 rpm. However, Fatokun et al. (2017) recorded 50 rpm and 

150 rpm as agitation rates for optimum production of xylanase and cellulase by Bacillus sp. 

SAMRC-UFH9, respectively.  

 

5.3.4. Effect of lignin model compounds on peroxidase production 

Some lignin model compounds including guaiacol (GA), veratryl alcohol (VALC), vanillin 

(VAN), vanillic acid (VA) and ferulic acid (FA) are known to induce production of lignin 

modifying enzymes by microorganisms. In this study, the lignin fermentation medium for 

peroxidase production was supplemented with 1 mmol L-1 of the different lignin model compounds 

and the results are presented in Fig. 5.4. The results revealed a significant difference (P < 0.05) in 

peroxidase production by the organism when grown in the fermentation medium supplemented 

with different lignin model compounds as compared with the non-supplemented fermentation 

medium (LGO), which served as the control. The addition of the different lignin model compounds 

except guaiacol, which increased peroxidase production by over 100 % in Bacillus sp. FALADE-

1 (LGO: 3.15 U mL-1, LG + GA: 6.42 U mL-1), repressed peroxidase production by the test strain.  

Our finding is comparable to a previous related study by Niladevi and Prema (2008) where 1 mmol 

L-1 pyrogallol and p-anisidine enhanced laccase production by 50 % in Streptomyces psammoticus. 

More so, Musengi et al. (2014) reported effective induction of peroxidase production by 0.1 mmol 

L-1 veratryl alcohol in Streptomyces sp. BSII#1. However, higher concentration of veratryl alcohol 

repressed peroxidase production in Streptomyces sp. BSII#1 (Musengi et al., 2014).  
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Fig. 5.4. Effect of lignin model compounds on peroxidase production by Bacillus sp. FALADE-1. 

Each column represent mean ± standard deviation. LGO: lignin only (control), LG+GA: lignin and 

guaiacol, LG+VALC: lignin and veratryl alcohol, LG+VAN: lignin and vanillin, LG+VA: lignin 

and vanillic acid, LG+FA: lignin and ferulic acid. Error bars with different alphabets are 

significantly different (P ˂ 0.05). 

 

5.3.5. Effect of nitrogen supplementations on peroxidase production 

The effects of nature as well as concentration of nitrogen sources on the production of lignin 

modifying enzymes have been extensively studied (Kachlishvili et al., 2005; Mikiashvili et al., 

2006; Stajic et al., 2006). However, the findings from these studies are not usually consistent 

(Niladevi and Prema, 2008). In some cases, cultivation medium with adequate nitrogen enhanced 

ligninolytic enzyme production (Kaal et al., 1995) while in others, production of ligninolytic 

enzymes was improved under nitrogen-limited conditions (Mester and Field, 1997; Gainfreda et 

al., 1999; Galhaup et al., 2002). Moreover, increase in nitrogen concentration may also limit the 

production of ligninolytic enzymes (Buswell, 1992). In this study, we evaluated the effect of 

supplementing the low organic nitrogen, yeast extract (0.1 g L-1) in the fermentation medium with 

different inorganic nitrogen sources (5 g L-1) including ammonium nitrate (AN), ammonium 

chloride (AC) and ammonium sulphate (AS). The results, as presented in Fig. 5.5 revealed a 

significant difference (P < 0.05) in peroxidase production by the test organism when cultivated in 
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the fermentation medium supplemented with inorganic nitrogen sources as compared with the 

control (fermentation medium without the supplements). Peroxidase production by Bacillus sp. 

FALADE-1 was enhanced by the addition of only ammonium sulphate (8.87 U mL-1) while the 

other inorganic nitrogen sources studied seemed to repress peroxidase production by the organism 

(Fig. 5.5). This finding agrees with the result obtained by Kachlishvili et al. (2005) where 

manganese peroxidase production by some white-rot basidiomycetes was repressed by additional 

nitrogen, which was also corroborated by Mikiashvili et al. (2006) who reported that 

supplementation of defined fermentation medium with inorganic nitrogen sources decreased the 

production of lignin modifying enzymes including peroxidase. 

 

 

 

 

Fig. 5.5. Effect of nitrogen supplementation on peroxidase production by Bacillus sp. FALADE-

1. Each column represent mean ± standard deviation. YEO: yeast extract only (control), YE+AN: 

yeast extract and ammonium nitrate, YE+AC: yeast extract and ammonium chloride, YE+AS: 

yeast extract and ammonium sulphate. Error bars with different alphabets are significantly 

different (P ˂ 0.05). 
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5.3.6. Kinetics of enzyme production and bacterial growth  

The kinetics of enzyme production by Bacillus sp. FALADE-1 and its cell growth pattern were 

assessed over a period of 120 h. The results, as presented in Fig. 5.6, showed that Bacillus sp. 

FALADE-1 attained its optimum peroxidase production at 48 h (late logarithmic growth phase), 

with specific peroxidase activity of 8.32 U mg-1 protein. This indicates that peroxidase production 

by the Bacillus strain was growth associated. However, the decline observed in the enzyme 

production by the organism after the optimal period of incubation, may perhaps, be as a result of 

denaturation or proteolysis (Fatokun et al., 2017). This finding contradicts a number of previous 

related studies where the optimum peroxidase production was attained at 72 h of incubation (Rob 

et al., 1997; Tuncer et al., 1999; Nour El-Dein et al., 2014). 

 

 

 

Fig. 5.6. Growth pattern and kinetics of peroxidase production by Bacillus sp. FALADE-1. 

 

5.3.7. Detection of catalase-peroxidase gene (katG) 
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the amplified gene from Bacillus sp. FALADE-1 showed 100 % similarity to a catalase-peroxidase 

gene from Sporotrichum thermophile (PeroxiBase ID: 10141) when searched in PeroxiBase 

database (peroxibase.toulouse.inra.fr). More so, the deduced protein sequence formed a distinct 

cluster with bacterial catalase-peroxidases in the PeroxiBase (Fig. 5.8) and had an estimated 

molecular weight of 11.445 kDa with isoelectric point of 7.01. The nucleotide sequence was 

accessioned MF407314 and deposited in the GenBank of the NCBI as Bacillus sp. FALADE-1 

catalase-peroxidase gene (BAFkatG). The similarity of BAFkatG to a fungal catalase-peroxidase 

gene (katG) might be as a result of horizontal gene transfer or evolution. This is corroborated by 

Passardi et al. (2007), in which the evolution of catalase-peroxidase genes in the PeroxiBase 

database was analyzed and observed that, occasionally, bacterial species that are closely related 

differ as they possess catalase-peroxidase genes of diverse origin or do not have any katG. 

Moreover, katG in eukaryotes (algae and fungi) have been suspected to originate from horizontal 

gene transfer of bacteria genome (Passardi et al., 2007; Zamocky et al., 2007).  

Catalase-peroxidase (KatG) belongs to class I peroxidases of the peroxidase-catalase superfamily 

of heme-peroxidases (Zamocky and Obinger, 2010), also known as the superfamily of plant, 

bacterial and fungal heme-peroxidases (EC 1.11.1.7). The corresponding gene (katG) encodes a 

bifunctional enzyme with predominant catalase activity and significant peroxidase activity 

(Zamocky et al., 2008) in an organism. Therefore, peroxidase activity expressed in Bacillus sp. 

FALADE-1 may be partly attributed to the presence of katG in the bacteria strain. Thus, 

overexpression of the gene could be further explored for large scale production of peroxidase as 

well as catalase through molecular optimization and genetic engineering, which has been 

problematic in fungi (Bugg et al., 2011).  
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Fig. 5.7. Gel picture of the PCR amplified peroxidase gene. Lane 1: 100bp DNA ladder, lane 2: 

Empty, lane 3: PCR amplified product from Bacillus sp. FALADE-1, lane 4: Negative control. 
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Fig. 5.8. Phylogenetic tree showing the family of Bacillus sp. FALADE-1 peroxidase in the 

bacterial heme-peroxidases from PeroxiBase. The percentage of replicate trees in which the 

associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the 

branches. The tree is drawn to scale, with branch lengths in the same units as those of the 

evolutionary distances used to infer the phylogenetic tree. Red tips indicate Catalase-peroxidase, 

black tips indicate DyP-type Peroxidase while the blue tips represent Di-heme Cytochrome C 

Peroxidase (DiHCcP). The red triangular tip indicates the studied protein sequence (BAFPrx). The 

UniProtKB reference numbers/GenBank accession number* of the proteins are indicated in 

parentheses. 
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Afla: Anoxybacillus flavithermus, Ame: Alkaliphilus metalliredigenes, BAspN: Bacillus sp. NRRL 

B-14911, Bbr: Brevibacillus brevis, Bha: Bacillus halodurans, Gsp: Geobacillus sp., Aaeo: 

Aquifex aeolicus, Ks: Kuenenia stuttgartiensis, Mmag: Magnetospirillum magneticum, Rp: 

Rhodopseudomonas palustris, Rsph: Rhodobacter sphaeroides, Sth: Symbiobacterium 

thermophilum, Eco: Escherichia  coli, Pf: Pseudomonas fluorescens, Sbo: Shigella boydii, EcoH7: 

Escherichia coli 0157:H7, BAFPrx: Bacillus sp. FALADE-1 Peroxidase, KatG: Catalase-

peroxide, DyPPrx: Dye Decolourizing Peroxidase. 

 

5.4. Conclusion  

Peroxidase production by Bacillus sp. FALADE-1, isolated from Hogsback forest reserve in the 

Eastern Cape, South Africa increased by 2.22-fold as the gene encoding a bifunctional enzyme 

activity was detected in the bacteria strain. This indicates the dexterity of the organism for large 

scale peroxidase production capable of meeting the increasing industrial demand for peroxidase. 

It also represents a potential source of catalase that can be exploited for biotechnological 

applications. Nonetheless, the identification of katG in Bacillus sp. FALADE-1 prompts the need 

for further study in molecular optimization and genetic engineering. 
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CHAPTER SIX 

 

Optimization of process parameters for exoperoxidase production by 

Ensifer adhaerens NWODO-2 and PCR detection of catalase-peroxidase 

gene (KatG)  
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Abstract  

Given the high utility of peroxidase in several industrial processes, the search for novel 

microorganisms with enhanced peroxidase production capacity is of keen interest. This study 

investigated the process conditions for optimum exoperoxidase production by Ensifer adhaerens 

NWODO-2 (KX640918), a new ligninolytic proteobacteria with peroxidase production potential. 

Also, some agricultural residues were valorized for exoperoxidase production under solid state 

fermentation. Subsequently, the gene coding for peroxidase activity was detected through 

polymerase chain reaction (PCR) and Sanger dideoxy sequencing technology. Peroxidase 

production was optimum at an initial medium pH 7 (5.83 ± 0.00 U mL-1), incubation temperature 

of 30 oC (5.83 ± 0.00 U mL-1) and agitation speed of 100 rpm (5.31 ± 1.23 U mL-1) using alkali 

lignin fermentation medium supplemented with guaiacol as the most effective inducer and 

ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer 

adhaerens NWODO-2 was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg-1. 

Interestingly, probable laccase production was observed with optimum specific productivity of 

12.76 ± 0.45 U mg-1 at 72 h. The highest exoperoxidase yield (37.50 ± 0.00 U mg-1) was observed 

with sawdust as substrate under solid state fermentation. Although, the blast search of the 

nucleotide sequence of the amplified gene in UniProtKB showed 70.5% similarity to Ensifer 

adhaerens uncharacterized protein, phylogenetic analysis suggests the gene may encode a 

catalase-peroxidase with an estimated molecular weight of 31.145 kDa and isoelectric point of 

11.47. Then, the sequence was deposited in the GenBank as Ensifer adhaerens NWODO-2 

catalase-peroxidase gene (katG) under the accession number MF374336. Our findings suggest that 

katG may be responsible for the peroxidase activity expressed in Ensifer adhaerens NWODO-2. 
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Importance 

The increased industrial application potentials of peroxidase have led to high market demand 

which could not be met by only Horseradish Peroxidase (HRP), the major commercially available 

peroxidase. Consequently, the need for alternative and efficient peroxidase producers is 

imperative. Over the years, fungi, predominantly, white rot basidiomycetes, have been the most 

efficient producers of peroxidase. However, optimization of fungal enzyme through genetic 

engineering is difficult, hence the imperativeness of peroxidase-producing bacteria with promising 

potential for molecular optimization. The significance of our research is in detecting the gene 

encoding peroxidase activity in Ensifer adhaerens NWODO-2, which could further be explored 

for enhanced peroxidase production through gene cloning and overexpression. 

  

Keywords: Bifunctional enzyme, catalase-peroxidase, enzyme production, peroxidase, 

polymerase chain reaction, proteobacteria. 
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6.1. Introduction 

Peroxidases are oxidative enzymes with the capacity to oxidize a wide range of organic and 

inorganic compounds using hydrogen peroxide as electron acceptor. They are characterized by 

several biotechnological potentials spanning through different industries including textile, paper 

and pulp, chemical, water and cosmetics (Draelos, 2015; Taboada-Puig et al., 2015).  

Specifically, the potential of peroxidases for development of biosensors and diagnostic kits has 

been reported (Jia et al., 2002; Agostini et al., 2002). Some of the recent applications of 

peroxidases include the use of lignin peroxidase as an alternative to hydroquinone in the 

development of skin-lightening agents and the application of versatile peroxidase for removal of 

endocrine disrupting chemicals (EDCs) in wastewater (Draelos, 2015; Taboada-Puig et al., 2015; 

Falade et al., 2017a). Among other peroxidase applications are biopulping and biobleaching 

(Hatakka et al., 2003), degradation of textile dyes (Kalyani et al., 2011) and synthesis of natural 

aromatic flavours (Barbosa et al., 2008). However, the industrial application of peroxidases is 

limited by high cost of production, inadequate amount of enzyme produced (Ferrer et al., 1991; 

Torres et al., 2003) and enzyme instability in the presence of high concentrations of hydrogen 

peroxide (Valderrama et al., 2002).  

Given the diverse application potentials of peroxidases, increased demand is inevitable. This has 

therefore necessitated the search for organisms with enhanced peroxidase production capacity. 

Over the years, fungi have been the most efficient producers of exoperoxidases (Ikehata et al., 

2004; Urek and Pazarlioglu, 2007; Hariharan and Nambisan, 2013). Nevertheless, bacteria, largely 

actinomycetes, have also shown potential for exoperoxidase production (Mercer et al., 1996; 

Tuncer et al., 2004; 2009; Musengi et al., 2014). Peroxidases are also found in other living 

organisms but occur intracellularly and are produced in minute quantity. Exoproduction of 

peroxidase is advantageous over the intracellular production as the purification and recovery of an 

exoenzyme is simplified while the isolation and purification of an intracellular enzyme is complex 

and time-consuming (Musengi et al., 2014).  

Ensifer adhaerens NWODO-2 (KX640918) is a new lignin-degrading bacteria (Falade et al., 

2017b) belonging to the class: alpha-proteobacteria, one of the few classes of bacteria with a record 

of lignin degradation activities (Bugg et al., 2011; Taylor et al., 2012). The whole genome 

sequencing of Rhizobium sp. strain YS-1r, a lignin degrading alpha proteobacteria revealed the 
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presence of a gene encoding the expression of DyP-type peroxidase (Prabhakaran et al., 2015), an 

extracellular lignin modifying enzyme. More so, gene prediction analysis revealed high expression 

of 6 putative genes coding for peroxidase in Klebsiella sp. strain BRL 6-2 (Woo et al., 2015), a 

ligninolytic gamma proteobacteria. Furthermore, production of peroxidase by another 

proteobacteria, Pseudomonas species, has been reported (Kalyani et al., 2011). It is clear that 

proteobacteria is an emerging ligninolytic bacteria with enormous potential for the production of 

lignin modifying enzymes including peroxidases. Our preliminary screening has revealed the 

peroxidase production potential of E. adhaerens NWODO-2 (Falade et al., 2017b). This study 

therefore seeks to optimize the exoperoxidase production by E. adhaerens NWODO-2 and detect 

the gene encoding the expressed peroxidase activity in the organism. 

 

6.2. Materials and methods 

6.2.1. Isolation, screening and molecular identification 

The organism was isolated from a water sample collected from Tyhume River in Alice, South 

Africa by enrichment technique using alkali lignin (Sigma-Aldrich, SA) as the sole carbon source 

(Sasikumar et al., 2014). Thereafter, the organism was selected based on its ligninolytic and 

peroxidase production potential (Falade et al., 2017b). The 16S rRNA gene sequence analysis 

showed that the bacteria strain had 99% similarity to E. adhaerens S4-6 (KY496256) as reported 

elsewhere (Falade et al., 2017b).  

 

6.2.2. Exoperoxidase production under submerged fermentation (SMF) 

Peroxidase was produced using submerged fermentation as described by Falade et al. (2017b). The 

culture was incubated at 30 oC and 140 rpm for 48 h. Thereafter, the crude enzyme was prepared 

as reported elsewhere (Falade et al., 2017b) and the recovered supernatant was utilized as crude 

enzyme for peroxidase activity assay. 

