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Abstract. A dispersive Landau-fluid model is used to description of the plasma dynamics is provided by Landau-
study the decay and modulational instabilities of circularly- fluid models introduced bgnyder et al(1997. This ap-
polarized Alf\en waves in a collisionless plasma, as well asproach extends the usual MHD by including dynamical equa-
their nonlinear developments. Comparisons are presentetions for the parallel and perpendicular pressures of each
with the drift-kinetic approximation for the dispersionless particles species, together with a closure approximation that
regime and with hybrid simulations in more general condi- expresses the heat fluxes (or possibly the fourth order mo-
tions. The effect of the nature of the instability on particle ments) in terms of temperature and magnetic perturbations,
heating is discussed, together with the formation of coherentn a way consistent with the linear kinetic theory in the case
structures or the development of an inverse cascade. of a proton-electron plasma with bi-Maxwellian equilibrium
distribution functions. This model was extended Ras-

sot and Sulem(2003h 20048 by including dispersive ef-
fects, required to describe the formation of solitonic struc-
tures currently observed in the solar wind and the magne-

When a magnetized plasma is considered at scales small ?sphere. This dispersive Landau fluid was demonstrated

than the collision mean free path, the usual MHD descrip- 0 accurately reproduce the dispersion relations and Landau

tion is no longer valid due to significant kinetic effects. Such damping rates of long-wavelength magnetosonic andehifv

a situation is usual in the solar wind or the magnetospherewaveS for anys larger than the electron to proton mass ra-

but also in the warm ionized phase of the interstellar mediu {io m./m, and any propagation angtg including kinetic

m . .
. Alfv én waves with a transverse wavenumber not exceedin
where the fluctuation spectrum extends down to scales com- 9

parable to the ion inertial length and much below the ion—the inverse proton inertial lengtPéssot and Sulera0043.

This model also reproduces the weakly nonlinear dynamics
neutral or Coulomb mean free patt&célo and Elmegreen ) . . .
- ) . of these waves. Numerical simulations of oblique fast mag-
2004. In such collisionless regimes, Landau damping pro-

. . o . netosonic waves in a slab geometry shows in particular the
vides an important dissipation mechanism for low-frequency

waves through particle resonance. Furthermore, MHD waves nset of a coupling with Alfen waves that results in the

are made dispersive under the effect of the Hall term anc]quenchlng of Landau dissipation after a time that is shorter

the electron pressure gradient in a generalized Ohm’s law, a\éVhen the wave amplitude is largdsygnon et al.2004. An

- . . . excellent agreement is also obtained for the growth rate of
well as of finite Larmor radius (FLR) corrections in the pres- . -
L - long-wavelength mirror modes. Furthermore, the multidi-
sure tensor. Fully kinetic descriptions, based on the Vlasov'mensional kinetic derivative nonlinear Sodinger equation
Maxwell system or even on the reduced gyrokinetic equa-, ger eq

. ) for parallel-propagating long Al&n waves, derived from
tions, remain however much beyond the capabilities of theVIaspov-MaX\?vel?e?quati%ns b%/ means of a reductive pertur-
present day computers in situations involving a broad ran

ge . i .
of scales, as in turbulent regimes. It is thus important to de(_:f)anve expansionRassot and Sulen20033, is reproduced

- . T ... _ when this expansion is performed on the dispersive Landau-
velop a description retaining the main kinetic effects within .
. . fluid model, up to the replacement of the plasma response
fluid models of large-scale plasma dynamics. : . X ;
. ! : function by its two or four pole Pa&dapproximants.
It turns out that in a weakly nonlinear regime, and for ) ) ) )
scales large relatively to the ion Larmor radius, an efficient "€ am of the present paper is to use the dispersive
Landau-fluid model described in Sect. 2 (and in a more gen-
Correspondence td?. L. Sulem eral setting in the Appendix) to address the instability of right
(sulem@obs-nice.fr) or left-hand circularly polarized Alfén waves propagating

1 Introduction
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along a uniform ambient magnetic field in a warm collision- 8;p 1, + 0y (uxp1,) + piLrOxux

less plasma. Comparisons are in particular made with predic- _Pir 2
tions of the drift-kinetic approximation for the dispersionless |b|2 (DOutts + babydxity + bxb:dauz)
limit (Inhester 1990 (Sect. 3) and, when dispersion is rele- by b,
vant, with hybrid simulations where electrons are treated as +BX<m4lr> + ‘Iﬂaxm =0 ®)
an isothermal fluid Yasquez 1995 (Sect. 4). The nonlin-
ear dynamics initiated by decay and modulational instabili-
ties is also analyzed. The main conclusions are summarizef 1 CoSx
) ’ 0 + uxdy + Hax)QHr
in Sect. 5. (&) §(1_ 3_n>
Vth,r b4 8
__ Cos L (Pir
2 Adispersive Landau-fluid model B (i) (1 _ 3_ﬂ> ax( 0 ) ©
v2 8

