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Abstract. A simple quasi-analytical model is developed
to study the response of ice-sheets to climate change. The
model is axi-symmetrical and rests on a bed with a constant
slope. The mechanics are highly parameterised. The climatic
conditions are represented by the altitude of the runoff line.
Above the runoff line the accumulation rate is constant (but
may depend on, for instance, the ice-sheet size), below the
runoff line the balance gradient is constant. The ice-sheet
may extend into the sea and can respond to changes in sea
level. At the grounding line the ice velocity is assumed to
be proportional to the water depth. For this set-up an ex-
plicit expression for the total mass budget of the ice-sheet is
derived.

To illustrate the properties and possibilities of the model,
equilibrium states are analysed and the response to periodic
forcing is studied as well. The coupling of mass balance
and surface elevation of the ice-sheet leads to nonlinear be-
haviour and branching of the equilibrium solutions. The
qualitative behaviour of the system is that of the cusp catas-
trophe. Nonlinear effects are more pronounced when the
slope of the bed is smaller.

A case is discussed in which two ice-sheets are coupled
by making the altitude of the runoff line dependent on the
total area of the two ice-sheets. On two continents, having a
slightly different glaciation threshold, periodic forcing of the
altitude of the runoff line is imposed. It is shown that in such
a situation variations on a long time scale (two to three times
the period of the forcing) are introduced.

Finally the model is forced by the GISPδ18O record for
the last 120 000 years. For an appropriate choice of parame-
ters the model simulates well the waxing and waning of the
Laurentide, Fennoscandian and Barentsz ice-sheets.

1 Introduction

In the pioneering work of Weertman (1961, 1976) on the re-
sponse of continental ice-sheets to climate forcing, a sim-

Correspondence to:J. Oerlemans (j.oerlemans@phys.uu.nl)

ple analytical model was used to express the mass budget
as a function of the height of the equilibrium line. Using
a parabolic cross section in north-south direction and fixing
the northern tip of the model ice-sheet at a certain latitude
(the shoreline of the Arctic Ocean), he showed that multi-
ple steady states were possible for a range of values of the
equilibrium-line altitude. To arrive at a tractable equation (a
second-order equation for the ice-sheet size), Weertman had
to assume that accumulation and ablation rates are constant.
By forcing his model with the Milankovitch insolation varia-
tions, Weertman showed that some of the features in the ice-
volume record from deep-sea sediments were reproduced.

Next one-dimensional (north-south spatial resolution) nu-
merical ice-sheet models were developed to cope with some
of the drawbacks in Weertman’s theory (e.g. Oerlemans,
1980, 1982; Pollard, 1982; Deblonde and Peltier, 1991). No-
tably, it was now possible to let the ablation rate increase with
decreasing altitude, and to include the role of high grounds
in the process of glacial inception. The delay in the bed re-
sponse to a varying ice load could also be treated more ex-
plicitly. It appeared that such models were more successful
in generating power at the longer time scales (including the
100 kyr peak that dominates the power spectra of oxygen iso-
tope records from deep-sea sediments).

With increasing computing power the state-of-the-art now
is to run 2– or 3–dimensional ice-sheet models with consid-
erable spatial resolution coupled to a climate model of inter-
mediate complexity, or asynchronously coupled to a compre-
hensive climate model (Marsiat, 1994; Tarasov and Peltier,
1997; Bintanja et al., 2002). Such an approach offers great
possibilities, in particular when the goal is to correlate model
output with proxy records that are affected by regional cli-
mate processes.

However, it is always useful to develop a hierarchy of
models, and to see what features are so robust that they ap-
pear in simple as well as in comprehensive models. The pur-
pose of this paper is to develop an ice-sheet model that is
simple enough to allow a straightforward and adequate anal-
ysis of the dynamic properties, but on the other hand contains
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a description of the mass balance field that is realistic enough
to perform meaningfull climate-change experiments.

There are a number of major differences with the model
originally developed by Weertman. First of all, the abla-
tion rate is not constant but increases with decreasing sur-
face height, which is certainly more realistic. Secondly, the
ice-sheet is allowed to enter the ocean and form an ice shelf
or calving ice front. Although ice shelves are not modelled
explicitly, the flux of ice across the grounding line enters the
mass budget equation and thus effects the evolution of the
ice-sheet. In fact, the model is able to generate a large ice-
sheet in a situation where a small island is surrounded by a
shallow sea (a common situation on the Eurasian Arctic con-
tinental shelf). Thirdly, the model is axi-symmetric, in con-
trast to the original Weertman model which is 1–dimensional
(noth-south) with the tip of the ice-sheet fixed at the south-
ern shore of the Arctic Ocean. Arguments for using an axi-
symmetric geometry will be given in Sect. 2.

The formulation developed in this paper can be applied
to the major Pleistocene ice-sheets, and the resulting mod-
els can be coupled by parameterisations of climatic telecon-
nections (e.g. climatic conditions in Scandinavia are more
favourable for ice-sheet growth when there is an ice-sheet in
North America).

Because the model is basically 0–dimensional, with the
size of the ice-sheet as the only state variable, it is com-
putationally very efficient. One of the possible applications
therefore is inverse modelling with Monte Carlo techniques,
in which geological information on the extent of ice-sheets
and/or sea level is used to reconstruct a climate change sce-
nario that fits best.

