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Abstract. In this paper, we use the in-house Computational
Fluid Dynamics (CFD) flow code AMAZON-SC as a
numerical wave tank (NWT) to study wave loading on
a wave energy converter (WEC) device in heave motion.
This is a surface-capturing method for two fluid flows that
treats the free surface as contact surface in the density
field that is captured automatically without special provision.
A time-accurate artificial compressibility method and high
resolution Godunov-type scheme are employed in both fluid
regions (air/water). The Cartesian cut cell method can
provide a boundary-fitted mesh for a complex geometry
with no requirement to re-mesh globally or even locally for
moving geometry, requiring only changes to cut cell data at
the body contour. Extreme wave boundary conditions are
prescribed in an empty NWT and compared with physical
experiments prior to calculations of extreme waves acting
on a floating Bobber-type device. The validation work
also includes the wave force on a fixed cylinder compared
with theoretical and experimental data under regular waves.
Results include free surface elevations, vertical displacement
of the float, induced vertical velocity and heave force for a
typical Bobber geometry with a hemispherical base under
extreme wave conditions.

1 Introduction

In this paper, we describe developments of the
AMAZON-SC 3D numerical wave tank (NWT) to study
extreme wave loading of a floating structure (in Heave
motion). The extreme wave formulation prescribed as an
inlet condition is due to Dalzell (1999) and Ning et al. (2009)
is based on a first or second-order Stokes focused wave.

Correspondence to:Z. Z. Hu
(z.hu@mmu.ac.uk)

The AMAZON-SC 3D code (see e.g. Hu et al., 2009) uses
a cell centred finite volume method of the Godunov-type
for the space discretization of the Euler and Navier Stokes
equations. The computational domain includes both air
and water regions with the air/water boundary captured as
a discontinuity in the density field thereby admitting the
break up and recombination of the free surface. Temporal
discretisation uses the artificial compressibility method and
a dual time stepping strategy to maintain a divergence free
velocity field. Cartesian cut cells are used to provide a fully
boundary-fitted gridding capability on a regular background
Cartesian grid. Solid objects are cut out of the background
mesh leaving a set of irregularly shaped cells fitted to the
boundary. The advantages of the cut cell approach have been
outlined previously by Causon et al. (2000, 2001) including
its flexibility for dealing with complex geometries whether
stationary or in relative motion. The field grid does not need
to be recomputed globally or even locally for moving body
cases; all that is necessary is to update the local cut cell data
at the body contour for as long as the motion continues. The
handing of numerical wave paddles and device motion in
the AMAZON-SC NWT is therefore straightforward and
efficient.

Firstly, extreme design wave conditions are generated in
an empty NWT and compared with laboratory measurements
as a precursor to calculations to investigate the survivability
of the Bobber device operating in a challenging wave
climate. Secondly, a fixed submergence horizontal cylinder
has been validated in regular waves. Finally, a floating
Bobber has been simulated under extreme wave conditions.

2 The Cartesian cut cell mesh

In this paper, the Euler equations version of AMAZON-SC
willbe extended to handle a 3-D floating body in extreme
waves. The majority of the flow domain is overlaid with
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a regular Cartesian mesh. Moving flow boundaries or bodies
in relative motion within the flow domain are accommodated
by computing local cell-boundary intersections at the
boundaries that are in motion. A detailed description of
the principles of the cut cell method including the numerical
procedures applied at solid boundaries that are either static or
in relative motion have been given previously by the authors
(Yang et al., 1997; Causon et al., 2000, 2001; Qian et al.,
2003) including extension of the cut cell algorithms to 3-D
(Yang et al., 2000; Hu et al., 2009).

