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Abstract. Knowledge about the scaling properties of soil 1 Introduction
water storage is crucial in transferring locally measured fluc-
tuations to larger scales and vice-versa. Studies based ohhe spatial and temporal pattern of soil water storage is an
remotely sensed data have shown that the variability in surimportant input variable in assessing land-atmosphere in-
face soil water has clear scaling properties (i.e., statisticallyteractions, infiltration, recharge, and performance of engi-
self similar) over a wider range of spatial scales. However,neered covers. Water storage is also a key input in monitor-
the scaling property of soil water storage to a certain depth atng the soil water balance and validation of several models
a field scale is not well understood. The major challenges in(Rodriguez-lturbe et al., 1999). The variability in soil water
scaling analysis for soil water are the presence of localizedstorage is shown to be strongly related to topographic, ge-
trends and nonstationarities in the spatial series. The objec0logic, soil, and vegetation parameters (Braud et al., 1995;
tive of this study was to characterize scaling properties ofMoore et al., 1988). These physical factors and environmen-
soil water storage variability through multifractal detrended tal processes (rainfall, evapotranspiration, runoff, and snow
fluctuation analysis (MFDFA). A field experiment was con- Melt) do not operate independently, but as an ensemble of
ducted in a sub-humid climate at Alvena, Saskatchewanprocesses with acomplex and nested effects. This, inturn, re-
Canada. A north-south transect of 624-m long was estabsults in a pattern of soil water storage that varies as a function
lished on a rolling landscape. Soil water storage was moniOf spatial scale. Several studies have reported a scale depen-
tored weekly between 2002 and 2005 at 104 locations alonglent pattern and variability of soil water storage (Kachanoski
the transect. The spatial scaling property of the surface 0 t&nd de Jong, 1988; Gomez-Plaza et al., 2000; Kim and Bar-
40 cm depth was characterized using the MFDFA techniqug0s, 2002; Biswas and Si, 2011a).
for six of the soil water content series (all gravimetrically ~ In order to examine how information transfers from one
determined) representing soil water storage after snowmeliscale (e.g. pedon scale) to another (e.g. satellite image scale);
rainfall, and evapotranspiration. For the studied transectWe need the scaling characteristics of soil properties. Scal-
scaling properties of soil water storage are different betweenng analyses such as fractal and multifractal analyses require
drier periods and wet periods. It also appears that local conthe data series to be stationary. Hu et al. (1997, 1998) and
trols such as site topography and texture (that dominantlyRodriguez-iturbe et al. (1995) have characterized the appar-
control the pattern during wet states) results in multiscalingént disorder in spatial organization of soil moisture and re-
property. The nonlocal controls such as evapotranspiratiorported that the variance of soil moisture follows power law
results in the reduction of the degree of multiscaling and im-decay, typical of a scaling process. If such scaling laws are
provement in the simple scaling. Therefore, the scaling propfound to be appropriate in describing the fluctuation of soil
erty of soil water storage is a function of both soil moisture moisture over wider range of scales, then the characteriza-
status and the spatial extent considered. tion of soil moisture could be based on the theory of statisti-
cal self-similarity that provide linkage over a range of spatial
scales (Hu et al., 1998). However, these studies are based
on spatial scales (i.e., resolutions) of 380 n? and only
for the surface<5cm soil depth. Such information can be
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228 A. Biswas et al.: Multifractal detrended fluctuation analysis