2 Geometry

In this paper we consider axi-symmetric ice-sheets on beds
that slope linearly downwards from the centre. The main rea-
son for this is that ice-sheets will always start to form in the
higher places, simple because the specific mass balance in-
creases with height. In the course of time it has become clear
that the classical picture of Northern Hemisphere ice-sheets
that originate at the Arctic Ocean and then grow southwards
is not a better representation of reality than axi-symmetric
ice-sheets that start at high grounds and then expand in all
directions. Also, the purpose of this paper is to develop a
model that can also be applied to small ice caps like those on
Iceland, or on the Arctic islands. Therefore an axi-symmetric
geometry is a natural choice.

One of the basic assumptions in this theory is that the sur-
face height of an ice-sheet varies with the square root of the
distance to the centre. This is not an arbitrary choice, but
inspired by the fact that, if ice were a perfectly plastic mate-
rial and the original bed horizontal, the surface height of an
ice-sheet model is parabolic (e.g. Weertman, 1976):

h(r) =
(
µ0(R − r)

)1/2 (1)
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Fig. 1. (a) Geometry of the model ice-sheet for three values of
the slope of the undisturbed bed (labels). Note that the actual bed,
which is depressed by the ice load, is not shown.(b) Geometry for
different values of the ice-sheet radius. Atr = rc the terminus of the
ice-sheet enters the sea. The undisturbed bed slope is 0.001. Other
parameter values are:d0 = 1000 m,µ0 = 8 m1/2, c = 2·106 m1/2.

Herer is the horizontal coordinate (r = 0 at the centre of
the ice-sheet),h is the surface elevation,µ0 is the profile
parameter, andR is the radius of the ice-sheet. The plasticity
solution is for a bed that is horizontal originally (i.e. if there is
no ice load), and then depressed to maintain glacio-isostatic
equilibrium. Note that in this case both the surface height
h(r) and the ice thicknessH(r) vary with the square root
of r.

However, in the present study we assume that the undis-
turbed bed is not horizontal but slopes linearly downwards
away from the ice-sheet centre (Fig. 1):

d(r) = d0 − sr (2)

The undisturbed height of the bed at the centre is denoted
by d0, the bed slope bys. We assume that the shape of the
surface profile is not affected bys. However, for a given
value ofd0, the mean surface elevation will decrease for in-
creasings. This effect can be taken into account by the fol-
lowing formulation of the ice-sheet profile:

h(r) = d0 − s R +
(
µ(R − r)

)1/2
, (3)

where

µ = µ0 + c s2 . (4)



J. Oerlemans: A quasi-analytical ice-sheet model for climate studies 443

This parameterisation of the global effect of the bed slope
is based on numerical experimentation with a plane-shear
glacier model, in which the ice thickness and bed depression
are calculated explicitly as a function ofr. In the Appendix a
more detailed discussion on this point is presented. For suffi-
ciently small bed slopes (s < 0.005) it appears that adequate
parameter values areµ0 = 12 m1/2 andc = 2 · 106 m1/2.

In Fig. 1a ice-sheet profiles are shown for three values of
the bed slope. For all cases discussed in this paper we have
0.0005 ≤ s ≤ 0.0015. Note that the real bed, which is de-
pressed to maintain isostatic equilibrium, is not shown. The
relation betweenR and the volume of the ice-sheet is dis-
cussed later.

We also want to apply the model in cases where the ice-
sheet edge pushes into the sea to form a calving ice-sheet.
For this purpose we use the same profile with the tip of the
parabola ending on the sea floor. The position of the ground-
ing line, denoted byrgr , is where the ice is just floating, i.e.

ρw(srgr − d0) = ρi(srgr − d0 + hgr) , (5)

wherehgr is the height of the ice surface at the grounding
line. Water density is denoted byρw, ice density byρi . Equa-
tions (3) and (5) can be combined to give

d0 − sR +
(
µ
(
R − rgr

))1/2
= hgr

=
ρw − ρi

ρi

(
s rgr − d0

)
(6)

This is a quadratic equation forrgr which can easily be
solved. However, only a very small error is made by set-
ting the right-hand side of Eq. (6) to zero (i.e. positioning
the grounding line at the intersection of the parabola with
sea-level, see Fig. 1b). This yields a particularly simple ex-
pression forrgr :

rgr = R − µ−1(s R − d0)
2 (7)

The approach taken here implies that for a deeper grounding
line a larger part of the standard profile is cut off. This has
the implicit advantage that the surface slope at the grounding
line is smaller when the ice thickness at the grounding line
is larger. An inspection of the surface and bed topography
of the Antarctic ice-sheet makes clear that this is observed in
reality, although there is no claim here that anything of the
related physical processes is included in the model. A set of
ice-sheet profiles for a bed slope of 0.001 is shown in Fig. 1b.
An ice shelf has been depicted for the largest ice-sheet, but
the shelf itself does not play a role in the dynamics.

In a later stage we want to compute the evolution of the
ice-sheet from:
dVtot

dt
= Btot (8)

HereVtot is the total ice volume,t is time andBtot is the
total mass budget of the ice-sheet. To calculate the volume
we first ignore the response of the bed to the ice load. In the
case of a continental ice-sheet (R < rc) we find

V = 2π

R∫
0

H(r) r dr =
8πµ1/2

15
R5/2

−
1

3
πs R3 (9)
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Fig. 2. Total ice-sheet volume (Vtot ) as a function of the ice-sheet
radiusR. Volume in the case of no bed response (V ) and the amount
of displaced sea water (Vsea) are also shown. Model parameters as
for Fig. 1.