The dispersive Landau-fluid model derived and validated
by comparison with the kinetic theory iPassot and Sulem

(20041 is briefly described in the Appendix. We are here (8z 0, — 1 COSa\/gHBX)qM

concerned with parallel Alfen waves whose dynamics is ac- (ﬂ)

curately described by a simplified version of this modreg- v

sot and Sulem2003h. This simplified model mainly con- _  cosa 3 [& n (p(fr) 3 1) p(f,) |b|] (10)
sists in retaining leading order FLR corrections to the pres- B\ L op (@) Po ’

sure and neglecting the contributions of non-gyrotropic heat (ufh,,> Ir

flux components. Since this model also describes oblique .

magnetosonic waves (except for quasi-transverse propagé{‘-’_here the gyrotropic cqmponents of the pressure tensor are
tion for which vector heat fluxes are to be considered;9Ven bypij=3_, prij with

Mikkhailovskii and Smolyakov, 1985), it is convenient to 2

consider an ambient magnetic field making an arbitrary anglq,r,” = pir+ (pjr — pu)—xz (11)
a with the direction of propagation (taken as Measuring b

the densityp in units of the equilibrium valug @, the mag- — (o1, — )bX_by (12)
netic field b=(b,=Bo CoSa, by, b;) in units of the ambient Proxy = {Plr = PLr |b|?

field B, the plasma velocityu,, u,, u;) in units of a veloc- byb,

ity uo (later taken as the Alen velocityvy=Bo/+/4mpg),  Prxz = (Pir — pl’)W' (13)

the parallel and perpendicular pressupgsandp |, of each

species- in units of the equilibrium parallel proton pressure In the equations for the parallel and transverse heat fluxes,
po=p(2) and the corresponding heat fluxgs andg,, in 7 denotes the Hilbert transform relatively to thecoordi-
units ofug po, the dynamic equations in a slab geometry readnate v, , =,/ TH(rO)/m, is the thermal velocity of the particles

of species, M,=ug/v, is the Alfvénic Mach number (here

a a =0 1 . )
1+ B (pux) @ taken equal to 1) andl,=8mpo/B3. This parameter is re-
— 2 — ©0) ;70
Bip 1 11 1p2 lated to the usuaB=8r Po/Bg by B=p),(1 + 1,7 /T,”).
Oyt + uxdetta + 5 5 ;8*‘(1’“ ) + WEBXT =0 (@ Neglecting contributions involving the electron to proton
¢ ‘ u? 2 u m Pﬁo) M?
Bip 1 by 1 mass ratio, one gets;°-="—"—" and —-=2——& -
Oty + ux Oty + -5 =0 (Pxy + 7xy) — —5—0xby =0 (3) Vinp  Plp Vihe ™Mb P, Bip
2M p Mz p vA eBg
Furthermorer ,= (whereQ2,=—— is the proton gy-
3 9 Bip 18 by 18 b.—0 (4 Q,Lo mpc
by + Uy Otz + 2M2 p o (Pxz + 7x2) = M2 T (4) rofrequency) measures the ratio of the proton inertial length
a a

to the reference length scalg. As a consequence, time is
measured in units of AR,2,). The non-gyrotropic (FLR)
corrections in the pressure tensor are restricted to their lead-
ing order, in the form

prx Oxb; ﬂllp RP 1
— — = ——0yPe 5
M, » 2 M, p x[%,xz) ( )

diby = Oy <bxuy — by +

Rpby by Bip Rp 1
=2 L 2 by ) (6
M, p 2 M, p x Pe,xy ( )

0tb; = ax(bx”z —uyb, — ) 1.
T = MaR, Slnoe(Z Coga(plp - 2p|p) — ESInzapr>8xuy (14)

O p|r + Ox (ux pyr)

42 |l;)|||r2 (b2t + bybydyity + byb,dyu;) Ty = MyR, co&x((mp — 2p) COS @)dut; + 2y COS sinaaxu,‘)
b, b, +M,R) Sinzaplp(sinaaxux — COSwdyuy)
+3x<mm|r> - 25]J_r8x|b_| =0 (7) (]_5)
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o228 115 2 28 1 15 2 25 Fig. 2. Time evolution of the amplitude of the density mode k=1.5
in lin-log scales, for the conditions of Fig. 1 (right).

