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Abstract: In this study we investigated the adequacy of two non-orthogonal ECG leads from 
Holter recordings to provide reliable vectorcardiogram (VCG) parameters. The VCG loop 
was constructed using the QRS samples in a fixed-size window around the fiducial point. We 
developed an algorithm for fast approximation of the VCG loop, estimation of its area and 
calculation of relative VCG characteristics, which are expected to be minimally dependent 
on the patient individuality and the ECG recording conditions. Moreover, in order to obtain 
independent from the heart rate temporal QRS characteristics, we introduced a parameter 
for estimation of the differences of the interbeat RR intervals. The statistical assessment of 
the proposed VCG and RR interval parameters showed distinguishing distributions for N and 
PVC beats. The reliability for PVC detection of the extracted parameter set was estimated 
independently with two classification methods - a stepwise discriminant analysis and a 
decision-tree-like classification algorithm, using the publicly available MIT-BIH arrhythmia 
database. The accuracy achieved with the stepwise discriminant analysis presented 
sensitivity of 91% and specificity of 95.6%, while the decision-tree-like technique assured 
sensitivity of 93.3% and specificity of 94.6%. We suggested possibilities for accuracy 
improvement with adequate electrodes placement of the Holter leads, supplementary 
analysis of the type of the predominant beats in the reference VCG matrix and smaller step 
for VCG loop approximation. 
 
Keywords: Heartbeat Classification, Holter ECG Leads, VCG loop, RR intervals. 

 
Introduction 
The automatic analysis of the electrocardiogram (ECG) has become a standard tool for fast 
diagnostics of different cardiac dysfunctions by computer-based algorithms for detection of 
different heartbeat types. The occurrence of multiple abnormal cardiac contractions associated 
with excitation from ectopic center in the ventricles (known as premature ventricular 
contractions (PVC) or ventricular extrasystols) is considered clinically important, since it is a 
sign for disturbance in the depolarization process preceding in many cases the appearance of 
malignant cardiac arrhythmia [15]. The problem for automatic detection of PVCs is widely 
discussed in the literature and usually the rules for automatic heartbeat classification are based 
on the specific features of the QRS complex, being the most significant wave in the ECG. In 
comparison to the normally exited beats, the PVCs have wider QRS complex (>0.12s) and 
bizarre waveforms due to the abnormal prolongation of the conduction path through the 
ventricles. The study of the interbeat RR intervals shows that the single PVC appears earlier 
than the normal RR interval, followed by a prolonged RR-interval (usually complete 
compensatory pause, rarely incomplete compensatory pause), or it may appear sandwiched in 
between two normal beats (the so called interpolated PVCs).  
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Automated heartbeat classification was traditionally performed using the morphological 
descriptors of the QRS waveform [1, 2, 4, 5, 8, 10, 12], as well as the RR intervals [2, 14]. In 
some works, these parameters were processed with relatively complicated methods as neural 
networks [4, 7, 14], linear discriminants using likelihood functions [2], operation on vectors 
in the multidimensional space [5, 12], etc. Obviously, the performance of the morphological 
and the temporal QRS descriptors has been extensively studied and highly optimized. In 
contrast, the spatial behavior of the cardiac electrical vector, represented by the 
vectorcardiogram (VCG), has not been widely investigated in the aspect of PVC detection, 
except in the works of few authors [1,3,4,5,8]. It could be expected that the PVC 
vectorcardiographic loops differ in shape and orientation from the normal QRS loops in the 
Frank orthogonal leads. Using Holter recorders, however, the researchers face the limitation 
of ECG signal acquisition from a small number of chest electrodes, which are not sufficient 
for reconstruction of independent orthogonal VCG leads. Aiming to overcome this limitation, 
Chia et al. [3] used two ECG leads acquired from four chest electrodes placed over the heart 
in a cross orientation, thus achieving single-plane VCG projection, which is close to the 
orthogonal one. The authors then applied a VCG-based triggering algorithm for effective 
rejection of PVC beats. Another studies for PVC recognition [4, 5] investigated the 
performance of two VCG parameters (the magnitude of the maximal vector and its angle) 
calculated for the non-orthogonal leads of the publicly available MIT-BIH arrhythmia ECG 
database [11]. Although the PVC detection accuracy with patient-specific local learning set 
was promising [4], the training with a global learning set reduced the accuracy [8]. A point of 
interest becomes the investigation of Holter non-orthogonal VCG leads and extraction of 
VCG parameters, which are independent from the shape and orientation of the VCG-loop 
among the individuals.  
 
