
JSS Journal of Statistical Software
January 2006, Volume 15, Issue 4. http://www.jstatsoft.org/

WhatIf: R Software for Evaluating Counterfactuals

Heather Stoll
University of California, Santa Barbara

Gary King
Harvard University

Langche Zeng
University of California, San Diego

Abstract

WhatIf is an R package that implements the methods for evaluating counterfactuals
introduced in King and Zeng (2006a) and King and Zeng (2006b). It offers easy-to-use
techniques for assessing a counterfactual’s model dependence without having to conduct
sensitivity testing over specified classes of models. These same methods can be used to
approximate the common support of the treatment and control groups in causal inference.

Keywords: counterfactuals, causal inference, model dependence, common support, sensitivity
analysis, R.

1. Introduction

Inferences about counterfactuals are essential for prediction, answering “what if” questions,
and estimating causal effects. However, when the counterfactuals posed are too far from
the data at hand, conclusions drawn from well-specified statistical analyses become based
largely on speculation hidden in convenient modeling assumptions that few would be willing
to defend. Unfortunately, standard statistical approaches assume the veracity of the model
rather than revealing the degree of model dependence, which makes this problem hard to
detect.

WhatIf implements the easy-to-apply methods for evaluating counterfactuals introduced in
King and Zeng (2006a) and King and Zeng (2006b)1 that do not require sensitivity testing
over specified classes of models. If an analysis fails the tests offered here, then we know that
substantive inferences will be sensitive to at least some modeling choices that are not based
on empirical evidence, no matter what method of inference one chooses to use. Specifically,

1These two papers overlap, with the first containing all the proofs and technical material and the second
having more pedagogical material and examples.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26987027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 WhatIf: R Software for Evaluating Counterfactuals

WhatIf will indicate whether a given counterfactual is an extrapolation (and therefore risking
more model dependence) or a (safer) interpolation. Using an algorithm developed in King
and Zeng (2006a) to identify whether counterfactual points are within the convex hull of the
observed data, this is feasible even for large numbers of explanatory variables. It will also
compute either the Gower or Euclidian distances from a counterfactual to each observed data
point. The convex hull test can additionally be used to approximate the common support of
the treatment and control groups in causal inference. Numerical and graphic summaries are
offered.

WhatIf has been incorporated in MatchIt and also works easily with Zelig output (Ho, Imai,
King, and Stuart 2005; Imai, King, and Lau 2004). It is available from both CRAN and Gary
King’s website (http://gking.harvard.edu/whatif/). Documentation and other support-
ing materials are also available from the latter website.

2. Examples

2.1. Counterfactuals about UN peacekeeping

This section illustrates the workings of WhatIf with the empirical example in Section 2.4
of King and Zeng (2006b), which evaluates counterfactuals about the causal impact of UN
peacekeeping operations on peacebuilding success.

The factual data set has 124 observations (including two with missing values) on ten covariates
as well as on the key causal variable, untype4, which is a dummy variable. The counterfactual
data set is the observed covariate data set with untype4 replaced with 1−untype4. We list-
wise delete the two counterfactuals that are not fully observed. We then save the two data
sets, one factual and the other counterfactual, as text files in our current working directory and
name them ‘peacef.txt’ and ‘peacecf.txt’, respectively. The first five rows of ‘peacef.txt’
look like:

decade wartype logcost wardur factnum factnumsq trnsfcap untype4
1 5 1 14.917450 72 4 16 5.735545 0
2 4 0 15.671810 168 6 36 9.730863 0
3 5 1 6.907755 24 2 4 12.626030 0
4 5 1 12.971540 24 2 4 -112.000000 0
5 3 1 9.210340 216 2 4 4.275317 0
treaty develop exp

1 0 132.8466 0.1217277
2 0 132.0000 0.1163292
3 0 1533.0000 0.0610000
4 1 2216.6080 0.1294513
5 0 1295.0000 0.1420000

http://gking.harvard.edu/whatif/

Journal of Statistical Software 3

Similarly, the first five rows of ‘peacecf.txt’ look like:

decade wartype logcost wardur factnum factnumsq trnsfcap 1-untype4
1 5 1 14.917450 72 4 16 5.735545 1
2 4 0 15.671810 168 6 36 9.730863 1
3 5 1 6.907755 24 2 4 12.626030 1
4 5 1 12.971540 24 2 4 -112.000000 1
5 3 1 9.210340 216 2 4 4.275317 1
treaty develop exp

1 0 132.8466 0.1217277
2 0 132.0000 0.1163292
3 0 1533.0000 0.0610000
4 1 2216.6080 0.1294513
5 0 1295.0000 0.1420000

