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Abstract. We consider the effect of slowly varying depth on
the values of skewness and kurtosis of weakly nonlinear ir-
regular waves propagating from deeper to shallower water.
It is known that the equilibrium value of kurtosis decreases
with decreasing depth for waves propagating on constant
depth. Waves propagating over a sloping bottom must con-
tinually adjust toward a new equilibrium state. We demon-
strate that weakly nonlinear waves may need a considerable
horizontal propagation distance in order to adjust to a new
shallower environment, therefore the kurtosis can be notably
different from the equilibrium value for each corresponding
depth both on top of and beyond a bottom slope. A change
of depth can provoke a wake-like spatially non-uniform dis-
tribution of kurtosis on the lee side of the slope. As an appli-
cation, we anticipate that the probability of freak waves on
or near the edge of the continental shelf may exhibit a rather
complicated spatial structure for wave fields entering from
deep sea.

1 Introduction

As waves propagate from deeper to shallower water, their
properties are transformed. Classical ray theory predicts
slight shortening of wave length, with accompanying change
of group velocity, amplitude and steepness, while the fre-
quency is conserved for stationary conditions (Goda, 2010;
Mei et al., 2005). The nonlinear stability of wave trains also
changes character. In water deeper than the critical depth
kh > 1.363, a uniform wave train is modulationally unstable
for narrow-band perturbations, while in water shallower than
the critical depthkh < 1.363, long-crested waves become
modulationally stable (Benjamin, 1967; Whitham, 1974), k

being the wavenumber that corresponds to the depthh.
In deep water it is known that third-order nonlinearity can

cause focusing of long-crested and narrow-banded waves,
and can be responsible for the occurrence of freak waves

(Onorato et al., 2001, 2005; Mori and Yasuda, 2002; Janssen,
2003; Mori and Janssen, 2006; Toffoli et al., 2008, 2009). As
nonlinear modulation is reduced for long-crested waves on
shallower depths, it may be anticipated that there is a corre-
sponding reduction in the probability of freak waves (Mori
and Janssen, 2006; Janssen and Onorato, 2007; Toffoli et al.,
2009; Janssen, 2009). When the depth is less than the crit-
ical depthkh < 1.363, the loss of modulational instability
may lead to reduced probability of freak waves (Mori and
Janssen, 2006).

Short-crested wave fields on deep water have near-
Gaussian statistics despite the nonlinearity of the wave field
(Onorato et al., 2002; Socquet-Juglard et al., 2005; Gram-
stad and Trulsen, 2007; Onorato et al., 2009). In shallower
water, however,Toffoli et al. (2009) suggested that when di-
rectional components are taken into account, the probability
of freak waves is notably increased compared to long-crested
waves. In this paper we do not consider the effect of short-
crestedness.

In much shallower water the nonlinear dynamics are domi-
nated by second-order nonlinearity. For this casePelinovsky
and Sergeeva(2006) studied the probability of freak waves
with the Korteweg-de Vries equation, and found that the
skewness and kurtosis was controlled by the Ursell number.
In this paper we limit consideration to depths similar to or
deeper than the critical value; third-order rather than second-
order nonlinearity is important for nonlinear evolution. We
do however account for second-order static nonlinear contri-
butions in the reconstruction of the wave field.

A number of studies have been dedicated to nonlinear
propagation of wave groups over a slope.Djordjević and
Redekopp(1978) discussed a solution for an envelope-hole
soliton and the fission of an envelope soliton moving over
variable depth.Benilov et al.(2005) described how a wave
packet propagating from deep to shallow water can be de-
creased in amplitude, and if the depth reaches the critial
value, the packet can disperse.Fructus and Grue(2007)
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simulated the shoaling of a solitary wave group on a slope
in shallow water, and they found that waves steepen with
reducing depth. Grimshaw and Annenkov(2011) consid-
ered how a wave packet evolves close to the critical depth
kh = 1.363. Recent experiments considered wave amplifica-
tions and phase modulation over a shoal (Jarry et al., 2011).

