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Components of Program for Analysis of Spectra and Their
Testing

Milan Javurek', Ivan Taufer?

The spectral analysis of aqueous solutions of multi-component mixtures is used for identification and distinguishing of individual components
in the mixture and subsequent determination of protonation constants and absorptivities of differently protonated particles in the solution in steady
state (Meloun and Havel 1985), (Leggett 1985). Apart from that also determined are the distribution diagrams, i.e. concentration proportions of
the individual components at different pH values. The spectra are measured with various concentrations of the basic components (one or several
polyvalent weak acids or bases) and various pH values within the chosen range of wavelengths. The obtained absorbance response area has to be
analyzed by non-linear regression using specialized algorithms. These algorithms have to meet certain requirements concerning the possibility of
calculations and the level of outputs. A typical example is the SQUAD(84) program, which was gradually modified and extended, see, e.g., (Meloun
et al. 1986), (Meloun et al. 2012).
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Introduction

The protonation constant of reaction of a weak acid or base, L~ + H" <> HL?, is defined according to the
Guldberg—Waage law by Eq. (1):
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where the square brackets express the equilibrium concentrations (exactly, there should be the activity concentrations
there, but within the concentration range used in spectrophotometry the activity coefficients can be considered equal
to 1).

Anion L can form a number of differently protonated species: HL, H,L, H3L, etc, hence it can generally be
described by the formula H,L. Then the number of variously protonated forms represents the number of species in the
solution, 7;, whose protonation constants are defined by Eq. (2):
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where the so-called free concentrations are [ = [L], h = [H] and ¢ = [L,H,].
Each of these species is defined by its own spectrum in the UV/VIS region, so for the solution i and the wavelength
Jj according to the Lambert—Beer law the measured absorbance is done by Eq. (3):
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where &, ; are the molar absorption coefficients of the species H,L which are characteristic for the wavelength j
and spectrophotometric path equal to one,

n. is the number of species in the solution.

Thus the values A;j form the absorbance matrix A of the dimension 7 vs. n,, (i.e. the number of solutions with
different pH values vs. the number of wavelengths). The aim of analysis of the spectral matrix is to determine the
chemical model of the solution, i.e. to determine stoichiometric coefficients, protonation constants, molar absorption
coefficients, and free concentrations of all species. The analysis of multi-component spectra is carried out in the
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following way: for guessed values of protonation constants and molar absorption coefficients, the resulting absorbance
Acalc 1s calculated according to Eq. (3); and with the use of the least squares method by Eq. (4):
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is calculated the goodness of fit, i.e. the agreement between the calculated absorbances and the experimental
matrix. Then the method of non-linear regression transforms the fitted parameters so that the best goodness of fit is
obtained. At the same time, the concentrations of individual species are determined from the mass balance calculated
from the guessed protonation constants and the known overall concentrations of the components in the solution.

The stoichiometric coefficients, i.e. the composition of individual species in solution, could also be a part of
the optimized parameters, but their interdependence in the model is smaller as compared with that of the other fitted
parameters; therefore, they are taken as constants for the given calculation, and more than one calculation is carried
out with different stoichiometries. Finally, the most suitable model is selected on the basis of the quality of fit.

Components of Program

Checking of Data

The input of data is relatively complicated: it is necessary to formulate the suggested chemical model inclusive
of the guess of the overall protonation constants. The checking concerns the formal, logical as well as the physical
correctness of the model inclusive of the experimental values of spectrum. The stoichiometry of species and their
protonation constants are guessed either on the basis of earlier experience or are sought after in literature.

Inputs and Outputs of Program

With regard to the amount of input data, the program only works in batch regime. The extent and level of inputs
is controlled by one of the input parameters. The analysis of residua and the distribution diagrams of all species in the
individual solutions are printed besides the input data, the course and results of refinement of parameters.

