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Abstract. A dispersive Landau-fluid model is used to
study the decay and modulational instabilities of circularly-
polarized Alfv́en waves in a collisionless plasma, as well as
their nonlinear developments. Comparisons are presented
with the drift-kinetic approximation for the dispersionless
regime and with hybrid simulations in more general condi-
tions. The effect of the nature of the instability on particle
heating is discussed, together with the formation of coherent
structures or the development of an inverse cascade.

1 Introduction

When a magnetized plasma is considered at scales smaller
than the collision mean free path, the usual MHD descrip-
tion is no longer valid due to significant kinetic effects. Such
a situation is usual in the solar wind or the magnetosphere,
but also in the warm ionized phase of the interstellar medium
where the fluctuation spectrum extends down to scales com-
parable to the ion inertial length and much below the ion-
neutral or Coulomb mean free paths (Scalo and Elmegreen,
2004). In such collisionless regimes, Landau damping pro-
vides an important dissipation mechanism for low-frequency
waves through particle resonance. Furthermore, MHD waves
are made dispersive under the effect of the Hall term and
the electron pressure gradient in a generalized Ohm’s law, as
well as of finite Larmor radius (FLR) corrections in the pres-
sure tensor. Fully kinetic descriptions, based on the Vlasov-
Maxwell system or even on the reduced gyrokinetic equa-
tions, remain however much beyond the capabilities of the
present day computers in situations involving a broad range
of scales, as in turbulent regimes. It is thus important to de-
velop a description retaining the main kinetic effects within
fluid models of large-scale plasma dynamics.

It turns out that in a weakly nonlinear regime, and for
scales large relatively to the ion Larmor radius, an efficient
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description of the plasma dynamics is provided by Landau-
fluid models introduced bySnyder et al.(1997). This ap-
proach extends the usual MHD by including dynamical equa-
tions for the parallel and perpendicular pressures of each
particles species, together with a closure approximation that
expresses the heat fluxes (or possibly the fourth order mo-
ments) in terms of temperature and magnetic perturbations,
in a way consistent with the linear kinetic theory in the case
of a proton-electron plasma with bi-Maxwellian equilibrium
distribution functions. This model was extended inPas-
sot and Sulem(2003b, 2004b) by including dispersive ef-
fects, required to describe the formation of solitonic struc-
tures currently observed in the solar wind and the magne-
tosphere. This dispersive Landau fluid was demonstrated
to accurately reproduce the dispersion relations and Landau
damping rates of long-wavelength magnetosonic and Alfvén
waves for anyβ larger than the electron to proton mass ra-
tio me/mp and any propagation angleα, including kinetic
Alfv én waves with a transverse wavenumber not exceeding
the inverse proton inertial length (Passot and Sulem, 2004a).
This model also reproduces the weakly nonlinear dynamics
of these waves. Numerical simulations of oblique fast mag-
netosonic waves in a slab geometry shows in particular the
onset of a coupling with Alfv́en waves that results in the
quenching of Landau dissipation after a time that is shorter
when the wave amplitude is larger (Bugnon et al., 2004). An
excellent agreement is also obtained for the growth rate of
long-wavelength mirror modes. Furthermore, the multidi-
mensional kinetic derivative nonlinear Schrödinger equation
for parallel-propagating long Alfv́en waves, derived from
Vlasov-Maxwell equations by means of a reductive pertur-
bative expansion (Passot and Sulem, 2003a), is reproduced
when this expansion is performed on the dispersive Landau-
fluid model, up to the replacement of the plasma response
function by its two or four pole Padé approximants.

The aim of the present paper is to use the dispersive
Landau-fluid model described in Sect. 2 (and in a more gen-
eral setting in the Appendix) to address the instability of right
or left-hand circularly polarized Alfv́en waves propagating

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26985352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


610 G. Bugnon et al.: Landau-fluid simulations

along a uniform ambient magnetic field in a warm collision-
less plasma. Comparisons are in particular made with predic-
tions of the drift-kinetic approximation for the dispersionless
limit ( Inhester, 1990) (Sect. 3) and, when dispersion is rele-
vant, with hybrid simulations where electrons are treated as
an isothermal fluid (Vasquez, 1995) (Sect. 4). The nonlin-
ear dynamics initiated by decay and modulational instabili-
ties is also analyzed. The main conclusions are summarized
in Sect. 5.