A further algebraic exercise, not reproduced here, shows
that this expression is also a good approximation for the case
of a marine ice-sheet. The reason for this is that the tip of
the parabola, describing the basic ice-sheet profile, and the
position of the grounding line are always very close.

Next we have to deal with the response of the bed to the
ice load. We assume that the system is always in isostatic
balance, which implies

ρiV − ρwVsea + ρiV
∗

= ρmV ∗ (10)

HereV is the volume as defined by Eq. (9),Vsea is the vol-
ume of the sea water replaced by ice, andV ∗ the volume of
the mantle material replaced by ice. The density of the man-
tle is denoted byρm. From Eq. (10) we find that the total
volume is given by

Vtot = V +
ρi

ρm − ρi

V −
ρw

ρm − ρi

Vsea

= (1 + ε1) V + ε2Vsea , (11a)

where

ε1 =
ρi

ρm − ρi

, ε2 =
ρw

ρm − ρi

(11b)

andVsea is approximated as:

Vsea = 2π

R∫
rc

(s r − d0) r dr

= π

(
2

3
s
(
R3

− r3
c

)
− d0

(
R2

− r2
c

))
(12)

Figure 2 shows how these expressions work out. For a
given slope,V, Vsea andVtot are shown as a function ofR.
As expected, the isostatic depression of the bed has a signif-
icant effect on the total ice volume. The magnitude ofVsea
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depends very much on the height of the undisturbed bed with
respect to sea level, of course.

We are now able to relatedR/dt to dVtot/dt . It follows
that for a calving ice-sheet

dVtot

dt
=

(
π(1 + ε1)

[
4

3
µ1/2R3/2

− s R2
]

+2ε2

[
πs R2

− d0R
])dR

dt
= Btot (13)

If the ice-sheet is not calving the second term within{ }

should be set to zero.
This completes the description of the geometric part of the

model. For any given forcingBtot , the evolution of the ice-
sheet can be calculated from Eq. (13). However, it is the
dependence ofBtot on the shape of the ice-sheet which cre-
ates interesting nonlinear behaviour. In the next section the
mass-balance field is described and an analytical expression
for Btot is derived.

3 Mass budget

To formulate the mass balance we use the concept of the
runoff line. Its altitude is denoted byhR. Above the runoff
line the specific balanceB is constant, below the runoff line
the balance gradient (with altitude) is constant. This is of
course a simplification of reality. Normally, above the runoff
line there is still loss of mass by sublimation. Also, the accu-
mulation is not constant but shows considerable variations.
On the Greenland ice-sheet for instance, the accumulation
rate in the southeastern part of the ice-sheet is typically five
times as large as in the dry northern parts. However, in the
model formulation developed further on this is not of great
importance, because it is the total accumulation that appears
in the final expression for the mass budget.

Therefore we proceed with

B = A for h ≥ hR (14a)

B = A − β(hR − h) for h < hR (14b)

Hereβ is the balance gradient with respect to altitude. We
note that the altitude of the runoff line can be related easily to
the more commonly used altitude of the equilibrium linehE :

hE = hR − A/β (15)

However, in this section using the runoff line is more con-
venient because it leads to a somewhat simpler expression
for the total surface mass budget.

In Fig. 3 some observed balance profiles are shown (Haak-
ensen, 1995; Haeberli et al., 1998). They have been chosen
in such a way that the difference for maritime and continen-
tal glaciers shows up clearly. The curve for the Greenland
ice-sheet is derived from a simulation with a high-resolution
mass balance model (Van de Wal and Oerlemans, 1994).
Clearly, the balance gradient varies widely. According to
Fig. 3 we may use as characteristic valuesA = 1 m ice/yr and
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Fig. 3. Specific balance for a selection of glaciers. Legend: GIS =
Greenland ice-sheet, Dev = Devon ice cap (Canadian Arctic), Whi
= White Glacier (Canadian Arctic), Nig = Nigardsbreen (southern
Norway), Eng = Engabreen (central Norway). The solid line shows
the form of the parameterisation used in the model.

β = 0.005 m ice yr−1 m−1. Larger balance gradients nor-
mally come with higher accumulation rates. Although we do
not invoke such a relation here, it can easily be incorporated
when the model is used for climate-change experiments.

