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0.  Introduction
Let X’ = (X1,X2, ... ,Xk) have the multivariate normal distribution f(X) = MVN(µµµµ, Σσ2) where  Σ is a
known positive definite matrix, and σ2 is a constant.  There are many problems in statistics which
require the evaluation of f(x) over some convex region A.  That is

P =  ∫ A  f(X) dX.
If σ 2 is known, then without loss of generality, set µµµµ = 0 , σ =1 and let Σ be the correlation matrix.
For the case where the region A is rectangular, the problem has been addressed by many
authors. They include Gupta (1963), Milton (1972), Schervish (1984), Deak (1986), Wang and
Kennedy (1990,1992), Olson and Weissfeld (1991), Drezner (1992) and Genz (1992,1993).
However, regions of integration for many statistical applications, for example multiple
comparisons, are not rectangular.

If σ 2 is estimated by s2
  with ν degrees of freedom such that ν s2 / σ 2  is a chi-square variate, then

without loss of generality we may assume f(X) has the central multivariate-t distribution with
correlation matrix Σ. For the case where the correlations have the product form ρij = λi λj  (i ≠ j ),

Dunnett (1989) developed an algorithm to evaluate integrals of the multivariate t over
rectangular regions.

The Fortran 90 program MVI3.FOR (which combines and extends two previous programs, MVI
and MVIB) can be used to evaluate multivariate normal or multivariate-t integrals over any
region which is bounded by hyperplanes (and thus convex).  Three decimal accuracies may be
obtained in seconds for 20 dimensional integrals using a 486 processor.

The original programs MVI and MVIB could be used only if the convex region contained the
origin.  The present program MVI3 has no such limitation.  However, if the region does not
contain the origin, MVI3 uses “crude Monte Carlo” for the evaluation.  In addition, the user of the
program may elect to do the evaluation using “crude Monte Carlo” even when the convex region
contains the origin.

1. Methodology
The following is an overview of the methodology involved.

With no loss of generality, we can assume that the mean is at the origin of the coordinate
system.  A coordinate transformation (Cholesky) is made so that in the new coordinate system
we have k uncorrelated normal or spherically symmetric t random variables with unit variances.
The region will be bounded by the transformed hyperplanes.

We  discuss first the case where the origin is inside the convex region. Consider a randomly
selected point in the k dimensional space.  The square of the distance to the point is the sum of
the squares of the individual coordinates of the point.  Thus if σ 2 is known, it is distributed as χ2

with k degrees of freedom.  If σ 2 is not known, the distance squared divided by k has the F
distribution with k degrees of freedom for the numerator and degrees of freedom for the
denominator the same as those for the estimate of σ 2.
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Select at random a direction in the k dimensional space and obtain  the distance from the origin
to the boundary.  An unbiased estimate of the value of the integral is the probability of obtaining
a distance less than or equal to the distance to the boundary.

Using the program (MVI), a prespecified number of random directions, say mocar, are obtained.
The average of the corresponding probabilities estimates the value of the integral.  To obtain  a
standard error, repeat the process of obtaining an estimate using mocar random directions a
specified number of times (say irep).  The final integral estimate is the average of the irep
estimates, and the standard error of this estimate is obtained from the standard error of the irep
individual estimates.

The program (MVIB) uses a somewhat more efficient procedure (called binning).  Instead of
calculating a probability corresponding to each individual random direction, the distances are
“binned” and an empirical frequency step function of the distances is obtained.  Gauss Legendre
quadrature is then used to obtain a single estimate of the value of the integral for the mocar
random directions.  The boundaries of the bins are chosen so as to optimize the quadrature.

The binning procedure has been shown to be especially useful, Somerville (1997), in the
calculation of percentage points for a statistic, using an iterative procedure.  Using the “binning”
procedure the random directions need only be generated for the first iteration.  The empirical
distribution function generated by the first iteration is used for subsequent iterations and the time
for subsequent iterations is negligible.

The functions of the two programs MVI and MVIB have been combined in the program MVI3.  In
addition, the program has been extended to include the case where the origin is not in the region.
For this case, “crude Monte Carlo” is used.  Random points in the k space are selected and a
determination is made as to whether the point is in or out of the region. To increase the
efficiency of the Monte Carlo procedure, the boundaries are sorted and ordered so that the
“signed distances” from the origin to the boundaries are non-decreasing.  The efficiency of the
Monte Carlo procedure is greatest for small integral values since the variance of the estimate
decreases as the value ot the integral decreases toward zero

The user may elect to use “crude Monte Carlo”, regardless of whether or not the region contains
the origin.