2 A dispersive Landau-fluid model

The dispersive Landau-fluid model derived and validated
by comparison with the kinetic theory inPassot and Sulem
(2004b) is briefly described in the Appendix. We are here
concerned with parallel Alfv́en waves whose dynamics is ac-
curately described by a simplified version of this model (Pas-
sot and Sulem, 2003b). This simplified model mainly con-
sists in retaining leading order FLR corrections to the pres-
sure and neglecting the contributions of non-gyrotropic heat
flux components. Since this model also describes oblique
magnetosonic waves (except for quasi-transverse propaga-
tion for which vector heat fluxes are to be considered;
Mikkhailovskĭı and Smolyakov, 1985), it is convenient to
consider an ambient magnetic field making an arbitrary angle
α with the direction of propagation (taken asx). Measuring
the densityρ in units of the equilibrium valueρ(0), the mag-
netic fieldb=(bx=B0 cosα, by, bz) in units of the ambient
field B0, the plasma velocity(ux, uy, uz) in units of a veloc-
ity u0 (later taken as the Alfv́en velocityvA=B0/

√
4πρ0),

the parallel and perpendicular pressuresp‖r andp⊥r of each
speciesr in units of the equilibrium parallel proton pressure
p0=p

(0)
‖p and the corresponding heat fluxesq‖r andq⊥r in

units ofu0p0, the dynamic equations in a slab geometry read
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where the gyrotropic components of the pressure tensor are
given bypij=

∑
r pr,ij with
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In the equations for the parallel and transverse heat fluxes,
H denotes the Hilbert transform relatively to thex coordi-

nate,vth,r=

√
T

(0)
‖r /mr is the thermal velocity of the particles

of speciesr, Ma=u0/vA is the Alfvénic Mach number (here
taken equal to 1) andβ‖p=8πp0/B

2
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mpc
is the proton gy-

rofrequency) measures the ratio of the proton inertial length
to the reference length scaleL0. As a consequence, time is
measured in units of 1/(Rp�p). The non-gyrotropic (FLR)
corrections in the pressure tensor are restricted to their lead-
ing order, in the form
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Fig. 1. Growth rates of the density modes (whose wavenumber is
normalized by the pump wavenumber) resulting from the decay in-
stability of a non dispersive Alfv́en wave of amplitudeb0=0.447
propagating in a plasma withβ=0.6 and isotropic equilibrium tem-

peratures of the electrons and ions in a ratioT
(0)
e /T

(0)
p =33 (left),

T
(0)
e /T

(0)
p =5 (middle) andT (0)

e /T
(0)
p =1 (right).

πxz = MaRp cosα
(
(sin2 α − cos2 α)(p⊥p − 2p‖p) + sin2 αp⊥p

)
∂xuy .

(16)

This system of equations was recently used to analyze the
dynamics of oblique magnetosonic waves (Bugnon et al.,
2004). Here, we concentrate on parallel Alfvén waves and
thus takeα=0 in the above system.

3 The numerical set-up

It is easily seen that parallel-propagating circularly-
polarized monochromatic Alfv́en waves characterized by
the conditionρ=1, bx=1, uniform and time-independent
pressures, together withb±≡by±ibz=b0e

i(kx−ωt) and
u±≡uy±iuz=u0e

i(kx−ωt), are exact solutions of the disper-
sive Landau-fluid model. Here, the− and+ signs refer to
right and left-hand polarizations, respectively. They obey
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.

Note that these waves are solutions of the Landau-fluid
model even for isotropic pressures (or temperatures), while
in a Vlasov-Maxwell description, pressure anisotropy is re-
quired (Abraham-Shrauner and Feldman, 1977). In the hy-
brid simulations presented byVasquez(1995), the initial
condition is not an exact solution and an adjustment phase
involving pressure anisotropies is visible. This constraint
is however relaxed in the drift-kinetic approximation (In-
hester, 1990) that, like the Landau fluids, deals with the long-
wavelength limit.