3 The flow solver on a cut cell mesh

The Euler equations for a general moving control volume of
fluid expressed in a pseudo-compressible form can be written
as

∂

∂t

∫ ∫
V

∫
Q∂V +

∮
S

F · n∂s =

∫ ∫
V

∫
B∂V (1)

where Q is the vector of conserved variables within the
volumeV , F is the conservative flux through the volume’s
bounding surfaceS, whose outward-pointing unit-normal
vector isn andB is a source term of body forces.Q, F

andB are given by

Q =

[
ρ,ρu,ρv,ρw,

p

β

]T

, (2)

F = f Inx +gIny +hInz , (3)

B = [0,0,0,−ρg,0]T (4)

where

f I
= [ρ(u−ub),ρu(u−ub)+p,ρv(u−ub),ρw(u−ub),u]T ,

gI
= [ρ(v−vb),ρu(v−vb),ρv(v−vb)+p,ρw(v−vb),v]T ,

hI
= [ρ(w−wb),ρu(w−wb),ρv(w−wb),ρw(w−wb)+p,w]T ,

where u, v and w are the flow velocity components
and ub, vb and wb are the velocity components of the
(body) boundaryS, which are identically zero when the
boundary is stationary. ρ is the fluid density,p is the
pressure,β is the coefficient of artificial compressibility
and g is the gravitational acceleration. The use of a
pseudo-compressible form of the describing equations and
artificial compressibility parameterβ permits the use of
efficient modern Riemann-based solution methods developed
for compressible flows.

We then discretize Eq. (1) over each cell of the flow
domain using a finite volume formulation, which gives

∂QijkVijk

∂t
= −

r∑
k=1

Fk1Ak +BVijk = −R
(
Qijk

)
, (5)

whereQijk is the average value of the solution vectorQ

at cell (i, j , k) stored at the cell centre andVijk denotes
the volume of the cell.Fk is the numerical flux across the
bounded facek of the finite volume cell,1Ak is the area of
that face andr is an integer identifier for each face of the cell
(> 4 in the case of a 2-D cut cell).

The convective fluxFk in Eq. (5) is then determined by
solving a Riemann problem at each cell interface. This
involves two stages: first, the left and right state values
are reconstructed on the opposite sides of each cell face
by projecting the solution data from the stored cell centre
values either side of the cell face centre; second, the resulting
Riemann problem defined by the left and right state data is
solved using an approximate Riemann solver (ARS).

Thus, the required left and right state values corresponding
to stored cell centre dataQ(x,y,z) can be found anywhere
within the cut cell using

Q(x,y,z) = Qi,j,k +1Qi,j,k ×r (6)

wherer is the normal distance vector from the cell centre to
any specific interface or solid boundary.Qi,j,k is the stored
computed cell centre data and1Qijk is the gradient at cell
(i, j , k).

Secondly, Roe’s approximate fluxFk is constructed to
second order accuracy in each cell. This assumes a 1-D
Riemann problem in the direction normal to the cell face and
has the form

Fk =
1

2

[
Fk (QR)+Fk (QL)−

∣∣∣ Ã ∣∣∣(QR−QL)
]
,∣∣∣ Ã ∣∣∣ = R |3|L (7)

whereQR andQL are the reconstructed data values on the
right and left of facek based on Eq. (6) and̃A is the flux
Jacobian evaluated using Roe’s average state valuesQ̃ =

Q̃(QL,QR). The quantitiesR andL are the right and left
eigenvectors ofÃ. 3 is the diagonal eigenvalue matrix,
|3| = diag(λ1,λ2,λ3,λ4,λ5) where the eigenvalues are given
by

λ1,2,3 = unx +vny +wnz,λ4,5 = 0.5
(
unx +vny +wnz ±C

)
(8)

whereC =

√(
unx +vny +wnz

)2
+4β/ρ.