Determination of Number of Components

An important tool in the finding of chemical model is the determination of number of components from the
experimental absorbance matrix. A number of mathematical procedures have been published; for a survey and their
comparison, see (Meloun et al. 2000). All these procedures have a common feature: application of factor analysis to
the absorbance matrix. Here, with the use of Cattel’s scree plot of eigenvalues of matrix calculated by various ways is
guessed the number of components. A classical procedure was formulated by Kankare (Kankare 1970): it starts from
the second moment M of the absorbance matrix A by Eq. (5):

1
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where n; is the the rank of absorbance matrix, i.e. number of solutions.
The eigenvalues r, of matrix M are used for determination of residual standard deviation of absorbance s;(A) by

Eq. (6):
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where tr(M) is the trace of matrix M and k is the number of latent variables, which is calculated for the resulting
error of absorbance s;(A) and represents the number of light-absorbing components.

Since data are always loaded with instrumental error, the value s;(A) for the component k is compared with
the instrumental error s;,,(A), which is known for the given measurement. In the graph, the standard deviation of
absorbance s (A) is plotted against the number of components, the solution being the number k, where the curve
exhibits a sharp turn — see Fig. (1).

Calculation of Free Concentrations

For the calculation of error square sum function according to Eq. (4), it is necessary to know the concentrations
of individual species in solution. For the guessed protonation constant and with known overall concentrations of
individual components, the roots of non-linear Eq. (2) are sought after by the Newton—Raphson method.
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Fig. 1. (a) The Cattel’s scree plot of the residual standard deviation of absorbance si(A) depending on the number of the light-absorbing
species for nine various levels of instrumental noise (b) The detail view on the Cattel’s scree plot enabling an evaluation from simulated
spectra of the actual instrumental standard deviation si,5 (A) for five components k = 5

Optimization of Parameters

Two different methods are used for refinement of parameters assessment. The first of them, MR (Multiple Re-
gression) uses the Gauss—Newton derivation method. The applied derivation method is fast and sufficiently precise;
however, with incorrect input of initial guess of parameters it can lead to divergence. The second method used, NNLS
(Non Negative Least Squares), uses penalization functions to correct the values of parameters with regard to their
physical meaning. However, this method does not provide much too good results; it can only be considered as auxil-
iary in looking after an unknown model. The values of the first derivatives with respect to parameters (Jacobi’s matrix)
are calculated numerically according to the symmetrical Lagrange formula, the chosen step being in the magnitude of
0.5 % of each parameter. With regard to the fact that we have the whole matrix of data, the derivatives are added along
the rows (i.e. over all the wavelengths). Besides the fitting of parameters, also calculated are the molar absorption
coefficients, which characterize the species color for each wavelength. If we know some of them (e.g., from spectra
of the pure components), it is suitable to input them: the calculation becomes easier and its quality improves.

Analysis of Residua

The method of non-linear regression has only limited possibilities for verification of quality of the found solu-
tion. Primary importance belongs to the physical significance of parameters (values of protonation constants): their
calculated errors from non-linear regression and the calculated free concentrations of individual species. The only tool
at our disposal for evaluation of quality of fit is the statistical analysis of residua; therefore, it must not be omitted in
any calculation. This is performed along the rows of absorbance matrix, i.e. over all the wavelengths. The calculation
concerns the central moments (arithmetic mean, standard deviation, skewness and kurtosis coefficients). Further cal-
culated characteristics are median (which should be equal to arithmetic mean for normal distribution of residua) and
Hamilton’s R—factor, which expresses the goodness of fit (Meloun and Militky 2004) by Eq. (7):

)

where y; are the measured values.

In the case of good fit, the R—factor should not exceed the error of measurement. Since Jacobi’s matrix is known
from previous calculations, it is possible to calculate besides classical residua also the standardized residua eg; and
JackKnife residua ey; , which indicate outliers points (Meloun and Militky 2004), defined by Eq. (8) and by Eq. (9):
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where s;) are standard deviations of individual points by Eq. (10)::
(10)
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and P; are the diagonal elements of projection matrix calculated from Jacobi’s matrix J by Eq. (11):

P=JuTn"r (11)

In conclusion of residua analysis, the individual characteristics for the whole absorbance matrix are summarized.
The most significant is considered to be R—factor; evaluation concerns the concordance of central moments with ideal
values and the magnitude of median. It is astounding that a number of renowned commercial algorithms do not contain
the residua analysis at all: hence, the user has no possibility to evaluate competently the course of calculation and the
results obtained (Gampp et al. 2004).

