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  The maximal covering location problem (MCLP) seeks to locate a predefined number of 
facilities in order to maximize the number of covered demand points. In a classical sense, 
MCLP has three main implicit assumptions: all or nothing coverage, individual coverage, and 
fixed coverage radius. By relaxing these assumptions, three classes of modelling formulations 
are extended: the gradual cover models, the cooperative cover models, and the variable radius 
models. In this paper, we develop a special form of MCLP which combines the characteristics 
of gradual cover models, cooperative cover models, and variable radius models. The proposed 
problem has many applications such as locating cell phone towers. The model is formulated as 
a mixed integer non-linear programming (MINLP). In addition, a simulated annealing 
algorithm is used to solve the resulted problem and the performance of the proposed method is 
evaluated with a set of randomly generated problems. 
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1. Introduction 
 

The concept of covering problems was originally proposed by Toregas et al. (1971) and it was 
extended by Berlin and Liebman (1974) afterwards. In a typical covering problem, a customer is 
called covered if it is within a predefined distance, covering radius, from one of the closest facilities. 
There are two major categories of covering problems in the literature.  Location set covering problem 
(LSCP), originally introduced by Church and Revelle (1974), with the objective of covering all the 
customers to minimize the number of located facilities and maximal covering location problem 
(MCLP), originally defined by Revelle et al. (1976), with the objective of maximizing total weighted 
covered customers according to specified number of facilities. According to Berman et al. (2010) 
there are three main assumptions in coverage problem as follows, 

1- All or nothing coverage: based on this assumption, a customer is covered if it is located 
within the coverage radius of a facility, while it is uncovered if it is outside the coverage radius of 
a facility. 
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2- Individual coverage: according to this assumption, the coverage of each customer depends on 
the closest established facility to the customer and the next closest facility does not affect the 
coverage of the customer. 

3- Fixed coverage radius: the coverage radius of each facility is a fixed parameter and is not a 
decision variable. 

There are, however, many real-world applications in which these assumptions are relaxed (Berman et 
al., 2010). The following summarizes the new classification of these problems: 

1- Gradual covering models: in this type of models, instead of all or nothing coverage, a 
coverage function is used. This function determines the proportion of demands covered in a 
specified distance from a facility. Church and Robert (1984) presented the first model in this class 
and applied a step-coverage function for discrete version. Berman and Krass (2002) proposed the 
network version of this problem with a step coverage function. Fig. 1 shows a stepwise coverage 
function with break points R1, R2 and R3. Berman et al. (2003) studied the gradual model using 
general linear non-increasing coverage function in discrete and network version. This function is 
shown in Fig. 2. Eiselt and Marianov (2009) extended the gradual covering problem in the 
framework of set covering location problem. Berman et al. (2009) proposed the ordered gradual 
cover location problem (OGCLP) which combines the characteristics of gradual cover and 
ordered median models. Finally, Drezner et al. (2010) incorporated uncertainty in coverage radius 
in gradual cover models. 

2- Cooperative cover models: when an individual coverage assumption is relaxed, all of the 
established facilities may have an effect on coverage of a demand point. In other words, consider 
a case where each facility emits a signal. The amount of signal received by each customer from 
each facility is determined based on the distance between the facility and the customer. Thus, the 
total amount of signals received by each customer is the sum of signals received from all of the 
facilities. A customer is considered covered if the total amount of received signals is greater than 
a predefined threshold. Berman et al. (2010) recently proposed this concept for both maximal 
covering location problems and location set covering problems in plane for the Euclidean distance 
case.  

3- Variable radius models: In these models, the coverage radius of a particular facility is 
considered as a function of establishing cost of the facility, which means the more the establishing 
cost of the facility, the greater the coverage radius of the facility. Berman et al. (2009) are the first 
who introduced this idea. The goal of their proposed model was to determine the locations, the 
number and the coverage radius of each facility to cover all of the demand points with the 
minimum locating cost. They investigated this covering model with variable radius for both 
discrete and plane cases. 