In this study we investigated the relations between the area spatial displacements of the VCG 
loops for N and PVC beats in the two non-orthogonal ECG leads from Holter recordings 
available in the MIT-BIH database. We propose an algorithm for fast approximation of the 
VCG loop and calculation of its area. By estimation of the common area with a constructed 
reference VCG loop, we introduce relative VCG characteristics, which are expected to be 
minimally dependent on the patient individuality and the ECG recording conditions. 
Moreover, we include a relative assessment of the temporal heartbeat characteristics by 
calculation the differences of the interbeat RR intervals. A discriminant analysis and a 
decision-tree-like approach are applied for assessment of the PVC classification ability of the 
proposed VCG and RR interval parameters. 
 
Materials and Method 
ECG Signals 
The study involved all 48 ECG recordings from the MIT-BIH arrhythmia database. The 
recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 
10 mV range. Each recording has a duration of 30 min and includes two leads – 42 recordings 
with the modified limb lead II and V1, 3 recordings with the modified II and V5 (100, 114, 
123), 2 recordings with V2 and V5 (102, 104), 1 recording with the modified lead II and V4 
(124) [9]. The heartbeats were recognized by the fiducial points in the database and the 
original database annotations were taken into account. Since we focused only on the PVC 
classification, we accepted two heartbeat groups – Normal (N) group and PVC group. The N 
group is a kind of summary group, which included: (i) all beats, which were annotated as 
Normals (approximately 70% of all beats in the database); (ii) some types of abnormal beats, 
which are predominant in the patient recording (left and right bundle branch blocks and paced 
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beats); (iii) premature atrial contractions. We excluded from the study all remaining heartbeat 
types, which comprise about 2% of all beats in the database, including: aberrantly conducted 
beats, nodal premature beats, nodal or atrial premature beats, nodal escape beats, nodal 
ectopic beats, atrial ectopic beats, fusion premature ventricular contractions, ventricular flutter 
waves, ventricular escape beats, blocked atrial premature beats, missed beats and questionable 
beats. In addition, we avoided the processing of all low amplitude heartbeats (<150µV from 
peak-to-peak in one of the ECG leads), since the low-amplitude signals corrupt the VCG loop 
to the point that the analysis is compromised. In future real-time implementation, monitoring 
of the ECG signal amplitude is expected. In case of low amplitude detection for more than 
10s in one of the ECG channels, an alarm for bad electrode contact has to be generated. Thus, 
the presence of Holter ECG data with compromised quality is directed to the operator’s 
attention. On the other hand, the appearance of short duration event of PVCs with low 
amplitude projection in one of the leads would not disable the heartbeat analysis. 
 
Preprocessing 
The applied digital filtering prevents against power-line interference, tremor noise and base-
line drift distortions of the input ECG signal that impede the accurate measurement and 
classification of the heartbeats. The implemented preprocessing filtration procedures have 
been accepted previously in [4] and have the advantage for real-time operation. The following 
procedures are realized:  
 
• a notch filter for elimination of the power-line interference, implemented by moving 

averaging of samples in one period of the interference;  
• a low-pass filter for suppression of the tremor noise, realized by moving averaging of 

samples in 30 ms time-interval, thus having a first zero at about 35 Hz;  
• a high-pass recursive filter for drift suppression [6] with cut-off frequency of 2.2 Hz.  
 

Fig.1. Illustration of 2-lead ECG and the single-plane VCG loop approximation. 
(a) - Lead1 and Lead2: The extracted QRS segment of fixed size around the fiducial point;  
(b) - VCG plane: Division in square regions with a side of 100µV. The VCG-loop of the 

selected QRS complex is drawn and highlighted by the red square.  
(c) -  Zoomed view of the approximated VCG loop: the approximated area is drawn with grey 

squares (correspond to the VCGMatrixTEST elements with value 1). The original VCG loop 
samples are marked with (•). 
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VCG analysis 
Extraction of the QRS complex 
The heartbeats were extracted in segments of 90 samples (250 ms) with the fiducial point at 
the 30th sample. Thus, the window of fixed-size around the fiducial point (about 80 ms before 
and 160 ms after) guarantees the selection of the complete QRS wave, even in the worst case 
of prolonged ventricular extrasystole. An illustration of the two ECG leads representing the 
extracted QRS segment and the position of the fiducial point is shown in Fig. 1a. 
 