Recently the statistics of wavefields over a slope, relevant
for freak wave occurrence, have also been studied.Janssen
and Herbers(2009a,b) studied the kurtosis of waves with di-
rectional spreading over a submerged shoal in deep water.
They found that strongly non-Gaussian behavior can be pro-
duced due to the concomitant effects of focusing and nonlin-
earity. Furthermore, the maximum of kurtosis is found down-
wave of the position where the waves are steepest near the top
of the shoal. In these cases, the deeperkh is around 20 and
the shallowerkh is 0.22. Sergeeva et al.(2011) investigated
the transformation of a random wave field in variable shal-
low water depth through a Korteweg-de Vries framework.
They found that kurtosis increases as the water depth de-
creases and the kurtosis can achieve a local maximum close
to the shallower side. In this case, the deeperkh is 0.44 and
the shallowerkh is 0.3 and the depth gradient on the slope
∂h/∂x = 0.03. Experimental evidence presented byTrulsen
et al.(2011) shows that there can be a local maximum of kur-
tosis and skewness close to the shallower side of the slope.
In these experiments, the maximum deeperkh was 1.6, the
minimum shallowerkh was 0.54 and the depth gradient on
the slope was∂h/∂x = 0.05.

In the present study we limit attention to waves on fi-
nite depth (kh ≥ 1.2) on a mild slope. We employ one
of the simplest nonlinear models capable of describing this
situation, namely the nonlinear Schrödinger equation with
variable coefficients and a shoaling term for slowly vary-
ing depth, first derived byDjordjević and Redekopp(1978)
and subsequently refined byPeregrine(1983) andIusim and
Stiassnie(1985) and enhanced with the effects of a nonuni-
form current byTurpin et al.(1983). They assumed small
wave steepnessε = ka � 1, mild slope∂h/∂x = O(ε2) and
finite depth(kh)−1

= O(1). More sophisticated models are
also available, e.g.Liu and Dingemans(1989) relaxed the re-
quirement of slowly varying depth to∂h/∂x = O(ε), while
Xiao and Lo(2004) extended the analysis to higher order ef-
fects of variable depth beyond shoaling with the assumption
∂h/∂x = O(ε4/3). More exact nonlinear models have also
been employed in recent studies (Fructus and Grue, 2007;
Janssen and Herbers, 2009a,b). Here we shall suffice with
the simplest model that includes leading order nonlinearity,
dispersion and shoaling.

It is known that the coefficient of the cubic nonlinear term
vanishes forkh = 1.363. This fact has prompted several
workers to develop higher-order nonlinear terms in the evo-
lution equation applicable to both flat bottom (e.g.Johnson,
1977; Kakutani and Michihiro, 1983; Slunyaev, 2005) and
to sloping bottom (Grimshaw and Annenkov, 2011). They
suggest a rescaling forkh ≈ 1.363 in order to reestablish a

leading order balance between nonlinearity and dispersion.
The rescaling implies longer spatial and temporal scales, or
equivalently, narrower bandwidth. We take the opposite ap-
proach, in the sense that we let the incoming wave fields have
non-vanishing bandwidths. Indeed, in an analysis of wave
records from the North Sea, a likely region for application
of the present results,Trulsen and Dysthe(1997) observed
that wave fields of overall steepnessO(ε) could have a larger
bandwidth ofO(ε1/2), thus linear dispersion is expected to
dominate over nonlinearity also away from the critical depth
kh = 1.363.

Our numerical results reveal that the kurtosis is reduced
for smaller depths. We also find that the nonlinear dynamical
response of the wave train may occur over a longer domain
than the region of depth change, such that the wave train may
need a long propagation distance after the slope in order to
reach the new equilibrium values for both kurtosis and skew-
ness. Our main result is that the characteristic relaxation dis-
tance can be large compared both to the local wavelength and
the scale of depth change. As a consequence, we anticipate
that waves entering a continental shelf from deeper water can
have a spatially non-uniform distribution of freak waves, no-
tably different from that expected from equilibrium statistics
on the given depth.