For a continental ice-sheet (R < rc) the mass budget is
found to be:

Btot =

2π∫
0

R∫
0

B r dr dφ

= πA R2
− πβ

(
hR − d0 + sR

)(
R2

− r2
R

)
+

4πβµ1/2

5

(
R − rR

)5/2
−

4πβµ1/2

3
R
(
R − rR

)3/2 (16)

HererR is the location where the runoff line intersects the
ice-sheet surface. It is given by

rR = R − µ−1(hR − d0 + s R
)2 (17)

For a marine ice-sheet (R > rc), the integration is ex-
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tended untilrgr only, so:

Btot =

2π∫
0

rgr∫
0

B r dr dφ

= πA r2
gr − πβ

(
hR − d0 + sR

)(
r2
gr − r2

R

)
+

4πβµ1/2

5

((
R − rR

)5/2
−
(
R − rgr

)5/2
)

+
4πβµ1/2

3

(
R
(
R − rR

)3/2
− R

(
R − rgr

)3/2
)

(18)

In the case of a marine ice-sheet there will also be loss of ice
through discharge into the ocean. As in Oerlemans (2002),
we only consider the volume flux across the grounding line
and assume that the azimuthally-averaged ice velocity at the
grounding line is proportional to the water depth. This ad-
mittedly is a very schematic approach. In reality marine ice-
sheets have stagnant parts and ice streams that are active for
some time. Mass discharge by ice streams is irregular and
not always directly related to climatic forcing. Nevertheless,
it seems reasonable to parameterise the integrated effect of
ice streams and more slowly moving lobes by an expression
that relates azimuthally-averaged ice velocity to azimuthally-
averaged water depth at the grounding line.

The total flux across the grounding line equals the ice ve-
locity times the ice thickness at the grounding line, which
leads to

Fgr = 2π R f δ
(
s rgr − d0 + η

)2 (19)

Heref is a bulk flow parameter for ice at the grounding line.
Its order of magnitude is 1 yr−1 (Oerlemans, 2002). Changes
in sea-level affect the depth at the grounding line and there-
fore the ice discharge. Therefore, a quantityη is included,
which is defined as eustatic sea level with respect to a da-
tum state (η = 0). In principle it is possible to include the
feedback of ice volume on sea level, but it should be realised
that the relation between global ice volume and sea level is
a complicated one with many local and regional effects (e.g.
Tushingham and Peltier, 1991; Milne et al., 2002). In the
applications of the ice-sheet model discussed further on, the
height of the runoff line is defined with respect to the sea-
level datum state (η = 0).

Equilibrium states of the model ice-sheet can now be cal-
culated by settingBtot = 0 for a continental ice-sheet, or by
settingBtot − Fgr = 0 for a marine ice-sheet. Because the
resulting equation is of a high order inR, this cannot be done
analytically. However, it is easy to obtain the equilibrium val-
ues ofR by a numerical technique (e.g. Newton-Raphson) or
by integration of the time-dependent equation.

4 Equilibrium states

In this section we study equilibrium states. These states
were calculated by integrating Eq. (13). Because hysteresis
is a frequently occurring dynamic feature in ice-sheet mod-
els with height - mass balance feedback (Weertman, 1961;
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Fig. 4. (a)Stable equilibrium states of the model ice-sheet for three
different values of the bed slopes. Bifurcation points are indicated
by dots. The dotted lines refer to calculations (fors = 0.001) in
which the balance gradientβ was halved or doubled.(b) Stable
equilibrium states for different values of the accumulation rateA

(in m of ice per year). The dotted line (µ∗) refers to a calculation in
which the profile parameter depends on the accumulation rate.

Oerlemans, 1981), integrations should be done with at least
two initial conditions: no ice-sheet and a large ice-sheet. We
first consider continental ice-sheets. In this case the model
formulation is invariant for the reference level for altitude, so
results are presented as a function ofhE − d0, i.e. the height
of the equilibrium line with respect to the highest point of the
bed (as defined for the ice-free case).

Figure 4 shows equilibrium states for different model pa-
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rameters. It is clear that forhE > d0, R = 0 always repre-
sents an equilibrium state. Then there is a range of values for
hE for which two stabe equilibrium states are possible (one
of which isR = 0). The bifurcation points are indicated by
dots. In the following discussion we denote the equilibrium-
line altitude where the bifurcation point is found byhcrit .
Curves are plotted for different values ofs, showing that the
value ofhcrit −d0 increases in a nonlinear way with decreas-
ing slope of the bed. In fact, fors → ∞ a stable ice-sheet
is not possible: it either grows to infinity or shrinks to zero.
The unstable equilibrium states are not shown. The unstable
branches simply run from the bifurcation point to the origin
of the plotR = 0, hE = d0. The dynamic properties of the
model ice-sheet can also be described in terms of a hysteresis
effect. Fors = 0.0005 this is indicated by arrows.

The qualitative behaviour of the model has the character-
istics of the elementary cusp catastrophe (Thom, 1975). Al-
though the equation forR is of fifth order, the quadratic term
dominates and generates a fold catastrophe. However, be-
cause an additional constraint is imposed (R ≥ 0), R = 0
represents a stable equilibrium state for part of the parameter
space. This then results in a structure that is very similar to
the cusp catastrophe.

The solution diagram is qualitatively similar to the one
described by Weertman (1961, 1976) for a one-dimensional
(north-south) Northern Hemisphere ice-sheet on a horizontal
bed, with an equilibrium line that slopes upward in southerly
direction. However, to obtain an equation for the ice-sheet
size that could be solved analytically, Weertman had to as-
sume that there is an accumulation area with a constant ac-
cumulation rate and an ablation area with a constant ablation
rate. This delivers a quadratic equation for the ice-sheet size.
Although Weertman’s analysis was of an admirable direct-
ness and simplicity, it is a fact that the assumption of a con-
stant ablation rate is rather unrealistic. This assumption leads
to ice-sheets that are more sensitive to changes inhE , be-
cause a smaller/larger ice-sheet implies a relatively small de-
creas/increase in the total ablation. Nevertheless, the qualita-
tive behaviour of the Weertman model and the present model
is similar.