 

Fig. 1. The stepwise coverage function Fig. 2. The linear coverage function 

There are also other real-world cases where we need to relax all assumptions of all or nothing 
coverage, individual coverage, and fixed coverage radius, simultaneously. For instance, consider a 
problem of locating cell phone towers. The following circumstances exist in this problem: 
1- The strength of received signals for each mobile phone user is inversely correlated with the square 

of the distance between the user and the tower. In other words, as the distance between the user 
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and the cell phone tower increases, the probability of the connection with the tower decreases 
(gradual coverage). 

2- The coverage radius of the cell phone tower increases as the signal strength of the tower is 
amplified (variable radius). 

3- Each mobile phone user receives signals from different cell phone towers with various strength 
levels. If a cell phone user fails to connect to the closest tower, he/she may connect to the next 
closest towers. In other words, in addition to the closest tower, other towers, with less probability, 
may become available to cover cell phone users (cooperative coverage).  

In this paper, we study a special form of the maximal covering location problem, which considers 
gradual cover, variable radius, and cooperative cover assumptions. The proposed model of this paper 
is formulated as a mixed integer non-linear problem (MINLP) and the resulted problem is solved 
using some meta-heuristic method.  

The rest of the paper is organized as follows. In section 2, the problem is described and formulated. 
Section 3 describes the proposed solution method which is based on simulated annealing algorithm. 
The SA approach is applied to solve the generated test problems in Section 4. Finally, Section 5 
summarizes the contribution of the paper. 

 

2. Problem description and formulation 

This section presents the mathematical formulation of the problem, which considers gradual 
coverage, variable radius and cooperative coverage, simultaneously. Suppose that J is the set of 
candidate locations to locate the facilities. Also, assume that the demand points and candidate 
locations to locate the facilities are the nodes of network G. Given an available budget, the goal of the 
model is to determine the numbers, the locations and the size and the coverage radius of each facility 
to maximize the total weighted covered demand points. The following notations are used to formulate 
the problems: 

indices 
i set of demand points 
j set of candidate locations 
Parameters 

jF  fixed cost of locating a facility at location j 
iw  weight of demand point i 

ijd  distance between customer i and candidate location j 
B  amount of available budget 

jl  the strength of signal emitted by facility j 
iT  the threshold for coverage of customer i 
ja  a percentage of coverage radius of facility j in which all of the emitted signal by facility j 

is received 
( )if d  coverage function which determines the amount of signal received by customer i located 

in distance d from the facility 
( )j rϕ  variable establishing cost of facility j with coverage radius r 

M  sufficiently large number 
Decision Variables 

i
1

0
p =

⎧
⎨
⎩

 
if customer i is covered 
otherwise 
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j
1

x
0

=
⎧
⎨
⎩

 
if a facility is located at location j 
otherwise 

ij
1

0
y =

⎧
⎨
⎩

 
if customer i is assigned to facility j 
 otherwise 

jr  coverage radius of facility j 

ij

1

0

z =

⎧
⎪
⎨
⎪⎩

 

if the distance between customer i and facility j is less than the initial coverage radius of 
the facility 
 
otherwise 

ij

1

0

z =

⎧
⎪′ ⎨
⎪⎩

 

if the distance between customer i and facility j is between the initial and secondary 
coverage radius of the facility 
 
otherwise 

ij

1

0

z =

⎧
⎪′′ ⎨
⎪⎩

 

if the distance between customer i and facility j is greater than the secondary coverage 
radius of the facility 
 
otherwise 

In the proposed model, each facility must cover all assigned customers; thus, the coverage radius of 
the established facility is equal to the farthest demand point assigned to the facility: 

{ }.)(max jiijNij xdyr
∈

=  

There are two types of fixed, Fj, and variable costs, ( )j rϕ associated with the establishment of a 
facility j with coverage radius r. Berman et al. (2009) have proposed different types of variable cost 
functions. Thus, total cost to located facilities is as follows, 