The Jacobian matrixA can be constructed according to its
definitionA = ∂ (F ·n)/∂Q,

A =
0 nx ny nz 0

−u2nx−uvny −uwnz 2unx+vny+wnz uny unz βnx

−uvnx −v2ny−vwnz vnx unx+2vny+wnz vnz βny

−uwnx −vwny−w2nz wnx wny unx+vny+2wnz βnz

−
unx
ρ

−
vny
ρ

−
wnz
ρ

nx
ρ

ny
ρ

nz
ρ

0


(9)
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The approximate Roe average is obtained at each cell facek

by computing

Q̃ =

(
↔
ρ , ρ̃ũ, ρ̃ṽ, ρ̃w̃, p̃/β

)
for the two fluid flows gives

ρ̃ =
√

ρRρL, ũ = uL
√

ρL +uR
√

ρR/
(√

ρL +
√

ρR
)
,

ṽ = vL
√

ρL +vR
√

ρR/
(√

ρL +
√

ρR
)
,

w̃ = wL
√

ρL +wR
√

ρR/
(√

ρL +
√

ρR
)
,

and

p̃ = 0.5·(pL +pR).

ThenQ̃ is introduced into Eq. (9) and the Jacobian matrixÃ
constructed.

To achieve a time-accurate solution at each time step of an
unsteady flow problem, a first-order Euler implicit difference
scheme is used for the time discretisation in Eq. (5) as
follows,

(QV )n+1
−(QV )n

1t
= −R

(
Qn+1

)
. (10)

Here, the incompressible flow is numerically modelled by
employing the well known artificial compressibility method.
Thus, a pseudo time derivative term is added to the equation
set in such a manner that the true incompressible flow
equations are recovered at each physical time step by a
process of marching to convergence in pseudo time until the
time derivative term is driven to zero. This gives(
QV n+1,m+1

−(QV )n+1,m
)

1τ
+Ita

(QV )n+1,m+1
−(QV )n

1t

= −R
(
Qn+1,m+1

)
(11)

whereτ is the pseudo-time andIta= diag[1,1,1,1,0].
If the foregoing linearizations are introduced into Eq. (11),

the result can be written as[
ImV +

∂R
(
Qn+1,m

)
∂Q

](
Qn+1,m+1

−Qn+1,m
)

= −

[
Ita

(
Qn+1,m

−Qn,m
)
V

1t
+θ ·R

(
Qn+1,m

)]
(12)

where

Im = diag[1/1τ +1/1t,1/1τ +1/1t,1/1τ +1/1t,

1/1τ +1/1t,1/1τ ] .

When 1(Qn+1)m = Qn+1,m+1
− Qn+1,m is iterated to

zero at each physical time step the density and momentum
equations are satisfied identically and the divergence of the

velocity at time leveln+1 is zero as required. The system of
equations can be written in matrix form as(

D+L +U
)
1Qs

= RHS (13)

RHS stands for the right side of Eq. (12),D is a block
diagonal matrix,L is a block lower triangular matrix andU
is a block upper triangular matrix. Each of the elements inD,
L andU is a 5×5 matrix. An approximate LU factorization
(ALU) scheme as proposed by Pan and Lomax (1988) can be
adapted in the form(

D+L
)

D−1 (
D+U

)
1Qs

= RHS. (14)

wherein within each physical time step of the implicit
integration process the pseudo time sub-iterations are
terminated when theL2 norm associated with the iteration
process

L2 =


[∑N

i

(
Qs+1

−Qs
)2

]
N


1/2

(15)

is less than a user specified limitε, and ε = 10−4 here.
Further details may be found in Qian et al. (2006).

4 The extreme wave formulation

As is well known, the exact velocity profile for a true
physically realisable nonlinear wave under given conditions
is not known a priori. Thus, a viable approach is to input
reasonable approximate wave conditions along the input
boundary to simulate the real phenomenon. This leads to the
notion of the extreme wave formulation as a focused wave
group in which many wave components in a spectrum are
focussed simultaneously at a position in space in order to
model the average shape of an extreme wave profile. The
derivation here refers to the work of Dalzell (1999) and Ning
et al. (2008, 2009) in which a first or second-order Stokes
focused wave can be imposed in such a manner.