The above Landau-fluid equations are integrated using
a pseudo-spectral method in a periodic domain and a sec-
ond order scheme for the time stepping. Resolutions of

Fig. 2. Time evolution of the amplitude of the density mode k=1.5
in lin-log scales, for the conditions of Fig. 1 (right).

128 or 256 collocation points are used. The initial condi-
tions are taken as a right or left-hand polarized wave. Ex-
cept when comparing with previously published growth rate
curves where it is necessary to add a perturbation at a se-
lected wavenumber, we rely on the numerical noise to desta-
bilize the solution. It turns out that when aliasing errors are
not eliminated, the code rapidly becomes unstable for ini-
tial wave amplitudes exceeding a few tenths. Since the non-
linearities of the model are not polynomials, aliasing can-
not be totally eliminated. Nevertheless, a partial desaliasing
where all the modes with wavenumbers larger than one half
the largest wavenumber permitted by the resolution are put
to zero, appears sufficient to stabilize the simulation and to
ensure accuracy (as checked by increasing space and time
resolution). Furthermore, the dispersive effects (treated by a
semi-implicit scheme because of the involved nonlinearities)
requires a time step significantly smaller than suggested by
the usual stability criteria.

4 The dispersionless limit

The decay instability of parallel Alfv́en waves propagating in
a warm collisionless plasma was analyzed byInhester(1990)
in the case where the ratio of the Larmor radius to the pump
wavelength is asymptotically small, making dispersion im-
material, as for example in the solar wind (except near the
Earth). This situation permits the use of the so-called drift-
kinetic approximation, obtained as the leading-order result
of the averaging over the particle gyromotion, that leads to
dynamical equations for the distribution functions of the ion
and electron guiding centers (see e.g.Grad, 1961; Kulsrud,
1983, Sulem, 20041, and references therein). We here only
consider the case of bi-Maxwellian equilibrium distribution
functions, for consistency with the assumptions used for the
Landau-fluid model.

Decay instability produces a forward propagating acous-
tic wave and a backward Alfv́en wave with a wavenum-
ber smaller than that of the pump. In Fig. 1 ofInhester
(1990), the growth rate (normalized by the pump frequency)

1Sulem, P. L.: Introduction to the guiding center theory, in Proc.
Course and Workshop on Kinetic Theory (Toronto, March 2004),
Fields Communications Series, to appear, 2004.



612 G. Bugnon et al.: Landau-fluid simulations

Fig. 3. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) mean temperatures of the ions (top) and the
electrons (bottom) in the run of Fig. 1 (right).

of the acoustic mode is displayed versus the perturbation
wavenumber, for a circularly polarized pump wave of ampli-
tude

√
0.2≈0.447 and various values of the ratiop(0)

p /p
(0)
e

of the isotropic equilibrium proton to electron pressures (or
temperatures), the total thermal pressureP0=p

(0)
p + p

(0)
e be-

ing kept constant and prescribed by the value of the pa-
rameterβ=8πP0/B

2
0. We show in Fig.1 that Landau-fluid

simulations reproduce reasonably well the instability growth
rates displayed inInhester(1990) except that we had to use
β‖p=0.3, which corresponds toβ=0.6, one half the value
indicated in Inhester’s paper. The same discrepancy on the
value of the parameter is obtained in the fluid limitT

(0)
p → 0

where our result is consistent with that ofGoldstein(1978).
Like in Inhester’s simulation, we observe broader ranges
of unstable modes and smaller growth rates than in the
fluid description. The regime of equal equilibrium temper-
aturesT (0)

p =T
(0)
e is illustrated in Fig.2 which displays for

β=0.6 the time evolution of the most unstable density mode
k=1.5k0 wherek0 is the pump wavenumber, taken equal to
10× 2π/D where the extensionD of the computational box
is equal toD=6.25×2π (in units ofL0=vA/(Rp�p)) in the
present simulations. We observe a decay instability and at
later times its saturation, probably due to Landau damping
rather than to mode coupling since no other mode was seen
to grow during the phase where the density mode decays.
Figure3 shows in the same conditions as in Fig.2, the vari-
ation of the parallel and perpendicular temperatures of the
protons and the electrons. We note that the parallel heat-
ing of the ions is significant and that of the electrons also
non-negligible (temperature growths of about 75% and 8%,
respectively). This electron heating supports the above state-
ment that saturation results from Landau damping.