The dashed curves in Fig. 4a reveal the sensitivity of
the equilibrium states to changes in the balance gradientβ

(shown only fors = 0.001). Doubling or halving the value
of β has some effect, but the differences are not very large.
Figure 4b shows how the equilibrium states depend on the the
accumulation rateA (for s = 0.001). Again the differences
are significant but not very large.

When ice-sheets become large it is likely that the mean ac-
cumulation rate will become smaller. It is therefore interest-
ing to parameterise this effect and calculate how the solution
curve changes. A possible formulation is:

A = A0 exp(−R/CR) (20)

This expression implies thatA decreases exponention-
ally with the ice-sheet size with ane-folding spatial scale
of CR. The curve shown in Fig. 4b (‘A =variable’) is for
A = 1.0 m ice/yr andCR = 500 km. As expected, it is more

difficult now for the ice-sheet to become big. The depen-
dence ofR onhE weakens.

For the simple ‘Vialov solution’ (an ice-sheet of a given
size on a flat bed with a constant accumulation rate, and
deforming according to Glen’s flow law for simple shear;
Vialov, 1958), the mean thickness varies with the 1/8 power
of the accumulation rate (e.g. Oerlemans and Van der Veen,
1984; Van der Veen, 1999). Although this dependence of the
ice thickness to the mass balance field (for given ice-sheet
size!) is absent in the perfectly-plastic model, the potential
importance of this effect can be studied by modifying the
profile parameter according to

µ∗
= µ

(
A/Aref

)1/8
. (21)

For the case with variableA this then produces the dotted
curve in Fig. 4b.Aref has been set to 1 m ice/yr. It is clear
that the effect is not very large.

In the present analysis the runoff line is horizontal. How-
ever, including the effect of a runoff line that slopes upward
or downward from the ice-sheet centre is straightforward. We
can write

hR = hR,0 + γ r (22)

whereγ is the tilt of the runoff line andhR,0 is the height
of the runoff line atr = 0. The value ofr at which the runoff
line intersects the ice surface (rR) is now found from

d0 − s R +

(
µ
(
R − rR

))1/2
= hR,0 + γ rR (23)

This expression replaces Eq. (17). Equation (23) is a
quadratic equation forrR and is easily included in the cal-
culations. It turns out that the resulting equilibrium solutions
are very similar to those for a horizontal runoff line, ifs is
replaced bys + γ . This implies that an equilibrium line that
slopes upwards with the distance to the ice-sheet centre will
make an ice-sheet less sensitive to climate change.

For a calving ice-sheet the solution diagram looks differ-
ent, as illustrated by Fig. 5. Results can no longer be for-
mulated in dependence ofhE − d0, becaused0 determines
for which value ofR ice is lost to the ocean (for a given
slope of the bed). The introduction of calving makes the ice-
sheet less sensitive to changes in the equilibrium-line alti-
tude. The lower panel in Fig. 5 shows how the components
of the mass budget vary withhE . WhenhE is somewhat be-
low sea level the runoff becomes zero (in fact, this happens
when the runoff line is at sea level; then the ice-sheet radius
becomes independent ofhE).

Altogether, from this survey of equilibrium states it can
be concluded that the parameter sensitivity is dominated by
the description of the mass balance field and the slope of the
bed. Although one cannot state that mechanical effects are
insignificant, the results obtained so far in this analysis mo-
tivate a further use of the simple ice-sheet model in cases
where the environmental forcing varies strongly in time.
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The lower panel shows the corresponding components of the mass
budget (forf = 1): total accumulation (Atot ), runoff, and flux
across the grounding line (Fgr ). The coastline is atr = 667 km.

5 Time dependent behaviour

The response time of the model ice-sheet depends on the size
and the geometric setting, of course. For a given equilibrium
state the response time, which is a volume time scale, can be
determined by numerical experimentation or by a linear per-
turbation analysis (as was done in Oerlemans (2002) for the
Antarctic ice-sheet model). We do not go into this analysis
here, but look at the response to periodic forcing instead.

One possibility is to move the equilibrium line up and
down periodically, as described by

hE(t) = hE,0 − hE,A sin

(
2πt

P

)
(24)

HerehE,0 is the reference value for the equilibrium-line alti-
tude andhE,A the amplitude. In the following the periodP
is set to 22 000 yr (Fig. 6a). The response of the model ice-
sheet is obtained simply by numerical integration of Eq. (13).

Figure 6 shows the result forhE,A = 300 m and differ-
ent values ofhE,0. Figure 6b is for a continental ice-sheet
with s = 0.001, A = 1.0 m ice/yr andCR = 500 km.
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panel(c) to hE,0 in (m).

The labels on the curves gived0 − hE,0, i.e. the reference
equilibrium-line altitude with respect to the highest point of
the undisturbed bed. As we can already anticipate from the
structure of the equilibrium solutions (Fig. 4), there are two
regimes: regime 1 in which the ice-sheet disappears com-
pletely and regime 2 in which the ice-sheet survives the max-
imum inhE . This is in agreement with calculations that have
been done with numerical ice-sheet models with somewhat
different geometries (e.g. Oerlemans, 1982; Deblonde and
Peltier, 1991). It can be seen that the time-lag between min-
imum equilibrium-line altitude and maximum ice-sheet size
is larger for regime 1. In fact, the time lag is close toP/4.