2 Nonlinear Schrödinger equation for uneven bottom

We assume irrotational flow of an inviscid and incompress-
ible fluid with a free surface. A coordinate system is oriented
with horizontal axisx along the quiescent water level to-
ward shallower water, thez-axis vertically upward, and with
the bottom located atz = −h(x). The velocity potential is
8(x,z,t) and the free surface is located atz = η(x,t). The
governing equations are

∇
28 = 0 at −h <z < η, (1)

∂η

∂t
+

∂8

∂x

∂η

∂x
=

∂8

∂z
at z = η, (2)

∂8

∂t
+gη+

1

2
(∇8)2

= 0 at z = η, (3)

and

∂8

∂z
+

∂h

∂x

∂8

∂x
= 0 at z = −h(x). (4)

The characteristic frequencyωc of the incident waves and
the acceleration of gravityg are used for normalization. A
characteristic wavenumber for the deeper water can be es-
timated by the linear dispersion relation for infinite water
depthkc = ω2

c/g. The surface displacement is characterized
by the amplitudea, and we define a small ordering parame-
ter by means of the steepness of the wavesε = ka � 1 which
is assumed to be small. We also assume that the depth is fi-
nite but not too small,(kch)−1

= O(1), that the depthh(x)
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is slowly varying,∂h/∂x = O(ε2), and that the modulation
of the waves in space and time is slow on scalesεx andεt .
In the following, all variables and parameters are scaled and
made dimensionless according to these assumptions.

Throughout the following, all reference to space and time,
x andt , imply the slow modulation space and temporal vari-
ables mentioned above.

After normalization, the characteristic frequency is 1,
and the characteristic wavenumber is the solution of 1=

k tanh(kh). We introduce the following perturbation series
for the surface displacementη and velocity potential8

η = ε2η̄+
1

2
(εBeiθ

+ε2B2e
2iθ

+ ...+c.c.), (5)

8 = ε8̄+
1

2
(εA′

1e
iθ

+ε2A′

2e
2iθ

+ ...+c.c.), (6)

whereεθ =
∫ x

k(ξ)dξ − t , and c.c. denotes complex conju-
gate.

The equations ofDjordjević and Redekopp(1978) are ex-
pressed in terms of the velocity potential, but here we express
the equations in terms of the first harmonic amplitudeB of
the surface displacement. By sorting orders and harmonics,
we get the following result for the first harmonic at the third
order

i(
∂B

∂x
+

1

cg

∂B

∂t
)−

1

2cg

(1−
h

c2
g

(1−khσ)(1−σ 2))
∂2B

∂t2

+iB
∂(kh)

∂x

(1−σ 2)(1−σkh)

σ +kh(1−σ 2)
=

k2

16σ 2cg

(
9

σ 2
−12+13σ 2

−2σ 4)|B|
2B −

k2

2cg

(1−σ 2

+
2

kcg

)B
∂8̄

∂t
, (7)

wherecg is the group velocity andσ = tanh(kh). We also get
the following result for the zeroth harmonic at the third order

(1−
h

c2
g

)
∂28̄

∂t2
= −

1

4σ 2
(1−σ 2

+
2

kcg

)
∂|B|

2

∂t
. (8)

In these equations the four quantitiesh, k, σ andcg are all
functions ofx.

We take the following general solution for the latter equa-
tion,

∂8̄

∂t
=

c2
g

4σ 2(h−c2
g)

(1−σ 2
+

2

kcg

)|B|
2
+f (x), (9)

and substitute into the former equation and obtain the non-
linear Schr̈odinger equation with shoaling term for uneven
bottom

iµ
dh

dx
B + i(

∂B

∂x
+

1

cg

∂B

∂t
)+λ

∂2B

∂t2
= ν|B|

2B

+$Bf (x). (10)

1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

kh

 

 
nonlinear coef ν
shoaling coef μ
dispersion coef λ

Fig. 1. Three coefficients with respect to dimensionless depthkh.