Fig. 1. Growth rates of the density modes (whose wavenumber is
normalized by the pump wavenumber) resulting from the decay in-
stability of a non dispersive Alen wave of amplitudéy=0.447
propagating in a plasma wii$=0.6 and isotropic equilibrium tem-
peratures of the electrons and ions in a r3ﬂ8)/T,§0):33 (left),

7.9 /1% =5 (middle) andr,® / 7% =1 (right).

128 or 256 collocation points are used. The initial condi-
tions are taken as a right or left-hand polarized wave. Ex-
cept when comparing with previously published growth rate
curves where it is necessary to add a perturbation at a se-
lected wavenumber, we rely on the numerical noise to desta-
bilize the solution. It turns out that when aliasing errors are
not eliminated, the code rapidly becomes unstable for ini-
tial wave amplitudes exceeding a few tenths. Since the non-
(16)  linearities of the model are not polynomials, aliasing can-

This system of equations was recently used to analyze th&ot be totally eliminated. Nevertheless, a partial desaliasing
dynamics of oblique magnetosonic waveugnon et al. where all the modes with wavenumbers larger than one half

2004. Here, we concentrate on parallel Aéiv waves and the largest wavenumber permitted by the resolution are put

thus takex=0 in the above system. to zero, appears sufficient to stabilize the simulation and to
ensure accuracy (as checked by increasing space and time
resolution). Furthermore, the dispersive effects (treated by a

3 The numerical set-up semi-implicit scheme because of the involved nonlinearities)

) ] ] ) requires a time step significantly smaller than suggested by
It is easily seen that parallel-propagating circularly- the ysyal stability criteria.

polarized monochromatic AlBn waves characterized by

the conditionp=1, b,=1, uniform and time-independent

pressures, together withh=by+ib,=boe'®™*~*" and 4 The dispersionless limit

ur=u,tiu,=uge! **~, are exact solutions of the disper-

sive Landau-fluid model. Here, the and+ signs refer to  The decay instability of parallel Alen waves propagating in

right and left-hand polarizations, respectively. They obey  awarm collisionless plasma was analyzedrihyeste (1990

(0 + szpae)b:I: T hus =0 17) in the case v_vhere the ra_tio of the Larmor_radiu_s to th_e pump
wavelength is asymptotically small, making dispersion im-

Ty = MaR, COSot((Sinza - coszoz)(pr -2p1p) + Sinzapr>8xuy.

B 0) 0)\ .2 . material, as for example in the solar wind (except near the

(@F ERP (P1" = 2py kuz + kb =0, (18) Earth). This situation permits the use of the so-called drift-
©) o) ) 0 kinetic approximation, obtained as the leading-order result

with o, =1 Bpre = pje) ndor = 1 Blrl —py )_ of the averaging over the particle gyromotion, that leads to
2(1+ |bol?) 2(1+ |bol?) dynamical equations for the distribution functions of the ion

Note that these waves are solutions of the Landau-fluidyg electron guiding centers (see e&gad 1961 Kulsrud,
model even for isotropic pressures (or temperatures), whiley9g3 Sulem, 2004, and references therein). We here only
in & Vlasov-Maxwell description, pressure anisotropy is re-consider the case of bi-Maxwellian equilibrium distribution
quired Abraham-Shrauner and Feldmd®77. Inthe hy-  fnctions, for consistency with the assumptions used for the
brid simulations presented byasquez(1995, the initial Landau-fluid model.
condition is not an exact solution and an adjustment phase Decay instability produces a forward propagating acous-
involving pressure anisotropies is visible. This constrainti. wave and a backward Alan wave with a wavenum-
is however relaxed in the drift-kinetic approximatiom{  paor smaller than that of the pump. In Fig. 1 lohester

hester1990 that, like the Landau fluids, deals with the long- (1990, the growth rate (normalized by the pump frequency)
wavelength limit.

The above Landau-fluid equations are integrated using 1sylem, P. L.: Introduction to the guiding center theory, in Proc.

a pseudo-spectral method in a periodic domain and a seaourse and Workshop on Kinetic Theory (Toronto, March 2004),
ond order scheme for the time stepping. Resolutions ofFields Communications Series, to appear, 2004.
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Fig. 3. Time evolution of parallel (solid lines) and transverse Fig. 4. Time evolution of the amplitude of the density modes:6

(dashed-dotted lines) mean temperatures of the ions (top) and théop) andm=3 (bottom) in lin-log scales, for a right-hand polar-

electrons (bottom) in the run of Fig. 1 (right). ized Alfvén wave of amplitudép=0.1, kg=0.64, in a plasma with
Rp=1, $=0.42 and equal electron and ion equilibrium tempera-
tures.