The function whatif can be called in two alternative ways to analyze these counterfactuals.
First, typing:

> my.result <- whatif(data = "peacef.txt", cfact = "peacecf.txt")

tells whatif to load the datasets ‘peacef.txt’ and ‘peacecf.txt’ from our working directory.
Second, typing:

> my.result <- whatif(data = peacef, cfact = peacecf)

tells whatif to use the R objects peacef and peacecf loaded into memory prior to the
function call. These objects must be either non-character matrices or data frames containing
the counterfactual and observed covariate data, respectively; in this case, they are data frames.
Alternatively, peacef may be either a Zelig or other R model output object (e.g., a model
output object returned by a call to glm).

The resulting output object my.result is a six-element list, each element of which we now
describe. The first is simply the call. The second is a logical vector named in.hull, which
contains the results of the convex hull test. Each element can have a value of either FALSE,
indicating that the corresponding counterfactual is not in the convex hull of the observed
data and thus requires extrapolation, or TRUE, indicating the opposite. To see the values of
in.hull, we type:

> my.result$in.hull

For this example, the values are all FALSE.

The third element of the output object, dist, is a matrix that by default contains the
pairwise Gower’s distance, G2, between each counterfactual (a row in the eleven-column
‘peacecf.txt’) and data point (a row in the eleven-column ‘peacef.txt’). We can look at
the distance between the first counterfactual and each of the 122 data points, for example,
by typing:

> my.result$dist[1,]

4 WhatIf: R Software for Evaluating Counterfactuals

The output looks as follows:

1 2 3 4 5 6 7
0.0909091 0.2594048 0.2460820 0.2831935 0.2613205 0.4160213 0.4257783

8 9 10 11 12 13 14
0.2281632 0.2049433 0.1294424 0.2538982 0.2271395 0.1972723 0.2180227
...

121 122
0.2534278 0.1438965

We can alternatively calculate the pairwise Euclidian distance between each counterfactual
and data point by setting the parameter distance equal to "euclidian" as follows:

> my.result <- whatif(data = peacef, cfact = peacecf,
+ distance = "euclidian")

However, this option is only appropriate for quantitative data; since some of our variables are
qualitative, we continue to use the Gower’s distance measure.

The fourth element of the output list, geom.var, is the geometric variability of the observed
data, which we retrieve by typing:

> my.result$geom.var

In this case, it is 0.110 when rounding to three significant digits. King and Zeng offer the
geometric variability as a rule of thumb threshold: counterfactuals with distances to the
observed covariate data less than this value are to some extent nearby the data.

The fifth element of the output object, sum.stat, is a numeric vector, each element of which
is the proportion of data points nearby the corresponding counterfactual. The values can be
seen by typing:

> my.result$sum.stat

The output looks like:

1 2 3 4 5 6
0.008196721 0.008196721 0.008196721 0.008196721 0.008196721 0.008196721

7 8 9 10 11 12
0.008196721 0.008196721 0.008196721 0.008196721 0.008196721 0.008196721
...

121 122
0.008196721 0.016393443

By default, ‘nearby’ is defined as having a distance to the counterfactual less than or equal
to the geometric variability of the observed data. The default can be changed by setting a
value for the parameter nearby. For example, to round the geometric variability up to 0.11
as in King and Zeng (2006b), we type:

> my.result <- whatif(data = peacef, cfact = peacecf, nearby = 0.11)

Journal of Statistical Software 5

The numerical summary reported on page 14 of King and Zeng (2006b) is the average of
sum.stat over all counterfactuals, which we can obtain using the command

> mean(my.result$sum.stat)

In this case, the average is 1.3 percent. This statistic is reported for your convenience by the
function summary.
The sixth element of the output object, cum.freq, stores information on the cumulative
frequency distribution of the distances between a counterfactual and the observed covariate
data. To access the cumulative frequency distribution for the default set of Gower distances
(from 0 to 1 in increments of 0.5) between the first counterfactual and the data points, for
example, we type:

> my.result$cum.freq[1,]

This prints the distribution to the screen:

0 0.05 0.1 0.15 0.2 0.25
0.000000000 0.000000000 0.008196721 0.081967213 0.262295082 0.483606557

0.3 0.35 0.4 0.45 0.5 0.55
0.680327869 0.844262295 0.950819672 0.991803279 0.991803279 1.000000000

0.6 0.65 0.7 0.75 0.8 0.85
1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.9 0.95 1
1.000000000 1.000000000

Alternatively, we can change the default set of Gower distances by using the parameter freq.
For example, to calculate a cumulative frequency distribution solely for the Gower distances
of 0, 0.5, and 1.0, we type:

> my.result <- whatif(data = peacef, cfact = peacecf,
+ freq = c(0, 0.5, 1.0))

Now the cumulative frequency distribution for the first counterfactual looks as follows:

> my.result$cum.freq[1,]
0 0.5 1

0.0000000 0.9918033 1.0000000

We now turn to the auxiliary functions included in the WhatIf package. The first is plot,
which produces figures that graph the cumulative frequency distribution of the distances
similar to Figure 3 in King and Zeng (2006a). This function takes as its input a whatif
output object. To plot the default cumulative frequency distributions for all counterfactuals
to the screen, type:

> plot(my.result)

Plotting 122 distributions on the same graph will not be very helpful, however. A particular
frequency distribution or combination of frequency distributions can be plotted by setting
the parameter numcf to equal the desired values. For example, to plot only the cumulative
frequency distribution for the first counterfactual, we type:

6 WhatIf: R Software for Evaluating Counterfactuals

> plot(my.result, numcf = 1)

We also have the option of smoothing the raw cumulative frequencies, which can be plotted
either on their own or in addition to the raw data. The parameter controlling this option is
type. To plot both the raw and LOWESS smoothed cumulative frequency distributions for
the first two counterfactuals, for example, we type:

> plot(my.result, numcf = c(1, 2), type = "b")

where "b" stands for ‘both’. Alternatively, assigning the value "l" to type would plot only
the smoothed frequencies. To save the graph as an encapsulated postscript file for later use
instead of printing it to the screen, we set the parameter eps equal to TRUE:

> plot(my.result, numcf = c(1, 2), type = "b", eps = TRUE)

The graph is saved to our working directory.

Not surprisingly, the function summary summarizes the most important information produced
by the function whatif. The output object, a list, contains this information, which may also
be printed to the screen. For example, typing

> summary(my.result)

displays the total number of counterfactuals evaluated; the number of counterfactuals that are
in the convex hull of the observed covariate data; the percentage of data points nearby each
counterfactual averaged over all counterfactuals; and a table that contains both the results
of the convex hull test and the percentage of data points nearby the counterfactual for each
counterfactual. Alternatively, typing

> my.result.sum <- summary(my.result)

saves the summary information as the object my.result.sum, which can be printed to the
screen by typing either:

> print(my.result.sum)

or:

> my.result.sum

at the command prompt.

Finally, the package WhatIf includes two print functions. To print the output object returned
by whatif to the screen, type either:

> print(my.result)

or the name of the output object at the command prompt. Not printed by these calls are
the matrices of distances and cumulative frequencies. These large objects can be printed by
setting the parameters print.dist and print.freq equal to TRUE, respectively. For example,
to print the entire output object except for the matrix of Gower distances to the screen, we
type:

Journal of Statistical Software 7

> print(my.result, print.freq = TRUE)

The other print function controls the printing of the output object from the function summary.

2.2. Identifying common support in causal inference

The same algorithm for identifying whether or not counterfactuals fall within the convex hull
of the observed covariate data can be used to assess common support. We illustrate here with
two examples.

UN peacekeeping

In Section 2.4 of King and Zeng (2006b), the seven fully observed countries that experienced a
UN peacekeeping mission comprise the treatment group while the remaining 115 fully observed
(and 117 non-fully observed) countries that lacked a UN peacekeeping mission constitute the
control group. Cases of the former type receive a coding of ‘1’ on the key causal variable,
untype4, while cases of the latter type are coded ‘0’.

When estimating the average treatment effect on the treated, we discard controls with observed
covariate data not within the convex hull of the data for the treated as follows:

> my.result.cntrl <- whatif(formula = ~ decade + wartype + logcost +
+ wardur + factnum + factnumsq + trnsfcap + treaty + develop + exp,
+ data = peacef[peacef$untype4 == 1,],
+ cfact = peacef[peacef$untype4 == 0,])

This command feeds the seven treated countries to the parameter data and the 117 control
countries to the parameter cfact. This differs from the last section, where data contained
all 124 observed data points, whether treated or not. The parameter formula allows us to
drop untype4 from the two data frames, which we do by naming all of the variables that we
want to keep. (We eliminate this variable since our goal is to identify the convex hull of the
observed pre-treatment covariates.) Note that we do not specify a dependent variable in the
formula. We then look at the results:

> my.result.cntrl$in.hull

The control group countries not on the support of the treated countries are those with FALSE
entries—in this case, all 115. Note that two warning messages are generated by this call.
The first informs us that whatif has deleted the two control group cases with missing values
from the cfact data set since counterfactuals must be fully observed. The second, “range
of at least one variable equals zero”, is generated because data contains a degenerate case:
the covariate treaty has no variance (and hence a range of zero) in the observed covariate
data set of the treated countries. In order to calculate the Gower distances, whatif must
make assumptions about the handling of such variables. Specifically, it ignores their contri-
bution unless the values of the data point and counterfactual are identical, in which case the
normalized difference is set to zero.