Calculation of VCG Matrix of the tested QRS complex 
We introduce the VCG Matrix as an approximation of the VCG loop spatial position, aiming 
to facilitate the associated calculations. For the sake of the approximation, the VCG plane, 
formed by Lead1 and Lead2 is divided in square regions having a side of 100µV. Thus, a 
number of 100x100 squares fill the entire VCG plane, taking into account the minimal and the 
maximal ECG signal amplitude of –5V and +5V, respectively (Fig. 1b). All squares form the 
VCGMatrixTEST (size 100x100) and they could take a value 0 or 1, in dependence on the 
spatial position of the VCG loop of the tested QRS complex. The VCGMatrixTEST elements 
are assigned as follows:  
 
• Initialization – all elements are set to 0; 
• Selection of the VCGMatrixTEST elements, which belong to the rectangle defined by [Xmin, 

Xmax, Ymin, Ymax], 
where );2max( );2min(Y );1max( );1min( maxminmaxmin LeadXLeadLeadXLeadX ====  

• Each of the selected VCGMatrixTEST elements is tested whether it is internal or it is external 
for the VCG loop. We apply a fast algorithm [13], which calculates the number of 
crossings of the ray between an internal point for the VCG loop and the element center 
(coordinates Xc, Yc), according to Condition (1). The odd number of crossings indicates 
an outside element (value set to 0), while the even number indicates an inside element 
(value set to 1). An example of calculated VCGMatrixTEST elements is presented in Fig. 1c.  
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( 1,....2,1, ;,...2,1 −== NNjNi ). 

 
Calculation of Reference VCG Matrix 
The reference VCG Matrix (VCGMatrixREF) is calculated as a mean of the VCG Matrixes of 
the five previous QRS complexes, according to Equation (2). The values of its elements are 
rounded towards the nearest integer and are equal either to 0 or to 1. Thus, the reference VCG 
Matrix has ones only in these elements, which represent VCG loop spatial distribution 
repeated in 3 or more QRS complexes from the 5 reference beats. The example of ECG signal 
with N and PVC beats (see Fig. 2a) represents the calculated reference VCG Matrix involving 
beats with indexes from T-5 to T-1 (see Fig. 2b). It is evident that the black area (the ones in 
the reference VCG Matrix) coincides with the elements, which are internal for at least three 
VCG loops. 
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where T is the consecutive index of the tested QRS-complex in the file. 
 
 

Fig.2. Illustration of the reference VCG Matrix calculation 
(a) - Example of ECG signal with N and PVC beats. 

(b) - The VCG loops and their approximated areas for the beats with indexes from T-5 to T-1. 
The last subplot illustrates the calculated reference VCG Matrix, which summarizes the 

VCG loop spatial distributions of all five QRS complexes. 
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Calculation of Common VCG Matrix 
We introduce the Common VCG Matrix (VCGMatrixCOMMON) for estimation of the area of 
overlapping between the reference VCG Matrix and the VCG Matrix of the tested QRS 
complex. Since the matrixes elements are binary (0 or 1), their common parts could be easily 
calculated with logical AND, as written in Equation (3). 
 

TESTREFCOMMON VCGMatrixVCGMatrixVCGMatrix &=  (3) 
 
Fig. 3 is an illustration of the Common VCG Matrix (grey squares) placed over the reference 
VCG Matrix and the VCG Matrix of the tested QRS complex (black squares + grey squares). 
It is well seen that in case of N beat, the reference VCG Matrix (Fig. 3a) and the tested VCG 
Matrix (Fig. 3b) overlap with more than 80%. In case of PVC beat, the Common VCG Matrix 
fills less than 30% of both the reference VCG Matrix (Fig. 3c) and of the tested VCG Matrix 
(Fig. 3d).  
 