Fig. 4. Time evolution of the amplitude of the density modesm=6
(top) andm=3 (bottom) in lin-log scales, for a right-hand polar-
ized Alfvén wave of amplitudeb0=0.1, k0=0.64, in a plasma with
Rp=1, β=0.42 and equal electron and ion equilibrium tempera-
tures.

5 Decay instability of dispersive Alfv́en waves

In order to consider a regime that involves dispersion but
where β is small enough for the fluid theory to qual-
itatively predict the linear dynamics, we assumeRp=1,

T
(0)
p =T

(0)
e , β‖p=0.21 (corresponding toβ=0.42), and a

forward-propagating, right-hand polarized pump with am-
plitudeu0=0.1 and wave numberk0=4×2π/D=0.64 when
D=6.25×2π . Decay instability makes the density mode
m=k×2π/D=6 to be the most unstable at short time as
seen in Fig.4 (top). Saturation again originates from Lan-
dau damping. After a while, the modem=3 starts grow-
ing (Fig.4, bottom), which induces a second increase of the
modem=6 as an harmonics ofm=3. The further dynamics
corresponds to an inverse cascade involving the successive
amplification of the (m=2) backward and (m=1) forward
propagating Alfv́en modes.

The regime of moderate or largeβ and large wave am-
plitude was investigated byVasquez(1995) using a hybrid
method where electrons are treated as an isothermal fluid.
A detailed analysis of the sensitivity of the decay instability
growth rate to the equilibrium electron to proton tempera-
ture ratios is presented for a forward-propagating right-hand
polarized Alfv́en wave of amplitudeb0=0.5 and wavenum-
ber 0.408 (normalized with the ion inertial length) propa-
gating in a plasma withβ=0.45. A periodic domain, in-
cluding 8 pump wavelengths is considered. TakingRp=1,
we write the pump wavenumberk0=m0×2π/D with m0=8
andD=8×2π/0.408=19.61×2π and characterize the vari-
ous modesk=m×2π/D by their indexm. For different val-
ues of the equilibrium electron to proton temperature ratio
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Table 1. Decay instability of a dispersive Alfv́en wave (see text for
the parameters of the runs).

T
(0)
e /T

(0)
p Index m of the corresponding growth

most unstable mode rate in units of�p

44. 13 0.087
2.75 12 0.069

1. 12 0.059
0.36 13 0.056

0. 13 0.056

T
(0)
e /T

(0)
p , Table 1 provides the characteristics of the density

mode with the largest grow rate measured during the linear
phase. One observes that this rate decreases withT

(0)
e /T

(0)
p .

In the case where the pressure is constrained to obey a
polytropic law of the formρ5/3, we obtain a growth rate
equal to 0.092, in agreement withGoldstein(1978). Dif-
ferently in the limit of hot ions, the growth rate saturates to
a value roughly 40% lower than predicted by the fluid ap-
proach, whereasVasquez(1995) hybrid simulations leads to
a reduction of 57%.

When T
(0)
e /T

(0)
p =44, the dynamics is close to a fluid

regime and leads to the generation of many harmonics. A
much larger numerical resolution would be required to ob-
serve the saturation of the instability.

Figure5 displays the time variation of the ion temperatures
in the run withT

(0)
e =0, as obtained from Landau-fluid sim-

ulations. A qualitative agreement is obtained withVasquez
(1995). In particular electrons remain cold, which justifies
their description as an isothermal fluid in the hybrid code.
As in the previous run, we observe an inverse cascade where
the excitation is transfered to larger and larger scales (up to
m=1), while the direction of the wave propagation switches
at each step of the cascade, with a simultaneous increase
of the ion temperature. Neart=12 000, when the dominant
Alfv én mode ism=2, we observe that the ion parallel tem-
perature decreases. This event is associated with the onset
of a transient instability characterized by the growth of the
density modem=17 and magnetic modesm=15 andm=19.
The origin of this instability is unclear.