∑ ∑
∈ ∈

+
Nj Nj

jjjj rXF ).(ϕ  

It is assumed that each facility emits a signal with strength lj. All customers within the initial 
coverage radius of the facility receive the signal, completely. Moreover, customers between the initial 
and the secondary coverage radius of the facility receive partial signals and finally, customers who 
are located outside the secondary coverage radius of the facility receive no signal. A customer is 
considered covered if the total amount of received signals from all located facilities is greater than a 
specified threshold (Ti). The secondary coverage radius (rj) of each facility is defined according to the 
distance of farthest allocated customer to the facility. If aj is a percentage of coverage radius of 
facility j in which all of the customers completely receive signals emitted by facility j, ajrj would be 
the initial coverage radius of facility j. Furthermore, customers who are between the initial and 
secondary radius of facility j partially receive signals from the facility. The amount of signals 
received by each customer is a function of the distance between the customer and the facility. This 
function is called the coverage function. Different types of coverage functions can be found in the 
literature. One of the simplest kinds of these functions is the linear one, which is defined as follows, 

( ) , ,j ij
i ij j j j

j j j

r d
f d d a r r

r a r

−
= ∈

−
⎡ ⎤⎣ ⎦  

 

Therefore, we can formulate the covering facility location problem with gradual coverage, variable 
radius and cooperative coverage as follows, 
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(1) max i i
i N

w p
∈
∑  

(2) . . ( ) ,j j j j
j N j N

s t F x r Bϕ
∈ ∈

+ ≤∑ ∑  

(3) , ,j ij ijr d y i j N≥ ∈  
(4) , ,ij jy x i j N≤ ∈  
(5) [ ( ) ] , ,j ij i ij ij

j N
i iz f d z i Nl T MP

∈

′+ ∈≤ +∑  

(6) [ ( ) ] , ,(1 )j ij i ij ij
j N

i iz f d z i Nl T M P
∈

′+ ∈≥ − −∑
(7) , ,ij j j ijd a r z i j N′≥ ∈  
(8) (1 ) , ,ij j j ijd a r z M i j N≤ + − ∈  
(9) , ,ij j ijd r z i j N′′≥ ∈  
(10) (1 ) , ,ij j ijd r z M i j N′≤ + − ∈  
(11) 1, , ,ij ij ijz z z i j N′ ′′+ + = ∈  
(12) { }, , , , 0,1 ,, iij j ij ij ijpy x z z z′ ′′ ∈  
(13) 0,jr ≥  

The objective function (1) maximizes the weighted sum of covered demand points. Constraint (2) 
gives the available budget constraint. In other words, total establishing cost of facilities, which 
includes fixed and variable costs must be equal or less than the available budget. Constraint (3) 
ensures that the coverage radius of facility j must be equal or greater than the farthest allocated 
customer to the facility. Constraint (4) states that if demand point i is allocated to facility j, the 
facility in location j must be established. Constraint (5) and (6) ensure that if the total amount of 
received signals by the customer i from the located facilities is greater than the threshold value, then 
the customer is considered covered ( 1ip = ) and otherwise the customer is uncovered ( 0ip = ). Note 
that when 1ijZ = , demand point i completely receives signal emitted by facility j while when 1ijZ ′ = , 
only a portion of the signal from facility j is received. Moreover, when 1ijZ ′′ = , customer i receives no 
signal from facility j. Constraint (7)-(10) impose that if the distance between demand point i and 
facility j is less than the initial coverage radius of facility j ( ij j jd a r≤ ), then 1, 0, 0ij ijZ Z Z′ ′′= = =  .  
Also, if the dij is between the initial coverage radius and the secondary coverage radius of facility j (

