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APPLICABILITY OF LINEARIZED DUSTY GAS MODEL FOR 
MULTICOMPONENT DIFFUSION OF GAS MIXTURES IN POROUS SOLIDS 

 
Jelena Markovi� and Radovan Omorjan� 

 
 The transport of gaseous components through porous media could be described 
according to the well-known Fick model and its modifications. It is also known that 
Fick’s law is not suitable for predicting the fluxes in multicomponent gas mixtures, 
excluding binary mixtures. This model is still frequently used in chemical engineering 
because of its simplicity. Unfortunately, besides the Fick’s model there is no generally 
accepted model for mass transport through porous media (membranes, catalysts etc.). 
Numerous studies on transport through porous media reveal that Dusty Gas Model 
(DGM) is superior in its ability to predict fluxes in multicomponent mixtures. Its wider 
application is limited by more complicated calculation procedures comparing to Fick’s 
model. It should be noted that there were efforts to simplify DGM in order to obtain 
satisfactory accurate results.  
 In this paper linearized DGM, as the simplest form of DGM, is tested under con-
ditions of zero system pressure drop, small pressure drop, and different temperatures. 
Published experimental data are used in testing the accuracy of the linearized procedure. 
It is shown that this simplified procedure is accurate enough compared to the standard 
more complicated calculations.  
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INTRODUCTION 
 

 The industrial application of porous solids is quite widespread. They are used as 
heterogeneous catalysts, adsorbents, membranes etc. Additionally, the porous electrodes 
are used in fuel cells technology. Besides extensive experimental work there are nu-
merous models concerning porous solid properties and multicomponent transport (1).  
 It should be noted that there is no generally accepted model for multicomponent 
diffusion through porous solids (2). Some of them belong to the group called continuum 
models. 
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 They are relatively easy to use and sufficiently accurate if a porous medium does not 
change its textural properties. However, they are not well suited if noticeable changes in 
the pore connectivity, pore plugging and fragmentation occur (2).  
 Certain progress has been made in the last years employing discrete models based on 
the network representation of porous medium (2). Unfortunately, the application of the 
discrete models, (pore network models) requires tremendous computation time if 
transport should be treated realistically. This is their major shortcoming. 
 Concerning continuum models, the modified Fick’s law is the simplest diffusion 
model and it is often used for dilute or binary systems. It is also well-known about its 
drawbacks for multicomponent systems (3). In order to describe multicomponent dif-
fusion more accurately, models based on Maxwell-Stefan equations are preferred and 
recommended (3, 4, 5). Main obstacles of these models application are more complicated 
calculation procedures comparing to the Fick's approach. Therefore, any justified simpli-
fications of the models or calculation procedures would be acceptable. 
 Today, there are three most frequently used models available for description of com-
bined transport of multicomponent gaseous mixtures through porous solids: the Dusty 
Gas Model (DGM), the Mean Transport Pore Model (MTPM), and the Binary Friction 
Model (BFM) (6). These models are based on Maxwell-Stefan description of multicom-
ponent diffusion in pores and on the d'Arcy equation for permeation.  
 The aim of this study was to analyze the application of the simplified procedure for 
transport parameters determination in porous solids, based on the linearization of the 
Dusty Gas model (7). This procedure was tested using the published experimental data 
(3,7).  

 
 

EXPERIMENTAL 
 

Flux models through porous solids 
 

 Modified Fick's model represents the combination of three transport mechanisms: 
bulk diffusion, Knudsen diffusion and viscous flow. Fick's model defines component flux 
as a product of diffusion coefficient and partial pressure (concentration) gradient of the 
particular component: 

n,...,1i),Px(
RT
DN i

e
iD

i ����             [1] 

 In small pores, the molecule-wall interactions are determining the process (Knudsen 
diffusion), and in free space, molecule-molecule interactions (bulk diffusion). In each of 
these two regimes diffusion coefficients have different values. In the transition region it is 
common to use the Bosanquet formula in order to evaluate the diffusion coefficient, 
while in bulk diffusion region Wilke equation is most commonly used (3). 
 When a convective transport contributes to the total transport, d'Arcy equation of 
viscous flow can be added, resulting in what is known as extended Fick's model for po-
rous media: 
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  This equation is frequently used primarily because the component flux is expres-
sed in terms of concentration and pressure gradients. Methods of solving these equations 
will not be discussed here. The simplest case is one dimensional problem where gradients 
are replaced by finite differences (linear form): 
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 Contrary to the Fick's law for multicomponent diffusion concerning molecule to 
molecule interactions, the more correct and theoretically based model is given by Max-
well-Stefan diffusion equations.(3). The diffusive flux of component (in this concept) is 
given by the extended Maxwell-Stefan equation, which includes both, the bulk and the 
Knudsen diffusion mechanisms: 
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 According to the Dusty Gas model (DGM) of diffusive transport total flux is obtained 
by adding convective (viscous) contributions, similar as in equation [2]. The following 
formulation of DGM is often used as working equation in experimental investigation and 
in modelling of multicomponent gas transport processes in general. 
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 There are n independent equations, n independent fluxes, Ni and, n independent gra-
dients Pxx n ��� � ,,..., 11 . 
 In order to solve or use DGM equations an extensive effort is needed, excluding some 
special cases.(4,5). DGM equations fluxes are not given explicitly comparing to extended 
Fick's model, therefore, simplification of the calculation procedure would be very useful. 
Above derived equations of multicomponent transport refer to macro and meso-porous 
solids.  
 The common approximation is to consider one dimensional problem: 
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with the following boundary conditions : 
�� ��� PPxxzPPxxz iiii ������ )(,)(,;)0(,)0(,0 00   [7] 

