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Abstract. Knowledge about the scaling properties of soil
water storage is crucial in transferring locally measured fluc-
tuations to larger scales and vice-versa. Studies based on
remotely sensed data have shown that the variability in sur-
face soil water has clear scaling properties (i.e., statistically
self similar) over a wider range of spatial scales. However,
the scaling property of soil water storage to a certain depth at
a field scale is not well understood. The major challenges in
scaling analysis for soil water are the presence of localized
trends and nonstationarities in the spatial series. The objec-
tive of this study was to characterize scaling properties of
soil water storage variability through multifractal detrended
fluctuation analysis (MFDFA). A field experiment was con-
ducted in a sub-humid climate at Alvena, Saskatchewan,
Canada. A north-south transect of 624-m long was estab-
lished on a rolling landscape. Soil water storage was moni-
tored weekly between 2002 and 2005 at 104 locations along
the transect. The spatial scaling property of the surface 0 to
40 cm depth was characterized using the MFDFA technique
for six of the soil water content series (all gravimetrically
determined) representing soil water storage after snowmelt,
rainfall, and evapotranspiration. For the studied transect,
scaling properties of soil water storage are different between
drier periods and wet periods. It also appears that local con-
trols such as site topography and texture (that dominantly
control the pattern during wet states) results in multiscaling
property. The nonlocal controls such as evapotranspiration
results in the reduction of the degree of multiscaling and im-
provement in the simple scaling. Therefore, the scaling prop-
erty of soil water storage is a function of both soil moisture
status and the spatial extent considered.

1 Introduction

The spatial and temporal pattern of soil water storage is an
important input variable in assessing land-atmosphere in-
teractions, infiltration, recharge, and performance of engi-
neered covers. Water storage is also a key input in monitor-
ing the soil water balance and validation of several models
(Rodriguez-Iturbe et al., 1999). The variability in soil water
storage is shown to be strongly related to topographic, ge-
ologic, soil, and vegetation parameters (Braud et al., 1995;
Moore et al., 1988). These physical factors and environmen-
tal processes (rainfall, evapotranspiration, runoff, and snow
melt) do not operate independently, but as an ensemble of
processes with a complex and nested effects. This, in turn, re-
sults in a pattern of soil water storage that varies as a function
of spatial scale. Several studies have reported a scale depen-
dent pattern and variability of soil water storage (Kachanoski
and de Jong, 1988; Gomez-Plaza et al., 2000; Kim and Bar-
ros, 2002; Biswas and Si, 2011a).

In order to examine how information transfers from one
scale (e.g. pedon scale) to another (e.g. satellite image scale);
we need the scaling characteristics of soil properties. Scal-
ing analyses such as fractal and multifractal analyses require
the data series to be stationary. Hu et al. (1997, 1998) and
Rodriguez-Iturbe et al. (1995) have characterized the appar-
ent disorder in spatial organization of soil moisture and re-
ported that the variance of soil moisture follows power law
decay, typical of a scaling process. If such scaling laws are
found to be appropriate in describing the fluctuation of soil
moisture over wider range of scales, then the characteriza-
tion of soil moisture could be based on the theory of statisti-
cal self-similarity that provide linkage over a range of spatial
scales (Hu et al., 1998). However, these studies are based
on spatial scales (i.e., resolutions) of 30× 30 m2 and only
for the surface<5 cm soil depth. Such information can be
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utilized in specific land management practices and precision
agriculture provided that the observed scaling law holds at
a field scale and to a deeper soil depth. This will also open
a window of opportunity during aggregation of point mea-
surements and disaggregation of remotely sensed data (Lin,
2003). However, a priori assumption of similarity in scaling
laws between the fluctuations in the remotely sensed large
scale and small field scale soil water storage data could be er-
roneous owing to the increased importance of localized fac-
tors as the resolution increases and need separate treatment.

Spatial variability includes spatial trends (non-stationary)
and fluctuations (stationary). Several studies have indicated
that non stationarities introduce superficial scaling features
(Bhattacharaya et al., 1983; Koscielny-Bunde et al., 2006).
Such scaling features are not intrinsic to the variables under
study because they are artifacts of erroneously treating non-
stationary fields as stationary. Nor do they reflect the actual
in situ fluctuation that is the result of numerous co-existing
and interacting factors and processes, and hence, scale trans-
formations based on such relationships could be erroneous.
To remove the undue influence of the larger scale trends on
the scaling properties at a scale of interest, there is a need to
identify the intrinsic scaling property of the fluctuation in soil
water storage at a field scale that results from interaction of
all the underlying processes. Also there is a need to evaluate
the presence as well as extent of spatial scales with a partic-
ular scaling property. Such analysis is useful in defining the
spatial extent over which simple scaling up of point observa-
tions is possible as well as predicting soil water based on the
observed scaling laws.