j j ij ja r d r≤ ≤ ), then 0, 1, 0ij ijZ Z Z′ ′′= = = , and finally, if the dij is greater than the secondary coverage 
radius of facility j ( ij jd r≥ ), then 0, 0, 1ij ijZ Z Z′ ′′= = = . Constraint (11) shows that only one of 
variables ,ij ijZ Z ′ , and Z ′′  equals to 1 for each i and j. Finally, constraint (12) and (13) determine the 
type and range of the variables. Since the maximal covering location problem is NP-hard and the 
proposed model of this paper is an extension of MCLP where three covering assumptions are relaxed, 
we can conclude that the proposed model is NP-hard. Therefore, exact algorithms can reach the 
solution in reasonable time only for small size problems. Therefore, heuristic and meta-heuristic 
methods are normally implemented to deal with medium and large-scale problems. In this paper, we 
present a new simulated annealing (SA) algorithm to solve the proposed problem and the results are 
compared with some upper bounds in order to measure the efficiency of the resulted problem.  

3. Simulated annealing algorithm 

Simulated annealing (SA) is one of the well known algorithms which is inspired from physical 
annealing of solids. It was first introduced by Kirkpatrick (1983) to solve large combinatorial 
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optimization problems. SA attempts to escape from the local optima by probabilistically choosing 
non-improving solutions. The following summarizes the characteristics of SA algorithm. 

3.1.Solution representation 

The first step to implement a meta-heuristic algorithm is to encode solutions of the problem such that 
the operators of the algorithm can be performed on. A two dimensional array with 2 rows and n 
columns is used to represent the solutions. The first row consists of binary numbers where 1 
represents established facility. The second row is filled by integer numbers from 1 to n and represents 
the last customer which is allocated to an established facility. This number determines the covering 
radius of the facility. Fig. 3 shows a solution of a six-node problem. For instance, the value in the 
second row of the solution for facility 3 is 5 which means the coverage radius of facility 3 is d35. 

 

Fig. 3. Solution representation for a six-node problem 
 

3.2. Initial solution 

The quality of solutions using meta-heuristic algorithms highly depends on the quality of the initial 
solution. In the proposed algorithm, the initial solution is generated as follows: first, the alleles in the 
first row of the solution are set to 1 with the probability p; otherwise, 0.The value of parameter p 
depends on the number of nodes of the network, the cost of established facility and the available 
budget. In the second step, the second row of the solution is filled with random numbers from 1 to n 
where the corresponding allele in the first row is 1. 

3.3. Neighborhood search strategy  

New solution is generated by altering the elements of current solution. A two-step procedure is used 
to obtain a new neighbourhood solution.   

a) Altering the alleles of the first row: two facilities are randomly selected and if they are both 
located facilities (the alleles are 1), both are moved to the closed facilities (1 change to 0). If 
both alleles are 0, then they are changed to 1, and finally, if one allele is 1 and the other is 0, 
then the values are exchanged. For instance, if facilities 2 and 3 are selected, after the first step 
we have: 

0 01010

1 65432

0 01001

1 65432

 
 
b) Altering the alleles of the second row: to complete the process of neighborhood solution 

generation, the alleles in the second row of the current solution where the corresponding alleles 
in the first row are 1 (located facilities) are changed k times. This change is performed by filling 
the second row with randomly generated numbers from 1 to n. As a result, k new solutions with 
different coverage radius are obtained for the solution yielded from the previous step. At last, 
the solution with the best objective function value is selected as the new solution. Note that k is 
a parameter which is determined according to the size of the problem. 

 
3.4.  Fitness function evaluation 

The following fitness function is used based on the objective function of the proposed model,  
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1- Calculate the value of , ,ijb i j N∀ ∈ , using the following formula, 

( )

0

j ij j j

ij j i ij j j ij j

ij j

l if d a r

b l f d if a r d r

if d r

≤

= ≤ ≤

≥

⎧
⎪
⎨
⎪
⎩  

2- Assume that Ni is the set of covered customers ( ij i
j N

b T
∈

≥∑ ). Thus, the fitness function value of 

solution P is calculated as ( )
i

i i
i N

F p w
∈

= ∑ . 