and the additional constraints : 
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 From the composition constraint follows that only n-1 molar fluxes (gradients) are 
independent and by summing the equations [6] the following equation for total pressure 
gradient is obtained: 
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 The constraint of zero component flux gradients is valid when there are no chemical 
reactions. The equations [6] with the constraints [8] represent a system of 2n+1 equations 
with 2n unknowns (n compositions, pressure, n fluxes). 
 Solving these equations in order to obtain concentration and pressure profiles requires 
initial estimates of all the fluxes Ni (i =1,..n). Thus, the procedure includes finding the 
appropriate component fluxes which satisfy the resulting system of ordinary differential 
equations. It is carried out numerically in the general case, though analytical solutions 
have been given for some very special cases. (3, 4, 5). Summing over the n species with 
the constraint of absence of total pressure gradient DGM equations results as 
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 A convenient simplified procedure for the solution of DGM can be developed as in 
reference (7). 
 The fluxes can be calculated explicitly with an assumption of linear profiles of com-
position and total pressure along the diffusional path. With these assumptions driving 
force is as follows:  
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 This linear form of DGM equation [17] yields the values of the n fluxes explicitly.  
 
 

RESULTS AND DISCUSSION 
 

Testing of linear DGM (linear, nonlinear, exact) 
 

 Given linear representation, [11], could be considered as the simplest form of DGM 
(4, 5, 7). Linear DGM is tested against published experimental data for binary and ternary 
gas mixtures including ideal and non-ideal behaviour (7). 
 Authors generally used the DGM in the form of the system of first order linear equ-
ation ODE, [5]. This system is solved numerically as a boundary value problem (non-
linear problem in the following text). Initial estimates of component fluxes were obtained 
by using the linear DGM. Analytical solution in some cases could be found („exact“ so-
lution in the following text) when DGM is represented with a linear ODE (3). In order to 
test all of these forms (linear, non-linear, „exact“) of DGM numerical simulation was 
performed (3,7). 
 The used gas mixture consisted of Ar, He, N2 and H2 in order to avoid adsorption 
effects on pores surface and possible effect of surface diffusion (which is not included in 
DGM). Binary Fick's diffusion coefficients are calculated by Fuller-Shettler-Giddings 
correlation (9). The usual experimental conditions are assumed kPa325.101P � , 
T=298K. Characteristics of porous solid are given elsewhere (7). 
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 Numerical simulation is performed for different ternary combination of the above 
mentioned gases. Typical numerical results obtained for net flux through porous solids 
are given in the Table 1. Binary mixture on one side (Ar + N2) with given mole fraction 
of Ar ( 0

Arx ) and pure component (H2) on the other side of the porous solid ( 1
2

��
Hx ). 

The results are for zero pressure drop across the porous solid ( 0��P ). 
 

Table 1. Net fluxes ( �� iNN ) for different forms of DGM models 
 

Net fluxes - 210N �  ��
�

��
�

sm
mol

2  Mole fraction- 0
Arx  

Linear DGM Non-linear DGM „Exact“ DGM 
0.9 -2.3 -2.4 -2.3 
0.8 -2.0 -2.0 -2.0 
0.7 -1.6 -1.6 -1.8 
0.6 -1.2 -1.2 - 
0.5 -0.8 -0.8 - 
0.4 -0.4 -0.4 - 
0.3 0.1 0.1 - 
0.2 0.6 0.6 - 
0.1 1.1 1.1 - 

 
 Results from all other combinations of gases and compositions in ternary mixtures are 
not given because the same conclusions could be made; also negligible difference bet-
ween results of linear and non-linear DGM was noticed. Although the analytical solution 
(if exists) is more preferred than the numerical solution, in this case, to solve the go-
verning system of linear first order ODE analytically, some of numerical methods for 
matrix algebra must be employed. These numerical procedures often fail to converge 
which was the main reason why exact solution could not be found (3). Therefore, focus 
will be only on linear and non-linear solutions of DGM. 
 In Fig.1 typical composition profiles across the porous solid for all the analyzed 
models are given, Ar-H2 binary mixture on one side, and the pure component He on the 
other side of the porous solid, for linear ( 04.0N,014.0N,105.9N HeH

3
Ar 2

����� � ), 

non-linear ( 04.0N,014.0N,106.9N HeH
3

Ar 2
����� � ) and exact form of DGM 

( 05.0N,019.0N,011.0N HeHAr 2
���� ).  