 

6.2.3. Peroxidase activity assay  

The peroxidase activity was evaluated by the rate of hydrogen peroxide-dependent oxidation of 

pyrogallol to purpurogallin using the modified method of Chance and Maehly (1955) as described 

by Falade et al. (2017b). 
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6.2.4. Determination of process parameters for optimum exoperoxidase production 

The process conditions for optimum exoperoxidase production were determined as described by 

Fatokun et al. (2016). Briefly, the various culture parameters were adjusted for optimum 

peroxidase production using the conventional method of one factor at a time. Then the determined 

optimized conditions were used in subsequent fermentation (Fatokun et al., 2016). The optimum 

initial medium pH for exoperoxidase production was determined by growing E. adhaerens 

NWODO-2 in an alkali lignin fermentation medium with the initial pH ranging from 3 to 11 at 30 

oC. Thereafter, the optimum incubation temperature was determined by growing the test bacteria 

at varying temperature range of 20 to 45 oC at 5 oC interval in the same fermentation medium with 

pH 7, being the optimum initial medium pH for the enzyme production. Then, the effect of 

agitation speed on exoperoxidase production was assessed by growing the test organism in the 

fermentation medium at its optimum temperature (30 oC) and initial pH (pH 7) at varying agitation 

speeds ranging from static condition to 200 rpm at 50 rpm intervals. 

 

6.2.5. Effect of nutrient compositions on exoperoxidase production 

The effect of lignin monomers on exoperoxidase production was assessed by growing E. 

adhaerens NWODO-2 in an alkali lignin fermentation medium supplemented with 1 mmol L-1 of 

different lignin monomers: guaiacol, veratryl alcohol, vanillin, vanillic acid and ferulic acid 

(Musengi et al., 2014) using the following optimum parameters for the enzyme production: 

temperature (30 oC), initial pH (pH 7) and agitation speed (100 rpm). Subsequently, the test 

organism was grown in an alkali lignin fermentation medium wherein yeast extract was 

supplemented with different inorganic nitrogen sources (ammonium nitrate, ammonium chloride 

and ammonium sulphate) at the optimum temperature (30 oC), initial pH (pH 7) and agitation speed 

(100 rpm) for exoperoxidase production, with guaiacol (1 mmol L-1) being used as an inducer. 

 

6.2.6. Time course assay 

The exoperoxidase production by E. adhaerens NWODO-2 as well as its growth kinetics were 

assessed under optimized process conditions for 144 h as described by Tuncer et al. (1999) with 

slight modifications. The culture was intermittently withdrawn at 24 h interval (Tuncer et al., 1999) 

and assayed for exoperoxidase and non-peroxide dependent exoenzyme production, as well as total 
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protein concentration. Also, the cell growth was monitored by measuring the optical density (OD) 

of the culture at 600 nm. 

 

6.2.7. Determination of protein concentration 

The total protein concentration was determined using Bradford method (Bradford, 1976). Briefly, 

250 µL of Bradford reagent was added to 10 µL of the supernatant in a 96-well microtitre plate 

while 10 µL of distilled water was used in place of the sample in the blank. The mixture was 

subsequently incubated at room temperature for 15 min. Thereafter, the absorbance was measured 

at 595 nm using SynergyMx 96-well microtitre plate reader (BioTeK Instruments, USA). The 

protein concentration was extrapolated from the standard curve constructed using bovine serum 

albumin (BSA). The specific enzyme productivity was expressed as U mg-1 protein. 

 

6.2.8. Substrate preparation for solid state fermentation (SSF) 

Some agricultural residues including sawdust, wheat straw and corn stover were valorized for 

exoperoxidase production under SSF. The sawdust was obtained from a sawmill in Alice 

metropolis, South Africa while the wheat straw and corn stover were obtained from the agricultural 

research farm of the University of Fort Hare in Alice, Eastern Cape, South Africa. Thereafter the 

residues were washed, air-dried and ground with a laboratory milling machine (Lasec, SA). The 

milled products were thereafter sieved into powder form (with size less than 500 µm). The 

processed agricultural residues were subsequently used as solid substrates for exoperoxidase 

production. 

 

6.2.9. Exoperoxidase production under SSF  

Peroxidase was produced under SSF using the modified method of Neifar et al. (2016). Briefly, 5 

g of substrate was weighed into 100 mL conical flasks and dampened with 10 - 20 mL of minimal 

salt medium (4.55 g L-1 K2HPO4, 0.53 g L-1 KH2PO4, 0.5 g L-1 MgSO4, 5 g L-1 (NH4)2 SO4, 0.1 g 

L-1 yeast extract) modified with 1 mmol L-1 of guaiacol, with an initial pH of 7, being the optimum 

initial pH for peroxidase production by the strain under investigation. Then, the preparations in the 

flasks were autoclaved at 121 oC for 15 min and thereafter inoculated with 1 mL of standard 

inoculum of the bacterial suspension in normal saline (O.D. 600 nm ≈ 1.0). After 48 h incubation 

(the time for optimum peroxidase production by E. adhaerens NWODO-2), 20 mL of 0.1 mol L-1 
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potassium phosphate buffer (pH 6) was added to the flasks and stirred for 30 min for the extraction 

of crude enzyme. Subsequently, the contents of the flasks were centrifuged at 10000 x g for 10 

min at 4 oC using benchtop centrifuge (SIGMA 1-14K, Lasec, SA), and the recovered supernatant 

was used as crude enzyme for peroxidase assay. 

 

6.2.10. PCR detection of peroxidase encoding gene  

DNA was extracted from the pure culture of E. adhaerens NWODO-2 using boiling method 

(Maugeri et al., 2006) as follows: few colonies of the organism were suspended in 200 µL of 

nuclease-free water and boiled for 10 min in a Dri-Block DB-3D (TECHNE, Lasec, SA) set at 100 

oC, followed by centrifugation at 20000 x g for 5 min (HERMLE Z 233 M-2, Lasec, SA). The 

supernatant was subsequently used as DNA template for polymerase chain reaction (PCR), which 

was performed with the following newly designed primers, synthesized by Inqaba Biotech, South 

Africa: (Forward: 5' CGACCCTGCCTACGAAAAGAT  3') and (Reverse: 5' 

ATAGTTGCGGAAGCCCTCGGA  3') in a PCR thermocycler apparatus (G-STORM, UK) using 

the optimized conditions of initial denaturation at 95 oC (5min), denaturation at 94 oC (1min), 

annealing at 58 oC (1 min), extension at 72 oC (1 min) for 35 cycles and final extension at 72 oC 

(5 min). The total reaction volume was 25 µL, which was composed of 12.5 µL of master mix 

(BioLabs, SA), 1µL each of both forward and reverse primers, 5.5 µL of nuclease-free water and 

5 µL of the DNA template. The amplified product was subjected to electrophoresis in 1.5 % 

agarose gel (Merck, SA) and visualized in ethidium bromide (Sigma-Aldrich, SA) staining using 

ultraviolet trans-illuminator (Alliance 4.7, France). Thereafter, the PCR product was analyzed 

using Sanger dideoxy sequencing method followed by a BLAST search in UniProt Knowledgebase 

and PeroxiBase database (peroxibase.toulouse.inra.fr) using Blastx program. 

  

6.2.11. Phylogenetic analysis 

Phylogenetic analysis of the deduced protein sequence from E. adhaerens NWODO-2 and selected 

bacterial peroxidases in the PeroxiBase was conducted using neighbour-joining method (Saitou 

and Nei, 1987) in MEGA 7.0 software (Kumar et al., 2016) while the physicochemical properties 

(molecular weight and isoelectric point) were determined by geneious 10.2.2. 
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6.2.12. Data analysis  

Results of replicates were expressed as mean ± standard deviation (STD) using Microsoft Excel 

Spreadsheet. Data were subsequently subjected to one-way ANOVA using GraphPad Prism 7 

followed by Tukey’s Multiple Comparison Test. Significance was accepted at P ≤ 0.05. 

 

6.2.13. Accession number  

The nucleotide sequence data reported in this study is available in the GenBank nucleotide 

sequence database under accession number MF374336 (National Center for Biotechnology 

Information, http://www.ncbi.nlm.nih.gov/nucleotide). 

 

6.3. Results 

6.3.1. Effect of initial medium pH on exoperoxidase production  

The effect of initial medium pH on exoperoxidase production is presented in Fig. 6.1. The results 

showed that E. adhaerens NWODO-2 produced peroxidase over a pH range of 5 to 9 with the 

optimum production observed at pH 7 (5.83 ± 0.00 U mL-1) while no peroxidase activity was 

detected at pH 3, 4, 10 and 11. The results revealed a significance difference (P < 0.05) in 

peroxidase production across the pH but there was no significant difference (P > 0.05) in 

peroxidase production at pH 6 (5.02 ± 0.00 U mL-1) and pH 7 (5.83 ± 0.00 U mL-1). 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide
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Fig. 6.1. Effect of initial medium pH on exoperoxidase production by E. adhaerens NWODO-2 

(Each column represent mean ± standard deviation; n=3). Error bars with the same alphabet are 

not significantly different (P> 0.05). 

 

6.3.2. Effect of incubation temperature on exoperoxidase production 

The effect of incubation temperature on exoperoxidase production by E. adhaerens NWODO-2 is 

presented in Fig. 6.2. The results revealed a significant difference (P < 0.05) in peroxidase 

production across the temperatures: 20 – 45 oC with optimum peroxidase production observed at 

30oC (5.83 ± 0.00 U mL-1). Nonetheless, post hoc comparison test revealed no significant 

difference (P > 0.05) in peroxidase production at 20 oC (1.05 ± 0.00 U mL-1), 35 oC (0.58 ± 0.00 

U mL-1), 40 oC (1.52 ± 0.59 U mL-1) and 45 oC (0.94 ± 0.12 U mL-1). 
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Fig. 6.2. Effect of incubation temperature on exoperoxidase production by E. adhaerens 

NWODO-2 (Each column represent mean ± standard deviation; n=3). Error bars with the same 

alphabet are not significantly different (P> 0.05). 

 

6.3.3. Effect of agitation speed on exoperoxidase production 

The results on effect of agitation speed on exoperoxidase production by E. adhaerens NWODO-2 

is presented in Fig. 6.3. The results showed a significant difference (P < 0.05) in peroxidase 

production under static condition, and across all agitation speeds (50-200 rpm) with optimum 

peroxidase production observed at 100 rpm (5.31 ± 1.23 U mL-1). However, post hoc comparison 

test revealed no significant difference (P > 0.05) in the peroxidase production at 150 rpm (3.50 ± 

0.12 U mL-1) and 200 rpm (2.69 ± 0.12 U mL-1). 
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Fig. 6.3. Effect of agitation rate on exoperoxidase production by E. adhaerens NWODO-2 (Each 

column represent mean ± standard deviation; n=3). Error bars with the same alphabet are not 

significantly different (P> 0.05). 

 

6.3.4. Effect of lignin monomers on exoperoxidase production 

 The effect of supplementing the fermentation medium with 1 mmol L-1 of various lignin 

monomers (Guaiacol-GA, Veratryl alcohol-VALC, vanillin-VAN, vanillic acid-VA and ferullic 

acid-FA) on exoperoxidase production is shown in Fig. 6.4. The results showed a significant 

increase (P < 0.05) in peroxidase production by E. adhaerens NWODO-2 grown in fermentation 

medium supplemented with guaiacol: KL+GA (5.25 ± 0.00 U mL-1) when compared with non-

supplemented fermentation medium (KL), which serves as the control (2.10 ± 0.00 U mL-1). 

However, there was no significant difference in peroxidase production when supplemented with 

other lignin monomers.  
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Fig. 6. 4. Effect of lignin monomers on exoperoxidase production by E. adhaerens NWODO-2 

(Each column represent mean ± standard deviation; n=3). Error bars with the same alphabet are 

not significantly different (P ˃ 0.05). KL: kraft lignin (Control), GA: guaiacol, VALC: veratryl 

alcohol, VAN: vanillin, VA: vanillic acid, FA: ferullic acid. 

 

6.3.5. Effect of nitrogen supplementations on exoperoxidase production 

The effect of supplementing yeast extract with different inorganic nitrogen sources in the 

fermentation medium is presented in Fig. 6.5. The results showed a significant increase (P < 0.05) 

in peroxidase production by E. adhaerens NWODO-2 grown in the fermentation medium 

supplemented with inorganic nitrogen sources (ammonium nitrate; ammonium chloride; and 

ammonium sulphate) with ammonium sulphate (YE + Ammonium Sulphate) giving the maximum 

peroxidase yield (11.31 ± 0.12 U mL-1) when compared with non-supplemented fermentation 

medium, YE only (4.67 ± 0.00 U mL-1). 
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Fig. 6.5. Effect of nitrogen supplementations on exoperoxidase production by E. adhaerens 

NWODO-2 (Each column represent mean ± standard deviation; n=3). Error bars with the same 

alphabet are not significantly different (P> 0.05). YE: Yeast Extract. 

 

6.3.6. Exoperoxidase production over a time course 

The Ensifer strain was evaluated for extracellular enzyme production in the presence and absence 

of hydrogen peroxide over a period of 144 h and the results are presented in Fig. 6.6. The results 

indicated that E. adhaerens NWODO-2 attained optimum peroxidase production (12.19 ± 1.05 U 

mL-1) at 48 h, corresponding to the late logarithmic growth phase with specific productivity of 

12.76 ± 1.09 U mg-1 (Fig. 6a, b). However, there was a significant decrease in exoperoxidase 

production as from 72 h, which corresponds to the early stationary growth phase. More so, 

extracellular enzyme activity (23.10 ± 0.82 U mL-1) was detected in the absence of hydrogen 

peroxide and was optimum at 72 h with specific activity of 12.76 ± 0.45 U mg-1 protein (Fig. 6a, 

b). 

  

0

2

4

6

8

10

12

14

YE YE+Ammomium

Nitrate

YE+Ammomium

Chloride

YE+Ammonium

Sulphate

P
er

o
x
id

a
se

 p
ro

d
u

ct
io

n
 (

U
 m

L
-1

)

Nitrogen supplementation

a

b

b

a 



156 
 

 

 

Fig. 6.6. Time course of extracellular enzyme production by E. adhaerens NWODO-2. 

(a). Enzyme production and protein concentration (b). Specific productivity and cell growth. 

 

 

  



157 
 

6.3.7. Valorization of agricultural residues for exoperoxidase production 

The results on valorization of agricultural residues for exoperoxidase production by E. adhaerens 

NWODO-2 under SSF is presented in Table 6.1. The results showed a significant difference (P < 

0.05) in peroxidase production by the test organism when grown on the selected substrates, with 

sawdust having the highest yield (37.50 ± 0.00 U mg-1) while the lowest yield was observed on 

corn stover (3.76 ± 0.00 U mg-1). However, enzyme activity was not detected in the absence of 

hydrogen peroxide when grown on sawdust and wheat straw but a specific extracellular enzyme 

activity of 1.23 ± 0.21 U mg-1 was detected in the absence of hydrogen peroxide when grown on 

corn stover. 

 

Table 6.1. Valorization of some agricultural residues for exoperoxidase production by E. 

adhaerens NWODO-2 under SSF. 

Agricultural 

residue 

Protein 

concentration 

(mg mL-1)                       

 

Enzyme assay (with H2O2) Enzyme assay  

(without H2O2) 

Peroxidase 

production  

(U mL-1) 

Specific 

productivity 

(U mg-1) 

Probable 

laccase 

production 

(U mL-1) 

Specific 

productivity 

(U mg-1) 

 

Sawdust 0.028 ± 0.0a 1.05 ± 0.00a 37.50 ± 0.00a NAD* NAD* 

Wheat Straw 1.023 ± 0.116b 5.37 ± 0.00b 5.25 ± 0.00b NAD* NAD* 

Corn Stover 1.366 ± 0.021b 5.13 ± 0.00b 3.76 ± 0.00c 1.93 ± 0.53 1.23 ± 0.21 

Values represent mean ± standard deviation, number of replicate, n = 3. Values with the same 

superscript letter along the same column are not significantly different (P> 0.05). SSF: solid state 

fermentation. NAD*– No Activity Detected. 

 

6.3.8. PCR detection of catalase-peroxidase gene 

Fig. 6.7 shows the gel picture of the PCR amplified product from E. adhaeren NWODO-2.  The 

results showed the band size of the amplified gene as 800 bp.  
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Fig. 6.7. Gel picture of the PCR amplified product. Lane 1: 100bp DNA ladder, lane 2: Empty, 

lane 3: PCR amplified product from E. adhaerens NWODO-2, lane 4: Negative control. 

 

The blast search of the nucleotide sequence in the UniProt Knowledgebase using blastx program 

showed 70.5% similarity to E. adhaerens uncharacterized protein (ANK75658).  

However, phylogenetic analysis of the expressed protein sequence and selected bacterial heme 

peroxidases in the PeroxiBase database (peroxibase.toulouse.inra.fr) showed that it clustered with 

catalase-peroxidases (Fig. 6.8). This finding suggests that the amplified gene from E. adhaerens 

NWODO-2 may encode a novel catalase-peroxidase with an estimated molecular weight of 31.145 

kDa and isoelectric point of 11.47. The nucleotide sequence was then deposited in the GenBank 

under the accession number MF374336.  
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Fig. 6.8. Unrooted phylogenetic tree showing the relationship of E. adhaerens NWODO-2 

peroxidase with selected bacterial heme-peroxidases in the PeroxiBase. The percentage of 

replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) 

are shown next to the branches. Red tips indicate Di-heme Cytochrome C Peroxidase (DiHCcP) 

family, black tips indicate DyP-type Peroxidase family while the blue tips represent Catalase-

peroxidases. The blue triangular tip indicates the protein sequence obtained in this study (EadPrx). 