3.5. Feasibility of solutions 

Available budget constraint may impose infeasibility to the solutions of the algorithm; in other words, 
total establishing cost of facilities exceed available budget. The following procedure assures the 
feasibility of the solutions. In the current solution, without any changes to the first row of the 
solution, the second row is filled with random numbers from 1 to n where the corresponding allele in 
the first row is 1. This process is performed M times where M depends on the dimensions of the 
problem and for each altered solution, the established cost is calculated to examine the feasibility of 
the solution ( ( )

j j j j

j N j N

F x r Bϕ
∈ ∈

+ ≤∑ ∑ ). When a feasible solution is generated, the solution is accepted. 

Otherwise, it can be concluded that there is no feasible solution with the current number of 
established facilities. Thus, one of 1s in the first row is changed to 0, randomly. This process 
continues until one feasible solution is obtained.  

3.6. SA algorithm 

Set the temperature 0T T= . Generate an initial solution and calculate its objective function value ( )F p   

Set the best found solution to ( )F p  

1- Repeat the following steps until min
T T≥  

(a) Generate a new solution p′  and evaluate ( )F p′ , Let ( ) ( )F F p F p′Δ = −  
(b) If 0FΔ ≥  perform the move to p′  and go to step 2d, 

(c) If 0FΔ ≤  perform the move to p′  with probability 
F

Te
Δ

−

 and go to step 2e, Otherwise 
retain p and go to step 2e 

(d) If ( )F p′  is better than the best found solution, update the best found solution 
(e) Multiply T Tα=  

2- The best found solution is the result of the algorithm. 
 

4. Computational results 
 

4.1 Data set generation 

To compare the results of the proposed algorithm, a set of random problems are generated. The 
coordination of each node of the network is selected randomly using U (5,30) distribution. 
Furthermore, the distance between nodes is calculated using the Euclidean distance type. Also, the 
weight of each node (wi) is generated randomly between 10 and 100. The cost of establishing each 
facility is a random number between 200 and 400 for fixed cost and 10 and 20 for variable cost, 
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respectively. Finally, variable establishing cost function of facilities is assumed to be cjr ( ( )j jr c rϕ = ). 
Other parameters’ values are: 0.5, 1000, 7, 5j j ia B l T= = = = . 

4.2 Parameter setting 

The performance of SA algorithm highly depends on the values of parameters of the algorithm. Table 
1 summarizes the initial values for initial temperature ( 0T ), cooling rate (α ), and final temperature (

minT ) to investigate the best value for each parameter. A 50-node problem was tested against various 
values and the results are given from Tables 2 to 4. The best values are 0 min10000, 0.99, 0.005T Tα= = = . 

Table 1 
SA parameters’ levels 
parameters levels 
T0 1000 5000 10000 
α 0.9 0.95 0.99 
Tmin 0.01 0.005 0.001 
 
Table 2  
Parameter setting results for initial temperature 
problem 
No. 

1000 5000 10000 
Objective Function Time Objective Function Time Objective function Time 

1 2135 21 2160 23 2348 16 
2 2294 16 2356 18 2521 20 
3 2137 17 2395 21 2359 21
4 2335 13 2470 15 2150 17 
5 2228 13 2228 21 2461 25 
Average 2225.8 16 2321.8 19.6 2367.8 19.8 

 
Table 3  
Parameter setting results for α 
problem 
No. 

0.9 0.95 0.99 
Objective function Time  Objective function Time Objective function Time 

1 2348 16 2336 41 2485 206 
2 2521 20 2371 42 2435 204 
3 2359 21 2359 38 2591 202 
4 2150 17 2583 36 2583 189 
5 2461 25 2628 32 2628 192 
Average 2367.8 19.8 2455.4 37.8 2544.4 198.6 

 
Table 4  
Parameter setting results for Tmin 
problem 
No. 