Soil water distribution within heterogeneous fields is often
complex owing to the numerous physical factors and pro-
cesses controlling its spatial and temporal variability. The
large scale processes results in long-range correlations, with
an autocorrelation (two-point correlation) function decaying
slowly with increase in separation distance. If the two-point
correlation function decays as a power-law, we have a scal-
ing phenomenon. The power spectrumP(f ), which is the
Fourier transformation of the correlation function, will also
be a power-law function:P(f ) = f −c, wheref is the fre-
quency andc is the scaling exponent. However, the two-
point correlation function may not be the best way to char-
acterize the long-range correlation, because it does not take
into account of the structures in between two points, and it
does not measure correlation between two units larger than
a point. As the long-range correlation is very common in
nature, engineering, and medicine, many methods have been
developed to analyze the scaling property in the long-range
correlation. Proven methods that remove nonstationarities
from the data series include the Hurst rescaled-range anal-
ysis (Hurst, 1951), the wavelet transform modulus maxima
(WTMM; Arneodo et al., 2002; Zeleke and Si, 2007), and
the detrended fluctuation analysis (DFA) (Peng et al., 1992,
1994). The Hurst re-scaled range analysis is based only on
the first moment of the series and hence does not provide the

detailed characterization of the spatial statistics, nor does it
remove nonstationarities (Liebovitch et al., 2002; Koscielny-
Bunde et al., 2006). Similar to the wavelet transform (Mallat,
1999), the WTMM is easily applied to binary observations
(i.e.,n = 2k, wheren = number of observations andk = 1, 2, 3,
4...) for its computational simplicity and to minimize “edge
effects” (Mallat and Hwang, 1992; Óswiȩcimka et al., 2005).
The DFA, on the other hand, is more computationally simple,
straight forward and flexible technique and does not depend
on any specific number of observations (e.g., binary obser-
vations) given it covers the scales of interest (Kantelhardt
et al., 2002; Óswiȩcimka et al., 2005; Koscielny-Bunde et
al., 2006). Integration of the data series reduces outliers that
usually exist in spatial data whereas the detrending proce-
dure reduces the effect of nonstationarities. The DFA tech-
nique, originally developed for monofractal variables, has
been extended to accommodate analysis of scaling hetero-
geneity through multifractal detrended fluctuation analysis
(MFDFA; Kantelhardt et al., 2002). This development was
achieved through modification of the traditional Hurst func-
tion, H into a generalized function,h(q) so that moments of
different orders can be evaluated. A detailed comparison be-
tween WTMM and MFDFA can be found in Kantelhardt et
al. (2002).

For improved modeling or prediction of soil water distri-
bution we need to understand its response to these numer-
ous factors and processes than just to a single extrinsic fac-
tor that introduces monotonous trend. The presence of such
trend can obscure the scaling property of the series that re-
flects both local and global processes. It is also important
to minimize the effect of measurement artifacts that intro-
duce outliers or noise that could be easily propagated during
upscaling of observations. The DFA is a noble tool that han-
dles these problems so that final output reflects the effect of
the suite of processes on soil water distribution. The DFA
technique has been successfully applied for scaling studies
of nonstationary series in climatology (Kurnaz, 2004; Ki-
raly and Janosi, 2005), river runoff (Koscielny-Bunde et al.,
2006), financial series (Grau-Carles, 2001), and biomedicine
(Peng et al., 1992). However, to the best of our knowledge,
this noble technique has not been applied in characterization
of scaling properties of soil water storage. Utilizing this no-
ble technique, we will explore scaling properties of soil water
storage under field conditions. The specific questions we will
address: (i) Are there simple scaling (monofractal type) and
multiscaling (multifractal type) characteristics in the spatial
correlations of soil water storage? (ii) Is there any change in
the scaling pattern with the change in climatic processes?
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2 Theory

2.1 Scaling analysis based on the detrended
fluctuation series

The DFA for a one dimensional data series can be described
as follows. LetXj be a data series of lengthN with a com-
pact support (j = 1, 2,···,N). The integrated series or the
profile at locationi, Y (i), is determined by taking the sum
of deviations from the mean value (Kantelhardt et al., 2002;
Telesca et al., 2004) i.e.,

Y (i) =

i∑
k=1

(Xk −〈X〉), i = 1,2,···,N (1)

where〈X〉 is the mean value of the series forN observations.
The integrated seriesY (i) is then divided intoNs non-

overlapping segments of equal sizes. Since the lengthN
of the series may not be a multiple ofs, an unequal and short
part (< s) of the profile may left at the end. In order not
to disregard this part of the series, the same procedure is re-
peated starting from the other end. Thus, 2Ns segments are
obtained altogether. Then the local trend for each of the 2Ns

segments is calculated by a least squares fit of a polynomial
function.

The mean squared difference between the series [Y (i)] and
the ordinate of the fitted polynomial [yv(i)] is calculated as

F(s,v)=
1

s

s∑
i=1

{Y ((v−1)s + i)−yv (i)}2 (2)

Note that the indicesi andv correspond to the original data
points and the segments of sizes, respectively. TheF(s,v)

is used to calculate the fluctuation functions as follows. The
standard fluctuation function,F2(s) is calculated as a square
root of the average ofF(s,v) over all the segments of sizes,
i.e.,

F2(s) =
1

2Ns

√√√√2Ns∑
v=1

F (s,v) (3)

The standard fluctuation function is based on the variance
(second order moment) of the fluctuation of observed values
relative to fitted polynomial trends. The fluctuation function
can be extended to include higher order moments (sayq val-
ues) to analyze the scaling property of different ranges of
fluctuations, and also the detrending polynomial,yv can take
any ordern (linear, quadratic, cubic, etc.). The generalized
fluctuation function,Fq(s) is thus defined as