The UniProtKB reference numbers/GenBank accession number* of the proteins are indicated in 

parentheses.  
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El: Erythrobacter litoralis, Msp: Mesorhizobium sp., Nw: Nitrobacter winogradskyi, Pde: 

Paracoccus denitrificans, Ret: Rhizobium etli, RHsp: Rhizobium sp., Mlo: Mesorhizobium loti, 

Rp: Rhodopseudomonas palustris, Rru: Rhodospirillum rubrum, Go: Gluconobacter oxydans, 

Eco: Escherichia coli, Sbo: Shigella boydii, Sso: Shigella sonnei, Sf: Shigella flexneri, Oant: 

Ochrobactrum anthropic EadPrx: Ensifer adhaerens NWODO-2 Peroxidase, DyPPrx: Dye-

decolourizing Peroxidase, KatG: Catalase-peroxidase. 

 

6.4. Discussion 

The utility of peroxidase in different industrial sectors has led to an increased demand which, 

probably cannot be met by horseradish peroxidase (HRP), the major commercially available 

peroxidase. Hence, the imperativeness of novel bacteria with improved peroxidase production 

capacity. This study improved extracellular peroxidase production by E. adhaerens NWODO-2 

by optimizing the process parameters and amending the composition of the production medium. 

Bacteria growth has been linked to the constant secretion of extracellular enzymes into the culture 

medium (McCarthy, 1987; Niladevi and Prema, 2008; Musengi et al., 2014). Therefore, factors 

capable of influencing bacteria growth such as pH, temperature and agitation as well as the 

composition of the medium will invariably play a significant role in enzyme production by the 

bacteria.  

The pH of the cultivation environment has a significant influence on the electric charge of the 

microbial cell, consequently affecting the absorption of nutrient and intracellular enzymatic 

activities (Salehizadeh and Shojaosadati, 2001; Makapela et al., 2016). The test strain, E. 

adhaerens NWODO-2 produced peroxidase within a pH range of 5.0 - 9.0 with the optimum 

production observed at an initial medium pH 7.0 (Fig. 6.1). This finding is in accordance with the 

works of Rob et al. (1997) and Nour El-Dein et al. (2014), in which optimum peroxidase 

production by Streptomyces avermitilis UAH30 and Streptomyces sp. K37 was reported at pH 7 

and 7.5, respectively. However, Musengi et al. (2014) observed optimum peroxidase production 

by Streptomyces sp. BSII#1 at pH 8. It is worthy of note that the ability of the test organism to 

produce peroxidase optimally at a neutral pH augurs well for biotechnological applications as the 

large volume of acid and base required for pH adjustment would have been saved (Xia et al., 

2008). Consequently, reducing the cost of peroxidase production.  
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The optimal peroxidase production by E. adhaerens NWODO-2 occurred at 30 oC (Fig. 6.2). 

Although, no comparative data was found on optimal temperature for peroxidase production by 

Ensifer species, our finding agrees with the result obtained by Rajkumar et al. (2013) where 

optimum peroxidase production by a Bacillus sp. was also observed at 30 oC. Nevertheless, Rao 

and Kavya (2014) and Musengi et al. (2014) reported 37 oC as the optimal temperature for 

peroxidase production by Bacillus subtilis and Streptomyces sp. BSII#1 respectively whereas Nour 

El-Dein et al. (2014) reported 40 oC as the optimal temperature for peroxidase production by 

Streptomyces sp. K37. The reason for the discrepancies in the optimal temperature for peroxidase 

production by the different bacteria species is unclear. However, all the optimal temperatures fall 

within the mesophilic range.   

The marked decrease in peroxidase production by E. adhaerens NWODO-2 at temperatures below 

and above 30 oC (Fig. 6.2) may probably, be due to reduction in metabolic activities which may 

consequently inhibit the organism growth and enzyme biosynthesis (Ray et al., 2007).  

Agitation tends to affect the level of aeration and proper mixing of nutrients in the production 

medium, thereby making nutrient more accessible to the organism (Giavasis et al., 2006). 

Peroxidase production by E. adhaerens NWODO-2 was affected by agitation as there was a slight 

increase in peroxidase production at various agitation speeds investigated (50 – 200 rpm) when 

compared with static condition (Fig. 6.3). This finding is consistent with previous studies where 

agitation affected the level of production of enzymes (Sepahy et al., 2011; Patil, 2014; Fatokun et 

al., 2016). In this study, the agitation rate of 100 rpm was most favourable for peroxidase 

production by the test organism but Patil (2014) reported 180 rpm as the optimal agitation rate for 

lignin peroxidase production by Bacillus megaterium. This therefore suggests that different 

organisms have different favourable agitation rates during fermentation. 

Although, there is dearth of information on the induction of peroxidases by lignin monomers in 

bacteria, a number of studies have reported the inductive effect of lignin monomers on peroxidase 

production by ligninolytic organisms, predominantly, fungi (Niku-Paavola et al., 1990; Mester et 

al., 1995; Couto et al., 1999).  In this study, the effects of guaiacol, veratryl alcohol, vanillin, 

vanillic acid and ferulic acid on peroxidase production were assessed. Our findings showed that 

guaiacol induced peroxidase production by E. adhaerens NWODO-2 as it increased the enzyme 

production by about 50 % (Fig.6.4). On the other hand, veratryl alcohol and ferulic acid did not 
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have an inductive effect on peroxidase production by the test organism while vanillin and vanillic 

acid seemed to promote repression of the enzyme synthesis. This finding is contrary to the result 

obtained by Musengi et al. (2014) where veratryl alcohol was the best inducer of peroxidase 

production by Streptomyces sp. strain BSII#1 but there is no comparative data on peroxidase 

production by Ensifer species. Hence, inducers may be species-specific. 

The effects of nature and concentration of nitrogen sources on ligninolytic enzyme production 

have been extensively studied, especially in fungi (Kachlishvili et al., 2005; Mikiashvili et al., 

2006; Stajic et al., 2006) but the findings are not always consistent (Niladevi and Prema, 2008). 

Fermentation media with sufficient nitrogen has enhanced ligninolytic enzyme production in some 

fungi (Kaal et al., 1995). More so, nitrogen-limited conditions have enhanced production of 

ligninolytic enzymes (Mester and Field, 1997; Gianfreda et al., 1999; Galhaup et al., 2002) while 

in some cases, production of lignin modifying enzymes has been limited by high nitrogen 

concentration (Buswell, 1992). In this study, supplementation of the fermentation medium with 

inorganic nitrogen sources enhanced peroxidase production by E. adhaerens NWODO-2, with 

ammonium sulphate [(NH4)2SO4] giving the optimum peroxidase yield (Fig. 6.5). This finding 

contradicts the result obtained by Kachlishvili et al. (2005) where manganese peroxidase 

production by some white-rot basidiomycetes was repressed by additional nitrogen. This was also 

corroborated by Mikiashvili et al. (2006) who reported that supplementation of defined 

fermentation medium with inorganic nitrogen sources decreased the production of lignin 

modifying enzymes including peroxidase by Pleurotus ostreatus. 

The production of peroxidase by E. adhaerens NWODO-2 is growth-associated as the enzyme 

increased significantly at the logarithmic growth phase with maximum productivity attained at 48 

h (Fig. 6.6). The sharp decline in peroxidase production observed at 72 h, might probably be 

attributed to nutrient depletion or proteolytic activities (Papagianni and Moo-Young, 2002; 

Fatokun et al., 2016). This finding is contradictory to previous related reports where optimum 

peroxidase production by other bacteria species was attained at 72 h of incubation (Rob et al., 

1997; Tuncer et al., 1999; Nour El-Dein et al., 2014). The detection of an extracellular enzyme 

activity in the absence of hydrogen peroxide, the typical peroxidase activator is noteworthy, as this 

may suggest probable laccase production by E. adhaerens NWODO-2. 
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High cost of production is a major challenge to the industrial application potentials of peroxidases. 

Hence, the imperativeness of cost effective means of peroxidase production. The use of cheap 

substrates as alternative carbon sources for fermentation has been suggested as an effective way 

of reducing the cost of enzyme production (Falade et al., 2017a).  The abundance, availability and 

renewable nature of lignocellulosic materials confer on them the perfect candidature of cheap 

carbon sources. Agricultural residues such as sawdust, wheat straw, corn cobs, rice straw, peapods 

etc have been valorized for production of various ligninocellulolytic enzymes (Knezevic et al., 

2013; Saratale et al., 2014; Sharma et al., 2015; Neifar et al., 2016; Olajuyigbe and Ogunyewo, 

2016) through solid state and submerged fermentation processes. 

SSF is perhaps, more promising for optimum valorization of agricultural residues for enzyme 

production as enzyme production by bacteria under solid state fermentation is reported to be 

economical (Muthukumarasamy and Murugan, 2014). SSF is also characterized by high 

production yield, low wastewater output and decrease in energy demand (Niladevi et al., 2007). 

This study valorized selected agricultural residues (sawdust, wheat straw and corn stover) for 

peroxidase production under SSF. E. adhaerens NWODO-2 gave the highest exoperoxidase yield 

when grown on sawdust as solid substrate (Table 6.1). This finding is consistent with previous 

related studies (Knezevic et al., 2013: Kamsani et al., 2016), where high yield of peroxidase was 

induced by sawdust as solid substrate under SSF. This finding could be attributed to the inductive 

effect of the phenolic and non-phenolic components of sawdust. However, there was no enzyme 

activity detected in the absence of hydrogen peroxide when grown on sawdust and wheat straw, 

suggesting that the substrates may perhaps repress laccase production by E adhaerens NWODO-

2. Nonetheless, corn stover induced extracellular enzyme activity in the absence of hydrogen 

peroxide, indicating likely laccase production. This suggests that corn stover might possess 

phenolic compounds with inductive laccase effect. 

Molecular optimization and genetic engineering seem to be the best option for increased enzyme 

production. Hence, the imperativeness of detecting the gene responsible for the expression of the 

enzyme of interest in an organism. Phylogenetic analysis of the protein expressed by the amplified 

gene (Fig. 6.8) suggests it’s a catalase-peroxidase. Bacterial catalase-peroxidases (KatG) belong 

to class I peroxidases of peroxidase-catalase superfamily of heme-peroxidases (Zamocky et al., 
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2008). Other members of class I peroxidases include yeast cytochrome c peroxidases and ascorbate 

peroxidases.  

KatG gene encodes the expression of both catalase and peroxidase activity (Zamocky and Obinger, 

2010) in an organism. This therefore suggests that peroxidase activity expressed in Ensifer 

adhaerens NWODO-2 may be attributed to the presence of KatG gene in the new bacteria strain. 

Hence, the gene could be explored for large scale production of catalase and peroxidase through 

genetic engineering, which has proven difficult in fungi (Bugg et al., 2011). Besides, the presence 

of KatG gene in Ensifer adhaerens NWODO-2 also attests to its ligninolytic potential as bacteria 

catalase-peroxidase has recently been implicated in degradation of lignocellulose (Brown et al., 

2011; de Gonzalo et al., 2016). 

 

6.5. Conclusion 

Peroxidase production by E. adhaerens NWODO-2 was optimal at a neutral pH, mesophilic 

temperature, mild agitation rate and relatively short incubation time. In this study, peroxidase 

production increased by over 100% under optimum conditions with guaiacol as an inducer and 

sawdust as the best substrate for solid state fermentation. The ability of the new strain to utilize 

agricultural residues as cheap renewable substrates for peroxidase production serve as a cost-

effective means of enzyme production which could be employed for large scale production and 

consequent biotechnological applications. Furthermore, a novel catalase-peroxidase encoding 

gene detected in E. adhaerens NWODO-2 may be responsible for the peroxidase activity 

expressed in the organism. 
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CHAPTER SEVEN 

 

Peroxidase production by a novel ligninolytic proteobacteria strain: 

Raoultella ornithinolytica OKOH-1  

(Submitted to AMB Express) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

Abstract 

Aim: To enhance peroxidase production by Raoultella ornithinolytica OKOH-1 (KX640917). 

Methods and Results: Peroxidase production by Raoultella ornithinolytica OKOH-1 was 

enhanced by determining the optimum culture conditions (initial pH, incubation temperature and 

agitation speed) using the classical process of one variable at a time. The carbon and nitrogen 

sources (kraft lignin and yeast extract) were supplemented with some lignin model compounds 

and inorganic nitrogen compounds, respectively. Subsequently, the time-course assay was carried 

out under optimized conditions. Then, some lignocellulosic wastes were valorized for peroxidase 

production under solid state fermentation. Peroxidase production was optimal at initial pH 5, 

incubation temperature of 35 oC and agitation speed of 150 rpm with guaiacol and ammonium 

chloride as the best inducer and nitrogen supplement, respectively. Peroxidase production by 

Raoultella ornithinolytica strain OKOH-1 was optimal at 72 h with 15.17 ± 0.82 U mL-1 and 

specific productivity of 16.48 ± 0.89 U mg-1. A simultaneous production of a non-peroxide 

dependent extracellular enzyme (12.54 ± 0.41 U mL-1) which suggests probable laccase production 

was observed with specific productivity of 13.63±0.45 U mg-1. Furthermore, sawdust gave the best 

peroxidase yield (15.21 ± 2.48 U mg-1). 

Conclusions: Peroxidase production by Raoultella ornithinolytica strain OKOH-1 increased by 

3.40-fold under optimum conditions with guaiacol as the most effective inducer and sawdust as 

the best solid substrate for solid state fermentation. 

Significance and Impact of the Study: Over the years, actinomycetes have been the major known 

peroxidase-producing bacteria. It is therefore imperative to explore other classes of bacteria with 

untapped peroxidase production potentials that can be exploited for various biotechnological 

applications. 

 

Keywords: Enzyme production, lignocellulosic wastes, microbial peroxidase, proteobacteria, 

valorization. 
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7.1. Introduction 

Peroxidases (EC 1.11.1) are a group of oxidoreductive enzymes that oxidize various organic and 

inorganic substrates with hydrogen peroxide as an electron acceptor (Falade et al., 2017a). The 

large presence of peroxidases in plants, animals and microbes where they perform different 

physiological functions has been reported (Battistuzzi et al., 2010). Some of the physiological 

functions of peroxidases include involvement in innate immune system (Söderhall, 1999), 

protection against toxic peroxide (Dunford, 1999), peroxide sensing, protection against oxidative 

stress, cell wall biosynthesis and oxidation of poisonous compounds (Smulevich et al., 2006; 

Battistuzzi et al., 2010; Martins et al., 2013).  

Besides the physiological functions of peroxidases, their potential for biotechnological 

applications span through various industrial sectors including energy, textile, bioremediation, 

cosmeceutical and dermatological industries (Falade et al., 2017a). Peroxidases have been applied 

in the development of biosensors (Jia et al., 2002) and analysis/diagnostic kits (Agostini et al., 

2002). They have also been implicated in lignin degradation (Hatakka et al., 2003); a function 

specific to class II peroxidase-catalase superfamily of heme-peroxidases including lignin 

peroxidase, manganese peroxidase and versatile peroxidase. Their potentials for development of 

skin-lightening agents and removal of endocrine distrupting chemicals (EDCs) in wastewater have 

recently been reported (Taboada-Puig et al., 2015; Draelos, 2015). Other biotechnological 

applications of peroxidases include but not limited to biopulping and biobleaching (Hatakka et al., 

2003), oxidation of several organic substrates including phenolic and non-phenolic compounds 

(Cheng et al., 2006) and degradation of xenobiotics such as synthetic dyes (Kalyani et al., 2011). 

Given the high-utility potential of peroxidases, their production in large amount is of utmost 

importance as enhanced enzyme production is one of the significant requirements for an effective 

bio-catalytic process. White rot fungi have been identified as the best producers of oxidative 

enzymes including peroxidases. More so, several efforts have been made to optimize the 

production of peroxidases by fungi (Ikehata et al., 2004; Urek and Pazarlioglu, 2007; Irshad and 

Asgher, 2011; Hariharan and Nambisan, 2013). Nonetheless, bacteria seem to present a striking 

advantage over fungi as peroxidase producer as they can easily be cultured in defined media and 

peroxidase production optimized accordingly.  Moreover, production of extracellular peroxidases 

by bacteria has been reported (Mercer et al., 1996; Tuncer et al., 1999, 2004, 2009; Dawkar et al., 



175 
 

2009; Kalyani et al., 2011; Musengi et al., 2014). However, most of the reported peroxidase-

secreting bacteria are actinomycetes, predominantly Streptomyces species. It is worthy of note that 

over-dependent on actinomycetes for enzyme production has led to a neglect of other classes of 

bacteria with perhaps, better potential for enzyme production.  Hence, the exploration of other 

classes of bacteria for enhanced extracellular peroxidase production is imperative. 

The emerging ligninolytic activity of proteobacteria (Bugg et al., 2011; Taylor et al., 2012) confers 

on them the perfect candidature for production of ligninolytic enzymes including peroxidases and 

laccase. Production of peroxidase and laccase by Pseudomonas species, a gamma proteobacteria 

has been reported (Kalyani et al., 2011; Neifar et al., 2016). It is therefore evident that 

proteobacteria is a reservoir of unexploited peroxidase production potential that can be explored 

for various industrial applications. Our preliminary study identified Raoultella ornithinolytica 

OKOH-1 as a ligninolytic bacteria with a good potential for peroxidase production (Falade et al., 

2017b). This study therefore aims at enhancing peroxidase production by R. ornithinolytica 

OKOH-1 using optimized culture conditions. 

 

 7.2. Materials and methods 

7.2.1. Isolation, screening and molecular identification  

The organism was isolated from sediments of Tyhume River in Alice, South Africa by enrichment 

technique using kraft lignin (Sigma-Aldrich, South Africa) as the sole carbon source (Sasikumar 

et al., 2014). Subsequently, the isolate was carefully chosen on the basis of its ligninolytic and 

peroxidase production potential (Falade et al., 2017b). The 16S rDNA partial sequence analysis 

showed that the bacterial strain had 99% similarity to R. ornithinolytica strain G.W-CD.10 (Falade 

et al., 2017b). Its nucleotide sequence is available in the GenBank of the National Centre for 

Biotechnology Information (NCBI) as Raoultella ornithinolytica strain OKOH-1 under the 

accession number, KX640917.  