utilized in specific land management practices and precisiordetailed characterization of the spatial statistics, nor does it
agriculture provided that the observed scaling law holds atremove nonstationarities (Liebovitch et al., 2002; Koscielny-
a field scale and to a deeper soil depth. This will also operBunde et al., 2006). Similar to the wavelet transform (Mallat,
a window of opportunity during aggregation of point mea- 1999), the WTMM is easily applied to binary observations
surements and disaggregation of remotely sensed data (Lirfi.e.,n = 2, wheren = number of observations and 1, 2, 3,
2003). However, a priori assumption of similarity in scaling 4...) for its computational simplicity and to minimize “edge
laws between the fluctuations in the remotely sensed largeffects” (Mallat and Hwang, 1992;&Wiecimka et al., 2005).
scale and small field scale soil water storage data could be effhe DFA, on the other hand, is more computationally simple,
roneous owing to the increased importance of localized facstraight forward and flexible technique and does not depend
tors as the resolution increases and need separate treatmerdn any specific number of observations (e.g., binary obser-
Spatial variability includes spatial trends (non-stationary) vations) given it covers the scales of interest (Kantelhardt
and fluctuations (stationary). Several studies have indicate@t al., 2002; Gwigecimka et al., 2005; Koscielny-Bunde et
that non stationarities introduce superficial scaling featuresal., 2006). Integration of the data series reduces outliers that
(Bhattacharaya et al., 1983; Koscielny-Bunde et al., 2006)usually exist in spatial data whereas the detrending proce-
Such scaling features are not intrinsic to the variables undedure reduces the effect of nonstationarities. The DFA tech-
study because they are artifacts of erroneously treating nomique, originally developed for monofractal variables, has
stationary fields as stationary. Nor do they reflect the actuabeen extended to accommodate analysis of scaling hetero-
in situ fluctuation that is the result of numerous co-existing geneity through multifractal detrended fluctuation analysis
and interacting factors and processes, and hence, scale trar(8FDFA; Kantelhardt et al., 2002). This development was
formations based on such relationships could be erroneouschieved through modification of the traditional Hurst func-
To remove the undue influence of the larger scale trends otion, H into a generalized functioti,(q) so that moments of
the scaling properties at a scale of interest, there is a need wifferent ordes can be evaluated. A detailed comparison be-
identify the intrinsic scaling property of the fluctuation in soil tween WTMM and MFDFA can be found in Kantelhardt et
water storage at a field scale that results from interaction ofl. (2002).
all the underlying processes. Also there is a need to evaluate For improved modeling or prediction of soil water distri-
the presence as well as extent of spatial scales with a partidsution we need to understand its response to these numer-
ular scaling property. Such analysis is useful in defining theous factors and processes than just to a single extrinsic fac-
spatial extent over which simple scaling up of point observa-tor that introduces monotonous trend. The presence of such
tions is possible as well as predicting soil water based on theérend can obscure the scaling property of the series that re-
observed scaling laws. flects both local and global processes. It is also important
Soil water distribution within heterogeneous fields is often to minimize the effect of measurement artifacts that intro-
complex owing to the numerous physical factors and pro-duce outliers or noise that could be easily propagated during
cesses controlling its spatial and temporal variability. Theupscaling of observations. The DFA is a noble tool that han-
large scale processes results in long-range correlations, wittlles these problems so that final output reflects the effect of
an autocorrelation (two-point correlation) function decaying the suite of processes on soil water distribution. The DFA
slowly with increase in separation distance. If the two-pointtechnique has been successfully applied for scaling studies
correlation function decays as a power-law, we have a scalef nonstationary series in climatology (Kurnaz, 2004; Ki-
ing phenomenon. The power spectruhif), which is the  raly and Janosi, 2005), river runoff (Koscielny-Bunde et al.,
Fourier transformation of the correlation function, will also 2006), financial series (Grau-Carles, 2001), and biomedicine
be a power-law functionP (f) = f~¢, where f is the fre-  (Peng et al., 1992). However, to the best of our knowledge,
quency ande is the scaling exponent. However, the two- this noble technique has not been applied in characterization
point correlation function may not be the best way to char-of scaling properties of soil water storage. Utilizing this no-
acterize the long-range correlation, because it does not takkle technique, we will explore scaling properties of soil water
into account of the structures in between two points, and itstorage under field conditions. The specific questions we will
does not measure correlation between two units larger thaaddress: (i) Are there simple scaling (monofractal type) and
a point. As the long-range correlation is very common in multiscaling (multifractal type) characteristics in the spatial
nature, engineering, and medicine, many methods have beeatorrelations of soil water storage? (ii) Is there any change in
developed to analyze the scaling property in the long-rangehe scaling pattern with the change in climatic processes?
correlation. Proven methods that remove nonstationarities
from the data series include the Hurst rescaled-range anal-
ysis (Hurst, 1951), the wavelet transform modulus maxima
(WTMM; Arneodo et al., 2002; Zeleke and Si, 2007), and
the detrended fluctuation analysis (DFA) (Peng et al., 1992,
1994). The Hurst re-scaled range analysis is based only on
the first moment of the series and hence does not provide the
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2 Theory exponent. ThusFp(s) is approximated by taking the loga-

rithmic average as,
2.1 Scaling analysis based on the detrended

fluctuation series 1 2N

Fo(s) = exp{ N ZIn[F(s, v)]}
The DFA for a one dimensional data series can be described =1

as follows. LetX; be a data series of lengti with a com-  Repeating the above procedure for several length scales, a re-
pact support (=1, 2,---, N). The integrated series or the |ationship can be developed between the fluctuation function

profile at locationi, Y (i), is determined by taking the sum and the segment length. Typicall§, (s) will increase with
of deviations from the mean value (Kantelhardt et al., 2002;increase in scale. If the Seriesxi has a |0ng range power