of the acoustic mode is displayed versus the perturbation

wavenumber, for a circularly polarized pump wave of ampli-
tude +/0.2~0.447 and various values of the ratjd” / p'”

of the isotropic equilibrium proton to electron pressures (orin order to consider a regime that involves dispersion but
temperatures), the total thermal pressBds&prO) +p£0) be-  where g is small enough for the fluid theory to qual-
ing kept constant and prescribed by the value of the paitatively predict the linear dynamics, we assumg=1,

rameterB=8x Po/ B3. We show in Fig.1 that Landau-fluid T]§°)=Te(°), B1,=0.21 (corresponding tgg=0.42), and a
simulations reproduce reasonably well the instability QTOWthforward-propagating, right-hand polarized pump with am-
rates displayed itnhester(1990 except that we had to use plitude uo=0.1 and wave numbetg=4x 27/ D=0.64 when
Bi»=0.3, which corresponds t$=0.6, one half the value p_g25x27. Decay instability makes the density mode
indicated in Inhester’'s paper. The same discrepancy on thenzkxzﬂ/Dze to be the most unstable at short time as
value of the parameter is obtained in the fluid Iim,EP) -0 seen in Fig4 (top). Saturation again originates from Lan-
where our result is consistent with that@bldstein(1978. dau damping. After a while, the mode=3 starts grow-
Like in Inhester's simulation, we observe broader rangesing (Fig. 4, bottom), which induces a second increase of the
of unstable modes and smaller growth rates than in thanodem=6 as an harmonics et=3. The further dynamics
fluid description. The regime of equal equilibrium temper- corresponds to an inverse cascade involving the successive
aturesTlﬁO)zTe(o) is illustrated in Fig.2 which displays for  amplification of the f2=2) backward and#=1) forward
B=0.6 the time evolution of the most unstable density modepropagating Alfien modes.

k=1.5kg wherekg is the pump wavenumber, taken equal to  The regime of moderate or large and large wave am-
10 x 27 /D where the extensiof of the computational box plitude was investigated byasquez(1995 using a hybrid

is equal toD=6.25x2r (in units of Lo=v4/(R,<2,)) in the method where electrons are treated as an isothermal fluid.
present simulations. We observe a decay instability and af\ detailed analysis of the sensitivity of the decay instability
later times its saturation, probably due to Landau dampinggrowth rate to the equilibrium electron to proton tempera-
rather than to mode coupling since no other mode was seeture ratios is presented for a forward-propagating right-hand
to grow during the phase where the density mode decayspolarized Alfven wave of amplitudéy=0.5 and wavenum-
Figure3 shows in the same conditions as in F2gthe vari-  ber 0.408 (normalized with the ion inertial length) propa-
ation of the parallel and perpendicular temperatures of thegating in a plasma witt8=0.45. A periodic domain, in-
protons and the electrons. We note that the parallel heateluding 8 pump wavelengths is considered. Takiyg=1,

ing of the ions is significant and that of the electrons alsowe write the pump wavenumbeég=mqx 2 /D with mg=8
non-negligible (temperature growths of about 75% and 8%,and D=8x27/0.408=19.61x2% and characterize the vari-
respectively). This electron heating supports the above statesus mode&=m x 27 /D by their indexm. For different val-
ment that saturation results from Landau damping. ues of the equilibrium electron to proton temperature ratio

5 Decay instability of dispersive Alfven waves
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Table 1. Decay instability of a dispersive Alen wave (see text for
the parameters of the runs).

Te(o)/TISO) Index m of the corresponding growth
most unstable mode  rate in units®@},
44, 13 0.087 ]
2.75 12 0.069 i ‘ ‘
1. 12 0059 0 5.0x103 1.0x10% 1.5x10* 2.0x104 2.5x104
0%6 11:‘:’ 88552 Fig. 5. Time evolution of the ion mean parallel (solid line) and

perpendicular (dashed-dotted line) temperatures for a right-handed
Alfv én wave with amplitudég=0.5, kp=0.408, in a plasma with
B=.45, R,=1, and zero electron equilibrium temperature.

7.%/7\%, Table 1 provides the characteristics of the density
mode with the largest grow rate measured during the linear
phase. One observes that this rate decreasesnf\ﬂ)[thﬁo).

In the case where the pressure is constrained to obey a
polytropic law of the formp®3, we obtain a growth rate
equal to 0.092, in agreement witholdstein(1979. Dif-
ferently in the limit of hot ions, the growth rate saturates to
a value roughly 40% lower than predicted by the fluid ap-
proach, wherea8asquez1999 hybrid simulations leads to
a reduction of 57%.

When Te(o) / T1§0)=44, the dynamics is close to a fluid
regime and leads to the generation of many harmonics. A
much larger numerical resolution would be required to ob-
serve the saturation of the instability.