Simulation of Data

Analysis of spectra represents a relatively complicated set of procedures, which needs to be tested and verified
from the standpoint of calculation quality. The most effective procedure lies in the possibility of generating synthetic
data. Precise absorbance values are calculated for given values of protonation constants and molar absorption coeffi-
cients, and these absorbance values are loaded with errors having normal distribution according to the chosen error of
measurement s;,5;. The data are then processed like experimental data. The aim is to compare the calculation results
with pre-chosen parameter values. Apart from testing the algorithm itself, we also can study the behavior of variously
modified experimental models. The basic condition of such procedure is the real normality of the error set used for
loading the generated data. The data simulation also enables generation of random errors of chosen magnitude, which
simulates various instrumental errors of measurement, i.e. the precision of measuring instrument. Besides that, this
provides a reliable platform for comparison of different algorithms.

Distribution Diagrams

For the evaluation of suitability of suggested chemical model of the analyzed mixture, it is important to construct
the distribution diagrams, i.e. the dependence of concentrations of the species present upon changing conditions, in
this case changing pH. In this case it is sufficient to have only the graphical representation of the earlier calculated
free concentrations of all individual species at individual pH values over all wavelengths. The solutions are compared
for a selected wavelength. The concentrations below 5 % are usually neglected: the respective species is considered
to have no physico-chemical importance.

Experimental Data

For the test system we chose the trivalent equilibrium of significant cytostatic methotrexate. For more detailed
characterization of the substance and experimental conditions, see http://en.wikipedia.org/wiki/Methotrexate,
(Meloun et al. 2010). For input of experimental data into SQUAD(84) program, see http://meloun.upce.cz/
docs/datasets/261/squadin.txt. The system is complicated by the fact that the equilibriums are close to each
other, i.e. the protonation constants of individual steps are close and cannot be differentiated in the classical de-
pendences of absorbance upon pH (see Fig. (2)). The form of absorption spectrum is presented in Fig. (3), and the
absorbance response plane in Fig. (4). The spectrum was measured for 17 values of pH and 32 values of wavelength.
The measurement conditions and results of evaluation of experimental data are described in detail elsewhere (Meloun
et al. 2010).

This model, inclusive of the protonation constants, wavelength range, concentrations of components, and the
found values of molar absorption coefficients of methotrexate was taken as a basis for verification of quality of the
calculations performed by means of the SQUAD(84) program. The values of protonation constants found by analysis
of experimental data (Meloun et al. 2010) are pK;3 = 3.086; pK|» = 4.403; pK;| = 5.675; the difference between
the second and the third protonation step is 1.2 of pH unit; these are near equilibriums. For testing the program, we
selected a number of values of instrumental errors for generating the simulated data: s;,,; = 1.0E-8, 0.0001, 0.0004,
0.0008, 0.001.

Tab. (1) shows that the determination of parameters of chemical model is reliable and corresponds to instrumental
error of input data. This is best seen on the resulting standard deviation of absorbance s(A), which never exceeds the
value s;,;. However, a problem is encountered in the case of determination of the first dissociation constant, because
the range of pH from 3.332 to 6.499 does not sufficiently cover the needed area. The value of the first constant as well
as its error are markedly worsened with increasing instrumental error. Therefore, the data matrix was extended to the
range of pH from 2.665 to 6.499. The results are presented in Tab. (2).

The trend in improvement of fitting of values of protonation constants is univocal. The residua characteristics for
both data matrices are comparable; the only problem appears in insufficient normality of the generated errors which are
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Tab. 1. Results of analysis of spectra generated for various values of instrumental error sing (17 solutions, 32 wavelengths)