A Cartesian coordinate system O-xyz is defined with the
origin located at the undisturbed equilibrium free surface,
with the z-coordinate vertical and positive upwards. The x-
coordinate is zero at the wave-maker located at x = 0.0 m, x0
is the focus point,t0 is the focus time and the water depth
h. For each wave componenti the amplitudeAi can be
calculated from

Ai = ai
Si(f )1f

N∑
i=1

Si1f

, (16)

whereN is total number of components,Si(f ) is the spectral
density,1f is the increment in frequency depending on the
number of wave components and band width andai is the
input wave amplitude of the focused wave.
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The corresponding wave elevationη, and horizontal and
vertical velocitiesu andw are expressed as follows:

η = η(1)
+η(2) (17)

u = u(1)
+u(2) (18)

w = w(1)
+w(2) (19)

whereη(1), u(1) andw(1) are the linear wave elevation and
velocities,η(2), u(2) andw(2) correspond to the second-order
wave elevation and velocities, respectively. Both velocity
and wave elevation can be decomposed intoN components
with different frequencies as follows:

η(1)
=

N∑
i=1

Ai cos[ki (x −x0)−ωi (t − t0)+εi ] (20)

η(2)
=

N∑
i=1

N∑
j>i

{
AiAjB

+cos
[(

ki +kj

)
(x −x0)

−
(
ωi +ωj

)
(t − t0)+

(
εi +εj

)]
+AiAiB

−cos
[(

ki −kj

)
(x −x0)

−
(
ωi −ωj

)
(t − t0)+

(
εi −εj

)]}
+

N∑
i=1

A2
i ki

4tanh(kih)

(
2+

3

sinh(kih)2

)
cos[2ki (x−x0)

−ωi (t − t0)+εi ] −
A2

i ki

2sinh(2kih)
(21)

u(1)
=

N∑
i=1

gAiki

ωi

cosh(kiz)

cosh(kih)
cos[ki (x −x0)−ωi (t − t0)+εi ]

(22)

u(2)
=

N∑
i=1

N∑
j>i

{
AiAjA

+
(
ki +kj

) cosh
(
ki +kj

)
z

cosh
(
ki +kj

)
h

cos
[(

ki +kj

)
(x −x0)−

(
ωi +ωj

)
(t − t0)+

(
εi +εj

)]
+AiAjA

−
(
ki −kj

) cosh
(
ki −kj

)
z

cosh
(
ki −kj

)
h

cos
[(

ki−kj

)
(x−x0)−

(
ωi−ωj

)
(t − t0)+

(
εi −εj

)]}
+

N∑
i=1

3kiA
2
i ωi

4

cosh(2kiz)

sinh(kih)4

cos[2ki (x −x0)−ωi (t − t0)+εi ] (23)

w(1)
=

N∑
i=1

gAiki

ωi

sinh(kiz)

cosh(kih)
sin[ki (x−x0)−ωi (t−t0)+εi ]

(24)

w(2)
=

N∑
i=1

N∑
j>i

{
AiAjA

+
(
ki +kj

) sinh
(
ki +kj

)
z

cosh
(
ki +kj

)
h

sin
[(

ki+kj

)
(x−x0)−

(
ωi+ωj

)
(t−t0)+

(
εi+εj

)]
+AiAjA

−
(
ki −kj

) sinh
(
ki −kj

)
z

cosh
(
ki −kj

)
h

sin
[(

ki −kj

)
(x −x0)−

(
ωi −ωj

)
(t − t0)+

(
εi −εj

)]}
+

N∑
i=1

3kiA
2
i ωi

4

sinh(2kiz)

sinh(kih)4

sin[2ki (x−x0)−ωi (t−t0)+εi ] (25)

whereg is the gravitational acceleration,h is the water depth,
the wave numberki = ω2

i /g tanh(kih), the frequencyωi =

2πfi , the phase slopeε is set to zero for the calculations in
this work and

D±
=

(
ωi ±ωj

)2
−g

(
ki ±kj

)
tanh

[(
ki ±kj

)
h
]