The response of a marine ice-sheet to the periodic forcing
is shown in Fig. 6c. For the continental ice-sheet discussed
above, the solution could be presented in terms ofd0 − hE,0.
However, in the case of a marine ice-sheet we have to specify
d0, because it determines at which value ofR the ice-sheet
edge moves into the sea. The results in Fig. 6c are fors =
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0.001 andd0 = 250 m, which implies that the ice margin
is in the sea forR ≥ 250 km. For a good comparison, the
scales of Fig. 6b and 6c are the same. It is clear that the loss
of ice by means of calving strongly reduces the response to
changes inhE .

One can also force the ice-sheet by changes in sea level.
Figure 7 shows the response of a marine ice-sheet to periodic
changes in sea level. The amplitude forη was set to 50 m, and
the period again to 22 kyr. Because the effect is larger for ice-
sheets with a larger proportion of the bed below sea level, a
small value for the maximum bed elevation was chosen (d0 =

150 m). The height of the equilibrium line was kept constant
and equal tod0. For f = 1 yr−1, R varies over a range of
65 km. This range depends strongly onf , and therefore a
curve forf = 3 yr−1 is also shown. Apart from the stronger
response to sea-level change, the mean radius of the ice-sheet
is smaller now.

There is no consensus about the sensitivity of ice-sheets to
sea-level change (Thomas and Bentley, 1978; Bentley, 1997;
Hindmarsh and Le Meur, 2001), which makes it difficult to
judge the results of the current simple model. In any way,
the sensitivity and the characteristic response time depend
very much on the specific geometry. In Fig. 8 an example
is shown of a strong response to a linear rise in sea level of
100 m in 5000 yr. Withd0 = hE = 100 m ands = 0.001, the
equilibrium radius of the ice cap is about 225 km. When sea-
level starts to rise, the flux across the grounding line increases
rapidly and reaches a peak after about 3000 years. The
net mass budget reaches a minimum after about 4000 years.
Then the size of the ice-sheet has decreased so much that all
components of the mass budget become smaller. Note that
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Fig. 8. Response of the model ice sheet to a linear change in sea
level. Model parameters:f = 2 yr−1, s = 0.001, d0 = 50 m,
hE = 50 m,A = 1 m/yr,CR = 500 km. The upper panel(a) shows
the ice-sheet radiusR and sea-level perturbationη. The lower panel
(b) shows the components of the mass budget.

the relative change of the ablation is very large because part
of the original ablation area is ‘flooded’ by the rising sea. It
is probably unrealistic to keep the altitude of the equilibrium
line fixed when sea-level rises, but this does not matter for
the example discussed here.

6 Coupling of ice-sheets

It is widely accepted that during the Quaternary ice-sheets
have played an important role in the evolution of the cli-
mate system. There is convincing geomorphological and ge-
ological evidence that at least five big ice-sheets have ex-
isted, namely the Laurentide ice-sheet, the Fennoscandian
ice-sheet, the Kara/Barentsz Sea ice-sheet, the Greenland
ice-sheet and the Antarctic ice-sheet. The Greenland and
Antarctic ice-sheets are still there – the others are not. Each
ice-sheet has its own history, affects the global climate, and
therefore has an influence on the evolution of the other ice-
sheets. Several mechanisms have been identified as being
important in this respect. Sea-level fluctuations have been
mentioned frequently as a process through which Northern
Hemisphere ice-sheets have controlled partly the size of the
Antarctic ice-sheet (Denton et al., 1986). Big ice-sheets have
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a significant effect on the large-scale circulation patterns in
the atmosphere, and notably on the distribution of precipita-
tion. As many simulations of the climate of the Last Glacial
Maximum have shown, the presence of ice-sheets contributes
significantly to a cooler earth merely by increasing the sur-
face albedo.

The ice-sheet model presented here can be used to study
the interaction between ice-sheets. This requires a param-
eterisation of the climatic teleconnections, of course. It is
beyond the scope of the present paper to elaborate on this,
but two simple examples are shortly discussed.

In the first case we consider again the response to periodic
forcing of the equilibrium-line altitude, but now for two ice-
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Fig. 10. Simulation of the three major Northern Hemisphere ice
sheets through the last glacial cycle(b). Panel(a) shows the forc-
ing of the equilibrium-line altitude, which follows the d18O record
from the GISP ice core. The solid line has been obtained by low-
pass filtering.

sheets with slightly different geometry. The equilibrium-line
altitude is prescribed as

hE(t) = hE,0 − hE,A sin

(
2πt

P

)
− hE,R

(
R2

1 + R2
2

R2
E

)
(25)

As before,hE,0 is the reference value for the equilibrium-
line altitude andhE,A the amplitude of the periodic forc-
ing (P is set to 22 000 yr again). The last term in Eq. (25)
represents an additional drop in the equilibrium-line associ-
ated with the effect of the increasing or decreasing total ice-
sheet area. With this formulation the growth of one ice-sheet
favours the initiation and growth of the other one. For the
case shown in Fig. 9, the only difference between the two ice-
sheets is the value ofd0. For one ice-sheet the value ofd0 is
1250 m, for the other ice-sheet 1350 m. Other parameter val-
ues are:hE,0 = 1250 m,hE,A = 300 m,RE = 106 m. These
values imply that a full-grown ice-sheet with a 1000 km ra-
dius leads to a 200 m drop in the equilibrium line in the po-
lar and subpolar regions of the Northern Hemisphere. The
parameter values are just chosen to have the right order-of-
magnitude. There is no claim that they would actually match
results from climate-modelling experiments.

