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THE EFFECT OF WATER POTENTIAL ON
ACCUMULATION OF SOME ESSENTIAL ELEMENTS
IN SUGARBEET LEAVES (Beta vulgaris ssp. vulgaris)

ABSTRACT: An investigation has been conducted on the effect of reduced water po-
tential in nutrient solution on the accumulation of some essential macro- and micronutrients
in the aboveground parts of young sugarbeet plants. Plants of 8 different sugarbeet geno-
types were exposed for 21 days to a nutrient solution whose water potential of 0.1 MPa was
regulated by PEG. Contents of N, P, K, Ca, Mg, Fe, Mn, Cu and Zn declined in all geno-
types under water deficiency, but the intensity of reduction varied among the genotypes.
The results indicated that some harmful effects of water deficiency could be attributed to
disturbances in plant mineral nutrition, especially the lack of N, P, and Mg, as well as to
impaired ratios between the contents of particular elements, especially K/Ca.
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INTRODUCTION

Content of mineral elements in plants (mineral composition of plants) de-
pends on numerous internal and external factors which have to be taken into
account while optimizing plant nutrition. One of the ecological factors that af-
fect plant provision with essential elements is water deficit. Drought is the
most limiting factor of yield worldwide, our country included, and it often re-
duces crop quality. The impact of drought is complex, as there is no process
in plant metabolism that remains unaffected by water deficiency. In addition to
various levels of water requirement, plant species and genotypes differ in their
ability to adapt their metabolism to water deficiency. The problem in drought
investigation is that there is no single indicator of drought tolerance that could
serve as a reliable criterion for evaluation of genotypes. It is therefore neces-
sary to monitor different indicators of plant water and osmotic status (e.g.
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fresh and dry matter, leaf area, characteristics of stomata), biochemical param-
eters (e.g. content of osmotically active substances, activity of particular en-
zymes) as well as eventual changes in the elemental composition of plants.
Analysis of such data and their interactions may lead to a conclusion about the
degree of tolerance/sensitivity to drought in a particular genotype. Differences
in plant mineral composition are the result of 1) genotypic differences in plant
mineral composition, and 2) different levels of tolerance towards water deficit
exhibited by different genotypes, as manifested through differences in the up-
take and accumulation of particular mineral elements.

Sari¢ and Kovacevié¢ (1981) and Petrovié¢ and Kastori
(1990) reported that genotypic specificity plays an important role in sugarbeet
mineral nutrition. Petrovi¢ et al. (1991) reported that the mineral compo-
sition of sugarbeet plants changed under drought conditions. Balanced mineral
nutrition of sugarbeet has also been mentioned as a factor affecting the con-
tents of various elements and the ratios between essential elements in plant tis-
sues: K/Ca, S/N, P/Zn, P/Ca, P/Fe, Fe/Mn, Mg/Mn, etc. (Kastori et al.,
1996). It was shown that water deficiency causes disturbances in biochemical
pathways such as the contents of free proline, DNA and RNA, activity of
RUBISCO, and others (Krstié¢ et al.,, 1997; KevreSan et al., 1998).

The aim of this investigation was to monitor the influence of long-lasting
mild water deficit on the accumulation of several essential mineral elements in
leaves of eight sugarbeet genotypes. The genotypes, taken from the breeding
program of the Institute of Field and Vegetable Crops, had shown variability
in drought tolerance under field conditions. Experiments were conducted in se-
mi-controlled conditions. Preliminary tests showed that the osmotic value of
0.1 MPa in the nutrient medium provokes symptoms of water deficiency in su-
garbeet plants, but at the same time it does not completely inhibit plant
growth. The water potential of 0.1 MPa was therefore chosen for testing the
effect of water deficit over a period of time during which young sugarbeet
plants could exhibit their capacity to adapt to this stress.