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[F (s,v)]q/2

}1/q

(4)

where the variableq can take any real value except zero. In
the case whereq is zero, the fluctuation function cannot be
determined directly from Eq. (4) because of the diverging

exponent. Thus,F0(s) is approximated by taking the loga-
rithmic average as,

F0(s) = exp

{
1

4Ns

2Ns∑
v=1

ln[F (s,v)]

}
(5)

Repeating the above procedure for several length scales, a re-
lationship can be developed between the fluctuation function
and the segment length. Typically,Fq(s) will increase with
increase in scales. If the seriesXi has a long range power
law correlation,Fq(s) increases with increase ins as a power
law

Fq(s) ∝ sh(q) (6)

whereh(q) is the generalized Hurst scaling function (Telesca
et al., 2004). Forq = 2 we have the standard DFA analysis.
In this case, the scaling exponenth(2) provides information
about the average fluctuation of the series. The series can
be categorized into one of the following three types depend-
ing on theh(2) value. These are: (i) 0< h(2) < 0.5 for an
anti-persistent type long range correlated process where large
values (compared to the average) are more likely followed
by small values and vice versa, (ii)h(2) = 0.5 for an entirely
random uncorrelated distribution, and (iii) 0.5< h(2) < 1
for a persistent and long range correlated process where large
values are more likely to be followed by large values and vice
versa.

2.2 Scaling heterogeneity (multifractality) of the
detrended fluctuation series

The link between the generalized fluctuation function and the
standard box counting formalism of multifractal analysis is
also a straight forward one (Kantelhardt et al., 2002). For a
normalized seriesXk, the mass distribution probability in the
v-th segment of sizes unit, Ps(v), can be calculated as

Ps(v) =

vs∑
k=(v−1)s+1

Xk = Y (vs)−Y [(v−1)s] (7)

The mass scaling function,τ (q) is then defined via the parti-
tion functionµ(q,s) as,

µ(q,s) =

N/s∑
v=1

|Ps(s)|
q
∝ sτ(q) (8)

The mass scaling function is related to the generalized Hurst
scaling function,h(q) as (Kantelhardt et al., 2002)

τ(q) = qh(q)−1 . (9)

A recent study by Yu et al. (2011) questioned about the va-
lidity of this relationship. The authors examined the rela-
tionship over a range of traditional Hurst function,H and
claimed that the relationship does not hold forH ≤ 0.3.
However, largeH values still holds the relationship and
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therefore needs more in-depth and rigorous testing of the pro-
posed relationship,

τ (q) = qh(q)−qH ′
−1. (10)

whereH ′ is the non-conservation parameter in the univer-
sal multifractal formalism. Therefore, in this manuscript we
have used the well established relationship betweenτ (q) and
h(q) proposed by Kantelhardt et al. (2002).

The singularity spectrum of a multifractal measure,f (α),
is related toτ(q) via a Legendre transform as (Feder, 1988)

f (α) = qα−τ(q) (11)

where,α is a singularity strength or Ḧolder exponent and ob-
tained numerically as the first derivative of theτ(q) function
with respect toq. Hencef (α)denotes the dimension of the
subset of the series that is characterized byα herefore,f (α)

can be used during the multifractal analysis for convenience
and ease of interpretation once the series is normalized, inte-
grated, and detrended using the appropriate detrending poly-
nomial.

Schertzer and Lovejoy (1987) derived a universal multi-
fractal (UM) model based in certain reasonable assumptions
about the mechanism generating multifractals. The critical
assumption was that the underlying generator is a random
variable with anexponentiated extremal Lévy distribution
(Zeleke and Si, 2006). The UM model can describe theτ (q)

function under the assumption of conservation of mean value
of the variable.

τ(q) =

{
C1

α′−1(qα′

−q) α′
6= 1

C1.log(q) α′
= 1

(12)

where,α′(commonly known asLévyindex) indicates the de-
gree of multifractality based on the deviation ofτ (q) function
from a monofractal type of scaling (UM model) (Seuront et
al., 1999) andC1 indicates the co-dimension between obser-
vation space and fractal dimension.

Nonstationarity is a common aspect of complex variability
and is often be associated with different trends in the data se-
ries or patches with different local statistical properties (Kan-
telhardt et al., 2001). The DFA approach described above
reduces the effect of such nonstationarities on scaling prop-
erty of a variable. The reason for detrending analysis is to
remove the undue influence of larger (than the scale of inter-
est) scale on the statistics of soil water at the scale. At small
scale, we remove trends of small scale; at large scale, we re-
move only large scale trend and small scale trend remains,
because the small scale trends do not affect the scaling prop-
erties at a large scale. Therefore, we do not lose any criti-
cal information in soil water content. This is evident from
the following three key aspects of the method. Firstly, the
original series (i.e., as determined by all hydrological pro-
cesses) is integrated into a continuous profile by summing
up the deviations from the mean value (see Eqs. 1 and 2). In
other words, the integrated profile of the series is the result of

all the processes determining the spatial pattern of the vari-
able. Secondly, the integrated profile was divided into seg-
ments and regression lines were fitted to each of these seg-
ments (window). When the fitted trends are removed, what
remains is a fluctuation function, which is the difference be-
tween the integrated series and its best fit regression line at
a given window size. This function contains all the local as
well as global feature of the data series which is free from
nonstationarities. Thirdly, the size of the segment (the win-
dow) was continuously varied later on; i.e., during the scaling
analysis. At this step, it is important to note that the scaling
property is determined by relating the fluctuation function to
several window sizes (Eq. 6). These points clearly show that
the DFA procedure does not exclude any process that deter-
mine the hydrology of the system; rather transform resulting
data series into a fluctuation function where the effect of non-
stationarities is significantly reduced. Thus, in essence, the
main advantage of the DFA method is that it allows detection
of scaling property of a physical variable that is embedded
in a noisy data or containing monotonous polynomial trends
that can mask true fluctuations of the series.