A different, but perhaps more reliably estimable quantity, may often be obtained by also
dropping observations in the treatment group whose observed covariate data falls outside of
the convex hull of the control group. Any countries remaining comprise the data set that lies

8 WhatIf: R Software for Evaluating Counterfactuals

on the common support. Both the prior and this second step can be performed simultaneously
using WhatIf as originally described in Section 2.1 for evaluating counterfactuals. Accordingly,
we type:

> peacef2cf <- peacef
> peacef2cf$untype4 <- 1 - peacef2cf$untype4
> my.result.comb <- whatif(data = peacef, cfact = peacef2cf)

Here, we initially create the counterfactual data set peacef2cf directly from the factual,
replacing untype4 with 1−untype4. We could also have supplied the data set peacecf,
originally constructed in a similar manner. (The data sets would be identical if the two
counterfactuals with missing data were list-wise deleted from peacef2cf.) We now look at
the results of the convex hull test as before and see that none of the counterfactuals are in
the convex hull. Hence, there is no data on the common support of both the treatment and
control groups.

Hypothetical data

To demonstrate that the latter approach really does combine the individual assessments of
support on the treatment and control groups, consider this hypothetical data set:

> sqdata <- data.frame(t = c(1, 1, 1, 1, 0, 0, 0, 0),
+ x = c(0, 0, 1, 1, .5, .5, 1.5, 1.5),
+ y = c(1, 0, 0, 1, .5, 1.5, .5, 1.5))

The variable t is the treatment. The convex hull of the observed covariate data of the
treatment group is obviously a unit square with its lower left vertex at the origin. The convex
hull of the control group is also a unit square, but one with its lower left vertex at the point
(0.5, 0.5) in the Cartesian plane.
We first identify the control group units that are not on the support of the treated units (i.e.,
the control group units not in the convex hull of the covariate data of the treated group) as
follows:

> summary(whatif(~ x + y, data = sqdata[sqdata$t == 1,], cfact =
+ sqdata[sqdata$t == 0,]))

which as before uses the parameter formula to eliminate the treatment variable, t, from the
data frames. Only the first unit from the control group, the point (0.5, 0.5) in the Cartesian
plane, is in the convex hull and hence on the support of the treated group. We next identify
the treated group units that are not on the support of the control units by typing:

> summary(whatif(~ x + y, data = sqdata[sqdata$t == 0,], cfact =
+ sqdata[sqdata$t == 1,]))

The treatment group unit represented by the point (1, 1) is the only one in the convex hull
and hence on the support of the control group. Accordingly, if we were to eliminate the units
without common support as identified by the two separate tests, we would eliminate all units
save the points (0.5, 0.5), the only control group unit on the support of the treated group,
and (1, 1), the only treated group unit on the support of the control group.
Alternatively, we can combine the two steps:

Journal of Statistical Software 9

> summary(whatif(data = sqdata, cfact = cbind(1 - sqdata[, 1],
+ sqdata[, 2:3])))

This time, two counterfactuals are in the convex hull of the data. These counterfactuals
correspond to the units with observed covariate data (0.5, 0.5) and (1, 1). Accordingly, we
conclude that only two units are on the common support, the same conclusion that we drew
from the two separate tests.

2.3. Using WhatIf with Zelig

We now illustrate how WhatIf can be easily used with Zelig. As an example, we first generate
Zelig output from a simple logistic model using the hypothetical data set created in the prior
example:

> z.out <- zelig(t ~ x + y, data = sqdata, model = "logit")

We next create a counterfactual using the Zelig command setx:

> x.out <- setx(z.out, x = 2, y = 3)

This is normally followed by a call to the Zelig command sim to compute quantities of inter-
est, such as predicted values given these values of the explanatory variables. See, for exam-
ple, http://gking.harvard.edu/zelig/docs/Quick_Overview.html. WhatIf enables you
to evaluate the values to which you set the explanatory variables before simulating quantities
of interest. We do this by calling whatif as follows:

> summary(whatif(data = z.out, cfact = x.out))

The results indicate that this counterfactual is not in the convex hull of the data. In this
situation, you may want to rethink whether or not you should proceed on to the sim stage of
analysis. Note that if an intercept was fit as part of the original model, whatif automatically
drops it from both the observed covariate data set extracted from the zelig output object
z.out and the setx-generated counterfactual x.out.