MATERIALS AND METHODS

Of the eight sugarbeet genotypes included in the experiment, seven be-
longed to Beta vulgaris ssp. vulgaris (genotypes 1 to 8), and one to Beta vul-
garis ssp. maritima (genotype 9): 2nmm “0”1102-3-7 (line 1234, p. 399) (1),
2nMM C-39 (line 3484, p.25) shows quantitative resistance to rhizomania (2),
2nmm “0”11547 originates from Ukraine (K-2, p. 574) (3), 2nMM C-78 (line
3486, p. 27) (4), 2nMM MTRB (line 3465, p. 6) shows quantitative resistance
to rhizomania (6), 2nmm “O”21223 (3412, p. 553) shows resistance to Cerco-
spora (7), 2nmm “O” GRRT (line 3416, p. 555) shows qualitative resistance to
rhizomania (8), and 2nMM C-51 (line 3493, p. 34) shows resistance to rhizo-
mania, 2nMm, B. mar (9). These genotypes had come from the breeding pro-
gram of Sugarbeet Department of the Institute of Field and Vegetable Crops
Novi Sad and they had shown variability in drought tolerance under field con-
ditions. The experiment was done under semi-controlled conditions. Plants
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were grown for 30 days in the complete nutrient medium and additional 21
days under conditions of water deficiency. After that, the contents of some es-
sential macro- and micronutrients were determined in sugarbeet leaves.

Four hundred seeds of each genotype were soaked overnight in distilled
water and subsequently sown in vermiculite. Trays with vermiculite and seeds
were kept in a thermostat, in the dark, at the temperature of 24°C. After 8§ to
10 days (depending on genotype) plantlets were replanted in plastic pots for
water culture. The plants were grown in the complete nutrient medium after
Hoagland 2 (Hoagland and Arnon, 1950). Eight plants of each geno-
type were planted in 12 replications (96 plants per genotype).

Polyethylene glycol (PEG) was used to induce water deficit. PEG is an
inert, non-ionic polymer, which does not interfere with plant metabolism. PEG
is often used in studies of plant water regime (Lawlor, 1970; Oertli
1985, 1986).

After 30 days of growth in the full nutrient medium, plants from 7 pots
of each genotype were transferred to the full medium to which PEG 6000 was
added in the concentration that provided the final osmotic value of the medi-
um of 0.1 MPa (PEG). Plants of the remaining 5 pots of each genotype conti-
nued their growth in the full nutrient medium (control). The mass of PEG
6000 to be added to each pot in order to achieve the final osmotic value of 0.1
MPa was calculated by the regression equation y = 0.0028 x?> + 0.0052 x,
which was experimentally obtained for the concrete PEG, as described by
Money (1989), using automatic micro-osmometer Roebling, type 12/12 DR.
Nutrient solutions were changed at 3-day intervals and aerated daily.

After 21-day treatment, plants were taken for analyses. Fresh matter was
measured first, dry matter after drying the samples at 70°C to constant mass.
Leaf area was measured by an automatic photoelectric meter LI-3000 (Auto-
matic Area Meter LI-3000, LICOR, USA).

Total nitrogen was determined by the micro-Kjeldahl method, potassium
content flamephotometrically, phosphorus content by the ammonium-vanada-
te-molybdate method. Contents of Ca, Mg, Fe, Zn, Mn and Cu were determi-
ned by standard atomic absorption spectrophotometry, using a Varian model
SPECTR AA-10.

The obtained results were statistically processed by calculating means and
the least significant differences (LSD) between the means, using the program
MstatC (Michigan State University, USA).

RESULTS AND DISCUSSION

Dry matter mass of the aboveground parts of plants grown in the conditi-
ons of water deficiency was 50% lower than that in the control (Arsenije-
vié¢-Maksimovic etal, 2002). Experimental results in this paper are ex-
pressed as content of mineral elements per plant. Nitrogen and P contents
were significantly reduced in all genotypes exposed to water deficit. The re-
duction of N content was lowest in genotype 3 (13.8%), highest in genotype 7
(71.8%), with the average of about 50% (Figure 1). Generally, N content was
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Fig. 1. Nitrogen content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.

more variable in the control plants than in those exposed to drought. This can
be explained by differences in growth rate during early stages of onthogenesis
among the genotypes. Nitrogen content in leaves is considered as a better indi-
cator of water deficit effects than N content in roots (Foster et al.,, 1991).
Reduction of N content under water deficit was reported for many plant speci-
es including maize, been, citruses, Festuca (Bruce et al., 2002; Foster et
al.,, 1991; Zekri, 1995; Huang, 2001). Beside its effect on nitrogen con-
tent itself, water deficit affects N metabolism as well. This is evident through
the inhibition of nitrate reductase activity and increase in nitrate and proline
contents in young sugarbeet plants (Petrovic¢ et al., 1987; Petrovic et
al.,, 1991; Arsenijevi¢-Maksimovic¢ et al, 2002). Genotypes toler-
ant to drought have higher N use efficiency than less tolerant genotypes
(Van den Boogaard, 1995; Foster et al., 1991).