A comprehensive description of MVI and MVIB is given in Somerville and Wang (1994) and
Somerville (1998).  The latter paper also contains a comparison of the efficiencies of the
methods.  A summary is given in the APPENDIX.

2. User instructions and examples for MVI3
The program requires that two files exist before the program is run.  QCALC.in contains the input
requirements and QCALC.out is used for the program output.  QCALC.in can contain the
instructions for several integral evaluations, in which case the evaluations are done sequentially,
with QCALC.out containing the results for each of the evaluations.

The instructions for a given evaluation consists of three parts for a total of k + mm +1 lines in
QCALC.in.

Part 1 One line consisting of 6 (integer) items (in order): k, iseed, ndenom, mocar, irep, mm.
k   dimension of the integral
iseed   integer in range 1 to 231 - 1 for a 32 bit machine
ndenom  degrees of freedom for variance estimate (use -1 if variance known)
mocar   # of random directions used for each individual estimate
irep   # of individual estimates
mm   # of hyperplanes boundaries for the convex region



Part 2    k lines
  one line is used for each of the k rows of the lower triangular portion of either  the

   variance covariance or  the correlation matrix.

Part 3    mm rows of k + 1 constants
  one row is used for each hyperplane.  Each row contains the coefficients of the
  expression l’ x < d, where l and x are vectors.

We give two examples to explain the mm rows of constants.  Suppose k=3, and the ranges for
x1, x2 and x3 are (-1, 2), (-2.1, 1.4) and (-.5, ∞) respectively.  Then the (mm = 5) boundaries are:

x1 > -1 x2 > -2.1 x3 > -.5
x1 <  2 x2 <  1.4

However, the program requires < for each boundary, and thus we use:
-x1 <  1  -x2 <  2.1 -x3 <  .5
 x1 <  2   x2 <  1.4

The input for Part 3   becomes:
-1  0  0    1
 1  0  0    2
 0 -1  0    2.1
 0  1  0    1.4
 0  0 -1   .5

For our second example, suppose there are four boundaries (mm = 4) for the region of
integration:

x1 + x2         <  3
       x2 + x3  > -2
x1 + x2 + x3  <  2.5
x1  - x2 + x3  > -2.4

Now -x2 - x3 < 2 is equivalent to the second boundary, and -x1+ x2 - x3 <  2.4 is equivalent to the
fourth boundary.The input for Part 3  for the second example becomes:

 1  1  0   3
 0 -1 -1   2
 1  1  1   2.5
-1  1 -1   2.4

Returning to the first example, if we wished 10 different estimates, each using 1000 random
directions, σ2 was estimated with 30 degrees of freedom, and we used the seed 457 for the
random number generator, then the complete input for QCALC.in would be:
Part 1 3 457 30 1000 10 5
Part 2 1

0 1
0 0 1

Part 3 -1  0  0    1
 1  0  0    2
 0 -1  0    2.1
 0  1  0    1.4
 0  0 -1     .5

To use the binning procedure (MVIB), we need only to make mm negative. Then Part 1  is
3 457 -1 1000 10 -5



To evaluate the integral using “crude Monte Carlo” methods, we make k negative.  Either  of the
following first lines (Part 1) could be used:

-3 457 -1 1000 10  5
-3 457 -1 1000 10 -5

Several integrals may be evaluated in a single run.  The k+mm+1 lines are entered sequentially
in QCALC.in.  The program expects a line of 4 or more -1’s after the final evaluation request i.e.
-1 -1 -1 -1 -1 -1.

The output (in QCALC.out) for the above example would be:

date and time 19981008102335.520
 elapsed time in seconds is      1.000
 no of pops is           3 seed is        457
  df for var est is         30
 no of ran dir. is       1000
 value of integral is calculated         10 times
 mean value is    5.003167E-01
 standard error of mean is    5.807164E-04
 --------------------

 3.  Additional Examples
Two possible replacements for the first line might be :
     3  457  30  10000   1  5
        or
     3  457  30  100  100   5.
The first replacement would use 10000 x 1 = 10000 random directions to produce a single
estimate of the 3 dimensional integral. There would be no estimate of the accuracy of the
calculation for the integral.  Using the second replacement, we would use 100 x 100 = 10000
random direction for the estimate of the value of the integral.  In practice, using the same seed,
the estimate of the value of the integral would be nearly identical for all 3 cases.  The program
input (in QCALC.in) for the two replacement inputs follows:

3 457 30 10000 1 5
1
0 1
0 0 1
-1  0  0  1
 1  0  0  2
 0 -1  0  2.1
 0  1  0  1.4
 0  0  -1 .5

3 457 30 100 100 5
1
0 1
0 0 1
-1  0  0  1
 1  0  0  2
 0 -1  0  2.1
 0  1  0  1.4
 0  0  -1 .5

The resulting output was (in QCALC.out)

date and time 19981008102336.830



 elapsed time in seconds is      2.000
 no of pops is           3 seed is        457
  df for var est is         30
 no of ran dir. is      10000
 value of integral is calculated          1 times
 mean value is    5.003167E-01
 --------------------
 date and time 19981008102338.100
 elapsed time in seconds is       .000
 no of pops is           3 seed is        457
  df for var est is         30
 no of ran dir. is        100
 value of integral is calculated        100 times
 mean value is    5.003167E-01
 standard error of mean is    9.492344E-04
 --------------------
We give three additional examples of input and output.
Input

4 457 -1 100 100 5
 1
.5  1
.5 .5  1
.5 .5 .5  1
 2 -1  0  0  1
 1  0 -1  0  1
 0  0 -1  1  1
-1 -1  2  0  1
-1 -1 -4  0  1

3 457 30 10000 1 -6
1
0 1
0 0 1
 .2865  -.2865  0     1
 .2865  0      -.2865 1
 0      .2865  -.2865 1
-.2865  .2865   0     1
-.2865  0       .2865 1
 0     -.2865   .2865 1

-3 457 30 10000 1 6
1
0 1
0 0 1
 .2865  -.2865  0     1
 .2865  0      -.2865 1
 0      .2865  -.2865 1
-.2865  .2865   0     1
-.2865  0       .2865 1
 0     -.2865   .2865 1

-1 -1 -1 -1 -1 -1

Corresponding output:



date and time 19981008102338.700
 elapsed time in seconds is      1.000
 no of pops is           4 seed is        457
  variance assumed known
 no of ran dir. is        100
 value of integral is calculated        100 times
 mean value is    1.811718E-01
 standard error of mean is    1.828163E-03
 --------------------
 date and time 19981008102339.200
 Binning method used
 elapsed time in seconds is       .000
 no of pops is           3 seed is        457
  df for var est is         30
 no of ran dir. is      10000
 value of integral is calculated          1 times
 mean value is    9.499553E-01
 --------------------
 date and time 19981008102339.420
 Crude Monte Carlo is used
 elapsed time in seconds is      1.000
 no of pops is          3 seed is        457
 df for var est is          30
 no of random directions is       10000
 points =    20000.000000
 estimate of integral is    9.491000E-01
 standard error is    1.554175E-03
 --------------------
4. Comments and comparison of the methods
A large number of  experiments were conducted to evaluate the accuracy and validity of the
procedures, Somerville (1998).  Defining efficiency to mean the ratio of running times to achieve
the same standard error of the estimate,  MVIB was found to be more efficient than MVI by ratios
of 1.26 to 2.25, depending on the dimension of the integral and the number of boundaries.
Except for small probabilities, and possibly some “extreme” boundaries, “crude Monte Carlo” is
not efficient.

A large number of runs were made to determine the proper number of bins for the binning
procedure (MVIB).  Except for cases of “extreme” regions, nq = 25 was found to be more than a
sufficient number.  By “extreme” regions we mean regions departing drastically from a “spheroid
with center at the origin”, and especially those with a boundary close to the origin.  The proper
number of bins required to obtain accuracies consistent with the obtained standard error of the
estimate was found to be unrelated to the degrees of freedom for the estimate of the variance,
but highly dependent  on the minimum distance r* of the boundary from the origin.  The following
empirical formula was developed relating the value of the number of bins to the minimum
distance:

nq* = -14.9 - 39.4*log10(r*) + 21.8*(log10(r*))**2.
Using the “binning” procedure, the program uses nq = 25 whenever nq* < 25.  This correspond to
a distance of .20 (approximately).  For nq* > 25, the program uses nq = nq* +10, unless the
distance r* is less than .01, in which case the binning procedure is abandoned and the calculation
is done using the MVI methodology.