Still considering a right-handed wave, we now investigate
whether decay instability can persist at relatively high val-
ues ofβ. TakingRp=0.1, we show in Fig.6 the spectrum
of b+=by + ibz for b0=0.5 andβ=5, during the linear (top
panel) and the late (bottom panel) evolution phases. A de-
cay instability is clearly visible at early time, that leads to
the dominance of the (backward)m=4 mode, whereas the
fluid theory predicts a modulational instability. In physi-
cal space, the solution evolves towards quasi-linear oscilla-
tions, associated with a rapidly decaying spectrum display-
ing well separated harmonics. In order to compare with
the results ofVasquez(1995), we performed a simulation
with the same parameters as above, except that the param-
eter Rp was changed toRp=1. In this regime, a range

Fig. 5. Time evolution of the ion mean parallel (solid line) and
perpendicular (dashed-dotted line) temperatures for a right-handed
Alfv én wave with amplitudeb0=0.5, k0=0.408, in a plasma with
β=.45,Rp=1, and zero electron equilibrium temperature.
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Fig. 6. Spectral density (versus the wavenumber index) in lin-log10
scale for the (complex) quantityb+=bx+iby (the wavenumber sign
indicating a helicity and thus, after the polarization is specified, the
propagation direction) at timet=2000 (top) andt=3700 (bottom)
belonging, respectively, to the linear and nonlinear phases for the
instability of a right-hand polarized wave with amplitudeb0=0.5,

k0=0.408 in a plasma withβ=5, Rp=0.1 andT
(0)
i

/T
(0)
e =1.5.

of unstable wavenumbers aroundm=40 is observed. This
instability is not a numerical artifact but is rather an indi-
cation that the present regime falls outside the domain of
validity of our model, since forβ=5 the ion Larmor ra-
dius (vth/�p'

√
βvA/�p) is comparable to the pump wave-

length. The decay instability is in this case rapidly overtaken
by a modulational instability leading to a turbulent behavior.
Both the small-scale instability and the modulational one dis-
appear when FLR corrections are not included in the simula-
tion, indicating that the first-order FLR contribution retained
in the present model are insufficient in a regime where the
pump wavelength approaches the ion Larmor radius. A more
refined model suitable to address this regime is currently un-
der investigation.
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Fig. 7. Spectral density (versus the wavenumber index) in lin-log10
scale for the transverse magnetic fieldb+=bx + iby at timet=2000
(top) andt=3700 (bottom) belonging, respectively, to the linear and
nonlinear phases for the instability of a left-hand polarized Alfvén
wave with amplitudeb0=0.3, k0=0.408, in a plasma whereβ=1.5,

Rp=1 andT
(0)
e =2T

(0)
p .

Fig. 8. Profile of |b+|
2 (top) and(ρ−1) (bottom) att=3700 in the

conditions of Fig. 7. The labels on the abscissa axis refer to the
collocation point indices.

6 Modulational instability

A modulational instability of the pump is obtained in the con-
ditions of Figs. 1 and 3 ofVasquez(1995). It corresponds
to a (forward-propagating) left-hand polarized pump of am-
plitude b0=0.3 and wavenumberk0=0.408=8×2π/D in a

Fig. 9. Parallel (left) and transverse (right) pressures of the ions
(top) and the electrons (bottom) att=3700, in the conditions of
Fig. 7. The labels on the abscissa axis refer to the collocation point
indices.
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Fig. 10. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) of the ion (top) and electron (bottom) mean
temperatures in the conditions of Fig. 7.

plasma withβ=1.5, Rp=1, andT
(0)
i /T

(0)
e =0.5. The mod-

ulational nature of the instability is seen on Fig.7 (top).
We observe the development of modesm=4 and m=12
(clearly visible byt=2000) with similar growth rates (ap-
proximatively equal to 0.014). However, byt=2600 the
former mode dominates and byt=3700 the modem=3
emerges, while an exponential spectrum develops at small
scale (Fig.7, bottom). Byt=4700, the modem=2 is domi-
nant. At=7700, the modem=1 is significantly excited and,
in physical space, the Alfv́en wave displays a nonlinear struc-
ture occupying all the computational box. The amplification
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Fig. 11. Spectrum of the transverse magnetic fieldb+ at times
t=3100 (top) andt=3700 (bottom) for an initially left-hand po-
larized Alfvén wave with amplitudeb0=0.8 and the same plasma
parameters as in Fig. 7.