Figure5displays the time variation of the ion temperatures
in the run WithTe(O)zo, as obtained from Landau-fluid sim-
ulations. A qualitative agreement is obtained wisquez
(1995. In particular electrons remain cold, which justifies
their description as an isothermal fluid in the hybrid code.
As in the previous run, we observe an inverse cascade where
the excitation is transfered to larger and larger scales (Up tgig. 6. Spectral density (versus the wavenumber index) in lin-log10
m=1), while the direction of the wave propagation switches scale for the (complex) quantity, =b +ib, (the wavenumber sign
at each step of the cascade, with a simultaneous increasadicating a helicity and thus, after the polarization is specified, the
of the ion temperature. Neas=12 000, when the dominant propagation direction) at time=2000 (top) and=3700 (bottom)
Alfvén mode isn=2, we observe that the ion parallel tem- belonging, respectively, to the linear and nonlinear phases for the
perature decreases. This event is associated with the ons@gtability of a right-hand polarized wave with amplitutig=0.5,
of a transient instability characterized by the growth of the k0=0.408 in a plasma witi8=5, R,=0.1 andT,-(o)/Téo)=1~5-
density moden=17 and magnetic modes=15 andn=19.

The origin of this instability is unclear.

Still considering a right-handed wave, we now investigateof unstable wavenumbers around=40 is observed. This
whether decay instability can persist at relatively high val- instability is not a numerical artifact but is rather an indi-
ues ofg. Taking R,=0.1, we show in Fig6 the spectrum cation that the present regime falls outside the domain of
of by=b, + ib, for bp=0.5 andp=>5, during the linear (top  validity of our model, since fo=5 the ion Larmor ra-
panel) and the late (bottom panel) evolution phases. A dedius @,/ 2,>~v/Bva/2,) is comparable to the pump wave-
cay instability is clearly visible at early time, that leads to length. The decay instability is in this case rapidly overtaken
the dominance of the (backward)=4 mode, whereas the by a modulational instability leading to a turbulent behavior.
fluid theory predicts a modulational instability. In physi- Both the small-scale instability and the modulational one dis-
cal space, the solution evolves towards quasi-linear oscillaappear when FLR corrections are not included in the simula-
tions, associated with a rapidly decaying spectrum display-tion, indicating that the first-order FLR contribution retained
ing well separated harmonics. In order to compare within the present model are insufficient in a regime where the
the results ofMasquez(1999, we performed a simulation pump wavelength approaches the ion Larmor radius. A more
with the same parameters as above, except that the paramefined model suitable to address this regime is currently un-
eter R, was changed taR,=1. In this regime, a range der investigation.
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30

Fig. 7. Spectral density (versus the wavenumber index) in lin-log10
scale for the transverse magnetic field=b +iby at timer=2000
(top) andr=3700 (bottom) belonging, respectively, to the linear and
nonlinear phases for the instability of a left-hand polarized &dfv
wave with amplitudég=0.3, kg=0.408, in a plasma wherg=1.5,

Rp=1and7%=21".
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Fig. 9. Parallel (left) and transverse (right) pressures of the ions
(top) and the electrons (bottom) a+3700, in the conditions of
Fig. 7. The labels on the abscissa axis refer to the collocation point
indices.
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Fig. 10. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) of the ion (top) and electron (bottom) mean
temperatures in the conditions of Fig. 7.

plasma withf=15, R,=1, andTi(O)/Te(o)zo.S. The mod-

conditions of Fig. 7. The labels on the abscissa axis refer to the|ational nature of the instability is seen on Fig.(top).

collocation point indices.

6 Modulational instability

A modulational instability of the pump is obtained in the con-
ditions of Figs. 1 and 3 o¥asquez(1995. It corresponds
to a (forward-propagating) left-hand polarized pump of am-
plitude »9=0.3 and wavenumbeky=0.408=8x2x/D in a

We observe the development of modes=4 and m=12
(clearly visible byr=2000) with similar growth rates (ap-
proximatively equal to 0.014). However, by=2600 the
former mode dominates and bhy=3700 the moden=3
emerges, while an exponential spectrum develops at small
scale (Fig.7, bottom). Byr=4700, the mode:=2 is domi-
nant. Ar=7700, the mode:=1 is significantly excited and,

in physical space, the Al&an wave displays a nonlinear struc-
ture occupying all the computational box. The amplification
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Fig. 11. Spectrum of the transverse magnetic fiéld at times Fig. 13. Parallel (top) and transverse (bottom) ion temperatures in
t=3100 (top) andt=3700 (bottom) for an initially left-hand po- the conditions of Fig. 11, at time=3700. The labels on the abscissa

larized Alfvén wave with amplitudéo=0.8 and the same plasma axis refer to the collocation point indices.
parameters as in Fig. 7.