3 Material and methods

The study site is located in a sub-humid climate at Alvena,
Saskatchewan, Canada. The geographical location of Alvena
is 49◦44′N latitude and 107◦35′W longitude. The site has
rolling topography (locally referred to as a hummocky ter-
rain) with a dominant soil type of an Aridic Ustoll (US Soil
Taxonomy). The surface texture is loam to clay loam. Long
term mean annual air temperature is 2.2◦C and precipitation
is 350 mm. The potential evapotranspiration is 624 mm yr−1,
resulting often in a water deficit of more than 250 mm yr−1.
A north-south transect of 624 m length was established in
2001 and soil water storage have been monitored at 104 lo-
cations (at 6 m regular intervals) at several times (more than
30 series) using gravimetric and capacitance probes. For this
particular study, six series of soil water storage data (between
2002 and 2005) of the surface 0 to 40 cm depth was selected.
To reduce edge effect, only 93 locations were selected for
the data analysis. Six water storage series were selected
based on their representativeness of the dominant climatic
processes of the area that determine soil water storage pat-
tern (snow melt, rainfall, and evapotranspiration) and mea-
surement methods used (only gravimetrically measured data
was used for better accuracy). These were 14 August 2002,
14 September 2002, 23 May 2003, 23 October 2003, 1 Au-
gust 2004, and 30 May 2005. This manuscript focuses on
scaling properties for soil water storage patterns of the top
0 to 40 cm depth. Changing spatial scale, as used in here,
refers to varying the number of discrete data points (of fixed
spacing) used in deriving the mean value. This can also be
referred to as “coarse graining” of discrete samples, and in-
tegrates the concept of both support and spacing described in
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Western and Bl̈oschl (1999). For instance, taking the mean
value of four consecutive discrete samples that are initially
spaced 3 m apart is equivalent to increasing the scale from
3 m to 12 m. In this transform both the spacing and sup-
port are upscaled. In other words, we are increasing both
the spacing and support (i.e., making a practical assumption
that the mean value is representative of the length within the
spacing).

Water content was measured following the standard gravi-
metric technique (Gardner, 1986). The core samples were
collected from each measurement locations using a 5 cm (in-
ternal) diameter sampler that was vertically mounted on a
truck with a hydraulic system. The undisturbed core samples
were sliced into 10 cm increments and placed in a plastic bag
for oven drying. The mass based water content is determined
as mass difference between the wet and oven-dry samples di-
vided by the sampling volume. The bulk density of the sam-
ple is determined as the oven dry mass of the soil sample di-
vided by the sampling volume. The volumetric equivalent of
the gravimetric water content of the samples was determined
by multiplying the mass based water content with bulk den-
sity. Mean values of four core samples, taken at 10 cm verti-
cal intervals, was used to obtain a data point representing the
surface 0 to 40 cm depth. Soil water storage in the root zone
is critical to plant productivity. The top 60 cm have majority
of roots. However, soil water content at depth determined us-
ing gravimetric methods may not be accurate because of the
potential compaction when a punch truck is used to extract
soil cores in the clay soil. Our experience in this field sug-
gested that 40 cm depth is free of observable compaction and
therefore, we chose 40 cm.

Particle size distribution of the soil samples were deter-
mined from the first measurement sets using the hydrome-
ter method (Gee and Bauder, 1986). Organic carbon content
was determined using LECO-12 carbon determinator (LECO
Corporation, St. Joseph, MI). Relative elevation along the
transect was determined using a Laser Theodolite Total Sta-
tion (Sokkisha Electronic Total Station, Set 5, Sokkisha,
Tokyo, Japan). Both the DFA and MFDFA analysis were per-
formed using programs written in Mathcad Professional (ver-
sion 12, Mathsoft Inc., Cambridge, MA, 2002) and Statistical
Analyses Software- SAS Version 8 (SAS Institute Inc., Cary,
NC).

4 Results and discussions

4.1 Water storage series and order of detrending
polynomials

Figure 1 shows the spatial distribution of soil water storage
at six occasions, two soil properties (clay and organic car-
bon) and one topographic variable (relative elevation). The
monthly mean precipitation values for the years 2002 to 2004
are shown in Fig. 2. The total precipitation received in the

calendar years of 2002 and 2004 was generally higher than
the long term average precipitation of the area and these
years are regarded as wet years. However, high soil water
storage was observed only in May 2003 and 2005. The ob-
served high soil water in the two series compared to others
appears to be the result of relatively high snow fall in the
months preceding the measurements and gradual melting of
snow where downward infiltration significantly exceeds run
off. Water storage during all the occasions were negatively
correlated (r2

= 0.18 to 0.40; significant atp = 0.01) to rel-
ative elevation (RE) as expected (Table 1). The relationship
to clay content (CL) was significant (r2

= 0.22, 0.15, and
0.14; significant atp = 0.01) only for measurements taken
in August 2002, September 2003, and August 2004. The
variance in May 2003 and 2005 were higher than the other
four series and appear to be caused by non uniform snow re-
distribution and runoff related spatial variations. Although
there were some significant (p = 0.01) positive relationships
to CL, the distribution of water storage was dominantly con-
trolled by RE. Consequently, there were systematic and lo-
calized trends in the spatial distribution of water storage at
all scales that follows the landscape pattern. Prior to scal-
ing property analysis, nonstationarities due to such localized
trends have to be removed (or minimized) through transfer-
ring the series into its fluctuation function. To this end, iden-
tifying the correct order of the detrending polynomial is the
initial step.