®)

Telesca et al., 2004) i.e., law correlation F, (s) increases with increase iras a power
; law
Y(@i)= Xr— (X 1 =1,2,---,N 1
(l) kzzl( k < ))7 14 y & ’ ( ) Fq(s) O(Sh(q) (6)

where(X) is the mean value of the series fdrobservations.  whereh(g) is the generalized Hurst scaling function (Telesca

The integrated serie¥ (i) is then divided intoN, non- et al., 2004). Fog = 2 we have the standard DFA analysis.
overlapping segments of equal size Since the lengthv In this case, the scaling exponér{2) provides information
of the series may not be a multiple gfan unequal and short about the average fluctuation of the series. The series can
part (< s) of the profile may left at the end. In order not be categorized into one of the following three types depend-
to disregard this part of the series, the same procedure is réng on thei(2) value. These are: (i) & 2(2) < 0.5 for an
peated starting from the other end. Thu&/y; Zegments are anti-persistent type long range correlated process where large
obtained altogether. Then the local trend for each of thig 2 values (compared to the average) are more likely followed
segments is calculated by a least squares fit of a polynomidby small values and vice versa, (4j2) = 0.5 for an entirely
function. random uncorrelated distribution, and (iii) 05 4(2) < 1

The mean squared difference between the seriggland  for a persistent and long range correlated process where large
the ordinate of the fitted polynomiay(i)] is calculated as  values are more likely to be followed by large values and vice

Lo versa.
B 12

Fls.v)= E;{Y((v ~Ds+D =y ®) 2) 2.2 Scaling heterogeneity (multifractality) of the

detrended fluctuation series
Note that the indices andv correspond to the original data

points and the segments of sigerespectively. The& (s, v) The link between the generalized fluctuation function and the
is used to calculate the fluctuation functions as follows. Thestandard box counting formalism of multifractal analysis is
standard fluctuation functiorf,(s) is calculated as a square also a straight forward one (Kantelhardt et al., 2002). For a
root of the average aof (s, v) over all the segments of size  normalized seriex}, the mass distribution probability in the

ie., v-th segment of size unit, P;(v), can be calculated as
1|2 _ o\ _
Fals) = S FGs,v) @ PO= ) Xe=Y(s)-Yl(v-1ys] ™
2N, = k=(—1)s+1

The standard fluctuation function is based on the variance € mass scaling function(g) is then defined via the parti-
(second order moment) of the fluctuation of observed valued!on functionu(q,s) as,

relative to fitted polynomial trends. The fluctuation function NJs
can be extended to include higher order mpments«fsay— w(g,s)= Z“DS (5)]9 ocsT@ (8)
ues) to analyze the scaling property of different ranges of =1

fluctuations, and also the detrending polynomyglcan take

any order (linear, quadratic, cubic, etc.). The generalized Thel_ma?s sc_aling functio}g s reILateOclJl to tr:e ggggralized Hurst
fluctuation function F, (s) is thus defined as scaling functionf(¢) as (Kantelhardt et al., )
2N, 1q t(@)=qh(q)—1 . ©)
2
Fq(s) = {ZN; Zl[F@’v)]"/ } (4)  Arecent study by Yu et al. (2011) questioned about the va-

lidity of this relationship. The authors examined the rela-
where the variablg can take any real value except zero. In tionship over a range of traditional Hurst functioH, and
the case wherg is zero, the fluctuation function cannot be claimed that the relationship does not hold far< 0.3.
determined directly from Eq. (4) because of the divergingHowever, largeH values still holds the relationship and
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therefore needs more in-depth and rigorous testing of the proall the processes determining the spatial pattern of the vari-

posed relationship, able. Secondly, the integrated profile was divided into seg-
, ments and regression lines were fitted to each of these seg-
(@) =qh(@)—qH -1 (10)  ments (window). When the fitted trends are removed, what

where H' is the non-conservation parameter in the univer-€Mainsis a fluctuation function, which is the difference be-

sal multifractal formalism. Therefore, in this manuscript we Ween the integrated series and its best fit regression line at

have used the well established relationship betwagnand & given window size. This function contains all the local as
h(q) proposed by Kantelhardt et al. (2002). well as global feature of the data series which is free from