0.01 0.005 0.001 
Objective function Time  Objective function Time Objective fu nction Time

1 2485 206 2628 195 2481 185 
2 2435 204 2628 194 2583 241 
3 2591 202 2453 205 2530 243 
4 2583 189 2481 212 2504 245 
5 2628 192 2639 215 2592 267 
Average 2544.4 198.6 2565.8 204.2 2538 236.2 
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Fig. 4 shows the improvement of solutions after adjusting each parameter. In this Figure, initial value 
is where the parameters are in the lowest levels. By setting each parameter, the algorithm achieves 
better solutions with respect to their objective function values. 

 

Fig. 4. Improvement of performance of the algorithm after parameter setting 

4.3.Numerical results 

The proposed SA algorithm was used to solve 6 generated test problems consisting of 10, 20, 30, 50, 
70, and 90 nodes. Because of long CPU time to obtain the optimized solution, the comparison is 
performed with upper bound values of solutions which are achieved using linear programming 
relaxation; As a result, binary variables of the model are assumed to be continuous variables between 
0 and 1 and then the converted model was solved using BARON solver of GAMS. Each test problem 
was solved 5 times and the percentage deviation of the objective value from the upper bound solution 
is calculated using the following equation, 

% upper bound SA solutionGap
upper bound

−
=

 

Objective function value, computation time, upper bound and %Gap are shown in Table 5. Fig. 5 
compares the SA average objective function values and upper bound values. It can be concluded from 
Table 5 and Fig. 5 that SA solutions slightly deviate from the upper bound values and the results are 
acceptable. Fig. 6 shows the average percentage deviation of the solutions using SA from the upper 
bound values. As shown in this figure, this percentage increases for larger problem sizes. 

Table 5  
Objective function value, CPU time, upper bound, and %Gap for the test problems 

problem   Objective Time upper       Objective Time upper   
No. n function (sec.) bound %GAP   n function (sec.) bound %GAP 
1 10 498 8 505 0.0138   20 1084 18 1125 0.0364 
2 10 477 8 505 0.0554   20 1107 21 1125 0.0160 
3 10 477 7 505 0.0554   20 1107 20 1125 0.0160 
4 10 498 8 505 0.0138   20 1107 20 1125 0.0160 
5 10 498 8 505 0.0138   20 1107 23 1125 0.0160 
ave.   489.6 7.8 505 0.0304     1102.4 20.4 1125 0.0200 
1 30 1612 66 1625 0.0080   50 2628 195 2692 0.0237 
2 30 1612 65 1625 0.0080 50 2628 194 2692 0.0237
3 30 1605 62 1625 0.0123   50 2453 205 2692 0.0887 
4 30 1457 68 1625 0.1033   50 2481 212 2692 0.0783 
5 30 1511 62 1625 0.0701 50 2639 215 2692 0.0196
ave.   1559.4 64.6 1625 0.0403     2565.8 204.2 2692 0.0468 
1 70 3792 288 3994 0.0505   90 4607 641 4853 0.0506 
2 70 3764 248 3994 0.0575   90 4669 625 4853 0.0379 
3 70 3811 263 3994 0.0458   90 4573 649 4853 0.0576 
4 70 3655 247 3994 0.0848   90 4493 619 4853 0.0741 
5 70 3792 258 3994 0.0505   90 4463 654 4853 0.0803 
ave.   3762.8 260.8 3994 0.0578     4561 637.6 4853 0.0601 
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Fig. 5. SA versus upper bound values Fig. 6. %Gap for different problem sizes 

5. Conclusion and future research 

In this paper, we developed the maximal covering location problem which combines the 
characteristics of the gradual cover, cooperative cover, and variable radius models. This is one of the 
most important problems in location analysis because of its widespread real-world applications. The 
problem investigated in this paper was formulated as a MINLP. Since the complexity of the presented 
problem is NP-Hard, a meta-heuristic method based on simulated annealing algorithm was used to 
solve the proposed problem. The results show that the proposed method reaches near optimal 
solutions in reasonable amount of time. For further research, one can use other meta-heuristic 
methods to solve the problem and compare the results with the results of this paper. 
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