As shown in Fig. 1 both topography and clay have lin-
ear and higher order trends (trends that can be represented
by linear lines and higher order polynomials). These trends
are also reflected in soil water storage series. Therefore,
the fluctuation functions after different detrending polyno-
mials needs to be examined for remaining trends and noise
in a data prior to scaling analyses. To this effect, differ-
ent order of detrending were evaluated like linear (DFA1),
quadratic (DFA2), cubic (DFA3), and fourth order (DFA4)
polynomial. The coefficients of determination (for linear fits)
of the double log plots of the fluctuation functions vs. seg-
ment sizes of successive detrending polynomial orders were
compared. The comparison continued until the difference
between the trends in the fluctuation functions of two suc-
cessive orders is insignificant. The significance between dif-
ferent orders of polynomials was tested using “studentst”
test by comparing the means between each consecutive de-
trending functions. For our data, there were significant dif-
ferences between the original data and the first order (linear)
detrending function (based on Studentst test result). There
were no significant difference between first (linear) and sec-
ond (quadratic) order of detrending, and hence the first or-
der (DFA1) was selected as the best detrending polynomial
function to obtain a stationary series for scaling analysis. In
general, though the increasing order of the detrending poly-
nomials enables us to remove considerable portion of exist-
ing nonstationarities, the significance between two orders of
detrending help us to select the order. There is also a concern
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Fig. 1. Spatial distributions of (A andB) soil water storage (volumetric) at six occasions,(C) organic carbon and clay content, and(D)
relative elevation along the sampling transect at the study site . A standardized value of organic carbon and clay content is calculated (for
presentation simplicity) by subtracting the average value from a particular value and dividing by the standard deviation of the whole spatial
series.
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Fig. 2 638 Fig. 2. Mean monthly precipitation at the study site during four consecutive years (2001–2004). Source: Environment Canada.
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Table 1. Mean and standard deviation of soil water storage at the Alvena site during six observation dates and relationships to relative
elevations (RE), organic carbon (OC), and clay content (CL).

Date of Measurement Mean (cm per 40 cm soil) r2 (n = 93)

RE OC CL

14 Aug. 2002 10.07(1.32)(b) 0.40(a) 0.10 0.22(a)

13 Sep. 2002 11.03(1.57) 0.28(a) 0.03 0.15(a)

23 May 2003 14.71(2.18) 0.18(a) 0.03 0.07
23 Oct. 1003 10.67(1.79) 0.25(a) 0.05 0.09
1 Aug. 2004 10.52(1.75) 0.29(a) 0.03 0.14(a)

30 May 2005 17.09(2.45) 0.23(a) 0.26(a) 0.02

(a) Significant atp = 0.01, (b) Standard deviation

about altering the intrinsic pattern of the series if the order
of the detrending polynomial is too high (Kantelhardt et al.,
2001). Bunde et al. (2002) reported that results are reliable
only for certain orders, above which DFA yield the same type
of behavior. Since the first order polynomial successfully re-
moved majority of existing trends in our water storage data,
it is reasonable to assume that the majority of the trends were
of linear orders. Consequently, further scaling analysis was
carried out using the first order detrended data series.

4.2 Evaluation of the DFA for scaling property

The standard fluctuation function (DFA2) was evaluated for
power law relationships between fluctuations and scale. The
fluctuations for all water storage series showed an almost ex-
act power law increase with observation scales (Fig. 3). The
coefficients of determination for a linear fit of the double-log
plots of the series were between 0.99 and 1.00 (n = 21). Such
power law relationships indicate the presence of scaling laws
(Hu et al., 1997).

4.3 Multifractal analysis

The scaling analysis presented above is based only on the
second order moment or the variance of the fluctuation func-
tion (i.e.,q = 2). But in most physical and biological data the
scaling property of low and high values (relative to the aver-
age) is often different. Such observations imply the need for
multifractal analysis in which the scaling property is repre-
sented by an array of scaling exponents rather than by a sin-
gle one. To this end, the scaling analysis has been extended
by including higher and lower order moments (q values), i.e.,
in multifractal analysis (Eqs. 8, 9, and 11).

Mass exponents,τ(q) were derived from the fluctuation
functions for q values between−20 and 20 and plotted
against theq values (Fig. 4). A linear reference line (similar
to monofractal type of scaling) (Fig. 4) was created following
the UM model of Schertzer and Lovejoy (1987) to compare
and characterize the observed scaling properties (Eq. 12). A

Table 2. Sum or Squared difference of Residuals between theτ (q)

of the data and the simulated monofractal type distribution using
UM model for the soil water storage of six observation dates.