0 2000 4000 6000 8000 10000

301

2.5 . B

. . . .
9] 2000 4000 6000 8000 10000

Fig. 12. Profile of\b+|2 (top) and of(p — 1) (bottom) atr=3700 Fig. 14. Time evolution of parallel (solid lines) and transverse
in the conditions of Fig. 11. The labels on the abscissa axis refer td{dashed-dotted lines) mean temperatures of the ions (top) and the
the collocation point indices. electrons (bottom) the conditions of Fig. 11.

of the lower side mode:=4 confirmsMjglhus and Wyller  plification of the upper Alfén side mode. Figur@displays
(1988 prediction based on the kinetic derivative nonlinear the transverse magnetic field intensiby |2 and the density
Schibdinger equationRogister 1977 for weakly nonlinear  fluctuationsp—1 at timer=3700. Note the anti-correlation
long Alfvén waves, that a small-amplitude left-hand polar- between these two quantities. Figeshows the various
ized wave is modulationally unstable for &l (Spangler  pressures at the same time. We note that the parallel and
1989,1990Medvedev and Diamond 996 Araneda 1998. transverse electron pressures are proportional to the density
This contrasts with the fluid description that 6x1.4 pre-  fluctuations, which justifies the description of the electrons
dicts a dominant beat instability associated with a strong amas an isothermal fluid. Figurg0 displays the time evolu-
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tion of the mean parallel and perpendicular temperatures oheated in the perpendicular direction. Furthermore, when
the ions and the electrons for the same simulation. Note thélfv én wave decay instability is saturated by Landau damp-
presence of plateaux whose durations are limited by the onsehg, as in the case whe®® /7% is not too large (typically
of new dominant modes and the decrease of electron parakmaller than a few units), the kinetic energy of the generated
lel temperature. This is a significant difference with the casemagnetosonic wave heats the electrons, an effect that is not
where the Alfien wave is subject to a decay instability for retained by hybrid simulations where electrons are viewed
which the parallel electron temperature increases (possibls an isothermal fluid. The smaller-wavenumber backward-
very slightly). propagating Alfien wave that is created by the decay insta-
When a similar simulation is performed with a wave am- bility is essentially not damped and contributes to produce
plitudebo=0.8, we still observe a dominant modulational in- an inverse cascade. This evolution contrasts with the fluid
stability (with a lower growth rate 0.011) as predicted by the regime7,% > T,” where the onset of pump harmonics plays
fluid description, whilevasquez1995 observes a dominant a dominant role in the saturation of the instability through the
decay instability in this regime. The nonlinear developmentdevelopment of a broad spectrum at small scales. The sim-
of this instability involves an inverse cascade and displaysulation of such regimes requires relatively long integration
a turbulent regime, as exemplified in Fibl that shows the times. Fully kinetic approach can thus hardly address these
spectral density ob. at two different times. The profile of questions, while Landau-fluid models are very efficient. An
|b, |2 and of (o — 1) are shown in Fig12 at timest=3700 interesting issue concerns the development of the inverse cas-
(where the dominant mode iga=1). Figure13 displays cade when the computational domain is large enough to make
at this time the parallel (top panel) and transverse (bottorfinite size effects irrelevant, and the possible transition to a
panel) ion temperature profiles. Figurg$ show the time  turbulent regime that can develop in this case.
evolution of the mean ion and electron temperatures in this
run. Like in Fig. 10, we observe a perpendicular heating of )
the electrons, an effect that is here more important due to thépPpendix

larger pump amplitude. Two reasons may be suggested to

interpret the difference between the present simulation and " dispersive Landau-fluid model discussedassot and

the hybrid one. On the one hand, the assumption of isother-smem(zomb in the case of an electron-proton magnetized

mal electrons contrasts with the significant electron heatindglasr_na with a_homF’ge_”e‘?“S equm_brlum state characterized
we observe with the Landau fluid. On the other hand, our®Y bl-Maxwelll_an distribution functions, reads (bold faced
simulations, in principle restricted to the weakly nonlinear symbols referring to tensors)

regime, possibly overestimate FLR corrections in the presengtp 4+ V- (up) =0 (A1)
situation. Further developments are necessary to improve the

understanding of this large amplitude regime. Note however 1,

that we observe a weak decay instability fe=0.9, while ~ %(P1) + V- (pu @u) +V-p——j x b=0 (A2)
the modulational instability is still dominant, at least at short

time (the leading modes ame=2 andm=12, the former de-

veloping at a faster rate approximatively equal to 0.0085).5,5 — V x (u x b) = _My <i(v x b) x b— EV ) Pe) (A3)
Note that the instability growth rate decreases as the wave q 4rp p