2.4. Using WhatIf with other R model output objects

Suppose that instead of using Zelig, we use the function lm to fit a linear model to the same
hypothetical data by typing:

> lm.out <- lm(t ~ x + y, data = sqdata)

In this case, we could then use WhatIf to evaluate a counterfactual as follows:

> summary(whatif(data = lm.out, cfact = data.frame(x = 2, y = 3)))

As with zelig output objects, intercepts are dropped from the observed covariate data sets
extracted in this manner. Unlike with Zelig, however, counterfactuals are not generated
automatically by lm; hence, the counterfactuals that you supply to whatif should not include
an intercept. The parameter formula can be used to drop, select, and transform the variables
in data and cfact when data is a R model or zelig output object in the same way that it
can be used when data is a matrix or data frame. For example, to drop the variable x, we
type:

http://gking.harvard.edu/zelig/docs/Quick_Overview.html

10 WhatIf: R Software for Evaluating Counterfactuals

> summary(whatif(~ y, data = lm.out, cfact = data.frame(x = 2, y = 3)))

or more simply and equivalently:

> summary(whatif(~ y, data = lm.out, cfact = data.frame(y = 3)))

If instead we decide to run the test using the square of x, we type:

> summary(whatif(~ I(x^2) + y, data = lm.out, cfact =
+ data.frame(x = 2, y = 3)))

following standard R conventions for formulas.

2.5. Demos and data sets

R will automatically walk you through the examples related to UN peacekeeping by running

> demo("peace")

The factual and counterfactual UN peacekeeping data sets used in the examples are included
in the WhatIf package. You may load them by calling:

> data("peacef")

and

> data("peacecf")

which stores them as R objects with the corresponding names.

3. Technical Details

The computational task of determining the convex hull membership is made feasible even for
large numbers of explanatory variables and observations by the solution proposed in King and
Zeng (2006a), which eliminates the most time-consuming part of the problem: the character-
ization of the convex hull itself. In addition, they show that the remaining (implicit) point
location problem can be expressed as a linear programming exercise, making it possible to
take advantage of existing well-developed algorithms designed for other purposes to speed up
the computation. Specifically, a counterfactual x is in the convex hull of the explanatory vari-
ables X if there exists a feasible solution to the following standard form linear programming
problem:

min C ′η

s.t. A′η = B′ (1)
η ≥ 0

where C is a vector of zeros (so that there is no objective function to minimize); η is a vector
of coefficients; A′ is X ′ with an additional, final row of 1’s; and B′ is x′ with an additional,
final element equal to 1.

Journal of Statistical Software 11

The default Gower distance (which is suitable for both quantitative and qualitative data)
between a pair of K dimensional points xi and xj is defined simply as the average absolute
distance between the elements of the two points divided by the range of the data:

Gij =
1
K

K∑
k=1

|xik − xjk|
rk

(2)

where the range is rk = max(X.k) − min(X.k) and the min and max functions return the
smallest and largest elements respectively in the set including the kth element of the explana-
tory variables X. The optional Euclidian distance (which is suitable only for quantitative
data) between points xi and xj is given by the familiar definition, i.e. the square root of the
sum of the squared differences between the elements of the two points:

Eij =

√√√√ K∑
k=1

(xik − xjk)2 . (3)

4. R Function Reference

4.1. Function whatif()

This function evaluates your counterfactuals. Specifically, it:

1. Determines if your counterfactuals are in the convex hull of the observed covariate data
and are therefore interpolations or if they instead lie outside of it and are therefore
extrapolations.

2. Computes the distance from your counterfactuals to each of the n observed data points.
The default distance function used is Gower’s non-parametric measure.

3. Computes a summary statistic for each counterfactual based on the distances in 2: the
fraction of observed covariate data points with distances to your counterfactual less than
a value you supply. By default, this value is taken to be the geometric variability of the
observed data.

4. Computes the cumulative frequency distribution of each counterfactual for the distances
in 2 using distances you supply. By default, Gower distances from 0 to 1 in increments
of 0.05 are used.

In other words, this function provides you with both qualitative and quantitative information
about your counterfactuals, including two numeric summaries. You can then feed the output
of this function either to plot to generate a graphical view or to summary to get a numerical
summary of the results.

12 WhatIf: R Software for Evaluating Counterfactuals

Usage

whatif(formula = NULL, data, cfact, range = NULL, freq = NULL,
nearby = NULL, distance = "gower", miss = "list",
return.inputs = FALSE, ...)