Water storage series SSR Differences in variance )
(p = 0.01, df = 39

14 Aug. 2002 670.91 SS
14 Sep. 2002 578.36 SS
23 May 2003 1392.00 SS
23 Oct. 2003 587.26 SS
1 Aug. 2004 535.18 SS
30 May 2005 1094.00 SS

SSR = Sum or Squared difference of Residuals between theτ (q) of the data and the
simulated monofractal type distribution using UM model, SS = a significant difference
(p < 0.01) using Chi-square (χ2) goodness of fit test between theτ (q) of the data and
the simulated model data, df = degrees of freedom used forχ2 statistics evaluation, and
p = probability.

chi-square test for goodness of fit (atp = 0.01) indicate that
all the soil water storage series are multifractal in nature as
the mass exponent curve is quite different from the simulated
monofractal type of scaling (Zeleke and Si, 2006). The sum
of squared difference of residuals (SSR) of mass exponents
and simulated monofractal type of scaling are summarized in
Table 2. The SSR value for the soil water storage data series
of 23 May 2003 and 30 May 2005 is way larger than the rest
of the measurements indicating higher degree of multifrac-
tality compare to other measurements. The high precipita-
tion during the year of 2002 and 2004 led to high soil water
storage. The post snow melt period as controlled by the sev-
eral local and non-local controlling factors (Grayson et al.,
1997) affected the spatial distribution of soil water storage
making it more heterogeneous in nature. With time, heavy
demand of evapotranspiration by plant community reduces
this heterogeneity and the degree of multifractality towards
fall season.

The slope of theτ (q) plots of water storage series were
measured in two cases; a single (q = −20 to 20) and
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Fig. 3. Double – logarithmic plots of the standard fluctuation functions fitted to linear equation. In order to avoid overlapping of the plots
(and hence difficulty in comparisons) a constant values have been added to the fluctuation functions of each series. “Scale” refers to a period
(cycles) in meters.
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Fig. 4. The mass exponents of the six soil water storage series (q =

−20 to 20 at 1.0 increments). The solid line is a linear reference
created following the UM model of Schertzer and Lovejoy (1987)
passing throughτ (q = 0).

segmented (q = −20 to 0 andq = 0 to 20) and summarized
in Table 3. Statistical significance of the difference between
the variances under these two cases was evaluated using the
F statistics (Press et al., 1992). The difference between the
variances under these two cases (single and segmented) was
significant (p = 0.01); implying that theτ(q) functions were
significantly different from a linear function. A nonlinear
τ(q) function means multiple scaling (Evertsz and Mandel-
brot, 1992; Olsson and Niemczynowicz, 1996), which re-
quires a hierarchy of scaling exponents (multiscaling) in or-
der to accurately represent the scaling property. The degree
of non-linearity ofτ (q) function can give idea about the de-
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Fig. 5 644 Fig. 5. The multifractal spectra of the water storage series (q =−20
to 20 at 1.0 increments).

gree of multifractality. The slope difference between seg-
mented fractions of theτ (q) function of soil water storage are
1.03 and 0.95 respectively for 23 May 2003 and 30 May 2005
indicating a higher degree of multifractality in their scaling
properties compare to the rest of the observations. These
nonlinear functions have convex downward facing plots, with
the degree of convexity reflecting the level of heterogeneity
in scaling exponents. The 23 May 2003 series has the high-
est heterogeneity in scaling indicating the highest degree of
multifractality.

In order to study the local scaling patterns, the multifractal
spectrum [f (q) vs. α(q)] of six water storage series were
calculated and presented in Fig. 5. The wider the spec-
trum (i.e., the higher theαmax-αmin value), the higher is the
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Table 3. Slope of the mass exponent functionsτ (q) of the water storage series and their standard deviations.

Water storage series Single fit (-20≤ q ≤20) Segmented fit Differences in variance
(p = 0.01, df = 39 )

−20≤ q ≤ 0 0≤ q ≤ 20

14 Aug. 2002 0.94 (0.00) 1.31 (0.00) 0.54 (0.00) SI
14 Sep. 2002 0.77 (0.00) 1.03 (0.00) 0.50 (0.00) SI
23 May 2003 1.17 (0.01) 1.69 (0.00) 0.66 (0.00) SI
23 Oct. 2003 1.03 (0.00) 1.40 (0.00) 0.67 (0.00) SI
1 Aug. 2004 1.07 (0.00) 1.39 (0.00) 0.74 (0.00) SI
30 May 2005 1.06 (0.01) 1.56 (0.00) 0.60 (0.00) SI

SI = Significant difference between the variances during single line fit (reduced model) and the segmented fit (full model), df = degrees of freedom used forF -statistics evaluation,
andp = probability.