Phosphorus content was least reduced in genotype 3 (18.4%), most redu-
ced in genotype 8 (74.8%), while the average reduction was 50.5% (Figure 2).
P uptake is sensitive to increased osmotic pressure in nutrient solution (K a -
stori, 1976). It is well documented that P plays a role in drought tolerance in
many plant species including sugarbeet (Petrovid, 1987), beans and sorg-
hum (Al-Karaki, 1995) and wheat (Gutierrez-Boem and Tho-
mas, 1998). Under conditions of water deficit, disturbances in P provision as
well as in P metabolism occur in sugarbeet, as indicated by a change in mine-
ral and organic P ratio in favor of the former (Petrovic, 1987).
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Fig. 2. Phosphorus content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Fig. 3. Potassium content in leaves of different sugar beet genotypes.

Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Water deficiency provoked statistically significant reductions of K con-
tent in leaves in all genotypes except genotype 3 (Figure 3). The average re-
duction of K content was 41.8%, the highest reduction was registered in geno-
type 7 (59.27%). Potassium participates in osmoregulation and a change in its
content is usually coupled with changes in the contents of sugar and amino ac-
ids Jones et al, 1981; Ford and Wilson, 1981) which play a role in
plant adaptation to the lack of water. Potassium is most probably important in
keeping the balance with negatively charged amino acids (Jones et al,
1981). Calcium and magnesium contents declined significantly in all geno-
types exposed to water stress, on average by 63% and 54%, respectively (Fig-
ures 4 and 5). The reduction of K and Mg contents was found in 7 different
citrus genotypes suffering from PEG-induced water deficit (Zekri, 1995).
The ratio between K and Ca contents in leaves of sugarbeet genotypes was
disturbed under the experimental conditions. In the control plants, the average
value of this ratio was 13.5 while in the plants exposed to PEG-induced water
deficit it was 21.2, meaning that its average increase was 57.22%. Potassium
and calcium are not equally mobile in plants: K is very mobile and easily reu-
tilized, while Ca is poorly mobile and it is practically not reutilized at all. Sin-
ce transpiration flow is the key factor in provisioning the aboveground plant
parts with Ca, and since this flow is impaired under the conditions of water
deficit due to reduction in water uptake and transpiration (Kastori, 1968), a
change occurs in the K/Ca ratio in the shoots of plants exposed to PEG. Chan-
ges of this ratio affect the functioning of stomata as well. Increase in Ca con-
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Fig. 4. Calcium content in leaves of different sugar beet genotypes.

Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Fig. 5. Magnesium content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.

tent in guard cells may be a sufficient signal for stomatal closure (Luan,
1993), the process in which ABA (Schauf et al., 1987) and auxin M ar -
ten et al., 1991) are involved. Therefore, Ca deficiency could cause a distur-
bance in the stomatal control of transpiration.

The P/Ca ratio increased by 33.7% under the water deficit, suggesting
that the Ca content in leaves declined to a higher extent than the P content,
which again can be explained by poor mobility of Ca in plants.

Iron content declined significantly in all genotypes under the water stress
(51.4 ng on average) (Figure 6). The lowest relative decreases in iron content
were found in genotypes 1, 3 and 8, the highest in genotypes 7 and 9. The
P/Fe ratio changed only slightly (less than 10%) under the experimental condi-
tions. This reduction in Fe content can therefore be assigned to the generally
reduced uptake of iron from the nutrient solution.

The content of Zn was significantly reduced in all genotypes under the
water deficiency conditions. On average, this reduction was 54.8% (Figure 7).
The decrease in Zn content was relatively lowest in genotypes 1, 3 and 4 and
highest in genotypes 7, 8 and 2. Although reduced under the water deficit, Cu
content was not significantly changed in all genotypes (Figure 8). Cu content
was not significantly reduced in genotypes 1, 3, 4 and 6, it was significantly
reduced for ” = 0.05 in genotype 9, while the reduction was significant for ” =
0,01 in genotypes 2, 7 and 8. Similar to Fe and Zn, Mn content was also sig-
nificantly reduced in all genotypes, with the average reduction of 42.86% (Fig-
ure 9). The lowest reduction was recorded again in genotype 3, the highest in
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Fig. 6. Iron content in leaves of different sugar beet genotypes.

Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Fig. 7. Zinc content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Fig. 8. Copper content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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Fig. 9. Manganese content in leaves of different sugar beet genotypes.
Control, complete nutrient medium; PEG, nutrient medium with osmotic
value reduced to 0.1 MPa by addition of PEG.
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genotype 7. Manganese is involved in the process of photosynthesis and acti-
vation of several enzyme systems. It was shown that Mn deficiency inhibits
cell elongation (Mukhopadhyay and Sharma, 1991). Cu, Zn and Mn
are components of superoxide dismutase (SOD), which exists in two forms:
Cu/ZnSOD and Mn/SOD. It was found that the expression of genes coding for
these enzymes can be induced by the lack of water and/or by rehydration of
plants which had experienced drought. Also, an increase in corresponding
mRNA content was recorded during the period of plant adaptation to changes
in the amount of water available to plant (Perl-Treves and Galun,
1991; Wu et al., 1999).

CONCLUSIONS

The contents of N, P, K, Ca, Mg, Fe, Zn, Mn and Cu in the leaves of
young plants of all 8 sugarbeet genotypes declined under water deficiency
conditions. However, the intensity of reduction differed among the genotypes.
Therefore, it was not possible to establish a general pattern for the observed
changes in the contents of the tested elements.

The results suggest that some detrimental effects of water deficiency were
due to impaired mineral nutrition, especially the lack of N, P and Mg, and also
due to disturbed ratios between the contents of certain elements, especially
K/Ca.
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YTULAJ BOOHOI' TIOTEHLINJAJIA HA HAKYITJbAFBE HEKUX
HEOIMXOAHUX ETEMEHATA ¥V JIUCTOBUMA LHEREPHE PEIIE
(Beta vulgaris, ssp. vulgaris)

Wpana B. Makcumosuhl!:2, Pynond P. Kacropuz,

Hosuua M. Ierposuh!:2, Jlazap M. Kopauen?, ITaBie C. CkieHap?
I TTomonpuBpenaun ¢akyarer Hosu Canx, Tpr JI. O6panoBuha 8,
21000 HoBu Can, Cp6uja u Llpna I'opa
2 HayyHU WHCTUTYT 3a patapcTtBo M moBprtapctBo Hosu Can,
M. T'opkor 30, 21000 HoBu Can, Cp6uja u LlpHa I'opa

Pe3ume

lum pana je 6MO Ja ce MCIUTA YTUIAj CMalkeHOT BOIHOT IOTEHIIMjajda XpaHJbu-
BOTI' pacTBOpa Ha HaKyIUbakh€ HEKMX HEONXOAHMX MAaKpo- U MHUKpoeJeMeHaTa y Haj-
3eMHOM Jejdy Miaaux Omsbaka mehepHe pere. busbke 8 pa3nuuuTvX reHOTUIIOBA IIe-
hepne pene cy 21 naH rajeHe Ha XpaHJBMBOM PAacTBOPY UMjM BOJIHM TOTEHIIMjaJl je TO-
neuieH Ha 0,1 MPa nomohy nonuerunen rukona (PEG). Canpxkaj N, P, K, Ca, Mg,
Fe, Mn, Cu 1 Zn je y CBUM T€HOTUIIOBUMA OMAao y yCJOBMMa HEAOCTaTKa BOIE, aiu
MHTEH3UTET OBOI CMaibeha HUje OMO jeaHaK KOI CBUX I'€HOTUIIOBA. Pe3yntatu ykasyjy
Jla ce HEeKM O]l IITETHUX YTHIlaja BOMHOT jaedUIIMTa MOTY MpUIMcaT nopemehajuma y
MUHEPAJTHO] UCXPaHU, MoceObHO HemocTatky N, P u Mg, ka0 U M3MEHEHOM OJHOCY
usmely caapikaja nojelMHUX ejgemeHarta, nocebHo K/Ca.
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