A+
= −

ωiωj

(
ωi +ωj

)
D+

[
1−

1

tanh(kih)tanh
(
kjh

)]

+
1

2D+

[
ω3

i

sinh(kih)2
+

ω3
j

sinh
(
kjh

)2

]

A−
=

ωiωj

(
ωi −ωj

)
D−

[
1+

1

tanh(kih)tanh
(
kjh

)]

+
1

2D−

[
ω3

i

sinh(kih)2
−

ω3
j

sinh
(
kjh

)2

]
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=

ω2
i +ω2

j

2g
−

ωiωj
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2g
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1−

1

tanh(kih)tanh
(
kjh
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+
g
(
ki +kj

)
tanh

[(
ki +kj

)
h
]
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+
ωi +ωj

2gD+

[
ω3

i

sinh(kih)2
+

ω3
j

sinh
(
kjh

)2

]

B−
=

ω2
i +ω2

j

2g
+

ωiωj

(
ωi −ωj

)2

2g

[
1+

1

tanh(kih)tanh
(
kjh
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+
g
(
ki −kj

)
tanh

[(
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)
h
]

D−

+
ωi −ωj

2gD−
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ω3

i
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−

ω3
j
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(
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]
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5 Free surface and the force calculation

At the interface between two immiscible fluids, the present
method assumes that the system of equations for non-
homogeneous incompressible flow can treat the free surface
numerically as a contact discontinuity in the density field.
The need for special procedures to track the free surface
is thus eliminated, since the free surface is captured
automatically in the time-marched numerical solution as a
discontinuity in the density field. It is asserted that the
numerical solution of Eq. (1) for a system containing one
or more free surfaces will converge to a physically-correct
unique solution.

In this paper, the pressurep can be obtained fromp/β

in Eq. (2). The total force is obtained by integration of the
pressure field around the body contourF = −

∫
Sb

pndS, where

Sb is the body surface as defined approximately by the fitted
cut cell surface.

6 Results

In the following sets of results, the density ratio between
water and air is taken as 1000:1. The location of the free
surface, which means air and water interface, is determined
as the density contour with average value of the two fluids.
The value of the gravitational acceleration is taken asg =

9.8 ms−2. The pseudo time step is set as1τ = 5× 1.0−3.
The value of the artificial compressibility parameter is used
by β = 500.

6.1 Extreme wave generation in the tank

In this work, we adopt the wave tank geometry and set
up conditions used in the experimental model described by
Ning et al. (2009). An experimental tank was used with the
dimensions 69m×3.0m and water depth was set to0.5m. In
the study Ning et al. (2009) and Westphalen et al. (2008),
four extreme wave cases are investigated with different input
amplitudes. Here we reproduce and validate numerically
Case 3 only.

In our NWT, the wave characteristics in each case are
as shown in Table 1. The length of the numerical tank is
the same as the one used by Ning et al. (2009), which is
5 times the characteristic wave length (5λ). In the vertical
the tank is set to 1.0 m and the water depthh = 0.5 m is
the same as in the physical experiments. The width of the
tank is taken with a 3 cell layer thickness as 3D, albeit
in a narrow numerical tank. In Ning et al. (2009), the
parameters used were the focus pointx0 = 3.27 m and the
focus timet0 = 10.0 s, respectively. The wave maker signals
for the simulations were calculated using a first and first plus
second order formulation and 16 (=N ) wave components as
recommended by Ning et al. (2009). The corresponding

Table 1. Characteristic waves.

Wave Wave Input Frequency
period length amplitude band
T (s) λ (m) ai (m) (Hz)

Case 3 1.25 2.18 0.0875 0.6–1.4

 8

Firstly results obtained with the inclusion of first order and first and second order wave 
components for comparison with the experimental data of Ning et al. (2009) are presented in 
Fig. 4, which shows the surface elevation at the focus point. The total number of cells in the 
3D domain is 471,900 with a uniform mesh spacing of 0.01667m. The results confirm that 
agreement with the experiments up to the time of wave focussing is satisfactory particularly 
in the first and second order case, with any discrepancies between experiments and 
simulations appearing only after the focal time.  
 