heterogeneity in local scaling indices of the variable and vice
versa. The height of the spectrum,f (q), corresponds to the
dimension (frequency distribution) of these scaling indices.
Low f (q) values correspond to rare events (extreme values
in the distribution), whereas the highest value off (q) is the
capacity dimension, which is obtained by assuming uniform
distribution in all the segments. The spectra for the May 2002
have the widest range ofα value (αmax−αmin = 1.05) indi-
cating the most heterogeneous scaling indices or possibility
of multiscaling. The spectra for the 30 May 2005 has also
similar range ofα value (αmax−αmin = 0.95) indicating mul-
tiscaling nature. The difference in microclimate, for exam-
ple the difference in slope, concavities, soil texture, organic
carbon content or the catchment area (Grayson et al., 1997)
affected the distribution of water during snowmelt period re-
sulted in the variability of soil water storage. The explanation
of this scaling property requires numerous dimensions indi-
cating multifractal nature of scaling. The high demand of
evapotranspiration leading to a uniform drying process over
time substantially reduces the variability of soil water storage
pattern as indicated by theαmax−αmin value of 0.75, 0.65,
and 0.55 for 14 August 2002, 1 August 2004 and 14 Septem-
ber 2002 respectively. The gradual decrease ofα value over
time indicates the reduction in the degree of multifractality.
The reduction in the variability or the increase in uniformity
of soil water storage leads to the scaling property simple. The
αmax−αmin value for 23 October 2003 is 0.70, which is a bit
higher than the other series of similar time. This multiscal-
ing nature of soil water storage might have existed from the
higher precipitation during the year of 2002.

The scaling dimensions for 23 May 2003 and 30 May 2005
series vary from 0.65 to 1.70 and 0.60 to 1.55 respectively,
which means that the representation of the scaling property
of these variables requires numerous dimensions whose val-
ues are bound between 0.6 and 1.7; however that of other
series requires 0.55 to 1.3, 0.75 to 1.4, 0.5 to 1.05, and
0.7 to 1.4 respectively for 14 August 2002, 1 August 2004,
14 September 2002, and 23 October 2003. The spectra of
both May (2003 and 2005) series has slight longer tail to the

right of the maximumf (q) value, which is a characteristic
of multifractal measure. Note that the right side of the spec-
trum corresponds to lower data values that are amplified by
negativeq values, and hence the right skewed feature is the
result of more heterogeneity in the distribution of lower data
values.

There are two sources of multifractality in time or spatial
series as described in Kantelhardt et al. (2002). These are
due to broad probability density distribution (long tailings)
and differences in autocorrelation types. The multifractality
observed in the water storage series appears to be the result
of differences in the autocorrelation types for the small and
large fluctuations. For the 23 May 2003 and 30 May 2005
series, the spatial variation in fractal dimensions is very high
(Figs. 4 and 5) and, therefore, can be represented as multiple
scaling pattern. The spatial variation in the fractal dimension
gradually decreased over time. As discussed in the previ-
ous sections, this series is unique in that it is the result of a
uniform drying process (evapotranspiration) and the variabil-
ity (compared to the May series in the same year) was sub-
stantially reduced. Note that it is not possible to tell the dif-
ferences between the May series with the other series based
only on simple statistics such as mean and variance of the
distribution. However, removal of nonstationarities and the
subsequent scaling analysis showed the actual similarity and
differences in terms of spatial scaling property.

The above results suggest that in any watersheds with sig-
nificant topographic variations, the scaling property of soil
water storage pattern may be different during dry and wet
periods. The scaling property is determined by the number,
type, and spatial extent of processes controlling soil water
dynamics. During spring snow melt and after summer rain-
storms, the spatial distribution of soil water is determined by
several local and non local controls including slope, concav-
ities, soil texture, organic carbon content, catchment area,
and subsurface lateral flow (Grayson et al., 1997). Conse-
quently, during these periods, the scaling property in soil
water storage pattern becomes more heterogeneous (i.e., both
as a function of scale and location within the landscape)
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resulting in a multifractal type distribution than during the
drier periods. Based on a study using remotely sensed (large
scale) soil water data in sub humid environment of Okla-
homa, Kim and Barros (2002) also reported multifractality
in soil water storage as a result of temporal evolution in wet-
ting and drying regimes. The authors reported multifractal
nature of soil water distribution atα-scale range (<10 km)
as well as atβ-scale range (>10 km), which exhibited multi-
fractal to noise type scaling when the soil moisture levels are
lower than field capacity (Kim and Barros, 2002). However,
Mascaro et al. (2010) reported a multifractal scaling of soil
water distribution at all domains in wet conditions using re-
motely sensed soil water measurement. The authors ascribed
this variability to the signature of rainfall spatial variability
(Mascaro et al., 2010). Generally the surface soil layer is ex-
posed to various meteorological and environmental forcing
such as rainfall, wind, solar radiation and become more dy-
namic than the deeper layers (Hu et al., 2010; Biswas and
Si, 2011a, b). Moreover, the adequacy of plant roots in the
surface also makes the surface soil layer dynamic. Therefore,
the study of scaling properties in soil water content at the sur-
face few centimeters (such as remote sensing measurement)
is more complicated and is highly variable in nature (Biswas
and Si, 2011a, b). On contrary, deep soil layers are less re-
sponsive to the changes in meteorological conditions (Hu et
al., 2010), have less root activity (Cassel et al., 2000) and
less disturbed soil structure (Guber et al., 2003; Pachepsky
et al., 2005), which increase the buffering capacity of soil
water changes in the deep layers and create an hydrological
inertia (Mart́ınez-Ferńandez and Ceballos, 2003) in soil wa-
ter dynamics. Moreover, the rapid changes of soil water at
the surface do not represent the actual changes in the vadose-
zone soil water storage. Therefore, it is difficult to differen-
tiate actual wet and dry situations and the scaling property
of soil water distribution at those situations. In this study
we have considered soil water storage up to 40 cm, which
is deep enough (field observation and experience) to exclude
the highly dynamic nature and include majority of the root to
understand the vadose-zone soil water dynamics. Generally
plants take up more than 70 % of the water they need from
the top 50 % of the root zone (Feddes, et al., 1978; Morris,
2006). Therefore, scaling properties of soil water storage up
to 40 cm depth represented much more realistic situations.