The resulting ice-sheet areas as a function of time are
shown in Fig. 9c. For comparison, the case withhE,R =
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Table 1. Model parameters used to simulate the Laurentide, Fennoscandian, and Barentsz ice-sheets through the last glacial cycle

d0 (m) hE,0 (m) s A0 (m/yr)

Laurentide ice-sheet 1200 1000 0.0005 1.2

Fennoscandian ice-sheet 1200 1200 0.0007 1.5

Barentsz ice-sheet 300 100 0.0006 0.5

0 (ice-sheets are not coupled) is shown in Fig. 9b. The
equilibrium-line altitude for both cases is depicted in Fig. 9a.
May be the most interesting aspect of the result is that it takes
three cycles of forcing before the maximum total ice-sheet
area is reached. In the terminology of the previous section,
without the coupling one ice-sheet is in regime 1 and the
other ice-sheet in regime 2. With the coupling both ice-sheets
end up in regime 2. Altogether, the coupling introduces a
new (long) time scale in the system.

In the second case the oxygen isotope record of the GISP
ice-core is taken as the driving force for an integration over
the last 120 000 years (Grootes et al., 1993). This is done
by making the equilibrium-line altitude proportional to the
δ18O value in such a way that the typical full glacial - in-
terglacial contrast corresponds to a change inhE of about
1000 m (Fig. 10a). Three ice-sheets are simulated, represent-
ing the Laurentide, Scandinavian and the Barentsz ice-sheets
(we use the term Barentsz ice-sheet for any ice in the Bar-
entsz/Kara Seas region). The model parameters correspond-
ing to these ice-sheets are given in Table 1. The values are not
at all based on a sophisticated analysis of topographic data,
but chosen in such a way that the Laurentide and Scandina-
vian ice-sheets are of a more ‘continental’ nature as com-
pared to the Barentsz ice-sheet. The latter is a calving ice-
sheet for most of the time.

As is clear from the analysis of the equilibrium states
(Fig. 4), a smaller value of the bed slope s yields larger ice-
sheets. Therefore the bed slope for the Laurentide ice-sheet
has been given the smallest value, because it is generally ac-
cepted that in full glacial conditions this ice-sheet was the
largest. It should be stressed, however, that here no attempt
is made to optimize parameter values in a systematic way.
The only purpose is to illustrate the possibilities of the ice-
sheet model presented in this paper.

The δ18O record from the Greenland ice-sheet should be
considered as a regional temperature proxy. Nevertheless, it
is used here as a proxy for the variations in the equilibrium-
line altitude over the entire area where ice-sheets formed.
The forcing is therefore formulated as

hE(t) = hE,0 − 150
(
δ18O − δ18O

)
, (26)

where theδ18O value is measured in ‰ andhE(t) in m. The
overbar refers to the mean value over the last 120 kyr (which
is −38.79‰).

Just to illustrate further how simple coupling mechanisms
may operate, it is now assumed that a large Fennoscandian

ice-sheet blocks the moisture supply for the Barentsz/Kara
Sea region and also makes the climate here more continental
with less clouds and higher temperatures in summer. This
implies a rise of the equilibrium line. So for the Barentsz
ice-sheet we write instead of Eq. (26):

hE(t) = hE,0 − 150
(
δ18O − δ18O

)
+λ
(
1 − exp

(
− RSC/CR

))
(27)

In this expressionRSC is the radius of the Fennoscandian
ice-sheet. So a larger value ofλ implies a larger rise of the
equilibrium line. Here a value of 500 m is used, andCR =

500 km. So for a Fennoscandian ice-sheet radius of 500 km
the increase inhE is typically 300 m.

The result is summarised in Fig. 10. The upper panel
shows the forcing, i.e. the variations in the equilibrium-line
altitude. The mean value of the forcing over the period of
120 000 years is equal to zero. The ice-sheet radii are plotted
in the lower panel.

First of all it can be noted that given its simplicity the
model performs well. It is not difficult to chose the model
parameters in such a way that the ice-sheets grow and de-
cay in broad agreement with the paleo-record. The reference
equilibrium-line altitude (hE,0) for the Fennoscandian region
has been set 200 m higher than for North America (Table 1).
In this way the Fennoscandian ice-sheet ‘misses’ the temper-
ature minima at 112 and 90 kyr BP, but the ice-sheet grows
rapidly from 67 kyr BP onwards. For the model parame-
ters of Table 1, the Barentsz ice-sheet shows a similar de-
velopment as the Laurentide ice-sheet, until the Fennoscan-
dian ice-sheet starts growing and Eq. (26) becomes effective.
The increase in the equilibrium-line altitude leads to a strong
reduction of the size of the Barentsz ice-sheet. Following
the warming at the end of the Quaternary, all the model ice-
sheets start to decay. In spite of the short duration of the
Younger Dryas, the signal in the GISP core is strong enough
to make the model ice-sheets advance over a small distance
(typically 20 to 50 km). In this calculation the Fennoscandian
ice-sheet has disappeared at 9 kyr BP, whereas the Laurentide
ice-sheet needs considerably more time to melt away.