nonstationarities. Thirdly, the size of the segment (the win-

) dow) was continuously varied later on; i.e., during the scaling

analysis. At this step, it is important to note that the scaling

fl@)=qga—1(q) (12) property is determined by relating the fluctuation function to
) _ . several window sizes (Eq. 6). These points clearly show that
where is a singularity strength or&lder exponentand ob- e DFA procedure does not exclude any process that deter-

tained numerically as the first derivative of thy) function  mine the hydrology of the system:; rather transform resulting
with respect ta;. Hencef («)denotes the dimension of the (5 series into a fluctuation function where the effect of non-

subset of the ser_ies that is Characterizedtklf_yerefore,f (@) stationarities is significantly reduced. Thus, in essence, the
can be used during the multifractal analysis for conveniencegy,in, advantage of the DFA method is that it allows detection

and ease of interpretation_ once the serie_s is normali;ed, intess scaling property of a physical variable that is embedded
grated, and detrended using the appropriate detrending polyy, 5 nojsy data or containing monotonous polynomial trends

nomial. , _ _ _ that can mask true fluctuations of the series.
Schertzer and Lovejoy (1987) derived a universal multi-

fractal (UM) model based in certain reasonable assumptions
about the mechanism generating multifractals. The criticalz \1aterial and methods
assumption was that the underlying generator is a random

variable with anexponentiated extremalély distribution e study site is located in a sub-humid climate at Alvena,

(Zeleke and Si, 2006). The UM model can describedfs®  gaskatchewan, Canada. The geographical location of Alvena
function u_nder the assumption of conservation of mean valugg 444N |atitude and 10735W longitude. The site has
of the variable. rolling topography (locally referred to as a hummocky ter-
B a,C__ll(qa’ —9) o £1 rain) with a dominant soil type of.an Aridic Ustoll (US Soil
@)= 21 log(q) o =1 (12)  Taxonomy). The surface texture is loam to clay loam. Long
' term mean annual air temperature is Z2and precipitation

where o’ (commonly known agévyindex) indicates the de- is 350 mm. The potential evapotranspiration is 624 mmntyr
gree of multifractality based on the deviationtg#) function resulting often in a water deficit of more than 250 mmyr
from a monofractal type of scaling (UM model) (Seuront et A north-south transect of 624 m length was established in
al., 1999) and”1 indicates the co-dimension between obser-2001 and soil water storage have been monitored at 104 lo-
vation space and fractal dimension. cations (at 6 m regular intervals) at several times (more than

Nonstationarity is a common aspect of complex variability 30 series) using gravimetric and capacitance probes. For this
and is often be associated with different trends in the data separticular study, six series of soil water storage data (between
ries or patches with different local statistical properties (Kan-2002 and 2005) of the surface 0 to 40 cm depth was selected.
telhardt et al., 2001). The DFA approach described abovelo reduce edge effect, only 93 locations were selected for
reduces the effect of such nonstationarities on scaling propthe data analysis. Six water storage series were selected
erty of a variable. The reason for detrending analysis is tobased on their representativeness of the dominant climatic
remove the undue influence of larger (than the scale of interprocesses of the area that determine soil water storage pat-
est) scale on the statistics of soil water at the scale. At smaltern (snow melt, rainfall, and evapotranspiration) and mea-
scale, we remove trends of small scale; at large scale, we resurement methods used (only gravimetrically measured data
move only large scale trend and small scale trend remainsyas used for better accuracy). These were 14 August 2002,
because the small scale trends do not affect the scaling pro4 September 2002, 23 May 2003, 23 October 2003, 1 Au-
erties at a large scale. Therefore, we do not lose any critigust 2004, and 30 May 2005. This manuscript focuses on
cal information in soil water content. This is evident from scaling properties for soil water storage patterns of the top
the following three key aspects of the method. Firstly, the0 to 40cm depth. Changing spatial scale, as used in here,
original series (i.e., as determined by all hydrological pro- refers to varying the number of discrete data points (of fixed
cesses) is integrated into a continuous profile by summingspacing) used in deriving the mean value. This can also be
up the deviations from the mean value (see Egs. 1 and 2). Imeferred to as “coarse graining” of discrete samples, and in-
other words, the integrated profile of the series is the result otegrates the concept of both support and spacing described in