A non-uniform mesh was used for the case with 358×70×3 = 75,180 cells and mesh spacing 
in the refined regions of 0.00875m, which gives 10 cells per wave amplitude in the vertical 
direction. The results with the inclusion of first order and first and second order simulations 
for comparison with the experimental data of Ning et al. (2009) are shown in Fig. 5, which 
illustrates the surface elevation at the focus point. A comparison of the maximum surface 
elevation between simulation and experiments after the focal point (including the focal 
point) are shown in Table 2. It can be seen that the first order wave maker signal 
underestimates the velocities whilst the results for the first plus second order case provide 
reasonable agreement with a fully nonlinear calculation and by implication with the 
experimental results. The total CPU time is about 45 hours on one processor of a 600 MHz 
NEC vector computer.  
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     Fig.1 Input wave spectrum with frequency      Fig.2 Surface elevation at input position   Fig. 2. Surface elevation at input position.

At the inflow boundary at the left-side of the tank,
the corresponding surface elevations are shown as Fig. 2
and velocities are shown in Fig. 3, where the velocity
specification is applied in the water component only and the
velocity of the air at the inlet boundary is set to zero. The
top boundary and right far boundary are specified with non-
reflecting boundary conditions allowing air to leave or enter
the domain. The remaining boundaries are set as rigid walls.
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Table 2. Maximum surface elevation at wave gauges.

x = 3.27 m x = 3.55 m x = 3.75 m x = 3.95 m

Phys. Exp. by Ning et al. (2009) 0.5967
STAR CCM (1st + 2nd order) by Westphalen et al. (2008) 0.5923 0.5968 0.6007 0.6024
Present result (1st + 2nd order) 0.5931 0.5971 0.6013 0.6026
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Fig. 3. The horizontal and vertical velocity at input position
(x = 0.0 m).
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Fig. 4. Comparison of wave elevations at focal point ofx = 3.27 m.

Firstly, results obtained with the inclusion of first order and
first and second order wave components for comparison with
the experimental data of Ning et al. (2009) are presented in
Fig. 4, which shows the surface elevation at the focus point.
The total number of cells in the 3-D domain is 471 900 with
a uniform mesh spacing of 0.01667 m. The results confirm
that agreement with the experiments up to the time of wave
focussing is satisfactory particularly in the first and second
order case, with any discrepancies between experiments and
simulations appearing only after the focal time.

A non-uniform mesh was used for the case with 358×

70×3= 75180 cells and mesh spacing in the refined regions
of 0.00875 m, which gives 10 cells per wave amplitude in
the vertical direction. The results with the inclusion of first
order and first and second order simulations for comparison
with the experimental data of Ning et al. (2009) are shown
in Fig. 5, which illustrates the surface elevation at the focus
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point. A comparison of the maximum surface elevation
between simulation and experiments after the focal point
(including the focal point) are shown in Table 2. It can be
seen that the first order wave maker signal underestimates
the velocities whilst the results for the first plus second order
case provide reasonable agreement with a fully nonlinear
calculation and by implication with the experimental results.
The total CPU time is about 45 h on one processor of a
600 MHz NEC vector computer.

6.2 A fixed horizontal cylinder in regular waves

The case next considered is the interaction between regular
waves and a half submerged horizontal cylinder in a tank.
The purpose of the test case is to provide validation of the
wave forces acting on the cylinder compared with the theory
based on Morison’s equation and experimental results (see
Dixon et al., 1979; Easson et al., 1985). To correspond
with the physical experiments, first-order regular waves are
generated in a tank to interact with the cylinder. The inflow
boundary velocity componentsu, w and the surface elevation
η are

u =
gAkcosh(k(z+h))cos(kx −ωt)

ωcosh(kh)

v =
gAksinh(k(z+h))sin(kx −ωt)

ωcosh(kh)

η = Acos(kx −ωt)

with the velocity specification applied in the water compo-
nent only and the velocity of the air at the inlet boundary
set to zero. The top boundary and right far boundary are
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with the velocity specification applied in the water component only and the velocity of the 
air at the inlet boundary set to zero. The top boundary and right far boundary are specified 
using non-reflecting boundary conditions allowing air to leave or enter the domain.  The 
remaining boundaries are set as rigid walls. 
  