 Although, only the linear DGM uses the assumption of linear composition profiles, 
linear composition profiles are also always obtained for both, non-linear and exact (when 
solution is found) DGM. 
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Fig 1. Composition profiles in ternary mixture (Ar-H2-He) 
 

Influence of pressure drop 
 
 The influence of pressure drop, 0��P , has been studied also. The analysis is based 
on the reference and data for ternary mixture from (7, Table 1, Table 2). In reproducing 
results from the literature denoted „exact“ solutions coincide with results obtained by the 
non-linear procedure given here. Although in the reference (7) experimental and simu-
lated data have been analyzed only for zero pressure drop, analysis has been extended by 
including the total pressure difference. As the experimental results were not available in 
that case, this analysis has been restricted to the comparison the linear and non-linear 
models. 
 Pressure difference has been applied to the mentioned data and it was observed as the 
deviation from mean pressure. The mean pressure was kept constant and the ratio of 
pressure difference and mean pressure was calculated as PcP ��� , where the constant c 
could be arbitrarily chosen. The comparison between linear and nonlinear models was 
performed by the calculating the accompanied component fluxes. The ratio of component 

fluxes, nln

nlnln

i

ii
Ni N

NNR �
�  was chosen as an indication of model differences. 

 In Fig.2. values of the flux ratios for different c values and the case of ternary mixture 
(He, Ne, Ar) are presented. At 0��P the fluxes were NHe~-0.5, NNe~0.12,  NAr~0.07. 
When 0��P  (c = 0) the difference between models is negligible. This is in accordance 
with previous discussion. 
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 Fig 2. The comparison of linear and nonlinear DGM for different pressure difference 
(B0=r0

2/8,  �/�=1, 
=22.6�10-6 Pa s, �=9.6mm) 
 

 The difference between models will increase with increase of �P. Positive �P will aid 
the flux of He and counter the fluxes of Ne, Ar and negative �P will have the opposite 
influence. When the flux of component is high and additionally contributed by pressure 
difference the relative difference between models will be lower (He - negative flux, posi-
tive �P).  
 In the case of lower fluxes especially when they are suppressed by pressure difference 
(Ne, Ar - positive flux, positive �P) the relative difference between models is more noti-
ceable. Additionally, if the �P is high enough the sign of the flux could change. In this 
case, the fluxes of Ne and Ar changed from positive to negative. This could be noted as 
the vertical asymptote (break for Ne, Ar in Fig 2.) for c values between 0.005 and 0.01 
because in this regime there is a c value where the fluxes calculated by nonlinear model 
are equal to zero. 
 In the case of negative �P and comparing to positive �P, the model differences in 
fluxes for He (He - negative flux, negative �P) are greater and for Ne, Ar (Ne,Ar – po-
sitive flux, negative �P) are significantly lower. Nonlinear procedure could fail for large 
pressure difference (greater absolute c values) i.e. the system could become stiff and 
therefore much difficult to solve. In the range of c values, presented in Fig.2., used nu-
merical procedure converged,  and outside of this region it failed. 
 

Influence of temperature 
 
 It is also important to investigate the temperature influence, especially for the eleva-
ted temperatures (porous catalysts, fuel cell (SOFC) electrodes etc.). The used experi-
ments (7) are performed on 27 oC. Fig. 3 represents the temperature influence and the 
simulation for the data from the same experiment. It could be seen that the difference in 
predicting the component flows between two models is lower at higher temperatures. 
DGM is also used in analysis of the transport through the porous electrodes in a fuel cell 
system, SOFC (12). The operating temperatures of SOFC are very high (~527-727 oC).  
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 Although the authors applied nonlinear two-dimensional DGM they assumed the 
linear concentration and pressure gradients. The authors also justified this assumption 
over a large range of electrode structures and fuel cell operating conditions. This also 
implies the use of linear instead of nonlinear models. 
 

 
Fig 3. The comparison of linear and nonlinear DGM for different temperatures 

 
 

CONCLUSION 
 

 In general, the difference between the compared models can be considered acceptable 
for zero or smaller pressure difference. On the other hand when the significant pressure 
difference is applied, linear model is quite acceptable for smaller mean pore radius. Con-
sidering the temperature, the analysis indicates that the linear model is more useful when 
the temperatures are higher.  
 Therefore, it could be concluded that for isothermal multicomponent diffusion the 
linear DGM model with its advantage of simplicity can be used without significant loss 
of accuracy for zero �P (or small deviation from zero), smaller mean pore radius and hig-
her temperatures. 
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