The singularity spectrum of a multifractal measuféy),
is related tor (¢) via a Legendre transform as (Feder, 1988
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Western and Rischl (1999). For instance, taking the mean calendar years of 2002 and 2004 was generally higher than
value of four consecutive discrete samples that are initiallythe long term average precipitation of the area and these
spaced 3m apart is equivalent to increasing the scale fronyears are regarded as wet years. However, high soil water
3m to 12m. |In this transform both the spacing and sup-storage was observed only in May 2003 and 2005. The ob-
port are upscaled. In other words, we are increasing bottserved high soil water in the two series compared to others
the spacing and support (i.e., making a practical assumptiomppears to be the result of relatively high snow fall in the
that the mean value is representative of the length within thenonths preceding the measurements and gradual melting of
spacing). snow where downward infiltration significantly exceeds run
Water content was measured following the standard gravi-off. Water storage during all the occasions were negatively
metric technique (Gardner, 1986). The core samples wereorrelated £2 = 0.18 to 0.40; significant ap = 0.01) to rel-
collected from each measurement locations using a 5 cm (inative elevation (RE) as expected (Table 1). The relationship
ternal) diameter sampler that was vertically mounted on ato clay content (CL) was significant{= 0.22, 0.15, and
truck with a hydraulic system. The undisturbed core sample®.14; significant ap = 0.01) only for measurements taken
were sliced into 10 cm increments and placed in a plastic bagn August 2002, September 2003, and August 2004. The
for oven drying. The mass based water content is determineslariance in May 2003 and 2005 were higher than the other
as mass difference between the wet and oven-dry samples diour series and appear to be caused by non uniform snow re-
vided by the sampling volume. The bulk density of the sam-distribution and runoff related spatial variations. Although
ple is determined as the oven dry mass of the soil sample dithere were some significant & 0.01) positive relationships
vided by the sampling volume. The volumetric equivalent of to CL, the distribution of water storage was dominantly con-
the gravimetric water content of the samples was determinedrolled by RE. Consequently, there were systematic and lo-
by multiplying the mass based water content with bulk den-calized trends in the spatial distribution of water storage at
sity. Mean values of four core samples, taken at 10 cm verti-all scales that follows the landscape pattern. Prior to scal-
cal intervals, was used to obtain a data point representing thing property analysis, nonstationarities due to such localized
surface 0 to 40 cm depth. Soil water storage in the root zondrends have to be removed (or minimized) through transfer-
is critical to plant productivity. The top 60 cm have majority ring the series into its fluctuation function. To this end, iden-
of roots. However, soil water content at depth determined ustifying the correct order of the detrending polynomial is the
ing gravimetric methods may not be accurate because of thinitial step.
potential compaction when a punch truck is used to extract As shown in Fig. 1 both topography and clay have lin-
soil cores in the clay soil. Our experience in this field sug-ear and higher order trends (trends that can be represented
gested that 40 cm depth is free of observable compaction anlly linear lines and higher order polynomials). These trends
therefore, we chose 40 cm. are also reflected in soil water storage series. Therefore,
Particle size distribution of the soil samples were deter-the fluctuation functions after different detrending polyno-
mined from the first measurement sets using the hydromemials needs to be examined for remaining trends and noise
ter method (Gee and Bauder, 1986). Organic carbon conteriil & data prior to scaling analyses. To this effect, differ-
was determined using LECO-12 carbon determinator (LECCOent order of detrending were evaluated like linear (DFA1),
Corporation, St. Joseph, MI). Relative elevation along thequadratic (DFA2), cubic (DFA3), and fourth order (DFA4)
transect was determined using a Laser Theodolite Total Stapolynomial. The coefficients of determination (for linear fits)
tion (Sokkisha Electronic Total Station, Set 5, Sokkisha, of the double log plots of the fluctuation functions vs. seg-
Tokyo, Japan). Both the DFA and MFDFA analysis were per-ment sizes of successive detrending polynomial orders were
formed using programs written in Mathcad Professional (ver-compared. The comparison continued until the difference
sion 12, Mathsoft Inc., Cambridge, MA, 2002) and Statistical between the trends in the fluctuation functions of two suc-
Analyses Software- SAS Version 8 (SAS Institute Inc., Cary, cessive orders is insignificant. The significance between dif-
NC). ferent orders of polynomials was tested using “studehts
test by comparing the means between each consecutive de-
trending functions. For our data, there were significant dif-

4 Results and discussions ferences between the original data and the first order (linear)
detrending function (based on Studentest result). There

4.1 Water storage series and order of detrending were no significant difference between first (linear) and sec-

polynomials ond (quadratic) order of detrending, and hence the first or-

der (DFAL) was selected as the best detrending polynomial
Figure 1 shows the spatial distribution of soil water storagefunction to obtain a stationary series for scaling analysis. In
at six occasions, two soil properties (clay and organic car-general, though the increasing order of the detrending poly-
bon) and one topographic variable (relative elevation). Thenomials enables us to remove considerable portion of exist-
monthly mean precipitation values for the years 2002 to 2004ng nonstationarities, the significance between two orders of
are shown in Fig. 2. The total precipitation received in the detrending help us to select the order. There is also a concern
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Table 1. Mean and standard deviation of soil water storage at the Alvena site during six observation dates and relationships to relative
elevations (RE), organic carbon (OC), and clay content (CL).