A comment is in order where one of the boundaries goes through the origin (e.g. l’x  < 0 ).  The
program automatically makes the evaluation using Monte Carlo whenever a boundary passes
through the origin.  An alternate (and recommended) solution would be to change the boundary
from l’x  < 0 to l’x  <  .000,000,1. Since the integral of the standard normal variable from 0 to



.000,000,1 is 4 x 10-8, the additional error in the estimate of the integral value can increase by no
more than that amount.

To generate random normal deviates, MVI3 uses an efficient generator recently developed by
Marsaglia (1998).

A question which arises is how many random directions should be chosen.  Using 10,000 random
directions should always result in an estimate whose standard error is less than .005 and may be
sufficient for many applications.  The standard errors for integral values near 0, and especially
for integral values near 1 are much smaller. Three decimal accuracies are obtained in seconds
for 20 dimensional integrals on a 486 processor.
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APPENDIX
Let X’ = (X1,X2, ... ,Xk) have the multivariate normal distribution f(X) = MVN(µµµµ, Σ σ2) where Σ is
known and σ2 is a constant.  We may assume without loss of generality that X is MVN(0, Σ σ2).
We wish to evaluate

P =  ∫ A  f(X) dX
where A is the convex region, containing the origin, and bounded by mm ( > 1) hyperplanes
described by

Lx < d
where L’ = (l1, l2, ... ,lk).  The jth hyperplane is given by l j’ x = dj.
Let Σ =T T' (Cholesky decomposition) and set

 X   = T W.
The random variables W1, W2, ... ,Wk are independent standard normal or spherically symmetric
t variables. With the transformation, the region  becomes

Gw < d
where
 G    = L T.
Setting G’ = (g1, g2, ... .gk), the jth  hyperplane becomes

g j’ w = dj.

Consider a randomly selected point in the k dimensional space.  The square of the distance to
the point is the sum of the squares of the individual cordinates (random N(0,1) variables) of the
point on the boundary.  Thus if σ2 is known, it is distributed as χ2 with k degrees of freedom.  If σ2

is not known, the distance squared divided by k has the F distribution with k degrees of freedom
for the numerator and degrees of freedom for the denominator the same as those for the
estimate of σ2.

Select at random a direction in the k dimensional space and obtain the distance from the origin
to the boundary.  An unbiased estimate of the value of the integral is the probability of obtaining
a distance less than or equal to the distance to the boundary. Then, for a random direction, if σ2

is unknown, an unbiased estimate of the integral P is
Prob [ F  <  r2/k].

If σ2 is known, the unbiased estimate is
 Prob [ χ2  <  r 2].
To implement the procedure, successive random directions are chosen and corresponding
estimates obtained.  The value of the integral is the arithmetic mean of the individual estimates.

Binning procedure (MVIB)
Let r* be the minimum distance from the origin to the boundary of A.  Divide A into two regions,
the portion inside the hypersphere of radius r* and centered at the origin, and the region outside
(say A2). For σ2 unknown, the probability content of the hypersphere is

P1 =  Prob [ F  <  r*2/k].
For σ2 known the probability is

P1 =  Prob [ χ2  <  r*2].

As before let r be the distance from the origin to a randomly selected point in the k-space.  The
relative frequency function of r, h(r) may be readily derived from the chi-square or F distributions
depending on whether σ2 is known or must be estimated. Let R be the distance from the origin to
the boundary of the region in a random direction.  Let G(R) be the cumulative distribution
function of R. Then the probability content of the region is

P2 = ∫ [1 - G(r)] h(r) dr
where the integration is from r* to infinity.  The cumulative distribution function G(R) can be
estimated using Monte Carlo.

It will be convenient to use reciprocal distance instead of distance.  Putting v = 1/r, we obtain



P2 =  ∫  E(v) g(v) dv
where the integration is from 0 to 1/r*.  The relative frequency function g(v) may be derived from
h(r).  E(v) = 1 - G(r) is the cumulative distribution function of the reciprocal distance from the
origin to the boundary of the region.

Let ai
  be the ith abscissa and wti be the corresponding weight for the q-point Gauss-Legendre

quadrature.  For each random direction c, the corresponding distance d is calculated and by
means of a binning process, estimates are obtained for E(ai),  i = 1 to q.  The estimate of P2 is
given by

P2 = Σ E(ai) g(ai) wti
where the summation is from i = 1 to q.