Fig. 12. Profile of |b+|
2 (top) and of(ρ − 1) (bottom) att=3700

in the conditions of Fig. 11. The labels on the abscissa axis refer to
the collocation point indices.

of the lower side modem=4 confirmsMjølhus and Wyller
(1988) prediction based on the kinetic derivative nonlinear
Schr̈odinger equation (Rogister, 1971) for weakly nonlinear
long Alfvén waves, that a small-amplitude left-hand polar-
ized wave is modulationally unstable for allβ (Spangler,
1989,1990; Medvedev and Diamond, 1996; Araneda, 1998).
This contrasts with the fluid description that forβ>1.4 pre-
dicts a dominant beat instability associated with a strong am-

Fig. 13. Parallel (top) and transverse (bottom) ion temperatures in
the conditions of Fig. 11, at timet=3700. The labels on the abscissa
axis refer to the collocation point indices.

Fig. 14. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) mean temperatures of the ions (top) and the
electrons (bottom) the conditions of Fig. 11.

plification of the upper Alfv́en side mode. Figure8 displays
the transverse magnetic field intensity|b+|

2 and the density
fluctuationsρ−1 at timet=3700. Note the anti-correlation
between these two quantities. Figure9 shows the various
pressures at the same time. We note that the parallel and
transverse electron pressures are proportional to the density
fluctuations, which justifies the description of the electrons
as an isothermal fluid. Figure10 displays the time evolu-
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tion of the mean parallel and perpendicular temperatures of
the ions and the electrons for the same simulation. Note the
presence of plateaux whose durations are limited by the onset
of new dominant modes and the decrease of electron paral-
lel temperature. This is a significant difference with the case
where the Alfv́en wave is subject to a decay instability for
which the parallel electron temperature increases (possibly
very slightly).

When a similar simulation is performed with a wave am-
plitudeb0=0.8, we still observe a dominant modulational in-
stability (with a lower growth rate 0.011) as predicted by the
fluid description, whileVasquez(1995) observes a dominant
decay instability in this regime. The nonlinear development
of this instability involves an inverse cascade and displays
a turbulent regime, as exemplified in Fig.11 that shows the
spectral density ofb+ at two different times. The profile of
|b+|

2 and of(ρ − 1) are shown in Fig.12 at timest=3700
(where the dominant mode ism=1). Figure13 displays
at this time the parallel (top panel) and transverse (bottom
panel) ion temperature profiles. Figures14 show the time
evolution of the mean ion and electron temperatures in this
run. Like in Fig. 10, we observe a perpendicular heating of
the electrons, an effect that is here more important due to the
larger pump amplitude. Two reasons may be suggested to
interpret the difference between the present simulation and
the hybrid one. On the one hand, the assumption of isother-
mal electrons contrasts with the significant electron heating
we observe with the Landau fluid. On the other hand, our
simulations, in principle restricted to the weakly nonlinear
regime, possibly overestimate FLR corrections in the present
situation. Further developments are necessary to improve the
understanding of this large amplitude regime. Note however
that we observe a weak decay instability forb0=0.9, while
the modulational instability is still dominant, at least at short
time (the leading modes arem=2 andm=12, the former de-
veloping at a faster rate approximatively equal to 0.0085).
Note that the instability growth rate decreases as the wave
amplitude is increased, as expected for a modulational insta-
bility.