Date of Measurement  Mean (cm per 40 cm soil) r2 (n=93)
RE ocC CL

14 Aug. 2002 10.07(1.3% 0.409 0.10 0.259
13 Sep. 2002 11.03(1.57) 088 0.03 0.1%?
23 May 2003 14.71(2.18) 048 o0.03 0.07
23 Oct. 1003 10.67(1.79) 0.8 0.05 0.09
1 Aug. 2004 10.52(1.75) 0.5 0.03 0.149
30 May 2005 17.09(2.45) 0.8 0.269 0.02

@ significant atp = 0.01, ® Standard deviation

about altering the intrinsic pattern of the series if the orderTable 2. Sum or Squared difference of Residuals betweer (ag

of the detrending polynomial is too high (Kantelhardt et al., of the data and the simulated monofractal type distribution using
2001). Bunde et al. (2002) reported that results are reliable;v model for the soil water storage of six observation dates.

only for certain orders, above which DFA yield the same type
of behavior. Since the first order polynomial successfully re-
moved majority of existing trends in our water storage data,
itis reasonable to assume that the majority of the trends were

SSR Differences in variance )
(p=0.01, df =39

Water storage series

of linear orders. Consequently, further scaling analysis was 12 gzg' ;88; 6577%9316 SSSS
carried out using the first order detrended data series. 23 May 2003 1392.00 3s
) . 23 Oct. 2003 587.26 SS

4.2 Evaluation of the DFA for scaling property 1 Aug. 2004 53518 ss
30 May 2005 1094.00 SS

The standard fluctuation function (DFA2) was evaluated for
power law relationships between fluctuations and scale. Th@sr=sum or Squared difference of Residuals between eof the data and the
fluctuations for all water storage series showed an almost exsimulated mgnofra(_:tal type distribution using.UM model, SS = a significant difference
. . . . p <0.01) using Chl—square)((z) goodness of fit test between thg;) of the data and

act p_oyver law mcreas_e W_Ith obseryatlon _SC<’:1|ES (Flg' 3)' Théhe simulated model data, df = degrees of freedom useg&statistics evaluation, and
coefficients of determination for a linear fit of the double-log p = probability.
plots of the series were between 0.99 and 108 21). Such
power law relationships indicate the presence of scaling laws
(Hu et al., 1997). chi-square test for goodness of fit gat= 0.01) indicate that
all the soil water storage series are multifractal in nature as
the mass exponent curve is quite different from the simulated
monofractal type of scaling (Zeleke and Si, 2006). The sum
The scaling analysis presented above is based only on thef squared difference of residuals (SSR) of mass exponents
second order moment or the variance of the fluctuation func-and simulated monofractal type of scaling are summarized in
tion (i.e.,g = 2). Butin most physical and biological data the Table 2. The SSR value for the soil water storage data series
scaling property of low and high values (relative to the aver-of 23 May 2003 and 30 May 2005 is way larger than the rest
age) is often different. Such observations imply the need forof the measurements indicating higher degree of multifrac-
multifractal analysis in which the scaling property is repre- tality compare to other measurements. The high precipita-
sented by an array of scaling exponents rather than by a sirtion during the year of 2002 and 2004 led to high soil water
gle one. To this end, the scaling analysis has been extendestorage. The post snow melt period as controlled by the sev-
by including higher and lower order momengsvalues), i.e.,  eral local and non-local controlling factors (Grayson et al.,
in multifractal analysis (Egs. 8, 9, and 11). 1997) affected the spatial distribution of soil water storage

Mass exponents(g) were derived from the fluctuation making it more heterogeneous in nature. With time, heavy
functions forg values between-20 and 20 and plotted demand of evapotranspiration by plant community reduces
against they values (Fig. 4). A linear reference line (similar this heterogeneity and the degree of multifractality towards
to monofractal type of scaling) (Fig. 4) was created following fall season.
the UM model of Schertzer and Lovejoy (1987) to compare The slope of ther(¢) plots of water storage series were
and characterize the observed scaling properties (Eq. 12). Aneasured in two cases; a singlg £ —20 to 20) and

4.3 Multifractal analysis
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Fig. 3. Double — logarithmic plots of the standard fluctuation functions fitted to linear equation. In order to avoid overlapping of the plots
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Fig. 5. The multifractal spectra of the water storage selges{20