Inputs

formula An optional formula without a dependent variable that is of class“formula”and that
follows standard R conventions for formulas, e.g. ~ x1 + x2. Allows you to transform
or otherwise re-specify combinations of the variables in both data and cfact. To use
this parameter, both data and cfact must be coercable to data frames; the variables
of both data and cfact must be labeled; and all variables appearing in formula must
also appear in both data and cfact. Otherwise, errors are returned. The intercept is
automatically dropped. Default is NULL.

data May take one of the following forms:

1. A R model output object, such as the output from calls to lm, glm, and zelig.
Such an output object must be a list. It must additionally have either a formula
or terms component and either a data or model component; if it does not, an error
is returned. Of the latter, whatif first looks for data, which should contain either
the original data set supplied as part of the model call (as in glm) or the name of
this data set (as in zelig), which is assumed to reside in the global environment.
If data does not exist, whatif then looks for model, which should contain the
model frame (as in lm). The intercept is automatically dropped from the extracted
observed covariate data set if the original model included one.

2. A n × k non-character (logical or numeric) matrix or data frame of observed co-
variate data with n data points or units and k covariates. All desired variable
transformations and interaction terms should be included in this set of k covari-
ates unless formula is alternatively used to produce them. However, an intercept
should not be. Such a matrix may be obtained by passing model output (e.g.,
output from a call to lm) to model.matrix and excluding the intercept from the
resulting matrix if one was fit. Note that whatif will attempt to coerce data
frames to their internal numeric values. Hence, data frames should only contain
logical, numeric, and factor columns; character columns will lead to an error being
returned.

3. A string. Either the complete path (including file name) of the file containing the
data or the path relative to your working directory. This file should be a white
space delimited text file. If it contains a header, you must include a column of row
names as discussed in the help file for the R function read.table. The data in the
file should be as otherwise described in (2).

Missing data is allowed and will be dealt with via the argument missing. It should be
flagged using R’s standard representation for missing data, NA.

Journal of Statistical Software 13

cfact A R object or a string. If a R object, a m× k non-character matrix or data frame of
counterfactuals with m counterfactuals and the same k covariates (in the same order) as
in data. However, if formula is used to select a subset of the k covariates, then cfact
may contain either only these j ≤ k covariates or the complete set of k covariates.
An intercept should not be included as one of the covariates. It will be automatically
dropped from the counterfactuals generated by Zelig if the original model contained one.
Data frames will again be coerced to their internal numeric values if possible. If a string,
either the complete path (including file name) of the file containing the counterfactuals
or the path relative to your working directory. This file should be a white space delimited
text file. See the discussion under data for instructions on dealing with a header. All
counterfactuals should be fully observed: if you supply counterfactuals with missing
data, they will be list-wise deleted and a warning message will be printed to the screen.

range An optional numeric vector of length k, where k is the number of covariates. Each
element represents the range of the corresponding covariate for use in calculating Gower
distances. Use this argument when covariate data do not represent the population of
interest, such as selection by stratification or experimental manipulation. By default, the
range of each covariate is calculated from the data (the difference of its maximum and
minimum values in the sample), which is appropriate when a simple random sampling
design was used. To supply your own range for the kth covariate, set the kth element
of the vector equal to the desired range and all other elements equal to NA. Default is
NULL.

freq An optional numeric vector of any positive length, the elements of which comprise a set
of distances. Used in calculating cumulative frequency distributions for the distances of
the data points from each counterfactual. For each such distance and counterfactual,
the cumulative frequency is the fraction of observed covariate data points with distance
to the counterfactual less than or equal to the supplied distance value. The default
varies with the distance measure used. When the Gower distance measure is employed,
frequencies are calculated for the sequence of Gower distances from 0 to 1 in increments
of 0.05. When the Euclidian distance measure is employed, frequencies are calculated
for the sequence of Euclidian distances from the minimum to the maximum observed
distances in twenty equal increments, all rounded to two decimal places. Default is
NULL.

nearby An optional scalar; the cutoff distance value indicating which observed data points
are considered to be nearby the counterfactuals. Used to calculate the summary statistic
returned by the function: the fraction of the observed data nearby each counterfactual.
By default, the geometric variability of the covariate data is used. For example, setting
nearby to 0.11 will identify the proportion of data points within 0.11 of a counterfactual.
Default is NULL.

distance An optional string indicating which of two distance measures to employ. The
choices are either "gower", Gower’s non-parametric distance measure (G2), which is
suitable for both qualitative and quantitative data; or "euclidian", Euclidian distance,
which is only suitable for quantitative data. The default is the former, "gower".