7 Conclusions

We have used Landau-fluid simulations to analyze the insta-
bility of circularly polarized Alfv́en waves propagating par-
allel to an ambient field in a plasma characterized by dif-
ferent values of the parameterβ and various ratios of the
(isotropic) equilibrium temperatures of the ions and elec-
trons. This description retains Landau damping for both
ions and electrons at a linear level but ignores particle trap-
ping. Depending on the situation, the instability is of modu-
lational or decay type, but always results in a dominant ion
heating in the parallel direction. Nevertheless, the two in-
stabilities have different signatures on the mean perpendic-
ular ion temperature and on both electron temperatures: for
a decay-type instability ions and electrons display perpen-
dicular cooling, while for modulational instability they are

heated in the perpendicular direction. Furthermore, when
Alfv én wave decay instability is saturated by Landau damp-
ing, as in the case whereT (0)

e /T
(0)
p is not too large (typically

smaller than a few units), the kinetic energy of the generated
magnetosonic wave heats the electrons, an effect that is not
retained by hybrid simulations where electrons are viewed
as an isothermal fluid. The smaller-wavenumber backward-
propagating Alfv́en wave that is created by the decay insta-
bility is essentially not damped and contributes to produce
an inverse cascade. This evolution contrasts with the fluid
regimeT

(0)
e �T

(0)
p where the onset of pump harmonics plays

a dominant role in the saturation of the instability through the
development of a broad spectrum at small scales. The sim-
ulation of such regimes requires relatively long integration
times. Fully kinetic approach can thus hardly address these
questions, while Landau-fluid models are very efficient. An
interesting issue concerns the development of the inverse cas-
cade when the computational domain is large enough to make
finite size effects irrelevant, and the possible transition to a
turbulent regime that can develop in this case.

Appendix

The dispersive Landau-fluid model discussed inPassot and
Sulem(2004b) in the case of an electron-proton magnetized
plasma with a homogeneous equilibrium state characterized
by bi-Maxwellian distribution functions, reads (bold faced
symbols referring to tensors)

∂tρ + ∇ · (uρ) = 0 (A1)

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇ · p −
1

c
j × b = 0 (A2)

∂tb − ∇ × (u × b) = −
cmp

q
∇ ×

( 1

4πρ
(∇ × b) × b −

1

ρ
∇ · pe

)
(A3)

∂tp⊥r + ∇ · (u p⊥r) + p⊥r∇ · u − p⊥r b̂ · ∇u · b̂

+
1

2

(
tr ∇ · qr − b̂ · (∇ · qr) · b̂

)
= 0 (A4)

∂tp‖r + ∇ · (u p‖r) + 2p‖r b̂ · ∇u · b̂ + b̂ · (∇ · qr) · b̂ = 0, (A5)

wherep=
∑

r pr andqr hold for the pressure and heat flux
tensors, withpr=p⊥r(I − b̂ ⊗ b̂) + p‖r b̂ ⊗ b̂ + π r . It is
convenient in Eqs. (A4) and (A5), to separate the contribu-
tions originating from the gyrotropic and non-gyrotropic heat
fluxes, by writingqr=qG

r + qNG
r with

qG
r ijk = q‖r b̂i b̂j b̂k + q⊥r(δij b̂k + δik b̂j + δjk b̂i − 3̂bi b̂j b̂k).

(A6)

The equations for the gyrotropic pressure components in-
volve

b̂ · (∇ · qG
r ) · b̂ = ∇ · (̂b q‖r) − 2q⊥r∇ · b̂ (A7)
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1

2

(
tr(∇ · qG

r ) − b̂ · (∇ · qG
r ) · b̂

)
= ∇ · (̂b q⊥r) + q⊥r∇ · b̂,

(A8)

together with the contribution of the non-gyrotropic heat
fluxes to the gyrotropic part of∇ · qr that we denote
(∇ · qNG

r )G. In terms of diamagnetic drifts of each par-

ticle speciesud,r=
c

nq|b|2
b × ∇ · pr and of the current

j=
c

4π
∇ × b, we infer a closure approximation in the form

(∇ · qNG
e )G = 2∇⊥ · [p⊥e(ud,e −

j

qn
)](I − b̂ ⊗ b̂)