Fig. 4. The mass exponents of the six soil water storage seyies ( to 20 at 1.0 increments)

—20 to 20 at 1.0 increments). The solid line is a linear reference
created following the UM model of Schertzer and Lovejoy (1987)
passing throughi (¢ = 0).
gree of multifractality. The slope difference between seg-
mented fractions of the(q) function of soil water storage are
segmentedg = —20 to 0 andg =0 to 20) and summarized 1.03and 0.95 respectively for 23 May 2003 and 30 May 2005
in Table 3. Statistical significance of the difference betweenindicating a higher degree of multifractality in their scaling
the variances under these two cases was evaluated using tREoperties compare to the rest of the observations. These
F statistics (Press et al., 1992). The difference between th&onlinear functions have convex downward facing plots, with
variances under these two cases (single and segmented) wi degree of convexity reflecting the level of heterogeneity
Signiﬁcant (D — 001)’ |mp|y|ng that tha—(q) functions were in Scaling exponents. The 23 May 2003 series has the h|gh'
significantly different from a linear function. A nonlinear est heterogeneity in scaling indicating the highest degree of
7(¢) function means multiple scaling (Evertsz and Mandel- multifractality.
brot, 1992; Olsson and Niemczynowicz, 1996), which re- In order to study the local scaling patterns, the multifractal
quires a hierarchy of scaling exponents (multiscaling) in or-spectrum [ (g) vs. a(g)] of six water storage series were
der to accurately represent the scaling property. The degreealculated and presented in Fig. 5. The wider the spec-
of non-linearity oft(g) function can give idea about the de- trum (i.e., the higher themax-amin value), the higher is the
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Table 3. Slope of the mass exponent functiar(g|) of the water storage series and their standard deviations.

Water storage series  Single fit (2@ <20) Segmented fit Differences in variance
(p=0.01,df=39)

—20=<g=<0 0=g¢=20

14 Aug. 2002 0.94 (0.00) 1.31(0.00)  0.54(0.00) SI
14 Sep. 2002 0.77 (0.00) 1.03(0.00)  0.50 (0.00) SI
23 May 2003 1.17 (0.01) 1.69 (0.00)  0.66 (0.00) SI
23 Oct. 2003 1.03 (0.00) 1.40(0.00)  0.67 (0.00) SI
1 Aug. 2004 1.07 (0.00) 1.39(0.00)  0.74(0.00) SI
30 May 2005 1.06 (0.01) 1.56 (0.00)  0.60 (0.00) SI

S| =Significant difference between the variances during single line fit (reduced model) and the segmented fit (full model), df = degrees of freedamatasstifts evaluation,
and p = probability.

heterogeneity in local scaling indices of the variable and viceright of the maximumf (¢) value, which is a characteristic
versa. The height of the spectrurfiig), corresponds to the of multifractal measure. Note that the right side of the spec-
dimension (frequency distribution) of these scaling indices.trum corresponds to lower data values that are amplified by
Low f(g) values correspond to rare events (extreme valuesiegativeg values, and hence the right skewed feature is the
in the distribution), whereas the highest valuefa@f) is the  result of more heterogeneity in the distribution of lower data
capacity dimension, which is obtained by assuming uniformvalues.

distribution in all the segments. The spectra for the May 2002 There are two sources of multifractality in time or spatial
have the widest range of value @max—amin =1.05) indi-  series as described in Kantelhardt et al. (2002). These are
cating the most heterogeneous scaling indices or possibilityjye to broad probability density distribution (long tailings)

of multiscaling. The spectra for the 30 May 2005 has alsoand differences in autocorrelation types. The multifractality
similar range ot value ¢max—amin=0.95) indicating mul-  ghserved in the water storage series appears to be the result
tiscaling nature. The difference in microclimate, for exam- of differences in the autocorrelation types for the small and
ple the difference in slope, concavities, soil texture, organiqarge fluctuations. For the 23 May 2003 and 30 May 2005
carbon content or the catchment area (Grayson et al., 199%Qeries, the spatial variation in fractal dimensions is very high
affected the distribution of water during snowmelt period re- (Figs. 4 and 5) and, therefore, can be represented as multiple
sulted in the variability of soil water storage. The explanationscaling pattern. The spatial variation in the fractal dimension
of this scaling property requires numerous dimensions indi-gradually decreased over time. As discussed in the previ-
cating multifractal nature of scaling. The high demand of gys sections, this series is unique in that it is the result of a
evapotranspiration leading to a uniform drying process ovefyniform drying process (evapotranspiration) and the variabil-
time substantially reduces the variability of soil water storageijty (compared to the May series in the same year) was sub-
pattern as indicated by th@mnax—amin value of 0.75, 0.65,  stantially reduced. Note that it is not possible to tell the dif-
and 0.55 for 14 August 2002, 1 August 2004 and 14 Septemferences between the May series with the other series based
ber 2002 respectively. The gradual decrease whlue over  only on simple statistics such as mean and variance of the
time indicates the reduction in the degree of multifractality. gistribution. However, removal of nonstationarities and the
The reduction in the variability or the increase in uniformity sypsequent scaling analysis showed the actual similarity and
of soil water Storage leads to the Scaling property Simple. Tthifferences in terms of Spatia| Sca"ng property.