miss An optional string indicating the strategy for dealing with missing data in the observed
covariate data set. whatif supports two possible missing data strategies: "list", list-

14 WhatIf: R Software for Evaluating Counterfactuals

wise deletion of missing cases; and "case", ignoring missing data case-by-case. Note
that if "case" is selected, cases with missing values are deleted listwise for the convex
hull test but simply ignored in computing the distances. Default is "list".

return.inputs A Boolean; should the processed observed covariate and counterfactual data
matrices on which all whatif computations are performed be returned? Processing
refers to internal whatif operations such as the subsetting of covariates via formula,
the deletion of cases with missing values, and the coercion of data frames to numeric ma-
trices. Primarily intended for diagnostic purposes. If TRUE, these matrices are returned
as a list. Default is FALSE.

Value

An object of class “whatif”, a list containing the following six or seven elements:

call The original call to whatif.

inputs A list with two elements, data and cfact. Only present if return.inputs was set
equal to TRUE in the call to whatif. The first element is the processed observed covariate
data matrix on which all whatif computations were performed. The second element is
the processed counterfactual data matrix.

in.hull A logical vector of length m, where m is the number of counterfactuals. Each
element of the vector is TRUE if the corresponding counterfactual is in the convex hull
and FALSE otherwise.

dist An m×n numeric matrix, where m is the number of counterfactuals and n is the number
of data points (units). The [i, j]th entry of the matrix contains the distance between
the ith counterfactual and the jth data point.

geom.var A scalar. The geometric variability of the observed covariate data.

sum.stat A numeric vector of length m, where m is the number of counterfactuals. The
mth element contains the summary statistic for the corresponding counterfactual. This
summary statistic is the fraction of data points with distances to the counterfactual
less than the argument nearby, which by default is the geometric variability of the
covariates.

cum.freq A numeric matrix. By default, the matrix has dimension m × 21, where m is the
number of counterfactuals; however, if you supplied your own frequencies via the argu-
ment freq, the matrix has dimension m×f , where f is the length of freq. Each row of
the matrix contains the cumulative frequency distribution for the corresponding coun-
terfactual calculated using either the distance measure-specific default set of distance
values or the set you supplied (see the discussion under the argument freq). Hence, the
[i, j]th entry of the matrix is the fraction of data points with Gower distances to the ith
counterfactual less than or equal to the value represented by the jth row. The column
names contain these values.

Journal of Statistical Software 15

4.2. Function plot.whatif()

This function generates a cumulative frequency plot of distances, graphically summarizing
the distance of your counterfactuals from the data. It takes as its input an object returned
by the function whatif, which has class “whatif”. It is called by the generic function plot.
The cumulative frequencies appear on the vertical axis. They are the fraction of rows in the
observed data set with either Gower or Euclidian distances to the counterfactuals less than or
equal to the given value on the horizontal axis. Counterfactuals in the convex hull are plotted
with a solid line and counterfactuals outside of the convex hull with a dashed line.

Usage

plot(x, type = "f", numcf = NULL, eps = FALSE, ...)

Inputs

x An object of class “whatif”, the output of the function whatif().

type A character string; the type of plot of the cumulative frequencies of the distances to
be produced, including: "f" for cumulative frequencies only; "l" for LOWESS smooth-
ing of cumulative frequencies only; "b" for both cumulative frequencies and LOWESS
smoothing. LOWESS scatterplot smoothing is plotted in blue and the unsmoothed
frequencies in black. Default is "f".

numcf A numeric vector; the specific counterfactuals to be plotted. Each element represents
a counterfactual, specifically its row number from the matrix or data frame of counter-
factuals. By default, all counterfactuals are plotted. Default is NULL.

eps A Boolean; should an encapsulated postscript file be generated? Setting the argument
equal to TRUE generates an .eps file, which is saved to your working directory with file
name of form ‘graph_‘type’_‘numcf’.eps’, where ‘type’ and ‘numcf’ are the values
of the respective arguments. Specifically, ‘numcf’ takes the value of the first element of
the argument numcf unless all counterfactuals were plotted, in which case all appears
in the place of ‘numcf’. Default is FALSE, which instead prints the graph to the screen.

Value

Either a graph printed to the screen or an encapsulated postscript file saved to your working
directory. In the latter case, the file name has form ‘graph_‘type’_‘numcf’.eps’, where
‘type’ and ‘numcf’ are the values of the respective arguments.

4.3. Function print.whatif()

This function prints the information generated by a call to whatif to the screen. It takes as
its input an object returned by the function whatif, which has class “whatif”. It is called by
the generic function print.