Sinst 1.00E-08 1.00E-4 4.00E-4 8.00E-4 1.00E-3
pKi3 3.0841 3.1163 3.1922 3.2260 3.2395
pKi2 4.4039 4.4215 4.4821 4.5185 4.5367
PKi1 5.6750 5.6768 5.6847 5.6900 5.6931
s(pKi3) 0.0041 0.0243 0.1031 0.1494 0.1754
s(pKi2) 0.0015 0.0097 0.0483 0.0756 0.0919
s(pK11) 0.0001 0.0009 0.0051 0.0087 0.0110
s(A) 0.000150 9.63E-05 4.71E-04 7.55E-04 9.44E-04
Analysis of Residua
Arithmetic mean -1.4920E-15 | -1.0670E-16 | -1.0930E-16 | -1.4730E-16 | -9.6320E-17
Median -9.2710E-10 | -4.1220E-09 | -2.7410E-08 | -3.3990E-08 | -4.2850E-08
Average residuum 3.0700E-06 | 6.4360E-05 | 3.1750E-04 | 5.0790E-04 | 6.3490E-04
Standard deviation 1.5520E-05 | 9.6290E-05 | 4.7140E-04 | 7.5470E-04 | 9.4370E-04
Skewness -2.8760E-01 | 3.2640E-02 | 1.3750E-O1 | 1.3690E-O1 | 1.3610E-01
Kurtosis 1.3300E+02 | 2.7620E+00 | 2.6430E+00 | 2.6420E+00 | 2.6420E+00
Resid. sum of squar. | 9.9420E-08 | 3.8290E-06 | 9.1790E-05 | 2.3520E-04 | 3.6780E-04
R-factor 3.0040E-05 | 1.8650E-04 | 9.1290E-04 | 1.4610E-03 | 1.8280E-03

Tab. 2. Results of analysis of spectra generated for various values

of instrumental error siyg (30 solutions, 32 wavelengths)

Sinst 1.00E-08 1.00E-4 4.00E-4 8.00E-4 1.00E-3
pKi3 3.0856 3.0843 3.0795 3.0751 3.0728
pKi2 4.4026 4.3989 4.3855 4.3754 4.3694
K1 5.6749 5.6746 5.6738 5.6730 5.6725
s(pK13) 0.0011 0.0069 0.0276 0.0547 0.0677
s(pKi2) 0.0007 0.0046 0.0185 0.0366 0.0453
s(pKi1) 0.0001 0.0005 0.0019 0.0037 0.0046
s(A) 1.47E-05 9.35E-05 3.76E-04 7.56E-04 9.45E-04
Analysis of Residua
Arithmetic mean -2.4710E-17 | -1.0670E-16 | -2.4900E-17 | 7.8170E-18 | -8.1900E-17
Median -5.4180E-10 | -4.1220E-09 | -1.7920E-08 | -3.1230E-08 | -3.8630E-08
Average residuum 3.6860E-06 | 6.4360E-05 | 2.7600E-04 | 5.5480E-04 | 6.9350E-04
Standard deviation 1.4650E-05 | 9.6290E-05 | 3.7610E-04 | 7.5570E-04 | 9.4470E-04
Skewness 1.2120E+00 | 3.2640E-02 | -1.1740E-02 | -5.7690E-03 | -5.7490E-03
Kurtosis 2.6380E+00 | 2.7620E+00 | 2.6910E+00 | 2.6770E+00 | 2.6770E+00
Resid. sum of squar. | 1.7800E-07 | 3.8290E-06 | 1.1730E-04 | 4.7340E-04 | 7.3980E-04
R-factor 3.0520E-05 | 1.8650E-04 | 7.8330E-04 | 1.5740E-03 | 1.9670E-03

used to load the calculated absorbance values. We failed to solve this problem; but in the whole context, its importance
seems to be negligible. It has to be noted here that the characteristics of residua are added along the rows, i.e. for all
the wavelengths. For the data loaded by virtually no error, the obtained results fully correspond with the pre-chosen
values, while the quality of determination is proportionately lowered with the error-loaded data. It can be concluded
that the processing of data is fully reliable; hence, the determination of parameters of chemical model is exclusively
given by experimental data quality.

Conclusion

Analysis of spectra represents a very useful tool in studies of chemical equilibriums, i.e. in determination of
chemical model of the given substance. Important factor is not only the composition of solution i.e. the content of
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individual species depending on pH change, but also (and foremost) correct determination of protonation constants,
which give us basic information about acid-base behavior of the substance. Collecting of experimental data is relatively
easy nowadays; available are sophisticated and highly precise spectrophotometers that measure absorbances to six
decimal places. Then the key role belongs to the evaluation proper — it is impossible to perform it without the computer
and corresponding algorithm. Literature describes a number of algorithms, out of which the SQUAD(84) program used
in our workplace was supplemented with a number of tools important for the user evaluating the quality of calculation.
It was also compared with other newer programs (see [4]): even here it provided quite comparable results.
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