 

7.2.2. Peroxidase production and extraction of crude enzyme 

Peroxidase was produced using the method of Falade et al. (2017b). The culture was subsequently 

incubated at 30 oC and 140 rpm for 48 h, a period over which the organism showed peroxidase 

activity during the initial screening. Thereafter, cultures were aseptically withdrawn and the crude 
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enzyme extracted as described by Falade et al. (2017b). The recovered supernatant was then 

utilized as crude enzyme for peroxidase assay. 

 

7.2.3. Peroxidase assay 

The peroxidase activity was evaluated by the rate of hydrogen peroxide-dependent oxidation of 

pyrogallol to purpurogallin using the modified method of Chance and Maehly (1955) described by 

Falade et al. (2017b).  

 

7.2.4. Determination of optimal parameters for peroxidase production 

The optimal parameters for peroxidase production were determined as described by Fatokun et al. 

(2016). Briefly, the various culture parameters were adjusted for optimum peroxidase production 

using the conventional method of one factor at a time. Then the determined optimized conditions 

were used in subsequent fermentation (Fatokun et al., 2016). 

 

7.2.4.1. Determination of optimal initial pH 

The optimal initial pH for peroxidase production was determined by growing R. ornithinolytica 

OKOH-1 in a kraft lignin modified fermentation medium with pH ranging from 3 to 11 at 30 oC. 

 

7.2.4.2. Determination of optimal incubation temperature 

The optimal incubation temperature for peroxidase production was determined by growing R. 

ornithinolytica OKOH-1 for 48 h at a varying temperature range of 20 to 45 oC at 5 oC intervals in 

a kraft lignin modified fermentation medium of pH 5, being the optimal initial pH for peroxidase 

production. 

 

7.2.4.3. Determination of optimal agitation speed 

To determine the optimal agitation speed for peroxidase production by R. ornithinolytica OKOH-

1, the strain was grown for 48 h in a kraft lignin modified fermentation medium at the optimal 

temperature (35 oC) and initial pH (pH 5) for peroxidase production at varying agitation speeds 

ranging from static condition to 200 rpm at 50 rpm intervals. 
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7.2.4.4. Effect of carbon supplementations on peroxidase production 

The effect of carbon supplementations on peroxidase production was assessed by growing R. 

ornithinolytica OKOH-1 in a kraft lignin modified fermentation medium supplemented with 1 

mmol L-1 of different lignin model compounds: guaiacol, veratryl alcohol, vanillin, vanillic acid 

and ferulic acid (Musengi et al., 2014) at the optimal temperature (35 oC), initial pH (pH 5) and 

agitation speed (150 rpm) for peroxidase production. 

 

7.2.4.5. Effect of nitrogen supplementations on peroxidase production 

The effect of nitrogen supplementations on peroxidase production was assessed by growing R. 

ornithinolytica OKOH-1 in a kraft lignin modified fermentation medium where yeast extract was 

supplemented with different inorganic nitrogen sources (ammonium nitrate, ammonium chloride 

and ammonium sulphate) at the optimal temperature (35 oC), initial pH (pH 5) and agitation speed 

(150 rpm) for peroxidase production, with guaiacol (1 mmol L-1) being used as an inducer. 

 

7.2.5. Kinetics of peroxidase production and bacterial growth  

The peroxidase production by R. ornithinolytica OKOH-1 as well as its growth kinetics were 

assessed as described by Tuncer et al. (1999) with slight modifications. In brief, the proteobacteria 

strain was grown in kraft lignin modified fermentation medium under optimized conditions for 

144 h. Subsequently, the culture was intermittently withdrawn at 24 h interval (Tuncer et al., 1999) 

and assayed for peroxidase and non-peroxide dependent enzyme production, as well as total 

protein concentration. Also, the cell growth was monitored by measuring the optical density (OD) 

of the culture at 600 nm. 

 

7.2.6. Protein estimation 

The total protein was estimated by using the Bradford method (Bradford, 1976). Briefly, 250 µL 

of Bradford reagent was added to 10 µL of the supernatant in a 96-well microtitre plate while 10 

µL of distilled water was used in place of the sample in the blank. The mixture was subsequently 

incubated at room temperature for 15 min. Thereafter the absorbance was measured at 595 nm 

using SynergyMx 96-well microtitre plate reader (BioTeK Instruments). The protein concentration 

was extrapolated from the standard curve constructed using bovine serum albumin (BSA). The 

specific enzyme productivity was expressed as U/mg protein. 
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7.2.7. Valorization of lignocellulosic wastes for peroxidase production under solid state 

fermentation (SSF) 

Selected lignocellulosic wastes including sawdust, wheat straw and corn stover were valorized for 

peroxidase production under SSF. The sawdust was obtained from a sawmill in Alice metropolis, 

South Africa while the wheat straw and corn stover were obtained from the agricultural research 

farm of the University of Fort Hare in Alice, Eastern Cape, South Africa. Thereafter, the 

lignocellulosic materials were washed, air-dried and ground with a laboratory milling machine 

(Lasec, South Africa). The milled products were thereafter sieved into powder form (with size less 

than 500 µm). The processed lignocellulosic materials were subsequently used as solid substrate 

for peroxidase production by R. ornithinolytica OKOH-1 using the modified method of Neifar et 

al. (2016). Briefly, 5g of substrate was weighed into 100 mL conical flasks and dampened with 10 

- 20 mL of minimal salt medium (4.55 g L-1 K2HPO4, 0.53 g L-1 KH2PO4, 0.5 g L-1 MgSO4, 5 g L-

1 NH4Cl, 0.1 g L-1 yeast extract) supplemented with 1 mmol L-1 of guaiacol, with an initial pH of 

5, being the optimal initial pH for peroxidase production by the strain under investigation. Then 

the preparations in the flasks were autoclaved at 121 oC for 15 min and thereafter inoculated with 

1 mL of the bacterial suspension in normal saline (O.D. 600 nm ≈ 1.0). After 72 h incubation (the 

time for optimal peroxidase production by R. ornithinolytica OKOH-1), 20 mL of 100 mmol L-1 

potassium phosphate buffer (pH 6) was added to the flasks and stirred for 30 min for the extraction 

of crude enzyme. Subsequently, the contents of the flasks were centrifuged at 15000 rpm for 10 

min at 4 oC using benchtop cold centrifuge (SIGMA 1-14K), and the recovered supernatant was 

used as crude enzyme for peroxidase assay. 

 

7.2.8. Data analysis 

Results of replicates were expressed as mean ± standard deviation (STD) using Microsoft Excel 

Spreadsheet. Data were subsequently subjected to one-way ANOVA using GraphPad Prism 7 

followed by Tukey’s Multiple Comparison Test. Significance was accepted at P ≤ 0.05. 
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7.3. Results 

7.3.1. Optimal parameters 

7.3.1.1. Optimal initial pH for peroxidase production 

The optimal initial medium pH was determined and the results are presented in Fig. 7.1. The results 

showed that R. ornithinolytica OKOH-1 produced peroxidase over a wide pH range of 5 to 11 with 

the optimum production observed at pH 5 (3.44 ± 0.64 U mL-1). However, no peroxidase activity 

was detected at pH 3 and 4. Although there exists a significant difference (P < 0.05) in peroxidase 

production at pH 5 compared to other pH values, there was no significant difference (P > 0.05) in 

peroxidase production at pH 6 (1.52 ± 0.00 U mL-1), pH 7 (1.93 ± 0.41 U mL-1), pH 8 (1.63 ± 0.00 

U mL-1) and pH 9 (1.23 ± 0.06 U mL-1). 

 

 

 

Fig. 7.1. Determination of optimal initial pH for peroxidase production by R. ornithinolytica 

OKOH-1 (Each column represent mean ± standard deviation; n=3). Error bars with the same 

alphabet are not significantly different (P> 0.05). 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 4 5 6 7 8 9 10 11

P
er

o
x
id

a
se

 p
ro

d
u

ct
io

n
 (

U
 m

L
-1

)

Initial pH

a

b

b

b

b

c

c



180 
 

7.3.1.2. Optimal incubation temperature for peroxidase production 

The result on the determination of optimal incubation temperature for peroxidase production by R. 

ornithinolytica OKOH-1 is presented in Fig. 7.2. The results showed a significant difference (P < 

0.05) in peroxidase production across the temperatures: 20 – 45 oC with optimal peroxidase 

production observed at an incubation temperature of 35 oC (5.25 ± 0.00 U mL-1). Nevertheless, 

Tukey’s multiple comparison test revealed no significant difference (P > 0.05) in the peroxidase 

production at 20 oC (1.70 ± 0.87 U mL-1), 25 oC (1.87 ± 0.70 U mL-1), 40 oC (1.11 ± 0.17 U mL-1) 

and 45 oC (1.81 ± 0.29 U mL-1). 

 

 

 

Fig. 7.2. Determination of optimal incubation temperature for peroxidase production by R. 

ornithinolytica OKOH-1 (Each column represent mean ± standard deviation; n=3). Error bars with 

the same alphabet are not significantly different (P> 0.05). 

 

 

0

1

2

3

4

5

6

20 25 30 35 40 45

P
er

o
x
id

a
se

 p
ro

d
u

ct
io

n
  

(U
 m

L
-1

)

Temperature (oC)

b

c

a 

c 

c 

c 
c 



181 
 

7.3.1.3. Optimal agitation speed for peroxidase production 

Fig. 7.3 shows the results on the determination of optimal agitation speed for peroxidase 

production by R. ornithinolytica strain OKOH-1. The results revealed that there was a significant 

difference (P < 0.05) in peroxidase production by R. ornithinolytica strain OKOH-1 in static 

condition, and across all agitation speeds (50-200 rpm) with the optimal peroxidase production 

observed at agitation speed of 150 rpm (9.45 ± 2.57 U mL-1). However, Tukey’s multiple 

comparison test revealed no significant difference (P > 0.05) in the peroxidase production at 50 

rpm (2.33 ± 0.00 U mL-1), 100 rpm (2.33 ± 0.35 U mL-1) and 200 rpm (2.10 ± 0.00 U mL-1). 

 

 

 

Fig. 7.3. Determination of optimal agitation speed for peroxidase production by R. ornithinolytica 

OKOH-1 (Each column represent mean ± standard deviation; n=3). Error bars with the same 

alphabet are not significantly different (P> 0.05). 
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difference (P < 0.05) in peroxidase production by R. ornithinolytica strain OKOH-1 grown in kraft 

lignin modified production medium supplemented with lignin model compounds (KL+GA; 

KL+VALC; KL+VAN; KL+VA; and KL+FA) when compared with non-supplemented 

production medium (KL), which served as the control. All the lignin model compounds induced 

peroxidase production by R. ornithinolytica strain OKOH-1 with the highest inducing effect 

produced by guaiacol (7.82 ± 0.00 U mL-1).  

 

 

Fig. 7.4. Effect of carbon supplementations on peroxidase production by R. ornithinolytica 

OKOH-1 (Each column represent mean ± standard deviation; n=3). Error bars with different 

alphabet are significantly different (P< 0.05). KL: kraft lignin (control), GA: guaiacol, VALC: 

veratryl alcohol, VAN: vanillin, VA: vanillic acid, FA: ferullic acid. 
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extract, with ammonium chloride (YE + Ammonium Chloride) yielded the maximum peroxidase 

production (10.09 ± 1.34 U mL-1).   

 

 

 

Fig. 7.5. Effect of nitrogen supplementations on peroxidase production by R. ornithinolytica 

OKOH-1 (Each column represent mean ± standard deviation; n=3). Error bars with the same 

alphabet are not significantly different (P> 0.05). YE: Yeast Extract. 
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specific productivity of 0.52 ± 0.00 U mg-1 protein and 2.95 ± 0.00 U mg-1 protein, respectively 

(Fig. 7.6).  

 

 

Fig. 7. 6. Kinetics of extracellular enzyme production by R. ornithinolytica OKOH-1. (a). Enzyme 

production: peroxidase ( ) and non-peroxide dependent enzyme ( ); and protein 

concentration ( ). (b). Specific productivity: peroxidase ( ) and non-peroxide 

dependent enzyme ( ); and cell growth ( ). Each column represent mean ± standard 

deviation (n=3). 
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7.3.3. Valorization of lignocellulosic wastes for peroxidase production 

The results of valorization of lignocellulosic wastes for peroxidase production by R. 

ornithinolytica strain OKOH-1 under SSF are presented in Table 7.1. The results showed that there 

was a significant difference (P < 0.05) in peroxidase production by the test bacteria when grown 

on all the selected substrates with sawdust having the best yield (15.21 ± 2.48 U mg-1) while the 

lowest yield was observed on corn stover (1.30 ± 0.00 U mg-1). However, there was no significant 

difference (P > 0.05) in non-peroxide dependent enzyme produced by R. ornithinolytica strain 

OKOH-1 grown on all the substrates. Nevertheless, sawdust also gave the highest yield (6.73 ± 

1.76 U mg-1) while corn stover had the lowest yield (3.78 ± 0.14 U mg-1). 

 

Table 7.1. Valorization of lignocellulosic wastes for peroxidase production under SSF 

Lignocellulosic 

wastes 

 

 

 

 

Protein 

concentration 

(mg mL-1)                       

          Peroxidase Non-peroxide dependent 

enzyme 

Enzyme 

production 

(U mL-1) 

Specific 

productivity 

(U mg-1) 

Enzyme 

production  

(U mL-1) 

Specific 

productivity  

(U mg-1) 

Sawdust 0.165 ± 0.00a 2.51 ± 0.41a 15.21 ± 2.48a 1.11 ± 0.29a 6.73 ± 1.76a 

Wheat straw 0.927 ± 0.048b 6.65 ± 0.47b 7.18 ± 0.51b 4.73 ± 0.65b 5.09 ± 0.69a 

Corn stover 1.250 ± 0.00b 1.63 ± 0.00a 1.30 ± 0.00c 4.73 ± 0.18b 3.78 ± 0.14a 

Values represent mean ± standard deviation, number of replicate, n = 3. Values with the same 

superscript letter along the same column are not significantly different (P> 0.05). SSF: solid 

state fermentation. 

 

7.4. Discussion 

Given the high-utility potential of peroxidases, the search for novel bacteria with enhanced 

peroxidase production is imperative. In this study, we enhanced peroxidase production by R. 

ornithinolytica OKOH-1, a novel ligninolytic proteobacterial strain by optimizing the different 

culture conditions and manipulating the fermentation medium compositions. 

The continuous secretion of ligninolytic enzymes including peroxidase into the fermentation 

medium has been associated with bacterial growth (McCarthy, 1987; Niladevi and Prema, 2008; 

Musengi et al., 2014). Consequently, factors affecting the growth of bacteria including initial pH 
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of the medium, incubation temperature and agitation speed as well as the medium compositions 

will have influence on peroxidase production by R. ornithinolytica OKOH-1. 

R. ornithinolytica OKOH-1 was able to grow within a wide pH range (5.0 - 11.0) with maximum 

peroxidase production at slightly acidic initial medium pH of 5.0 (Fig. 7.1), a characteristic that 

indicates the ability of the bacteria to tolerate an acidic environment which also augurs well for its 

industrial relevance. This finding agrees with the previous study by Mmango-Kaseke et al. (2016) 

who reported optimal cellulase production by Micrococcus luteus strain SAMRC-UFH3 at pH 5. 

The bacterial strain under investigation grew within the mesophilic temperature range (20 – 45 oC) 

with maximum peroxidase production at 35 oC (Fig. 7.2), which is in accordance with the findings 

of the previous study by Tuncer et al. (2004) who reported optimal production of endoxylanase, 

endoglucanase and peroxidase by Streptomyces sp. F2621 at 35 oC. This is also corroborated by 

Fatokun et al. (2016) who reported optimal xylanase production by Streptomyces albidoflavus 

strain SAMRC-UFH 5 at 35 oC. However, Nour El-Dein et al. (2014) reported 40 oC as the optimal 

temperature for peroxidase production by Streptomyces sp. K37 while Rao and Kavya (2014) 

reported 37 oC as optimal temperature for peroxidase production by Bacillus subtilis. Although 

there were discrepancies in the reported optimal temperatures for the production of 

lignocellulolytic enzymes which might perhaps be due to the environment from which the 

organisms were isolated, all the temperatures reported fall within the mesophilic range. The 

significant decrease in peroxidase production by R. ornithinolytica OKOH-1 observed at 

temperatures below and above 35 oC (Fig. 7.2) might be attributed to the reduction in metabolic 

activities which may lead to inhibition of the bacterial growth and enzyme synthesis (Ray et al. 

2007). 

Moreover, peroxidase production by R. ornithinolytica OKOH-1 was affected by agitation with 

maximum peroxidase production observed at 150 rpm (Fig. 7.3), which is consistent with the 

findings of Fatokun et al. (2016) on xylanase production by Streptomyces albidoflavus strain 

SAMRC-UFH 5 but contrary to that of Sepahy et al. (2011) who reported maximum xylanase 

production by Bacillus mojavensis AG137 at 200 rpm. Also, Patil (2014) reported optimal lignin 

peroxidase production by Bacillus megaterium at 180 rpm.  