16 WhatIf: R Software for Evaluating Counterfactuals

Usage

print(x, print.dist = FALSE, print.freq = FALSE, ...)

Inputs

x An object of class “whatif”, the output of the function whatif.

print.dist A Boolean; should the matrix of pairwise distances between each counterfactual
and data point be printed to the screen? Default is FALSE.

print.freq A Boolean; should the matrix of cumulative frequencies of Gower distances for
each counterfactual be printed to the screen? Default is FALSE.

Value

A printout to the screen of the information contained in the whatif output object.

4.4. Function print.summary.whatif()

This function prints the information generated from the whatif output object by a call to sum-
mary to the screen. It takes as its input an object returned by the function summary.whatif,
which has class “summary.whatif”. It is called by the generic function print.

Usage

print(x, ...)

Inputs

x An object of class “summary.whatif”, the output of the function summary.whatif.

Value

A printout to the screen of the whatif information summarized in the summary.whatif output
object.

4.5. Function summary.whatif()

This function summarizes the information produced by whatif about your counterfactuals.
It takes as its input the object returned by the function whatif, which has class “whatif”.
It is called by the generic function summary. The summary generated is returned as well as
printed to the screen.

Journal of Statistical Software 17

Usage

summary(object, ...)

Inputs

object An object of class “whatif”, the output of the function whatif.

Value

An object of class “summary.whatif”, a list containing the following five elements:

call The original call to whatif.

m A scalar. The total number of counterfactuals evaluated.

m.inhull A scalar. The number of counterfactuals evaluated that are in the convex hull of
the observed covariate data.

mean.near A scalar. The average percentage of data ‘nearby’ each counterfactual, where the
average is taken over all counterfactuals.

sum.df A data frame with three columns and m rows, where m is the number of counter-
factuals. The first column, cfact, indexes the counterfactuals. The second column,
in.hull, contains the results of the convex hull test. The third column, per.near,
contains the percentage of data points nearby each counterfactual.

This object is printed to the screen.

References

Ho D, Imai K, King G, Stuart E (2005). “Matching as Nonparametric Preprocessing for
Parametric Causal Inference.” URL http://gking.harvard.edu/matchit/.

Imai K, King G, Lau O (2004). “Zelig: Everyone’s Statistical Software.” URL http://gking.
harvard.edu/zelig/.

King G, Zeng L (2006a). “The Dangers of Extreme Counterfactuals.” Political Analysis.
Forthcoming, URL http://gking.harvard.edu/files/abs/counterft-abs.shtml.

King G, Zeng L (2006b). “When Can History Be Our Guide? The Pitfalls of Counterfactual
Inference.” International Studies Quarterly. Forthcoming, URL http://gking.harvard.
edu/files/counterf.pdf.

http://gking.harvard.edu/matchit/
http://gking.harvard.edu/zelig/
http://gking.harvard.edu/zelig/
http://gking.harvard.edu/files/abs/counterft-abs.shtml
http://gking.harvard.edu/files/counterf.pdf
http://gking.harvard.edu/files/counterf.pdf

18 WhatIf: R Software for Evaluating Counterfactuals

Affiliation:

Heather Stoll
Department of Political Science
University of California, Santa Barbara
Santa Barbara, CA 93106–9420, United States of America
E-mail: hstoll@polsci.ucsb.edu
URL: http://www.polsci.ucsb.edu/faculty/hstoll/

Gary King
Institute for Quantitative Social Science
Harvard University
34 Kirkland Street
Cambridge, MA 02138, United States of America
E-mail: king@harvard.edu
URL: http://gking.harvard.edu/

Langche Zeng
Department of Political Science
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093–0521, United States of America
E-mail: zeng@ucsd.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 15, Issue 4 Submitted: 2005-11-09
January 2006 Accepted: 2005-12-10

mailto:hstoll@polsci.ucsb.edu
http://www.polsci.ucsb.edu/faculty/hstoll/
mailto:king@harvard.edu
http://gking.harvard.edu/
mailto:zeng@ucsd.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Examples
	Counterfactuals about UN peacekeeping
	Identifying common support in causal inference
	UN peacekeeping
	Hypothetical data

	Using WhatIf with Zelig
	Using WhatIf with other R model output objects
	Demos and data sets

	Technical Details
	R Function Reference
	Function whatif
	Usage
	Inputs
	Value

	Function plot.whatif
	Usage
	Inputs
	Value

	Function print.whatif
	Usage
	Inputs
	Value

	Function print.summary.whatif
	Usage
	Inputs
	Value

	Function summary.whatif
	Usage
	Inputs
	Value