+∇⊥ · [p‖e(ud,e −
j

qn
)]̂b ⊗ b̂ (A9)

(∇ · qNG
p )G = 2∇⊥ · [p‖pud,p ]̂b ⊗ b̂. (A10)

For the gyrotropic heat fluxes, we define

q ′

‖r

vth,rp
(0)
‖r

=
q‖r

vth,rp
(0)
‖r

− 3
(v2

1e + v2
A

v2
A

)(�p

�r

− 1
) j‖

nqvth,r

,

(A11)

q ′

⊥r

vth,rp
(0)
⊥r

=
q⊥r

vth,rp
(0)
⊥r

+

[(
1 +

v2
1e + v2

1p

v2
A

)(�p

�r

+ 1
)

−
v2
1p

v2
A

+
2v2

1r − 3v2
th,r

v2
A

�p

�r

] j‖

nqvth,r

, (A12)

that obey( d

dt
+

vth,r√
8
π
(1 −

3π
8 )

H∇‖

) q ′

‖r

vth,rp
(0)
‖r

=
1

1 −
3π
8

vth,r∇‖

T‖r

T
(0)
‖r

(A13)

(
d

dt
−

√
π

2
vth,rH∇‖

)
q ′

⊥r

vth,rp
(0)
⊥r

= vth,r∇‖

((
1 −

T
(0)
⊥r

T
(0)
‖r

)
|b|

B0

−
T⊥r

T
(0)
⊥r

+ 3

√
π

2

v2
th,r

v2
A

�p

�r

H
j‖

nqvth,r

)
, (A14)

wherev2
A=

B2
0

4πρ(0)
andv2

1r=
p

(0)
⊥r − p

(0)
‖r

ρ(0)
.

Furthermore, using the solvability conditions provided by
the equations for the gyrotropic pressures, one has

π r × b̂ − b̂ × π r = kr , (A15)

where the overline denotes the projection on the subspace
complementary to the subspace spanned by the tensors
(I − b̂ ⊗ b̂) andb̂ ⊗ b̂, and wherekr can be decomposed into
the sum of a contribution

κr =
1

�r

B0

|b|

[dpG
r

dt
+ (∇ ·u)pG

r +∇ ·qr + (pG
r ·∇u)S

]
(A16)

involving the gyrotropic pressures and the heat fluxes, and of
a term linear inπ r

L(π r) =
1

�r

B0

|b|

[dπ r

dt
+ (∇ · u)π r + (π r · ∇u)S

]
. (A17)

It is then convenient to split the non-gyrotropic pressure as
π r=π r,1 + π r,2 with

π r,1 × b̂ − b̂ × π r,1 = κr (A18)

π r,2 × b̂ − b̂ × π r,2 = L(π r,1) + L(π r,2). (A19)

In a weakly nonlinear regime, the quantityL(π r) is of higher
order thanπ r , which enables one to neglectL(π r,2) in
Eq. (A19).

In some situations, the contributionπ r,1 is sufficient and
can even be simplified by approximatinĝb by the unit vector
ẑ along the ambient magnetic field. Neglecting the contribu-
tion of the heat flux divergence, this leads to defineπ

[1]
r by

the usual gyro-viscous tensor

π [1]
p xx = −π [1]

p yy = −
p⊥p

2�p

(∂yux + ∂xuy) (A20)

π [1]
p zz = 0 (A21)

π [1]
p xy = π [1]

p yx = −
p⊥p

2�p

(∂yuy − ∂xux) (A22)

π [1]
p yz = π [1]

p zy =
1

�p

[2p‖p∂zux + p⊥p(∂xuz − ∂zux)] (A23)

π [1]
p xz = π [1]

p zx = −
1

�p

[2p‖p∂zuy + p⊥p(∂yuz − ∂zuy)], (A24)

here given for the protons, the electron contribution being
negligible due to the large mass ratio.

The next correctionπ [2]
p originates from terms neglected

in Eq. (A18), together with the dominant contributions in
Eq. (A19). It is estimated byPassot and Sulem(2004b) and
appears to be usually dominated by∂tπ

[1]
p .
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