The NWT geometry used had outer dimensions 12 m ×1.5 m ×  0.21 m and the water depth 
used was mh 0.1= . The position of the cylinder was set about one wave period (wave length 
of m90.3 ) from the wave maker (see Figs.6 &7). A non-uniform mesh was used for the case 
with 475×69×14 = 458,850 cells and mesh spacing in the refined regions = 0.015m as 
shown in Fig.8.  The set up parameters are: cylinder diameter, mD 25.0= , length of cylinder 

ml 12.0= , wave amplitude mA 125.0= , wave frequency 817.3=ω and 61.1=k .  Fig.9 
shows time histories of the relative vertical force over one period, which relative force 
defines to )]4/(/[ 2' lDgFF z πρ=  and zF  is a force on the cylinder resulting from the 
pressure acting on the surface calculated in the vertical direction. It can be seen that good 
agreement is achieved with the experimental data and theoretical forces providing 
satisfactory evidence of the accuracy of the present model.  

 
   Fig.6 A horizontal cylinder              Fig.7 A horizontal cylinder in the NWT 

 
 
 
 

Fig. 6. A horizontal cylinder.
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Fig. 7. A horizontal cylinder in the NWT.

specified using non-reflecting boundary conditions allowing
air to leave or enter the domain. The remaining boundaries
are set as rigid walls.

The NWT geometry used had outer dimensions
12 m× 1.5 m× 0.21 m and the water depth used was
h = 1.0 m. The position of the cylinder was set about one
wave period (wave length of 3.90 m) from the wave maker
(see Figs. 6 and 7). A non-uniform mesh was used for the
case with 475× 69× 14= 458850 cells and mesh spacing
in the refined regions = 0.015 m as shown in Fig. 8. The set
up parameters are: cylinder diameter,D = 0.25 m, length
of cylinder l = 0.12 m, wave amplitudeA = 0.125 m, wave
frequencyω = 3.817 andk = 1.61. Figure 9 shows time
histories of the relative vertical force over one period, which
relative force defines toF ′

= Fz/
[
gρ

(
πD2l/4

)]
andFz is a

force on the cylinder resulting from the pressure acting on
the surface calculated in the vertical direction. It can be seen
that good agreement is achieved with the experimental data
and theoretical forces providing satisfactory evidence of the
accuracy of the present model.

6.3 Wave interaction with the floating Bobber
in the tank

The NWT domain for this extreme waves case is
13 m× 1.0 m× 0.48 m with a water depth for the tests of
h = 0.5 m. The geometry of the Bobber is as follows: the
diameter of the hemispherical base is 0.3 m, the vertical sides
extend to a flat top 0.15 m above the curved section. The
initial position of the apex of the Bobber geometry in the tank
is at the wave focus point 3.0 m× 0.24 m× 0.35 m and a non-
uniform mesh is used with 425×40×22= 374000 cells and
refined regions with local mesh spacing of 0.02 m around the
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6.3 Wave Interaction with the floating Bobber in the tank 
 

The NWT domain for this extreme waves case is mmm 48.00.113 ××  with a water depth for 
the tests of mh 5.0= . The geometry of the Bobber is as follows: the diameter of the 
hemispherical base is 0.3m, the vertical sides extend to a flat top 0.15m above the curved 
section. The initial position of the apex of the Bobber geometry in the tank is at the wave 
focus point 3.0m×0.24m×0.35m and a non-uniform mesh is used with 425×40×22 = 374,000 
cells and refined regions with local mesh spacing of  0.02m around the geometry (see Figs. 
10 & 11). The focus time, focus point and the input wave amplitude are set up in the same 
manner as before in the empty tank. Reflection boundary conditions are used on the Bobber 
boundary and the other boundaries are specified in the same manner as in the case of the 
empty NWT. 
 