amax—amin Value for 23 October 2003 is 0.70, which is a bit The above results suggest that in any watersheds with sig-

_h|ghertthan ;[he _cl)thetr sertles of S'm'ﬁr;'me' T_h'ts ;ngltlsc;]l- nificant topographic variations, the scaling property of soil
Ing nature of soif water storage might have existed from e, ,q, storage pattern may be different during dry and wet
higher precipitation during the year of 2002.

periods. The scaling property is determined by the number,
The scaling dimensions for 23 May 2003 and 30 May 2005type, and spatial extent of processes controlling soil water
series vary from 0.65 to 1.70 and 0.60 to 1.55 respectivelydynamics. During spring snow melt and after summer rain-
which means that the representation of the scaling propertgtorms, the spatial distribution of soil water is determined by
of these variables requires numerous dimensions whose vakeveral local and non local controls including slope, concav-
ues are bound between 0.6 and 1.7; however that of otheities, soil texture, organic carbon content, catchment area,
series requires 0.55 to 1.3, 0.75 to 1.4, 0.5 to 1.05, andand subsurface lateral flow (Grayson et al., 1997). Conse-
0.7 to 1.4 respectively for 14 August 2002, 1 August 2004, quently, during these periods, the scaling property in soil
14 September 2002, and 23 October 2003. The spectra ofiater storage pattern becomes more heterogeneous (i.e., both
both May (2003 and 2005) series has slight longer tail to theas a function of scale and location within the landscape)
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resulting in a multifractal type distribution than during the scaling property of soil water storage. The results showed
drier periods. Based on a study using remotely sensed (larga multiscaling property (multifractal type) over the entire
scale) soil water data in sub humid environment of Okla-scales for all soil water storage series. The degree of mul-
homa, Kim and Barros (2002) also reported multifractality tifractality changes with the change in climatic processes.
in soil water storage as a result of temporal evolution in wet-The highest scaling heterogeneity (multifractality) was ob-
ting and drying regimes. The authors reported multifractalserved for the series in May (i.e., after spring snowmelt or in
nature of soil water distribution at-scale range<€10km)  wet period). This scaling heterogeneity gradually decreases
as well as aB-scale rangex 10 km), which exhibited multi-  over time showing a simpler scaling law towards the end of
fractal to noise type scaling when the soil moisture levels arefall season (drier period). This multifractal scaling nature
lower than field capacity (Kim and Barros, 2002). However, is mainly due to the heterogeneity in soil water storage pat-
Mascaro et al. (2010) reported a multifractal scaling of soil tern as affected by the micro climate during post snowmelt
water distribution at all domains in wet conditions using re- period. The high demand of evapotranspiration results in a
motely sensed soil water measurement. The authors ascribadhiform drying process which substantially reduces the soll
this variability to the signature of rainfall spatial variability water storage variability leading to a simpler scaling in na-
(Mascaro et al., 2010). Generally the surface soil layer is ex{ure. The implication is that the disaggregation of observa-
posed to various meteorological and environmental forcingtions (e.g. remotely sensed large scale data to a field scale)
such as rainfall, wind, solar radiation and become more dy-for soil water storage based only on scaling laws could be er-
namic than the deeper layers (Hu et al., 2010; Biswas andoneous during recharge periods, especially after spring snow
Si, 2011a, b). Moreover, the adequacy of plant roots in themelt. Therefore for adequate representation of the field scale
surface also makes the surface soil layer dynamic. Thereforejariability, we need more sampling (monitoring locations)
the study of scaling properties in soil water content at the surduring wet periods than dry periods.

face few centimeters (such as remote sensing measurement)

is more complicated and is highly variable in nature (BiswasAcknowledgementsThe funding from the Natural Science and
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