amplitude is increased, as expected for a modulational insta-

bility. dpLr+V-pl)+pi,V-u—pib-Vu-b

1 ~ PR
+§(trV~q,—b~(V'Qr)~b)=0 (A4)
7 Conclusions

We have used Landau-fluid simulations to analyze the instad:pj- +V -  pyr) +2pjy b - Vu -b+b-(V-q,) - b =0, (A5)
bility of circularly polarized Alfven waves propagating par-
allel to an ambient field in a plasma characterized by dif- - oA AN .
ferent values of the parametgrand various ratios of the €NSOrS, Withp,=p 1, (I —=b ® b) + pj;b @ b + =, Itis
(isotropic) equilibrium temperatures of the ions and elec-convenient in Eqs.A4) and (5), to separate the contribu-
trons. This description retains Landau damping for bothtions originating from the gyrotropic and non-gyrotropic heat

.. G NG ..
ions and electrons at a linear level but ignores particle trapfUX€s, by writingg,=q,” +q," with

Ip|r}g. Depending on the situation, the |nsta}blllty is qf mody— quijk = quubib b + qur (8 + 8ikb; + 8j5bi — 3bibbi).
ational or decay type, but always results in a dominant ion

heating in the parallel direction. Nevertheless, the two in- (AB)
stabilities have different signatures on the mean perpendicype equations for the gyrotropic pressure components in-
ular ion temperature and on both electron temperatures: foyqye

a decay-type instability ions and electrons display perpen- R R R

dicular cooling, while for modulational instability they are b - (V - qf) b=V .-(bq;)—291,V b (A7)

wherep=>"_ p, andq, hold for the pressure and heat flux
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}<tr(V .q%) — b (V- q°) - B) =V-(bqi)+q1,V-b, involving the gyrotropic pressures and the heat fluxes, and of
2 aterm linear int,
(A8 1 Bord
ofanm, S
together with the contribution of the non-gyrotropic heat L) = Q, |b|[ +(Vowmy + (- Vu) ] (AL7)

fluxes to the gyrotropic part oV -q, that we denote

(V-g¥%)C. In terms of diamagnetic drifts of each par- Itis then convenient to split the non-gyrotropic pressure as
B .

. . w,=7n,1 + 72 With
ticle Speciesug,r=-— |Cb|2b x V-p, and of the current rl+ 2
¢ ; . Lo T xb—b X 1=K (A18)
]:4—V x b, we infer a closure approximation in the form
T ~ o~
T2 Xb—bxmw.p=L(w,1)+ L(w,>). (A19)

V.qV6)C = 2V, - [prolitge — I~ 5@ B
(V-8 Lo [pLelua.e qn)]( ®b) In a weakly nonlinear regime, the quantityr ) is of higher

Joo~ ~ order thanz,, which enables one to negleéi(x, 2) in
+V1 - [pje(tg,e — q—n)]b ®b (A9) Eq. (A19).
L In some situations, the contributiorhl is sufficient and
(V-ayHC =2V, - [pjpta b ®D. (A10)  can even be simplified by approximatihdpy the unit vector

7 along the ambient magnetic field. Neglecting the contribu-

For the gyrotropic heat fluxes, we define tion of the heat flux divergence, this leads to def;idf%J by

. h | gyro-vi nsor
q‘/lr ay 3<Uie +U§)(& ~ 1) il the usual gyro-viscous tenso
© — (©) 2 Q ’ PJ_
Ve Pjy  Uithr P, Vi r "4 Vih.r il =—nfll = p (8 Uy + Oyity) (A20)
(A11)
/ ) ) pu =0 (A21)
9y, qir +|:(1+UA6+UAp)(&+1)
0 0 Uz Q [ _ 1 _ _ Plip ) 8 A22
vl‘h,erJ« vth P 1r A r npxy - npyx - 29 ( My ux) ( )
2 2 . P
vAp + 2UAr - 3vth,r Qp] Jll (A12)
T2 2 Q. ’ 1
vq vy Q- lnqup,, JT,[,J';,Z = n,[,lgy = Q—[Zpl\pazux + pJ_p(aqu — d;uy)] (A23)
that obey ?
d Uth,r qﬁr 1 THV 1
(— n ’ HV”) = Vi Vs gl Sl o 2 pon 6 (@i — duy)], (A24)
(V) _ 3z 0 z D pOzUy T PLplOyll; — Ozly)],
o JRa-3) Tumery 17 Ty T
(A13) here given for the protons, the electron contribution being
negligible due to the large mass ratio.
d p- 7., TL(O) 1b)| The next correctlonr[zl originates from terms neglected
<E —/ Evm,rHV|> — @ = Vih V| (l - (6))3— in Eg. (A18), together Wlth the dominant contributions in
Vthr D], Ty, 0 Eqg. (A19). It is estimated byassot and Sulei004h and
. 1
Ty, s v2,, @, il ) (AL4) appears to be usually dominateddyt .
©) 2 12 Q ’
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wherevi=—23_ andv, =——1"
A p<0) p©
Furthermore, using the solvability conditions provided by Edited by: J. Bichner
the equations for the gyrotropic pressures, one has Reviewed by: two referees
T, xb—bx 7, =K,, (Al15)