Figure 10b shows that with some tuning the present ice-
sheet model is capable of reproducing the waxing and waning
of the major Northern Hemisphere ice-sheets in response to
a climate proxy for the last glacial cycle. This proves that the
model is useful and is suited to study the effect of climatic
teleconnections on ice-sheet dynamics. However, it should
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be stressed that this calculation does not provide an expla-
nation for the glacial cycle and the occurrence of power in
the long time scales - this is already contained in the forcing
function!

7 Discussion

In this paper an ice-sheet model has been developed that can
be used to study in a schematic way the interaction between
ice-sheets and climate. The principle characteristic of the
model is that it has no explicit spatial resolution. The radius
is the only state variable, and for a given radius the ice-sheet
profile and volume are always the same. However, compared
to earlier analytical ice-sheet models, the formulation of the
mass budget is more flexible and the ice-sheet can extend into
the ocean.

In a zero-dimensional approach, the use of an axially-
symmetric configuration is probably more realistic than a ge-
ometry with full lateral symmetry (i.e. a north-south profile
without ice discharge in the east-west direction). However,
there is a price to pay: the equilibrium-line altitude is the
same around the periphery of the ice-sheet, which differs
from the classical picture for the Northern Hemisphere in
which the equilibrium line slopes upwards in southerly direc-
tion. It is not so clear how serious this is, however. Looking
at the Greenland ice-sheet, the equilibrium-line varies con-
siderably, but not consistently in a north-south direction. Due
to strongly decreasing accumulation rates when going north-
wards, the lowering of the equilibrium-line altitude is sup-
pressed considerably. Therefore, an approach in which an
ice-sheet extends from high ground in all directions is per-
haps not further from reality than an ice-sheet that starts at
the margin of the polar ocean and grows southward (this is
certainly wrong for Scandinavia). Even in North America
there is a lot of evidence that in many phases the ice-sheet
was huge in the south with some island in the north almost
ice-free.

The model can be developed further within the framework
presented in this paper. An ice-sheet can be split into sec-
tors with different parameters to make the geometry and the
representation of the climatic setting more realistic. It is also
possible to account for the delay in the bed response by in-
troducing a separate prognostic equation for the elevation of
the bed. Along another line, ‘surge-type’ behaviour can be
generated by including a prognostic equation for the profile
parameterµ and impose rapid changes inµ (independently
or related to the properties of the model ice-sheet or the forc-
ing).

The approach presented in this paper cannot replace the
calculations with sophisticated numerical models. Never-
theless, it is instructive to investigate simpler models, be-
cause it allows a more thorough study of the parameter space.
The simplicity and computational efficiency of the ice-sheet
model presented here makes it very suitable for coupling with
low-order climate models.
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Fig. A1. Three steady-state ice-sheet profiles calculated with a nu-
merical plane-shear model for three values of the (undisturbed) bed
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Appendix A

The difference between perfectly plastic and plane-shear ice-
sheet models have been discussed in some detail by Van der
Veen (1999). The comparison he shows is for ice-sheets on a
bed that is originally horizontal.

First of all the perfectly plastic solution (parabola) has a
finite slope at the centre, whereas the plane-shear model has
a zero slope. A zero slope is clearly more realistic. However,
the shape of the central part of the ice-sheet is of little signif-
icance in the context of the present paper, because it does not
affect the total mass budget (the accumulation rate is constant
above the runoff line).

Then the plane-shear solution predicts a higher ice-sheet
close to the ice-sheet edge. This does have an implication
for the mass budget, because the intersection of the runoff
line with the ice-sheet surface will be further away from
the ice edge. Therefore, for a given mean surface elevation
and radius, the plane-shear ice-sheet will have a somewhat
larger mass budget than the corresponding perfectly plas-
tic ice-sheet. Nevertheless, it is questionable if the plane-
shear solution with its steeper edge is a more realistic model.
Basel melting and enhanced sliding, the presence of soft de-
formable sediment layers, and the formation of ice streams
altogether make that the plane-shear model predicts an ice-
sheet edge that is too steep, in particular in the case of an ice-
sheet that extends into the sea. In this respect the perfectly-
plastic model seems to do a better job, albeit for the wrong
reason.

The considerations given above also apply to ice-sheets
on a bed with a small slope. Equilibrium ice-sheet profiles
for plane-shearing flow were calculated for a number of bed
slopes (Fig. A1). The model equations and numerical pro-
cedure to obtain the solution are not given here, because it
can be found in a number of textbooks (e.g. Van der Veen,
1999). For each value of the bed slope the height of the
runoff line was adjusted in such a way that the same equi-
librium radius was found. A comparison between Fig. A1
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and Fig. 1a reveals the differences that have been discussed
above. Nevertheless, given the other simplifications used in
the model developed in this paper, the differences are accept-
able. We thus conclude that the parameterisation of the effect
of the bed slope as given by Eq. (4) is adequate. It should be
noted, however, that the values ofµ0 andc used in this pa-
per only apply to cases with sufficiently small bed slopes.
When the model is applied to steeper beds, further numeri-
cal experimentation is needed to optimise the values of these
parameters.
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