The four coefficients are

µ =
(1−σ 2)(1−khσ)

(σ +kh(1−σ 2))2
, (11)

λ = −
1

2cg

(1−
h

c2
g

(1−khσ)(1−σ 2)), (12)

ν =
k2

16σ 4cg

(9−10σ 2
+9σ 4

−
2σ 2c2

g

gh−c2
g

(4
c2
p

c2
g

+4
cp

cg

(1−σ 2)+
h

c2
g

(1−σ 2)2), (13)

and

$ = −
k2

2cg

(1−σ 2
+

2

kcg

). (14)

In our case we letf (x) = 0 because the term withf (x) only
affects the phase of the wave (seeDjordjević and Redekopp,
1978). From the plot of the first three coefficients as a func-
tion of dimensionless depth in Fig.1, it is seen that the co-
efficient of the shoaling term is much smaller than the coef-
ficients of the nonlinear term and the dispersion term. Fig-
ure 1 also shows that in shallow water the nonlinear coeffi-
cient varies rapidly for small depth. From the derivation, we
also get

B2 =
3−σ 2

4σ 4
B2 (15)

and

η̄ =
1

4σ 2
(
c2
g(1−σ 2)+ 2

k
cg

c2
g −h

)|B|
2. (16)

Finally, the reconstruction of surface elevationη is achieved
by invoking Eq. (5).
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Fig. 2. Plot of depth.

3 Model setup

In the following we present results for one bathymetry. The
regionx ≤ 0 has a constant depthh = h1, while the region
x ≥ L has a constant depthh = h2 with h2 < h1. In the region
x ∈ (0,L), there is a slope defined byh = h1 + (h2 −h1)

x
L

.
The bathymetry is shown in Fig.2.

The wave field is assumed to be periodic in time with pe-
riod T . The temporal Fourier transform is

B̂(x,�j ) =
1

N

N−1∑
n=0

B(x,tn)e
i�j tn , (17)

wheretn = n1t and�j = j1ω with j ranging from 1−N/2
to N/2. We let the length of each time series beT = 1000
which corresponds to approximately 159 periods. We let
N = 320, thus the time step is1t =

T
N

= 3.125 and1ω =

2π
T

≈ 0.0063.
Unidirectional incoming waves with an initially Gaussian

spectrum have been studied. The Fourier amplitudes at the
starting pointx = x0 are given by

B̂(x0,�j ) = ε

√
1ω

√
2πσω

e
−

�2
j

4σ2
ω

+iϒj
, (18)

where the phasesϒj are statistically independent and uni-
formly distributed on the interval[0,2π). We letε = 0.1.

The Benjamin-Feir index is defined byJanssen(2003) in
terms of frequency bandwidth as

BFI =
ε

δ
, (19)

where we compute the bandwidthδ using the spectral half-
width at the half maximum,δ = σω

√
2ln2. Simulations with

σω = 0.05, 0.085, 0.17 which correspond to the initial values
for BFI =1.7, 1, 0.5 have been carried out.
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Fig. 3. Typical convergence of the ensemble-averaged kurtosis with
respect to the number of runs in the ensemble.

To solve the spatial evolution of the wave field accord-
ing to Eq. (10), we have used Matlab’sode45, which is a
fourth order Runge-Kutta solver with variable step. Due to
the application of periodic boundary conditions in time, FFT-
routines are used to calculate the temporal derivatives. In
the simulation, the accuracy of the solution is controlled by
the pre-chosen relative and absolute error tolerances in the
solver. These have been chosen so that the error is less than
10−3.

4 Results

Monte-Carlo simulations have been performed to investigate
the evolution of skewness and kurtosis over the sloping bot-
tom. The statistical parameters are computed as functions of
location. An example of the statistical convergence of kur-
tosis with respect to ensemble size is shown in Fig.3. An
ensemble size of 3000 seems to be sufficient for our simula-
tions, and has been chosen in the following.

In order to ensure it is a realistic wave field that first arrives
at the slope, we insist that the value of kurtosis should have
reached a stable value before the wave field reaches the slope.
Figure4shows a typical evolution of kurtosis on a flat bottom
after initialization atx0 = 0.

In the following we initialize at somex0 < 0 sufficiently
far from the beginning of the bottom slope so that a stabilized
wave field has been established before reaching the slope.