In this study, the agitation rate of 150 rpm was more favourable for peroxidase production, a 

finding which is in agreement with the observation by Giavasis et al. (2006) that agitation tends to 
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affect the level of aeration and proper mixing of nutrients in the production medium, thereby 

making nutrient more accessible to the organism.  

The induction of peroxidases in ligninolytic organisms by lignin model compounds has been 

reported from a number of studies (Niku-Paavola et al., 1990; Mester et al., 1995; Couto et al., 

1999). Although, there is dearth of information on the inductive effect of lignin model compounds 

on peroxidase production by bacteria, there is quite a number of reports on the influence of lignin 

model compounds on laccase production (Dekker et al., 2001; Niladevi and Prema, 2008). 

In our findings, all the lignin model compounds studied (guaiacol, veratryl alcohol, vanillin, 

vanillic acid and ferulic acid) were capable of inducing peroxidase production by R. ornithinolytica 

OKOH-1. Nevertheless, guaiacol enhanced peroxidase production by approximately 74 % (Fig. 

7.4), making it the best inducer of peroxidase production by the test bacteria, which is contrary to 

the previous study by Musengi et al. (2014) where veratryl alcohol was the best inducer of 

peroxidase production by Streptomyces sp. strain BSII#1. However, no comparative data was 

found on peroxidase production by Raoultella species.  

The effect of nitrogen sources on ligninolytic enzyme production by various organisms seems to 

lack consistency (Niladevi and Prema, 2008). Although fermentation media with sufficient 

nitrogen has enhanced production of ligninolytic enzymes in some fungi (Kaal et al., 1995), 

production of lignin modifying enzymes by Phanerochaete chrysosporium, one of the most studied 

fungi, has been limited by high nitrogen concentration (Buswell, 1992). The supplementation of 

yeast extract in the kraft lignin modified fermentation medium with ammonium chloride gave the 

best peroxidase production yield (Fig. 7.5). 

The production of peroxidase and non-peroxide dependent extracellular enzyme by R. 

ornithinolytica OKOH-1 increased significantly at the logarithmic growth phase reaching 

maximum productivity at 72 h (Fig. 7.6), corresponding to early stationary growth phase. 

Thereafter, there was a sharp decrease in the enzyme production at 96 h, which perhaps, can be 

ascribed to depletion of nutrients or proteolytic activities (Papagianni and Moo-Young, 2002; 

Fatokun et al., 2016). This finding suggests that the production of peroxidase and non-peroxide 

dependent extracellular enzyme by R. ornithinolytica strain OKOH-1 was growth-associated 

(McCarthy, 1987; Niladevi and Prema, 2008). This finding is in agreement with previous studies 

where optimum peroxidase production occurred during the early stationary growth phase. Rob et 
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al. (1997) reported maximum peroxidase production by Streptomyces avermitilis UAH 30 at 72 h. 

Also, Tuncer et al. (1999) reported 72 h as the maximum incubation time for peroxidase production 

by Thermomonospora fusca BD25. This is further corroborated by Nour El-Dein et al. (2014) who 

recorded maximum peroxidase production by Streptomyces sp. K37 at 72 h of incubation.  

Recently, we have suggested the exploration of alternative cheap sources of carbon for 

fermentation as an important strategy to reduce the cost of enzyme production (Falade et al., 

2017a). The use of lignocellulosic biomass as cheap sources of carbon has been advocated due to 

its abundance, availability and renewable nature (Falade et al. 2017a). Valorization of various 

lignocellulosic wastes including rice straw, wheat straw, sawdust, pea pods etc. for the production 

of different lignocellulolytic enzymes has been reported (Knezevic et al., 2013; Saratale et al., 

2014; Sharma et al., 2015; Neifar et al., 2016).  

SSF seems to be the most appropriate fermentation technique for optimum valorization of 

lignocellulosic wastes for enzyme production. Moreover, enzyme production by bacteria under 

SSF is said to be economical (Muthukumarasamy and Murugan, 2014). SSF also presents some 

advantages such as higher production yield, lower wastewater output and reduced energy demand 

over submerged fermentation (Pandey et al., 2001; Niladevi et al., 2007). In this study, we 

valorized sawdust, wheat straw and corn stover as solid substrates for peroxidase production under 

SSF. Of all the lignocellulosic wastes tested, sawdust seemed to be the most promising substrate 

for peroxidase production by R. ornithinolytica OKOH-1, with specific productivity of 15.21 ± 

2.48 U mg-1 protein (Table 7.1). The high peroxidase production observed on sawdust could be 

attributed to the inductive effect of its phenolic and non-phenolic components while the production 

of non-peroxide dependent extracellular enzyme which suggests probable laccase production on 

sawdust might be related to its phenolic compounds. This finding agrees with that of Knezevic et 

al. (2013) who reported the production of manganese peroxidase and laccase on sawdust. This is 

further corroborated by Kamsani et al. (2016) who also reported high yields of manganese 

peroxidase and laccase by Bacillus species grown on sawdust under SSF. These findings indicate 

that sawdust could be used as a cheap renewable substrate for peroxidase production by R. 

ornithinolytica OKOH-1, thus consequently reducing the high cost of enzyme production as well 

as serving as a waste management strategy. 
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Abstract 

The increase in industrial demand for peroxidases has necessitated the search for novel peroxidase 

with versatility and catalytic efficiency. Crude peroxidase produced by Raoultella ornithinolytica 

OKOH- 1 (KX640917) was therefore characterized using biochemical and molecular approaches. 

Subsequently, the enzyme was evaluated for its dye decolourization potential. R. ornithinolytica 

OKOH- 1 peroxidase (RaoPrx) was capable of oxidizing various substrates with pyrogallol giving 

the optimum activity (Km: 3.80 mmol L-1, Vmax: 4.65 µmol mL-1 min-1). RaoPrx had an optimum 

activity at pH 6 and was stable over a pH range of 5.0-7.0 with residual activity of above 40 % 

after 120 min of incubation. The enzyme showed an optimum activity at 50 oC and was very stable 

at higher temperatures (50 – 70 oC) with residual activity of above 70 % after 120 min. The activity 

of the enzyme was remarkably stable at 50 oC as it retained over 90 % of its original activity after 

120 min. Moreover, the peroxidase activity was significantly enhanced by Ag+, Cu2+, Zn2+and Fe2+ 

while it was inhibited by Ca2+, Mg2+, Ba2+, Al3+, Co2+, NaN3 and EDTA with a dissociation constant 

(Ki) of 0.83 mmol L-1 for CaCl2 (10 mmol L-1). Furthermore, characterization of the peroxidase 

gene suggests it encodes a novel DyP-type peroxidase with mo1ecular weight of 17.587 kDa and 

isoelectric point of 4.51. RaoPrx exhibited a remarkable dye-decolourizing activity on congo red 

(65.03%) and melanin (47.96 %) within 30 min. This indicates the potentiality of RaoPrx for 

applications in dye decolourization and development of cosmetic agent. 

 

Keywords: DyP-type peroxidase, enzyme characterization, enzyme kinetics, thermostability, 

polymerase chain reaction, peroxidase gene. 
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8.1. Introduction 

R. ornithinolytica OKOH-1 is a new gamma-proteobacteria strain with enormous biotechnological 

potentials as some microbes belonging to Raoultella species have been implicated in the 

production of biomolecules of industrial significance such as pullulanase, a debranching enzyme 

hydrolyzing pullulan and branched polysaccharides (Hii et al., 2012), polysaccharide-protein 

complex and tri-peptide complex (Fiolka et al., 2013; 2015). Worthy of note, is the production of 

2,3-Butanediol (2,3 BD) by R. ornithinolytica S12, as an alternative to the petroleum-based 2,3 

BD production (Kim et al., 2016, 2017). More so, Raoultella species have recently been implicated 

in lignin-degradation activities (Bao et al., 2015; Kameshwar and Qin, 2016). Besides, our 

preliminary study has identified R. ornithinolytica OKOH-1 as a ligninolytic bacteria with an 

excellent peroxidase production potential (Falade et al., 2017b). However, there is dearth of 

information on characterization of peroxidase from R. ornithinolytica in the literature. 

Peroxidases (EC. 1.11.1) are ubiquitous as they are widely distributed in eukaryotes and 

prokaryotes (Battistuzzi et al., 2010). They are broadly divided into heme and non-heme 

peroxidases, with the heme-containing peroxidases as the most abundant in nature (Zamocky and 

Obinger, 2010). Various biotechnological potentials of peroxidases have been reported (Falade et 

al., 2017a). The industrial application potentials of peroxidases have been attributed to their high 

redox potential for oxidation of recalcitrant compounds (Falade et al., 2017a) including synthetic 

dyes, whose discharge as industrial effluent can lead to serious environmental pollution problems 

(Yanto et al., 2014). Considering the danger posed by textile dyes in the environment; and their 

toxicity, their removal from the environment is of utmost priority.  

The involvement of microbial enzymes (peroxidases, laccases and azo reductase) in 

biodegradation of dyes has been advocated (Kalyani et al., 2011). The application of peroxidases 

for decolourization of a range of structurally different dyes has been reported (Ollikka et al., 1993; 

Ferreira-Leitao et al., 2007; Parshetti et al., 2012). Moreover, crude and purified forms of 

peroxidases have both been used in dye decolourization (Dawkar et al., 2009; Ghodake et al., 

2009). It is therefore clear that peroxidases hold a great potential for effective dye removal from 

the environment. 

Besides the potential of peroxidases in bioremediation of textile dyes, decolourization of melanin, 

the dark pigment responsible for human skin and hair colouration, is desirable as it holds a great 



197 
 

potential in the development of skin-lightening agents. The ability of peroxidases, to oxidize a 

wide range of structurally different substrates makes them suitable candidates for the oxidation of 

melanin, which is structurally similar to lignin. Furthermore, the potential of peroxidases for 

melanin decolourization as well as their prospects in the development of skin lightening agents 

have been reported (Woo et al., 2004; Nagasaki et al., 2008; Falade et al., 2017a).  

The increased utility of peroxidases in various industrial sectors and consequent increase in 

demand have necessitated the search for novel peroxidase with excellent industrial versatility and 

catalytic efficiency. Therefore, this study aimed at characterizing peroxidase from R. 

ornithinolytica OKOH-1 using biochemical and molecular approaches. 

 

8.2. Materials and methods 

8.2.1. Materials 

Hydrogen peroxide, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, yeast 

extract, remazol brilliant blue R, congo red, ethylenediaminetetraacetic acid (EDTA), sodium 

azide (NaN3), magnesium sulphate, ammonium chloride and all other metallic salts used in this 

study were sourced from Merck KGaA, Darmstadt, Germany while  2,2´-azino-bis (3-

ethylbenzthiazoline-6-sulfonic acid), guaiacol, veratryl alcohol, pyrogallol, reactive blue 4 , 

melanin and kraft lignin were products of Sigma-Aldrich, South Africa. All other chemicals are of 

analytical grade. 

 

8.2.2. Microorganism 

The microorganism used is a new lignin-degrading gamma-proteobacteria, R. ornithinolytic 

OKOH-1 (KX640917) isolated from the sediment of Tyhume River in Alice, Eastern Cape 

Province, South Africa. The organism was maintained at 4 oC on MM-L (minimal salt medium 

supplemented with 1 g L-1 of kraft lignin) agar slant. 

 

8.2.3. Enzyme production and preparation  

Crude peroxidase was produced and prepared as earlier described by Falade et al. (2017b) using 

submerged fermentation, but with slight modifications. Briefly, the bacterial culture was incubated 

at 35 oC and 150 rpm for 72 h. Thereafter, the culture was harvested by centrifugation at 15000 
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rpm for 10 min at 4 oC. The recovered supernatant was then utilized as crude enzyme for 

subsequent analysis. 

 

8.2.4. Determination of peroxidase activity 

The peroxidase activity of the recovered supernatant was determined using the method of Chance 

and Maehly (1955) with minor modifications as previously described by Falade et al. (2017b). 

 

8.2.5. Substrate specificity and kinetic properties of peroxidase from R. ornithinolytica OKOH-

1 (RaoPrx) 

Substrate specificity of the crude enzyme was determined using ABTS: 2,2´-azino-bis (3-

ethylbenzthiazoline-6-sulfonic acid), veratryl alcohol, guaiacol, pyrogallol and 2, 6-

dimethoxyphenol (2, 6-DMP) as a substrate in 100 mmol L-1 potassium phosphate and sodium 

tartrate buffers as appropriate. Activities against the substrates were assayed at 2 mmol L-1. 

Subsequently, the kinetic properties were determined by using varied concentrations of pyrogallol 

(2 mmol L-1 to 80 mmol L-1) and a fixed concentration of hydrogen peroxide (4 mmol L-1) at pH 

6 (100 mmol L-1 potassium phosphate buffer) and 25 oC. The substrate binding constant (Km) and 

maximum rate (Vmax) were extrapolated from the Michaelis-Menten curve constructed by plotting 

the rate of purpurogallin formation (V) against pyrogallol concentrations [S].  

 

8.2.6. Biochemical characterization of RaoPrx 

8.2.6.1. Effect of pH on activity and stability of RaoPrx 

The effect of pH on peroxidase activity was determined within a pH range of 3-7 by using 

pyrogallol as a substrate. Briefly, the crude enzyme was incubated with 5 % w/v pyrogallol 

prepared in the different buffers (pH 3-7): 100 mmol L-1 sodium tartrate buffer (pH 3-5) and 100 

mmol L-1 potassium phosphate buffer (pH 6 & 7). The peroxidase activity was determined using 

standard assay procedure earlier described. In determining the effect of pH on stability of 

peroxidase, the enzyme was incubated in appropriate buffers (pH 5-7) excluding the substrate for 

120 min at room temperature. Subsequently, the residual peroxidase activity was determined using 

standard assay procedure. 
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8.2.6.2. Effect of temperature on activity and stability of RaoPrx 

The effect of temperature on peroxidase activity was determined by incubating the reaction 

mixture at temperatures ranging from 30 to 60 oC under standard assay conditions in the 

SynergyMx 96-well microtitre plate reader (BioTeK Instruments). However, the thermal stability 

of the crude peroxidase was determined by incubating the enzyme excluding the substrate at 

temperatures ranging from 30 to 70 oC for 120 min in a Dri Block DB-BD (TECHNE, Lasec, SA). 

Thereafter, the residual peroxidase activity was determined using the earlier described assay 

procedure.  

 

8.2.6.3. Effect of metal ions and possible inhibitors on activity of RaoPrx 

The effects of selected metal ions (Ag+, Cu2+, Zn2+, Fe2+, Ca2+, Mg2+, Ba2+, Co2+ and Al3+) and 

EDTA on peroxidase activity were investigated by adding 1 mmol L-1 and 10 mmol L-1 of each 

metallic salt (AgCl, CuCl2, ZnCl2, FeSO4, CaCl2, MgCl2, BaCl2, CoCl2, AlCl3) and possible 

inhibitors (EDTA and NaN3) to the reaction mixture. Peroxidase activity was thereafter determined 

according to standard assay procedure.  

 

8.2.7. RaoPrx inhibition kinetics 

The kinetics of peroxidase inhibition was studied by using Calcium chloride (CaCl2).  Briefly, 10 

mmol L-1 of CaCl2 was added to the reaction mixture containing the crude enzyme, pyrogallol at 

varied concentrations (2 mmol L-1 to 10 mmol L-1) and 100 mmol L-1 potassium phosphate buffer 

(pH 6). The reaction was initiated by the addition of 0.5 % hydrogen peroxide (30% w/w). 

Peroxidase activity was then determined as previously described. Control experiment was run in 

parallel without the inhibitor under the same assay conditions. The dissociation constant, Ki was 

determined using the modified Lineweaver-Burke equation:  

Ki = Km [I]/(Km, apparent – Km) ………………………………………………………..Eqn. 1. 

Km = Substrate binding constant in the absence of inhibitor 

Km, apparent = Substrate binding constant in the presence of inhibitor 

[I] = Concentration of inhibitor. 

Km and Km, apparent were determined from the plot of 1/V against 1/[S], where V is the rate of 

purpurogallin formation and [S] is the concentration of pyrogallol. The degree of affinity of the 

inhibitor with the enzyme was subsequently measured by Ki/Km. 
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8.2.8. Molecular characterization of RaoPrx and detection of multicopper oxidase (MCO) 

gene 

8.2.8.1. DNA extraction 

Genomic DNA was extracted from the bacterium using boiling method as described by Maugeri 

et al. (2006). A number of colonies of the organism were suspended in 200 µL of nuclease-free 

water and heated at 100 oC for 10 min using Dri Block DB-BD (TECHNE, Lasec, SA). Thereafter, 

the mixture was centrifuged at 20000 x g for 5 min (HERMLE Z 233 M-2, Lasec, SA) and the 

recovered supernatant was used as DNA template for polymerase chain reaction. 

 

8.2.8.2. Polymerase chain reaction (PCR) 

The target genes were amplified using the sets of primers listed in Table 8.1 in a conventional PCR 

assay. The oligonucleotide primers (Raoprx F and Raoprx R for peroxidase gene and Raomco F 

and Raomco R for multicopper oxidase gene) which were newly designed for this study, were 

synthesized by Inqaba Biotech, South Africa. A total of 25 µL reaction mixture which comprised 

12.5 µL of master mix (BioLabs, SA), 1 µL each of both forward and reverse primers, 5.5 µL of 

nuclease-free water and 5 µL of extracted DNA was used for the assay in a PCR thermocycler 

apparatus (G-STORM, UK) under the following optimized conditions: initial denaturation at 95 

oC (5 min), denaturation at 94 oC (1 min), annealing at 58 oC (1 min), extension at 72 oC (1 min) 

for 35 cycles and final extension at 72 oC (5 min). Subsequently, the amplified products were 

subjected to electrophoresis in 1.5 % agarose gel (Merck, SA), which was visualized in ethidium 

bromide (Sigma-Aldrich, SA) staining with the use of ultraviolet trans-illuminator (Alliance 4.7, 

France). 