The mass of the Bobber geometry is taken as the volume of the hemispherical base. The 
Bobber geometry is allowed to articulate in heave motion only, responding to the wave 
excitation, while all other modes are restrained. As expected, the response is in terms of the 
vertical velocity, displacement and heave displacement of the Bobber geometry. The 
corresponding results for the free surface elevation on the front side of the Bobber geometry 
is shown in Fig. 12; the heave force on the Bobber geometry is shown in Fig. 13; the vertical 
velocity in Fig. 14, and the heave displacement of the Bobber geometry is shown in Fig. 15. 
Fig. 16 illustrates the wave profile around the Bobber geometry. These results include the 
incoming wave, diffracted wave, radiated wave and the wave created by the heave motion of 
the body. 
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Fig. 8. Cartesian cut cell mesh around horizontal cylinder.
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Fig. 9. Relative vertical forces on horizontal cylinder.
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Fig. 10. The Bobber geometry.

geometry (see Figs. 10 and 11). The focus time, focus point
and the input wave amplitude are set up in the same manner
as before in the empty tank. Reflection boundary conditions
are used on the Bobber boundary and the other boundaries
are specified in the same manner as in the case of the empty
NWT.

The mass of the Bobber geometry is taken as the volume
of the hemispherical base. The Bobber geometry is allowed
to articulate in heave motion only, responding to the wave
excitation, while all other modes are restrained. As expected,
the response is in terms of the vertical velocity, displacement
and heave displacement of the Bobber geometry. The
corresponding results for the free surface elevation on the
front side of the Bobber geometry is shown in Fig. 12; the
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Fig. 11. The Bobber in the NWT.
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7. Conclusions 
 

A numerical tank with free surface capturing and Cartesian cut cell method has being 
modified and developed for the simulation of wave energy devices under modelled extreme 
wave conditions. The results show the emerging promise of the NWT for the simulation of 
nonlinear wave interactions with fixed and floating bodies.  Future work will include 
extensions to other wave energy converter devices admitting a full complement of degrees 
of freedom as opposed to heave alone as considered here, and to wave interactions with 
other floating bodies and fixed structures including aeration of the water component under 
violent wave impact situations. 
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7. Conclusions 
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wave conditions. The results show the emerging promise of the NWT for the simulation of 
nonlinear wave interactions with fixed and floating bodies.  Future work will include 
extensions to other wave energy converter devices admitting a full complement of degrees 
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Fig. 13. Time history of the heave force on the Bobber geometry.
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Fig.16 Wave profile around the Bobber 
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Fig. 14. Time history of the vertical velocity of the Bobber
geometry.
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Fig. 15. Time history of the displacement of the Bobber geometry.
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Fig. 16. Wave profile around the Bobber.

heave force on the Bobber geometry is shown in Fig. 13; the
vertical velocity in Fig. 14, and the heave displacement of the
Bobber geometry is shown in Fig. 15. Figure 16 illustrates
the wave profile around the Bobber geometry. These results
include the incoming wave, diffracted wave, radiated wave
and the wave created by the heave motion of the body.

7 Conclusions

A numerical tank with free surface capturing and Cartesian
cut cell method has been modified and developed for the
simulation of wave energy devices under modelled extreme
wave conditions. The results show the emerging promise of
the NWT for the simulation of nonlinear wave interactions
with fixed and floating bodies. Future work will include
extensions to other wave energy converter devices admitting
a full complement of degrees of freedom as opposed to
heaving alone as considered here, and to wave interactions
with other floating bodies and fixed structures including
aeration of the water component under violent wave impact
situations.
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