Figure5 is a contour plot of stabilized kurtosis with respect
to different initial BFI and 1/(kh) after imposing the initial
condition on flat bottom. Cubic interpolation was used to plot
the contours. When the depthkh is greater than 1.363, high
initial BFI and large depth lead to high stabilized kurtosis.
However, whenkh = 1.363, nonlinear effects disappear and
the kurtosis is equal to 3. Moreover, the result agrees well
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Fig. 4. Typical evolution of kurtosis on flat bottom forkh = 10.
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with previous publications that stabilized kurtosis is larger
in deep water and smaller in shallow water (Janssen, 2003;
Janssen and Onorato, 2007).

We have considered the following cases of finite water
depthsh2 =1, 1.1955, 2, 3, 4 corresponding tok2h2 =1.2,
1.363, 2.065, 3.015, 4.003. The deep water depth has been
set toh1 = 10, corresponding tok1h1 = 10. In all cases we let
the bottom slope be located betweenx = 0 andx = L = 200.
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The kurtosis and skewness of the surface elevation with three
different initial BFI are shown in Figs.6–11. It is shown
that when the initial BFI is not less than 1, there is a local
minimum of kurtosis near the shallower side of the slope.
Furthermore, for the same initial BFI, the natural response
length fork2h2 = 1.2 is always the longest among all cases.
Whenk2h2 > 1.363, the skewness has the same behavior as
the kurtosis. Nevertheless, whenk2h2 ≤ 1.363, the skewness
achieves a minimum over the slope and then relaxes toward
the value at the equilibrium state on the shallower side of the
slope. Furthermore, the skewness for the casek2h2 = 1.2 has
the “sharpest” minimum at the end of the slope among all
cases. This could be provoked by the sudden change in the
bottom slope.
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For all cases, when the shallower dimensonless water
depth is below the thresholdk2h2 < 1.363, the dynamic re-
ponse happens over a much longer distance than the bottom
slope itself and it takes quite a long relaxation length for both
the kurtosis and skewness to become stabilized in the shallow
domain.

Figure 12 shows kurtosis variation with respect tok2h2
after the slope for different initial BFI. As we see from the
figure, with diminishing depth, the kurtosis decreases for all
initial BFI. Whenk2h2 is larger than 1.363, cases of larger
initial BFI will have larger stable kurtosis. However, when
k2h2 is less than 1.363, cases of smaller initial BFI get larger
stable kurtosis after the slope. Comparing Fig.12 with Fig.
5, it can be found that with the condition that the depth of
a flat bottom is the same as the depth of the shallower side
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Fig. 10. Kurtosis as a function ofx for k1h1 = 10, k2h2 =1.2,
1.363, 2.065, 3.015, 4.003 and initial BFI= 0.5.
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Fig. 11. Skewness as a function ofx for k1h1 = 10, k2h2 =1.2,
1.363, 2.065, 3.015, 4.003 and initial BFI= 0.5.

for a sloping bottom, and with the same initial BFI for in-
coming waves, the stabilized kurtosis after a sloping bottom
is smaller than for a flat bottom whenk2h2 > 1.363, larger
whenk2h2 < 1.363 and the same whenk2h2 = 1.363.

We have also carried out simulations with several other
bathymetries in addition to the one shown here. Those ad-
ditional simulations indicate that when the depth gradient is
large on the shallow side of the slope, there can be a long
natural response length. However, when the depth gradient
is small on the shallow side of the slope, kurtosis and skew-
ness can stabilize almost at the same location as the change
of depth. Moreover, when the shallower depth is less than the
critical depthkh < 1.363, the wave field always needs a cer-
tain relaxation length to become stabilized in the shallower
domain.
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Fig. 12. Kurtosis variation with respect tok2h2 after the slope for
different initial BFI.

5 Conclusions

Through Monte–Carlo simulations using a nonlinear
Schr̈odinger equation for variable depth, we have inves-
tigated some effects of nonuniform bathymetry on wave
statistics. We have found evidence that a local change
in bathymetry may provoke non-equilibrium statistics in a
region that may extend far beyond the local depth non-
uniformity. We have found evidence that when a wave field
travels over a bottom slope into shallower water, a wake-like
structure may be anticipated on the shallower side for the
skewness and the kurtosis. As an application, we anticipate
that the probability of freak waves on or near the edge of
the continental shelf may exhibit a rather complicated spatial
structure for wave fields entering from deep sea.
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