 

Table 8.1. List of primers for peroxidase and multicopper oxidase genes in R. ornithinolytica  

 

Primer name Primer sequence (5'-3') Target 

gene 

Expected 

band size 

Reference 

Raoprx F 

Raoprx R 

AAGGCAGGCTCTGACGAACAA 

TGGTGGCTTTTGGCAATAACG 

 

Prx 543 bp  This study 

Raomco F 

Raomco R 

TCATCTGCCCCTTGTCGCTC 

GCTGGCTTCGCTTGCGTTTA 

Mco 528 bp This study 
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8.2.8.3. Sanger sequencing analysis 

The amplified products were analyzed using Sanger dideoxy sequencing method. Prior to 

sequencing analysis, the PCR products were purified using ExoSAP (Exonuclease-Shrimp 

Alkaline Phosphatase). The ExoSAP master mix was prepared by adding 50 µL of Exonuclease I 

(NEB M0293) 20 U µL-1 to 200 µL of Shrimp Alkaline Phosphatase (NEB M0371) 1 U µL-1 in a 

600 µL micro-centrifuge tube. Thereafter, 2.5 µL of the ExoSAP mix was added to 10 µL of the 

PCR product. The mixture was then incubated at 37 o C for 30 min followed by heating at 95 o C 

for 5 min to terminate the reaction. Subsequently, the purified PCR products were sequenced using 

the ABI V3.1 Big dye kit according to the manufacturer’s instructions on ABI3500XL genetic 

analyser, with a 50cm array. The sequencing products were further purified with the Zymo Seq 

clean up kit (Zymo Research) and analyzed using main work bench 7 followed by a BLAST search 

in UniProt Knowledgebase (www.uniprot.org) and PeroxiBase database 

(peroxibase.toulouse.inra.fr) using Blastx program. 

 

8.2.8.4. Phylogenetic analysis 

The phylogenetic analysis of the translated protein sequence was conducted in MEGA 7.0.21 

(Kumar et al., 2016) using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

cluster analysis (Sneath and Sokal, 1973) while the disparity index for all sequence pairs was 

determined using the model of Kumar and Gadagkar (2001). Multiple sequence alignment was 

conducted using CLUSTAL W in BioEdit sequence alignment editor (Thompson et al., 1994) as 

the physicochemical properties of the deduced partial amino acids were determined using 

GENEIOUS 10.2.2. 

 

8.2.9. Dye decolourization study 

The dye decolourization potential of RaoPrx was evaluated using selected synthetic dyes (congo 

red: CR, remazol brilliant blue R: RBBR, reactive blue 4: RB4 and melanin). The rate of dye 

decolourization was determined in line with the modified method of Kalyani et al. (2011). The 

reaction mixture contained dye (100 mg L-1), potassium phosphate buffer (100 mmol L-1, pH 6) 

and culture supernatant (crude enzyme). The reaction was initiated via the addition of 0.5% 

hydrogen peroxide (30 % w/w) and subsequent incubation at predetermined optimum temperature 

for 30 min (CR, RBBR, RB4) and 20 min for melanin. Absorbance was read at 490 nm, 590 nm, 



202 
 

595 nm and 475 nm respectively (Woo et al., 2004; Kalyani et al., 2011). The reaction mixture 

without the crude enzyme served as the control. Dye decolourization was measured by monitoring 

the decrease in absorbance of each dye and expressed as percentage decolourization: 

 

 

8.2.10. Data analysis 

Where applicable, data were subjected to analysis of variance (ANOVA) using GraphPad Prism 7 

at a 5% (P ≤ 0.05) confidence interval. Results were presented as mean values ± standard deviation 

(STD). 

 

8.3. Results and discussion 

8.3.1. Substrate specificity and kinetic properties of RaoPrx 

The results of substrate specificity by RaoPrx as presented in Table 8.2 showed that peroxidase 

from R. ornithinolytica OKOH-1 had activity on all the substrates (ABTS, veratryl alcohol, 

guaiacol and pyrogallol) except 2,6-DMP, with the highest peroxidase activity exhibited on 

pyrogallol. This finding indicates that peroxidase from R. ornithinolytica OKOH-1 had a wide 

substrate specificity, with the highest affinity for pyrogallol, which was subsequently used as the 

enzyme substrate throughout the study. More so, the oxidation of pyrogallol by RaoPrx is 

consistent with Michaelis-Menten equation as revealed in Fig. 8.1 which showed that RaoPrx had 

a Km of about 3.8 mmol L-1 and Vmax of 4.65 µmol mL-1 min-1 on pyrogallol.  

 

 

 

 

 

 

 

…………………………Eqn. 2. 
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Table 8.2. Substrate specificity of peroxidase from R. ornithinolytica OKOH-1  

Substrate  Assay conditions Wave 

length 

Relative 

peroxidase 

activity (%) 

Reference 

ABTS 2 mmol L-1 ABTS;  

4 mmol L-1 H2O2; 

100 mmol L-1 

potassium phosphate 

buffer, pH 6. 

420 0.35 Mongkolthanaruk et al. 

(2012) 

Veratryl 

alcohol 

2 mmol L-1 veratryl 

alcohol; 4 mmol L-1 

H2O2; 100 mmol L-1 

sodium tartrate 

buffer, pH 3 

310 3.40 Tien and Kirk (1988) 

Guaiacol 2 mmol L-1 guaiacol;  

4 mmol L-1 H2O2; 

100 mmol L-1 

sodium tartrate 

buffer, pH 5 

465 0.17 Paszczynski et al. (1988) 

Pyrogallol 2 mmol L-1 

pyrogallol;  

4 mmol L-1 H2O2; 

100 mmol L-1 

potassium phosphate 

buffer, pH 6 

420 100 Chance and Maehly (1955) 

2, 6-DMP 2 mmol L-1 2,6-

DMP;  

4 mmol L-1 H2O2; 

100 mmol L-1 

sodium tartrate 

buffer, pH 3    

469 0 Perez-Boada et al. (2002) 
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Fig. 8.1. Michaelis-menten kinetics of peroxidase activity using pyrogallol as substrate. 

 

8.3.2. Effect of pH on activity and stability of RaoPrx 

The activity of peroxidase from R. ornithinolytica OKOH-1 was determined at pH ranging from 

3.0 to 7.0. The results revealed that the enzyme had optimum activity at pH 6.0 (Fig. 8.2a) with 

relative activity of 47.3 % at pH 7.0 and 37.8 % at pH 5.0. However, no peroxidase activity was 

detected at pH 3.0 and 4.0. This finding is comparable to the result of Fodil et al. (2011) who 

reported optimum activity for a peroxidase produced by Streptomyces sp. strain AM2 at pH 6.0 

On the other hand, Olajuyigbe et al. (2015) recorded optimum activity for crude peroxidase from 

Actinomyces viscosus at pH 7.0 while Casciello et al. (2017) reported optimum activity for 

Nonomuraea gerezanensis peroxidase at pH 4. The enzyme exhibited stability over a short pH 

range of 5.0-7.0. after 120 min of incubation. It is most stable at pH 6.0. as it retained 96 % of its 

original activity after 30 min and more than 50 % after 120 min at this pH. The enzyme had residual 

activity of 46.4 % and 56.7 % at pH 5.0 and pH 7.0 respectively after 120 min (Fig. 8.2b). This 

finding is consistent with previous related studies where peroxidase was stable within a short pH 

range as observed in this study. For instance, Fodil et al. (2012) reported peroxidase stability at a 

pH range of 4.0-8.0 while Olajuyigbe et al. (2015) and Casciello et al. (2017) recorded peroxidase 

stability within the pH range of 6.0-8.0 and 4.0-5.0, respectively. 
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Fig. 8.2. Effect of pH on activity and stability of RaoPrx. (a). Effect of pH on R. ornithinolytica 

peroxidase activity. (b). Effect of pH on R. ornithinolytica peroxidase stability (Error bars indicate 

mean ± standard deviation of triplicate values). 
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8.3.3. Effect of temperature on activity and stability of RaoPrx 

The activity of RaoPrx was determined using the temperature range of 30 to 60 oC. R. 

ornithinolytica peroxidase had optimum activity at 50 oC but was active over the temperature range 

used, with relative activity of 43.6 %, 49.6 % and 32.9 % at 30 oC, 40 oC and 60 oC respectively 

(Fig. 8.3a). The sharp decrease in peroxidase activity observed at 60 oC, is perhaps due to thermal 

denaturation that likely occurred as a result of increase in chemical potential energy capable of 

altering the three-dimensional structure of the protein while the steady increase in relative 

peroxidase activity from 30 to 50 oC may be attributed to the increase in kinetic energy and number 

of collisions of enzyme and substrate per unit time. The optimum temperature for peroxidase 

recorded in this study is comparable to what had previously been reported (Fodil et al., 2011; 

Olajuyigbe et al., 2015). However, Kalyani et al. (2011) reported 40 oC as optimum temperature 

for peroxidase from Pseudomonas sp. SUK 1 while Fodil et al. (2012) and Casciello et al. (2017) 

reported a higher optimum temperature of 80 oC and 60 oC respectively. Interestingly, RaoPrx was 

very stable at higher temperatures (50 – 70oC) with residual activity of over 70 % after 120 min 

(Fig. 8.3b). The activity of the enzyme was remarkably stable at 50 oC as it retained 93.5 % of its 

original activity after 120 min. It is worthy of note, that RaoPrx has a higher thermostability than 

some microbial peroxidases previously reported. For instance, Olajuyigbe et al. (2015) reported 

residual activity of 60 % at 40 oC and 50 oC after 60 min for peroxidases from two different 

actinomyces species, which completely lost their activities after 150 min at 70 oC. More so, 

peroxidase from Rhizoctonia sp. SYBC-M3 was not stable at temperatures above 50 oC (Cai et al., 

2010) while Phanerochaete chrysosporium peroxidase completely lost its activity at 65 oC after 

60 min (Urek and Pazarlioglu, 2004). This finding indicates that the peroxidase from R. 

ornithinolytica OKOH-1 is thermostable and this augurs well for biotechnological applications. 
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Fig. 8.3. Effect of temperature on activity and stability of RaoPrx (a). Effect of temperature on R. 

ornithinolytica peroxidase activity. (b). Effect of temperature on R. ornithinolytica peroxidase 

stability (Error bars indicate mean ± standard deviation of triplicate values). 
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8.3.4. Effect of metal ions and possible inhibitors on activity of RaoPrx 

The activity of peroxidase from R. ornithinolytica OKOH-1 was significantly enhanced in the 

presence of both low (1 mmol L-1) and high (10 mmol L-1) concentrations of Ag+, Cu2+, Zn2+and 

Fe2+ when compared with the control (Table 8.3), with Cu2+ having the highest relative activity of 

241.68 % and 597.79 % at low and high concentrations, respectively, followed by Fe2+ (1 mmol 

L-1: 126.74 %, 10 mmol L-1: 453.88 %). The increased peroxidase activity observed in the presence 

of Ag+, Cu2+, Zn2+and Fe2+ may be attributable to some conformational changes that probably 

occurred consequent upon the binding of the metal ions on some amino acid residues in the 

catalytic site of the enzyme (Olajuyigbe and Ogunyewo, 2016). However, the enzyme activity was 

partially inhibited by Ca2+, Mg2+, Ba2+, Al3+ at both low and high concentrations, with relative 

activities of 45.13 %, 67.08 %, 59.08 % and 56.01 % at 10 mmol L-1, respectively when compared 

with the control, whereas NaN3, only inhibited the peroxidase activity at high concentration, with 

relative activity of 58.25 %. However, the activity of the enzyme was completely inhibited by Co2+ 

and EDTA even at low concentration. This finding is consistent with previous related studies 

where significant inhibition of peroxidase activity by EDTA had been reported (Asgher et al., 

2012; Praveen et al., 2012; Olajuyigbe et al., 2015). Likewise, Fodil et al. (2011) reported the 

inhibitory effect of NaN3 on peroxidases from Streptomyces sp. AM2. The complete inhibition of 

the enzyme by EDTA might be attributed to its metal chelating activity which rendered the 

cofactors of peroxidase unavailable for catalytic reaction. This suggests that peroxidase from R. 

ornithinolytica OKOH-1 may depend on a heme component for its catalytic activity (Fodil et al., 

2011). Moreover, complete inhibition of RaoPrx activity by Co2+ is perhaps due to the ability of 

cobalt ions to form complexes, which is typical of transition metals or it might be that cobalt (II) 

reacted with hydrogen peroxide (Atabey et al., 1996), the peroxidase activator, thereby making it 

unavailable to activate the enzyme appropriately. Furthermore, the kinetic study of RaoPrx 

inhibition in the presence of 10 mmol L-1 CaCl2 as presented in Fig. 8.4. revealed the dissociation 

constant, Ki of 0.83 mmol L-1 with 0.22 as the deduced Ki/Km value, which suggests that the 

inhibitor (CaCl2) bound to the enzyme with greater affinity, hence, its stronger effect on the 

kinetics. This finding further indicates that CaCl2 is a competitive inhibitor of R. ornithinolytica 

OKOH-1 peroxidase as it increased the Km of the enzyme but did not affect its Vmax (Berg et al., 

2002). 

 



209 
 

Table 8.3. Effect of metal ions and possible inhibitors on the activity of peroxidase from R. 

ornithinolytica OKOH-1 

                              Relative activity (%) 

1 Mm 10 Mm 

Control 100 100 

Ag+ 109.30 ± 2.71d 110.27 ± 1.84d 

Cu2+ 241.68 ± 2.48a  597.79 ± 156.25a 

Zn2+ 148.06 ± 5.83b 184.11 ± 6.82c 

Fe2+ 126.74 ± 19.09b 453.88 ± 4.46b 

Ca2+ 56.54 ± 4.14h 45.13 ± 1.17g 

Mg2+ 70.25 ± 3.17g 67.08 ± 0.00e 

Ba2+ 78.81 ± 2.40 f 59.08 ± 0.58f 

Co2+ 0 0 

Al3+ 88.76 ± 5.16e 56.01 ± 6.20f 

NaN3 118.98 ± 1.24c  58.25 ± 0.00f 

EDTA 0 0 

Values represent mean ± standard deviation, number of replicate, n = 3. Values with the same 

superscript letter along the same column are not significantly different (P> 0.05). 
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Fig. 8.4. Kinetic study of RaoPrx inhibition by CaCl2. I: Inhibitor (CaCl2), + I: Increasing substrate 

concentration in the presence of 10 mmol L-1 of the inhibitor, - I: Increasing substrate concentration 

in the absence of the inhibitor. 

 

8.3.5. Molecular characterization of RaoPrx and detection of MCO gene 

Fig. 8.5 shows the gel picture of the PCR amplification of peroxidase and MCO genes in R. 

ornithinolytica OKOH-1. The band sizes of the amplified genes corresponded with the expected 

band sizes of 543 bp and 528 bp respectively. The blast search of the nucleotide sequences of the 

amplified genes in NCBI database (https://blast.ncbi.nlm.nih.gov) showed 99 % similarities to 

DyP-type peroxidase (Protein ID: AGJ84824.1) and multicopper oxidase (Protein ID: 

AGJ87589.1) genes in R. ornithinolytica B6 complete genome (GenBank Accession Number: 

CP004142), respectively. The nucleotide sequences are available in the NCBI database as 

Raoultella ornithinolytica OKOH-1 peroxidase and multicopper oxidase genes, partial cds under 

the accession numbers MF370527 and MF374335, respectively. 
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Fig. 8.5. Gel picture of the PCR amplification of peroxidase and multicopper oxidase genes in R. 

ornithinolytica OKOH-1. Lane 1: multicopper oxidase gene (528 bp), lane 3: peroxidase gene (543 

bp), lane 5: DNA marker, lanes 2 & 4: negative control for multicopper oxidase and peroxidase 

genes, respectively. 

 

Multiple alignment of the studied nucleotide sequence with peroxidase gene sequences of other 

Raoultella ornithinolytica in NCBI database (Fig. 8.6) revealed a genetic variation inform of a 

single nucleotide polymorphism (SNP) at position 5 which makes it unique from other peroxidase 

genes. The alignment showed that the proposed conserved region for peroxidase in R. 

ornithinolytica comprise of 126 nucleotide sequences with interval span of 145→270 on open 

reading frame 1 (ORF 1).  
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Fig. 8.6. Multiple sequence alignment of peroxidase gene in R. ornithinolytica. MF370527: 

peroxidase gene sequence from this study. Unshaded columns are points of nucleotide variations. 

SNP: Single Nucleotide Polymorphism. 
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Furthermore, phylogenetic analysis of the translated protein (GenBank ID: ATO59094.1) and 

selected DyP-type peroxidases in the peroxidase database: PeroxiBase 

(peroxibase.toulouse.inra.fr) suggested it belongs to Class B of the DyP-type peroxidase family as 

it formed a distinct cluster with members of this class (Fig. 8.7). Other classes of bacterial DyP 

family include A and C while Class D is made up of fungal DyPs (Yoshida and Sugano, 2015). 

The estimates of net composition bias disparity between amino acid sequences (Table 8.4) revealed 

0.00 disparity between R. ornithinolytica OKOH-1 peroxidase and most members of Bacterial 

DyP-type peroxidase family which indicates no evolutionary divergence with RaoPrx.  