References
where the overline denotes the projection on the subspace
complementary to the subspace spanned by the tensorsraham-Shrauner, B. and Feldman, W. C.: Nonlinear @dfv
(I — b ® b) andb ® b and wheré, can be decomposed into waves in high-speed solar wind streams, J. Geophys. Res., 82,

the sum of a contribution 618-624,1877. N o
Araneda, A.: Parametric instabilities of parallel-propagating étfv

waves: kinetic effects in the MHD-model, Phys. Scripta, T75,

1 Bo dpr
=9 |b|[



618 G. Bugnon et al.: Landau-fluid simulations

Bugnon, G., Goswami, R., Passot, T., and Sulem, P. L.: TowardRogister, A.:. Parallel propagation of nonlinear low-frequency
fluid simulations of dispersive MHD waves in a warm collision-  waves in highg plasma, Phys. Fluids, 12, 2733-2739, 1971.
less plasma, Proceedings of COSPAR Workshop Dynamical ProPassot, T. and Sulem, P. L.: A long-wave model for Atiwvave
cesses in Critical Regions of the Heliosphere, (Ein Bokek, Israel, trains in a collisionless plasma: I. Kinetic theory, Phys. Plasmas,
3-10 March 2004) edited by: Von Steiger, R. and Gedalin, M., 10, 3887-3905, 2003a.

Adv. Space Res., Elsevier, in press, 2004. Passot, T. and Sulem, P. L.: A long-wave model for Aliwave

Grad, H.: Microscopic and macroscopic models in plasma physics, trains in a collisionless plasma: Il. A Landau-fluid approach,
in: Proceedings of the Symposium on Electromagnetics and Phys. Plasmas, 10, 3906—3913, 2003b.

Fluid Dynamics of Gaseous Plasmas, 37—-64, Polytechnic PresRassot, T. and Sulem, P. L.: A fluid description for Landau damping

of the Polytechnic Institute of Brooklyn, N.Y., 1961. of dispersive MHD wave, Nonlin. Proc. Geophys., 11, 245258,
Goldstein, M. L.: An instability of finite amplitude circularly polar- 2004a,
ized Alfvén waves, Astrophys. J., 219, 700-714, 1978. SRef-ID: 1607-7946/npg/2004-11-245

Inhester, B.: A drift-kinetic treatment of the parametric decay of Passot, T. and Sulem, P. L.: A Landau-fluid model for dispersive
large-amplitude Alfén waves, J. Geophys. Res., 95, 10525—- magnetohydrodynamics, Phys. Plasmas, 11, 5173-5189, 2004b.
10539, 1990. Snyder, P. B.,, Hammett, G. W., and Dorland, W.: Landau fluid

Kulsrud, R. M.: MHD description of plasma, in: Handbook of models of collisionless magnetohydrodynamics, Phys. Plasmas,
Plasma Physics, edited by Rosenbluth, M. N. and Sagdeev, R. 4, 3974-3985, 1997.

Z., 1 Basic Plasma Physics, edited by Galeev, A. A. and SudanScalo, J. and Elmegreen, B. G.: Interstellar turbulence II: impli-

R. N., 115-145, North Holland, 1983. cations and effects, Ann. Rev. Astron. Astrophys., 42, 275-3186,
Mikkhailovskii, A. B. and Smolyakov, A. |.: Theory of low- 2004.

frequency magnetosonic solitons, Sov. Phys. JETP, 61, 109-117Spangler, S. R.: Kinetic effects on AEn wave nonlinearity, | Pon-

1985. deromotive density fluctuations, Phys. Fluids B 1, 1738-1746
Mjglhus, E. and Wyller, J.: Nonlinear Alén waves in a finite-betas 1989; Il The modified nonlinear wave equation, Phys. Fluids B

plasma, J. Plasma Phys., 40, 299-318, 1988. 2,407-418, 1990.

Medvedeyv, V. M. and Diamond, P. H.: Fluid models for kinetic ef- Vasquez, B. J.: Simulation study of the role of ion kinetics in low-
fects on coherent nonlinear An waves, |. Fundamental theory, frequency wave train evolution, J. Geophys. Res., 100, 1779-
Phys. Plasmas, 3, 863-873, 1996. 1792, 1995.


http://direct.sref.org/1607-7946/npg/2004-11-245