5 Conclusions

We studied the scaling properties of the fluctuations in soil
water storage in a sub humid climate of Saskatchewan using
data series selected from a long term monitoring experiment.
The selected series represent extreme soil water regimes (dry
and wet) and also reflect the main hydrological processes in
the region (snow melt, rainfall, and evapotranspiration). The
data were analyzed using the multifractal detrended fluctua-
tion analysis technique in order to characterize the intrinsic

scaling property of soil water storage. The results showed
a multiscaling property (multifractal type) over the entire
scales for all soil water storage series. The degree of mul-
tifractality changes with the change in climatic processes.
The highest scaling heterogeneity (multifractality) was ob-
served for the series in May (i.e., after spring snowmelt or in
wet period). This scaling heterogeneity gradually decreases
over time showing a simpler scaling law towards the end of
fall season (drier period). This multifractal scaling nature
is mainly due to the heterogeneity in soil water storage pat-
tern as affected by the micro climate during post snowmelt
period. The high demand of evapotranspiration results in a
uniform drying process which substantially reduces the soil
water storage variability leading to a simpler scaling in na-
ture. The implication is that the disaggregation of observa-
tions (e.g. remotely sensed large scale data to a field scale)
for soil water storage based only on scaling laws could be er-
roneous during recharge periods, especially after spring snow
melt. Therefore for adequate representation of the field scale
variability, we need more sampling (monitoring locations)
during wet periods than dry periods.

Acknowledgements.The funding from the Natural Science and
Engineering Research Council (NSERC) of Canada and Common-
wealth Scientific and Industrial Research Organization (CSIRO),
Australia are highly appreciated. Helps from summer students
and other graduate students in field data collection are also highly
appreciated. The helpful comments from three anonymous referees
and the associate editor are also highly appreciated.

Edited by: S.-A. Ouadfeul
Reviewed by: three anonymous referees

References

Arneodo, A., Audit, B., Decoster, N., Muzy, J. F., and Vaillant,
C.: Wavelet based multifractal formalism: Application to DNA
sequence, satellite images of cloud structure, and stock market
data, in: The Science of Disasters, edited by: Bunde, A., Kropp,
J., and Schellnhuber, H. J., Springer-Verlag, NY, 29 pp., 2002.

Bhattacharaya, R. N., Gupta, V. K., and Waymire, E. C.: The Hurst
effect under trends, J. App. Probab., 20, 649–662, 1983.

Biswas, A. and Si, B. C.: Scales and locations of time stability of
soil water storage in a hummocky landscape, J. Hydrol., 408,
100–112, 2011a.

Biswas, A. and Si, B.C.: Depth persistence of the spatial pattern of
soil water storage in a Hummocky landscape, Soil Sci. Soc. Am.
J., 75, 1295–1306, 2011b.

Braud, I., Dantasantonino, A. C., and Vauclin, M.: A Stochastic
Approach to Studying the Influence of the Spatial Variability of
Soil Hydraulic-Properties on Surface Fluxes, Temperature and
Humidity, J. Hydrol., 165, 283–310, 1995.

Bunde, A., Havlin, S., Koscielny-Bunde, E., and Schellnhuber, H.
J.: Atmospheric persistence analysis: novel approaches and ap-
plications, in: The Science of Disasters, edited by: Bunde, A.,
Kropp, J., and Schellnhuber, H. J., Springer-Verlag, NY, 178 pp.,
2002.

Nonlin. Processes Geophys., 19, 227–238, 2012 www.nonlin-processes-geophys.net/19/227/2012/



A. Biswas et al.: Multifractal detrended fluctuation analysis 237

Cassel, D. K., Wendroth, O., and Nielsen, D. R.: Assessing spatial
variability in an agricultural experiment station field: opportu-
nities arising from spatial dependence, Agro. J., 92, 706–714,
2000.

Evertsz, C. J. G. and Mandelbrot, B. B.: Multifractal measures
(Appendix B), in: Chaos and fractals, edited by: Peitgen H.
O., J̈urgens, H., and Dietmar S., Springler-Verlag, NY, 922–953,
1992.

Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field
water use and crop yield, Halsted Press, John Wiley and Sons
Inc., NY, 1978.

Feder, J.: Fractals, Plenum Press, New York, 66–103, 1988.
Gardner, W. H.: Water content, in: Methods of Soil Analysis. Part

1. Physical and mineralogical methods – Agronomy monograph,
9, ASA-SSSA, Madison, WI, 503–512, 1986.

Gee, G. W. and Bauder, J. W., Particle size analyses, in: Method
of soil analyses. Part 1: Physical and Mineralogical Methods,
edited by: Klute, A., American Society of Agronomy, Madison,
WI, 1986.

Gomez-Plaza, A., Alvarez-Rogel, J. Albaladejo, J., and Castillo, V.
M.: Spatial patterns and temporal stability of soil moisture across
a range of scales in a semi-arid environment, Hydrol. Process.,
14, 1261–1277, 2000.

Grau-Carles, P.: Long-range power-law correlations in stock re-
turns, Physica A., 299, 521–527, 2001.

Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.:
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