Further characterization of the amino acid sequence of R. ornithinolytica OKOH-1 peroxidase 

using Geneious 10.2.2 (a bioinformatic analysis tool), estimated a molecular weight (MW) of 

17.587 kDa and an isoelectric point of 4.51. Moreover, previous studies had reported different 

MWs for peroxidases from different bacterial species. Oliveira et al. (2009) reported 25 kDa and 

40 kDa as the estimated MWs for peroxidase from Bacillus pumilus and Paenibacillus sp. 

respectively. Similarly, Fodil et al. (2011) reported 25 kDa and 40 kDa as MWs for peroxidases 

(HaP1 and HaP2, respectively) purified from Streptomyces sp. AM2. Nonetheless, HaP3 

peroxidase from Streptomyces sp. AH4 had an estimated MW of 60 kDa (Fodil et al., 2012) while 

Ghodake et al. (2009) and Kalyani et al. (2011) reported 110 kDa and 83 kDa for peroxidases from 

Acinetobacter calcoaceticus NCIM 2890 and Pseudomonas sp. SUK 1, respectively.  
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Fig. 8.7. Dendogram of selected DyP-type peroxidases, constructed using UPGMA cluster analysis 

and poisson correction model. The tree is drawn to scale, with branch lengths in the same units as 

those of the evolutionary distances used to infer the phylogenetic tree. Red tips indicate DyP-type 

peroxidase class A, blue tips indicate class C, black tips represent class B while the green tips are 

for class D. The black triangular tip indicates the studied peroxidase while the one without colour 

is the outgroup. The UniProtKB reference numbers, GenBank ID** and PeroxiBase ID* of the 
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proteins are indicated in parentheses. Eco: Escherichia coli, Pf: Pseudomonas fluorescens, Sbo: 

Shigella boydii, Sso: Shigella sonnei, Pde: Paracoccus denitrificans, Rp: Rhodopseudomonas 

palustris, Rru: Rhodospirillum rubrum, Bx: Burkholderia xenovorans, EcoH7: Escherichia coli 

0157:H7, Sf: Shigella flexneri, Oant: Ochrobactrum anthropic, PSsp: Psychrobacter sp., Cvi: 

Chromobacterium violaceum, Gspp: Ganoderma sp., Aor : Aspergillus oryzae, Ccin: Coprinopsis 

cinereal, Amus: Amanita muscaria, PEch: Penicillium chrysogenum, RaoPrx: Raoultella 

ornithinolytica OKOH-1 peroxidase, RaoB6: Raoultella ornithinolytica B6, DyP: Dye 

decolourizing peroxidase. RerHalPrx: Rhodococcus erythropolis haloperoxidase. 

 

Moreover, the presence of the gene encoding multicopper oxidase in R. ornithinolytica OKOH-1 

suggests its potential for expression of laccase activity, which further confirms its biotechnological 

dexterity. Multicopper oxidases (MCOs) are oxidoreductases that oxidize their substrates with a 

concomitant four electron reduction of molecular oxygen to water (Sirim et al., 2011). MCOs are 

classified based on their copper centres: type 1 (blue), type 2 (normal) and type 3 or coupled 

binuclear (Messerschmidt and Huber, 1990; Ouzounis and Sander, 1991). MCOs is an enzyme 

family of four, comprising laccases (EC 1.10.3.2), ferroxidases (EC. 1.16.3.1), ascorbate oxidase 

(EC 1.10.3.3) and ceruloplasmin (EC 1.16.3.1). Laccases, which are the largest member of MCOs, 

are widely distributed in prokaryotes and eukaryotes (Sirim et al., 2011). The biotechnological 

potentials of laccases in biopulping, biobleaching, bioremediation, juice/wine clarification, textile 

dye decolourization, degradation of xenobiotics and effluent treatment have been reported (Couto 

and Toca Herrera, 2006; Chandra and Chowdhary, 2015; Afreen et al., 2016). Given the enormous 

industrial application potentials of laccase and increased industrial demand, there is need to 

explore new sources of laccase with enhanced production. Thus, R. ornithinolytica OKOH-1 may 

be a potential source for laccase production.
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Table 8.4. Pattern disparity index between amino acid sequences of R. ornithinolytica peroxidase and selected members of bacterial DyP-type peroxidases 

 

RaoPrx (ATO59094**)                    

RaoB6Dyp (AGJ84824**) 0.00                   

EcoDyP Type A (Q0TJ48) 0.00 0.00                  

PfDyP Type A (Q3KC90) 0.00 0.00 0.00                 

SboDyP Type A (Q31Z86) 0.00 0.00 0.00 0.00                

SsoDyP Type A (Q3Z396) 0.00 0.00 0.00 0.00 0.00               

PdeDyP Type A (A1B2T8) 0.10 0.10 0.29 0.00 0.33 0.33              

RpDyP Type A (Q217C3) 0.00 0.00 0.06 0.00 0.11 0.11 0.02             

RruDyP Type A (Q2RR49) 0.01 0.01 0.06 0.00 0.07 0.07 0.02 0.18            

BxDyP Type A (Q13P55) 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.00           

EcoH7DyP Type B (Q8XBI9) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01          

EcoDyP Type B (Q0TF38) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01 0.00         

SboDyP Type B (Q31Y49) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01 0.00 0.00        

SsoDyP Type B (Q3YZB2) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01 0.00 0.00 0.00       

EcoDyP Type B (Q1R8U0) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01 0.00 0.00 0.00 0.00      

SflDyP Type B (Q0T278) 0.00 0.00 0.08 0.00 0.10 0.10 0.37 0.00 0.18 0.01 0.00 0.00 0.00 0.00 0.00     

EcoDyP Type B (P76536) 0.00 0.00 0.10 0.00 0.12 0.12 0.39 0.00 0.20 0.04 0.00 0.00 0.00 0.00 0.00 0.00    

OantDyP Type C (A6X835) 0.00 0.00 0.25 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.08 0.08 0.10   

PSspDyP Type C (A5WES6) 0.04 0.04 0.45 0.07 0.41 0.41 0.35 0.51 0.25 0.00 0.30 0.30 0.30 0.30 0.30 0.30 0.33 0.35  

CviDyP Type C (Q7NWP3) 0.00 0.00 0.05 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.19 0.19 0.23 0.00 0.38 

 

Values greater than 0 indicate the larger differences in base composition biases than expected based on evolutionary divergence between sequences.
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8.3.6. Dye decolourization potential of RaoPrx 

The search for effective method of dye decolourization has continued to increase perhaps, due to 

its health and environmental implications, as well textile dyes have been described as the major 

sources of environmental pollution (Falade et al., 20017a). Decolourization of synthetic dyes 

through enzymatic approach had been reported to be effective (Kalyani et al., 2011). Enzymatic 

decolourization of dyes involves the use of either crude or purified forms of the enzymes (Dawkar 

et al., 2009; Ghodake et al., 2009). However, considering the cost of enzyme purification, the use 

of crude enzyme is being encouraged. Therefore, this study evaluated the potential of crude 

peroxidase from R. ornithinolytica OKOH-1 for decolourization of selected synthetic dyes with 

different aromatic substituent positions (ortho and para) as the effectiveness of enzyme system in 

dye decolourization depends on the susceptibility of the arene substituents of the dyes to 

hydrozylation (Goszczynski et al., 1994). The dye decolourization potential of RaoPrx as 

presented in Fig. 8.8 showed that the enzyme had maximum decolourization activity of 65.03 % 

on CR, followed by melanin with 47.96 % while 9.09 % and 4.72 % decolourization was observed 

on RB4 and RBBR, respectively, within 30 min of incubation.  

This finding indicates that the enzyme has the potential for decolourization of a wide range of 

synthetic dyes. However, the maximum decolourization activity on CR suggests the specificity of 

R. ornthinolytica peroxidase for azo and ortho positioned arene substituent dyes. The results 

further indicate that azo dyes seemed to be more susceptible to decolourization than anthraquinone 

dyes (RB4 and RBBR) which have their substituents attached at the para positions. The 

discrepancy observed in the rate of dye decolourization by the enzyme might be due to structural 

variations of the dyes (Murugesan et al., 2006). This finding is in agreement with previous related 

studies which had also reported different rates of decolourization for different dyes. Kalyani et al. 

(2011) reported decolourization of various textile dyes (Methyl orange, Reactive red 2, Reactive 

orange 16, Navy Blue HE2R etc.) by Pseudomonas sp. SUK 1 peroxidase with decolourization 

activities of 72 and 45 % on Methyl orange and Reactive orange 16, respectively within 12 h. On 

the other hand, Rekik et al. (2015) reported 5% decolourization of Poly R-478 by peroxidase from 

Streptomyces griseosporeus SN9 after 48 h. 
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Fig. 8.8. Decolourization of synthetic dyes by peroxidase from R. ornithinolytica OKOH-1. CR: 

Congo Red, RB4: Reactive Blue 4, RBBR: Remazol Brilliant Blue R.  

 

Hydroquinone has been described as the most effective skin-lightening agent (Falade et al., 

2017a). However, controversies concerning its safety had led to a search for suitable alternatives. 

Moreover, the “exploration of alternative agents with the potential to directly decolourize melanin 

pigment through oxidation” has been advocated (Falade et al., 2017a). Interestingly, R. 

ornthinolytica peroxidase exhibited a decolourization activity of about 48 % on synthetic melanin 

in just 20 min. This finding indicates the potential of R. ornthinolytica peroxidase to serve as an 

alternative to hydroquinone in the development of skin-lightening agents. This is corroborated by 

previous studies which had reported the ability of peroxidases to effectively decolourize synthetic 

melanin (Woo et al., 2004; Nagasaki et al., 2008). 

 

8.4. Conclusion 

In conclusion, peroxidase from R. ornithinolytica OKOH-1 is a novel thermostable DyP-type 

peroxidase with biotechnological potentials in textile dye remediation and development of 

cosmetic agents. More so, the detection of multicopper oxidase gene in R. ornithinolytica OKOH-

1 suggests its potential for laccase production. 
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9.1. Introduction 

This chapter gives a general discussion of the findings of the study under the following headings 

in line with the specific objectives: ligninolytic bacteria, optimization of environmental and 

nutritional conditions for peroxidase production, molecular and biochemical characterization of 

bacterial peroxidases and biotechnological potentials of peroxidases in textile dye remediation and 

development of cosmetic agents. Also, it gives a conclusion on the study and highlights some new 

areas of research that could be explored for further studies in the future. 

 

9.2. General discussion 

9.2.1. Ligninolytic bacteria 

Ligninolytic bacteria are bacteria strains that possess the ability to degrade or mineralize lignin, a 

recalcitrant constituent of lignocellulosic biomass which confers structural rigidity and support on 

plant cell walls. Ligninolytic bacteria play a significant role in the conversion of lignocellulosic 

biomass to value-added products of economic importance such as biofuel as their degradation 

activities render the saccharide units of cellulose entrapped by the lignin available for 

fermentation. Thus, they hold a great potential for delignification of feedstocks for biofuel 

production. As well they are able to utilize the abundant and renewable lignocellulosic materials 

as cheap and alternative sources of carbon for production of lignin modifying enzymes including 

peroxidases and laccase.  

In this study, a total of 79 presumptive ligninolytic bacteria were isolated based on their ability to 

grow on alkaline lignin as sole carbon source. Six (6) bacteria strains belonging to proteobacteria 

(Raoultella ornithinolytica OKOH-1 and Ensifer adhaerens NWODO-2) and bacillus (Bacillus sp. 

NWODO-3, Bacillus sp. MABINYA-1, Bacillus sp. MABINYA-2 and Bacillus sp. FALADE-1), 

isolated from Tyhume river and Hogsback forest reserve in the Raymond Mhlaba Municipality, 

Eastern Cape, South Africa showed promising ligninolytic potentials as they were able to degrade 

some lignin monomers (guaiacol and veratryl alcohol) and decolourize selected lignin-mimicking 

dyes (Azure B, RBBR and CR). It is noteworthy that this is the first report of ligninolytic bacterial 

from Tyhume river and Hogsback in South Africa. The identified ligninolytic bacteria strains in 

this study fall within the classes of reported ligninolytic bacterial: actinomycetes, alpha-

proteobacteria and gamma-proteobacteria (Bugg et al., 2011). However, after the classification by 

Bugg and colleagues, recent reports had implicated some Bacillus species in lignin degradation 
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activities (Chang et al., 2014; Zhu et al., 2017). In other words, the classification of ligninolytic 

bacteria now includes Bacillus species. The findings from this study is consistent with previous 

related studies as Bao et al. (2015) reported the ligninolytic activity of R. ornithinolytica S12 

isolated in China while Bandounas et al. (2011) reported the ligninolytic potential of Bacillus sp. 

LD003 isolated in Netherlands. Also, Chang et al. (2014) reported the lignin-degrading activity of 

Bacillus sp. CS-1 and Bacillus sp. CS-2 from forest soils in Japan while Zhu et al. (2017) reported 

the lignin degradation potential of Bacillus ligniniphilus L1 isolated from the South China Sea. 

Nevertheless, this seemed to be the first report on the ligninolytic potentials of Raoultella, Ensifer 

and Bacillus species in South Africa. 

 

9.2.2. Optimization of environmental and nutritional conditions for peroxidase production 

One of the major hindrances to the industrial application of peroxidases is the minute quantity of 

the enzyme produced. It is therefore imperative to optimize peroxidase production to meet its 

increasing market demand that may arise from the increase in industrial utility of peroxidase. More 

so, enhanced enzyme production is one of the important requirements for an effective biocatalytic 

process. Therefore, three (3) ligninolytic bacterial (R. ornithinolytica OKOH-1, E. adhaerens 

NWODO-2 and Bacillus sp. FALADE-1) which exhibited the most promising potential for 

peroxidase production (Table 3.4 and Table 4.3.) were optimized using the conventional approach 

which involved optimization of the bacteria environmental conditions (pH, temperature and 

agitation speed) as well as manipulating the nutritional conditions (carbon and nitrogen sources) 

of the fermentation medium for enhanced peroxidase production. Peroxidase production by 

Bacillus sp. FALADE-1 was optimal at pH 8 (Fig. 5.1), 30 oC (Fig. 5.2) and 150 rpm (Fig. 5.3) 

while that of E. adhaerens NWODO-2 was optimal at pH 7 (Fig. 6.1), 30 oC (Fig. 6.2) and 100 

rpm (Fig. 6.3). For R. ornithinolytica OKOH-1, the optimum peroxidase production was observed 

at pH 5 (Fig. 7.1), 35 oC (Fig.7.2) and 150 rpm (Fig.7.3). These findings showed that optimal 

conditions for peroxidase production differ by bacterial species. This is corroborated by previous 

related studies that have documented various optimal conditions for peroxidase production by 

different bacterial species. Nour El-Dein et al. (2014) recorded optimum peroxidase production by 

Streptomyces sp. K37 at pH 7.5 and 40 oC while Musengi et al. (2014) observed optimum 

peroxidase production by Streptomyces sp. BSII#1 at pH 8 and 37 oC. On the other hand, Rekik et 

al. (2015) reported maximum peroxidase production by Streptomyces griseosporeus SN9 at pH 8, 
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45 oC and 180 rpm. Likewise, 180 rpm supported optimum peroxidase production by Bacillus 

megaterium (Patil, 2014). It is therefore clear that cultural environmental factors which influence 

bacterial growth play significant roles in peroxidase production (Jing and Wang, 2012; Rekik et 

al., 2015) as previous studies had linked bacterial growth to constant secretion of extracellular 

enzymes in the culture medium (McCarthy, 1987; Musengi et al., 2014). 

Moreover, some lignin monomers have been reported to produce inductive effects on peroxidase 

production by bacteria (Musengi et al., 2014; Rekik et al., 2015). Therefore, this study evaluated 

the effects of selected lignin monomers (guaiacol, veratryl alcohol, vanillin, vanillic acid and 

ferulic acid) on peroxidase production by the studied ligninolytic bacteria. The findings showed 

that only guaiacol produced an inductive effect on peroxidase production by both Bacillus sp. 

FALADE-1 (Fig. 5.4) and E. adhaerens NWODO-2 (Fig. 6.4) while all the tested compounds 

induced peroxidase production in R. ornithinolytica OKOH-1 (Fig. 7.4). It is interesting to note 

that supplementation of the fermentation medium with guaiacol gave the highest peroxidase 

production in all the studied bacteria, hence guaiacol is the best inducer of peroxidase in the 

organisms. On the contrary, Musengi et al. (2014) reported veratryl alcohol as the best inducer of 

peroxidase in Streptomyces sp. strain BSII#1 while 2, 4-dichlorophenol (2, 4-DCP) produced the 

best inductive effect on peroxidase production by Streptomyces griseosporeus SN9 (Rekik et al., 

2015).  

Furthermore, nitrogen source is another major factor that influence bacteria growth. Nonetheless, 

the nature of nitrogen source in the fermentation medium has produced different effects on 

production of lignin modifying enzymes by microbes. In fact, the effects of nitrogen on production 

of lignin modifying enzymes including peroxidase are not always consistent. In this study, 

peroxidase production by Bacillus sp. FALADE-1 and E. adhaerens NWODO-2 was enhanced by 

supplementing the fermentation medium with ammonium sulphate (Fig. 5.5, Fig. 6.5). However, 

supplementation of the medium with ammonium chloride gave the best peroxidase yield in R. 

ornithinolytica OKOH-1 (Fig. 7.5). It is evident from this study that, it is the sulphate and chloride 

ions of the ammonium salts that affected the peroxidase production by the respective organisms 

during nitrogen supplementation and not the ammonium. These findings are in agreement with 

previous related study by Prasher and Chauhan (2015), where it was reported that inorganic 

nitrogen sources supported maximum peroxidase production, whereas Mikiashvili et al. (2006) 
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gave a contradictory result which showed that inorganic nitrogen sources decreased production of 

peroxidase and other lignin modifying enzymes. Also, some authors had reported repression of 

peroxidase production by additional nitrogen (Kachlishvili et al., 2005). The reasons for these 

discrepancies are not clear. 

Under optimized conditions, Bacillus sp. FALADE-1 had a specific peroxidase productivity of 

8.32 U mg-1 at 48 h (Fig. 5.6), E. adhaerens NWODO-2 exhibited a higher specific productivity 

of 12.76 U mg-1 also at 48 h (Fig. 6.6) while R. ornithinolytica OKOH-1 showed the highest 

peroxidase production with specific productivity of 16.48 U mg-1 at 72 h (Fig. 7.6). This finding 

suggests R. ornithinolytica OKOH-1 as the most efficient peroxidase producer in this study. 

Optimum peroxidase production by Bacillus sp. FALADE-1 and E. adhaerens NWODO-2 at 48 

h augurs well for industrial production. More so, the short incubation period for optimum 

peroxidase production by all the tested bacteria is advantageous over fungi which are characterized 

by long incubation period (Robinson et al., 2014; Prasher and Chauhan, 2015). 

 

9.2.3. Molecular characterization of bacterial peroxidases 

Peroxidases are a large group of enzymes with wide distribution across all forms of life including 

microbes. They are broadly classified into heme-containing and non-heme peroxidases. However, 

heme-peroxidases are more abundant in nature as over 73% of sequence data in the peroxidase 

database (PeroxiBase) encode heme-peroxidases (Zamocky and Obinger, 2010). Characterization 

of the gene encoding peroxidases is significant to gene cloning and over expression towards 

molecular optimization of peroxidase production. The genes encoding bacterial peroxidases can 

be identified using the N-terminal amino acid sequences and molecular weights of purified 

enzymes as well as the genomic data of the synthesizing microbes (Tamano, 2014). In this study, 

the sequence data generated from the PCR amplification of peroxidase genes in the peroxidase-

producing bacteria and Sanger sequencing analysis, were used to characterize the different 

peroxidases. The nucleotide sequences of the peroxidase-encoding genes in the organisms were 

deposited in the GenBank of NCBI as RAOORO1, ENSADN2 and BAFPrx1 with MF370527, 

MF374336 and MF407314 as respective accession numbers. 

Based on phylogenetic analysis and the use of bioinformatic software, peroxidases from Bacillus 

sp. FALADE-1 and E. adhaerens NWODO-2 were characterized as catalase-peroxidases with 
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estimated molecular weights of 11.445 kDa and 33.145 kDa respectively. More so, the deduced 

amino acid sequences of catalase-peroxidases from Bacillus sp. FALADE-1 and E. adhaerens 

NWODO-2 had isoeletric points of 7.01 and 11.47 respectively. Catalase-peroxidases are a unique 

class of heme-peroxidases with the ability to express both catalase and peroxidase activities. The 

presence of catalase-peroxidase genes in these two bacteria also indicates their potentials for 

production of a bifunctional enzyme and this might be the basis for their peroxidase activities as 

observed in this study. However, characterization of peroxidase gene from R. ornithinolytica 

OKOH-1 suggests it encodes a novel DyP-type peroxidase with an estimated molecular weight of 

17.587 kDa and isoelectric point of 4.51. DyP-type peroxidases are novel peroxidases 

characterized by efficient decolourization of anthraquinone and azo dyes (Sugano et al., 2007; 

Roberts et al., 2011; Chen et al., 2015). Molecular characterization of peroxidases in this study 

further confirms the ligninolytic potentials of the studied organisms as catalase-peroxidases and 

Dyp-type peroxidases are the major bacterial peroxidases implicated in lignin degradation (Brown 

et al., 2011; de Gonzalo et al., 2016). 

 

9.2.4. Biochemical characterization of bacterial peroxidases 

The increasing industrial applications of peroxidases have necessitated the search for new 

peroxidase with unique biochemical properties that would be of industrial significance. Hence, 

crude peroxidase from the most efficient producer in this study, R. ornithinolytica OKOH-1 was 

characterized using biochemical approaches such as substrate specificity, effect of pH and 

temperature on the peroxidase activity and stability as well as the effect of metal ions and possible 

inhibitors on the enzyme activity. Discussion of the findings from the biochemical characterization 

are presented in the succeeding section. 

 

9.2.4.1. Substrate specificity 

Peroxidase from R. ornithinolytica OKOH-1 (RaoPrx) had a wide substrate specificity as it was 

able to oxidize all the tested substrates: ABTS, veratryl alcohol, guaiacol and pyrogallol except 2, 

6-dimethoxylphenol. However, the highest peroxidase activity was observed on pyrogallol with a 

Km of 3.80 mmol L-1 and Vmax of 4.65 µmol mL-1 min-1 (Fig. 8.1). This finding suggests that 

pyrogallol is the best substrate for RaoPrx. However, the best substrate for peroxidase from 

Streptomyces griseosporeus SN9 was 2, 4-dichlorophenol (Rekik et al., 2015) while Nonomuraea 
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gerenzanensis peroxidase had the highest affinity for catechol (Casciello et al., 2017). Detection 

of peroxidase activity on veratryl alcohol indicates a lignin peroxidase-like activity. More so, the 

ability of RaoPrx to oxidize both phenolic and non-phenolic compounds suggest its 

biotechnological potential for degradation of a wide range of xenobiotics in the environment. 

 

9.2.4.2. Optimal pH and temperature 

The optimum catalytic reaction of an enzyme is largely dependent on pH and temperature. 

Therefore, it is important to determine the pH and temperature that support an enzyme’s optimum 

activity in a catalytic reaction. In this study, the optimal pH and temperature for RaoPrx activity 

were determined using a pH range 3.0 – 7.0 and a temperature range of 30 oC – 60 oC. RaoPrx 

activity was optimum at pH 6.0 (Fig. 8.2a) and 50 oC (Fig. 8.3a). These findings are comparable 

to previous studies. Fodil et al. (2011) reported an optimum pH range of 6.0 - 7.5 for a peroxidase 

from Streptomyces sp. AM2 while Olajuyigbe et al. (2015) recorded 50 oC as the optimum 

temperature for a crude peroxidase from Actinomyces viscosus. However, Pseudomonas sp. SUK 

1 peroxidase had an optimum pH of 3 and temperature optimum of 40 oC (Kalyani et al., 2011).  

 

9.2.4.3. pH and thermal stability  

Stability of an enzyme at an extreme pH and high temperature is desirable as these characterize 

the industrial applicability of such enzyme. As increase in temperature increases the rate of a 

catalytic reaction, temperature increase beyond the optimum temperature for a longer time may 

cause a denaturation of the enzyme. Hence, the interest in peroxidases that are able to withstand 

very high temperatures for a long period of time. This study found out that RaoPrx was stable over 

a pH range of 5.0 – 7.0 after 120 min of incubation. It was most stable at pH 6 with residual activity 

of over 50 % after 120 min (Fig. 8.2b). It is interesting to note that RaoPrx was very stable at 

higher temperatures (50 oC -70 oC) as it retained over 70 % of its original activity after 120 min 

incubation time (Fig. 8.3b). Moreover, the enzyme stability at 50 oC was outstanding as it retained 

about 93 % of its original activity after the incubation of period of 120 min. The stability of RaoPrx 

within a short pH range is consistent with previous studies (Fodil et al., 2012; Olajuyigbe et al., 

2015; Casciello et al., 2017). It is worthy of note that the thermal stability of RaoPrx is higher than 

most previously reported microbial peroxidases as peroxidase from Rhizoctonia sp. SYBC-M3 

was only stable at temperatures below 50 oC (Cai et al., 2010) while peroxidases from two 
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actinomyces species completely lost their activities at 70 oC after 150 min (Olajuyigbe et al., 2015). 

Even, peroxidase from one of the most efficient white-rot fungi, Phanerochaete chrysosporium 

completely lost its activity at 65 oC after 60 min (Urek and Pazarlioglu, 2004). The high 

thermostability exhibited by RaoPrx suggests its potential for industrial applications. 

 

9.2.4.4. Effect of metal ions and inhibitors 

Determining the effect of different metal ions is significant to the industrial applicability of any 

enzyme as the effect elicited by some common inhibitors may give an insight about the nature of 

the enzyme being investigated. In this study, the activity of RaoPrx was enhanced by Ag +, Cu2+, 

Zn2+ and Fe2+ while Ca2+, Mg2+, Ba2+, Al3+ and NaN3 partially inhibited the enzyme activity.  

However, RaoPrx activity was completely inhibited by Co2+ and EDTA (Table 8.3). To a large 

extent, the effects of the metal ions are dose-dependent as higher concentration produced a more 

significant effect on the enzyme activity. Generally, findings on the effects of metal ions on 

enzyme activities seemed not to be consistent as previous studies had reported different effects for 

the same metal ions on peroxidase activity. For instance, Fodil et al. (2012) reported that Ca2+ and 

Cu2+ increased the activity of peroxidase from Streptomyces sp. AH4 while Zn2+, Mg2+ and Co2+ 

were reported to have inhibitory effects on the enzyme activity. On the other hand, the activity of 

peroxidase from Streptomyces griseosporeus SN9 was moderately inhibited by Ba2+ and Co2+ 

while Cu2+, Mg2+, Zn2+ and Fe2+ did not elicit significant effect on the enzyme activity (Rekik et 

al., 2015) whereas Olajuyigbe et al. (2015) reported that the activity of peroxidase from 

Actinomyces viscosus was enhanced by Ca2+ and Fe2+ while the enzyme activity was inhibited by 

Cu2+ and Mg2+. As observed in this study, the authors also reported the inhibitory effect of Ca2+ 

on the activity of peroxidase from Actinomyces israelii which is rather rare. It is therefore evident 

that different metal ions elicit different effects on enzyme activity which are likely dependent on 

the charges on the amino acid residues in the active sites of the enzyme and the conformational 

change that occurs as a result of the interaction of the metal ions with the amino acid residues in 

the enzyme catalytic site (Olajuyigbe and Ogunyewo, 2016). 

Furthermore, the inhibition of RaoPrx activity by EDTA, which is consistent with previous related 

studies (Asgher et al., 2012; Praveen et al., 2012; Olajuyigbe et al., 2015), is perhaps attributed to 

the metal chelating activity of EDTA which rendered the cofactors of peroxidase unavailable for 
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catalytic reaction. This is suggestive of the likely dependence of RaoPrx on a heme component for 

its catalytic reaction (Fodil et al., 2011). Likewise, complete inhibition of RaoPrx activity by Co2+ 

is probably due to the ability of cobalt ions to form complexes or it might be that the ion reacted 

with hydrogen peroxide (Atabey et al., 1996), which was supposed to initiate the catalytic reaction, 

thereby making it unavailable to activate the enzyme as appropriate. 

 

9.2.5. Biotechnological potentials of peroxidases in textile dye remediation and development of 

cosmetic agents 

Textile industries are major consumers of dyes, which are toxic substances with potential negative 

impacts on environmental and human health as significant amount of dyes are released into the 

environment in the form of textile effluent from the industries (Yanto et al., 2014). The presence 

of dyes in the environment has been a major concern as this may constitute an environmental 

nuisance probably due to the recalcitrance of textile dyes and the fact that most of these dyes and 

their degradation products might be toxic (Singh et al., 2015). Consequently, in our recent review 

(Falade et al., 2017), we emphasized the imperativeness of developing effective and efficient 

strategy for dye removal as most of the current approaches (Chemical methods) used in dye 

decolourization and treatments are limited by high cost and secondary pollution problems 

(Parshetti et al., 2012). Nevertheless, biological methods of dye decolourization which involve the 

use of microorganisms and biomolecules including enzymes have been suggested (Falade et al., 

2017). In this study, crude peroxidase from R. ornithinolytica OKOH-1 was evaluated for 

decolourization of selected azo (Congo red) and anthraquinone (Remazol Brilliant Blue R and 

Reactive blue 4) dyes as well as synthetic melanin. The study showed that RaoPrx exhibited 

decolourizing activity on all the dyes investigated. However, the enzyme displayed a remarkable 

dye-decolourizing activity on congo red (65.03%) and melanin (47.96 %) within 30 min of 

incubation (Fig. 8.7). The effectiveness of RaoPrx on congo red within a short time indicates that 

azo dyes are probably more susceptible to decolourization by the enzyme than anthraquinone dyes 

as dye degradation can be attributed to susceptibility of the arene substituents to hydrozylation 

(Goszczynski et al., 1994). Congo red has its arene substituents attached at the ortho position while 

reactive blue 4 and remazol brilliant blue r have their aromatic substituents attached at the para 

positions (Fig. 3.2). It is therefore suffice to suggest that dyes with ortho arene substituents might 

be more susceptible to decolourization than the para arene substituent counterparts. This claim is 
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in agreement with Murugesan et al. (2006) who attributed differences in the rate of dye 

decolourization to structural variations of the dyes. This finding suggests the biotechnological 

potential of crude peroxidase from R. ornithinolytica OKOH-1 for textile dye remediation. My 

finding agrees with previous studies which had also reported the potential of bacterial peroxidases 

for dye decolourization (Kalyani et al. 2011; Rekik et al., 2015).  

Furthermore, the ability of RaoPrx to decolourize a synthetic melanin, is an indication of its 

potential as a promising alternative to hydroquinone in the development of skin-lightening agents. 

Previous studies had also corroborated the potential of peroxidases for effective decolourization 

of synthetic melanin (Woo et al., 2004; Nagasaki et al., 2008). 

  

9.3. Conclusions and future prospects 

This study isolated novel ligninolytic bacterial species with promising peroxidase production 

potentials that could be exploited for biotechnological applications. The bacteria were identified 

as Raoultella ornithinolytica OKOH-1 (KX640917), Ensifer adhaerens NWODO-2 (KX640918) 

and Bacillus sp. FALADE-1 (KX640922) belonging to gamma-proteobacteria, alpha-

proteobacteria and bacilli respectively. Upon optimization, the peroxidase production yield by the 

three organisms, increased by 3.40-fold, 1.09-fold and 2.22-fold respectively. The ability of R. 

ornithinolytica OKOH-1 and E. adhaerens NWODO-2 to utilize sawdust as the best substrate for 

enhanced peroxidase production under solid state fermentation is notable and significant as this 

would reduce the high cost of enzyme production which could be an impediment to large scale 

production of peroxidase by the bacteria. 

It is interesting to note that this study was able to detect and characterize the genes encoding 

peroxidase production in the three producers. Through molecular approach, peroxidase from R. 

ornithinolytica OKOH-1 was characterized as a DyP-type peroxidase while the genes detected in 

both E. adhaerens and Bacillus sp. FALADE-1 encode catalase-peroxidases. The detection of the 

genes encoding peroxidases in the studied bacteria could further be exploited for molecular 

optimization of peroxidase production through gene cloning and over expression which could be 

an excellent tool towards industrial and large-scale enzyme production. I believe future research 

efforts should therefore be channeled in this direction. 
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The unique biochemical characteristics such as oxidation of a wide range of substrates and high 

thermostability displayed by the peroxidase from R. ornithinolytica OKOH-1 as well as its 

excellent dye decolourization potential augur well for its industrial applicability in the future. 

Nevertheless, optimization of dye decolourization process by peroxidase from R. ornithinolytica 

OKOH-1 is imperative and should be considered for further studies. 

The potential of the identified bacteria for lignin degradation has been established in this study. 

However, further study should look into elucidating the mechanisms of action of lignin 

degradation and pathways employed by the organisms using molecular approaches such as 

proteomics, which may also include characterization of the genes implicated in ligninolytic 

activity. As well, the ligninolytic potential of these bacteria makes them promising candidates for 

biodegradation of a wide range of phenolic and non-phenolic compounds in the environment.  

Finally, this study has identified R. ornithinolytica OKOH-1 as the most promising candidate for 

biotechnological applications as members of this genus have been implicated in a number of 

biotechnological processes including production of pullulanase, polysaccharide-protein complex, 

and tripeptide-complex. As well, they have also been implicated in the production of organic acids 

such as 2,3-Butanediol (2, 3 BD) as an alternative to the petroleum-based 2, 3 BD production. 

More so, the detection of multicopper oxidase gene in R. ornithinolytica OKOH-1 in the course of 

this study suggests its potential for laccase production. It is therefore recommended that the 

biotechnological potential of Rornithinolytica OKOH-1 should be further explored for production 

of other biomolecules of economic importance. In order to fully maximize the potential of this 

novel strain, its whole genome should be sequenced in the future. 
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Appendix B 

Plate screening of bacterial isolates for degradation of lignin model compounds 
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Appendix C  

Plate screening of bacterial isolates for dye decolourization 

 

 

 

AB: Azure B, CR: Congo Red, RBBR: Remazol Brilliant Blue R 
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Appendix D 

Calculation of peroxidase activity 

 

U/mL =          
(

∆A

∆t
)x Vt

∈ x  Ve
  

 

        Where: 

(
∆A

∆t
) = Slope of plot of absorbance @ 420 nm against time in min 

                           Vt   = Total reaction volume (mL) 

                            ∈   = Extinction coefficient 

                            Ve = Enzyme volume (mL) 
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Appendix E 

Standard curve of protein estimation 
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Appendix F 

Selected kinetics graphs used for biochemical characterization of Raoultella ornithinolytica 

peroxidase (RaoPrx) 
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pH 7 
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40 oC 
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