Fig.3. Illustration of the common VCG Matrix calculation. The Common VCG Matrix is 
shown with grey squares, placed over the black squares of the reference VCG Matrix (a,c) and 

the VCG Matrix of the tested QRS complex (b,d). 
(a,b) – The tested QRS complex is N beat (marked with * in Fig.2a) 

(c,d) – The tested QRS complex is PVC beat (marked with # in Fig.2a)  
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Calculation of VCG parameters 
We estimate the VCG areas, defined by the introduced above VCG matrixes as the sum of 
their elements, presented in Equation (4):  
 

∑ ∑
= =

=
max

min

max

min
),(

X

Xx

Y

Yy
yxVCGMatrixVCGArea ,                 (4) 

 
where: COMMONREFTEST VCGMatrixVCGMatrixVCGMatrixVCGMatrix ,,= ; 

);2max( );2min(Y );1max( );1min( maxminmaxmin LeadXLeadLeadXLeadX ====  
 
These VCG areas are greatly dependent on the ECG recording conditions, which for example 
influence the ECG signal amplitude. Thus, the values of the calculated areas may differ even 
for one and the same patient, which makes them incomparable. In order to provide relative 
VCG characteristics, which are expected to be minimally dependent on the patient 
individuality and the ECG recording conditions, we introduce the relative VCG parameters, 
named DA and DB, calculated according to Equations (5) and (6): 
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Interbeat RR intervals 
The interbeat RR intervals are involved in the computation of the parameter RRDiff, which 
represents the difference between the durations of the two RR intervals, surrounding the 
tested heartbeat (with index T). The normalization towards the mean value of the previous 
five consecutive RR intervals is applied, in order to achieve a value independent from the 
heart rate. 
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where RRT = Fiducial PointT+1 - Fiducial PointT 

RRT-1 = Fiducial PointT -Fiducial PointT-1. 

 
Beat classification 
Stepwise discriminant analysis 
Stepwise discriminant analysis was applied on the defined above parameters RRDiff, DA and 
DB to differentiate between N and PVC beats. Two linear discriminant functions of the n-
dimensional vector x (n=3) were calculated – F’(Equation 8) and F’’(Equation 9).  
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Here wi′,wi′′ and a′, a′′ are the corresponding discriminant coefficients and constants. F’ 
relates to the possibility the heartbeat described by vector x to be N, while F’’ gives the 
possibility to be PVC. These two discriminant functions were computed for the tested 
heartbeat and it was labeled as corresponding to one of the two classes: N or PVC, depending 
on the higher value among F’ and F”.  
 
Decision-tree-like classification algorithm 
We defined several conditions, which are applied consecutively for classification of the tested 
heartbeat as N or PVC. The analysis is based on the defined parameters RRDiff, DA and DB 
and includes the following steps:  
• Step 1: If (RRDiff<-50%) the QRS is classified as N; 
• Step 2: If (DA<0.5) AND (RRDiff<20%) the QRS is classified as N; 
• Step 3: If (DA≥0.5) AND (RRDiff≥20%) the QRS is classified as PVC; 
• Step 4: If (DB<0.5) the QRS is classified as PVC; 
• Step 5: If (0.65<DB<0.85) AND (25%<RRDiff<70%) the QRS is classified as PVC; 
• Step 6: If (DA>0.7) the QRS is classified as PVC; 
• Step 7: If (DA>0.3) AND (RRDiff>80%) the QRS is classified as PVC; 
• Step 8: Else the QRS is classified as N. 
 
The values of the thresholds for RRDiff, DA and DB were chosen by descriptive statistical 
analysis of the parameters distributions, as shown below in section Results, followed by 
iterative testing of the detection accuracy and adjusting the threshold values. 
 
Results 
All procedures, including the ECG signals preprocessing, the VCG analysis algorithm and the 
RR intervals differences measurement, were implemented in software utility, using the 
software package MATLAB 7.0. The computed parameters RRDiff, DA and DB for all beats 
in the MIT-BIH database were analysed with STATISTICA 6.0 software.  
 
The reliability for PVC detection of the parameters RRDiff, DA and DB was estimated 
independently with two classification methods - the discriminant analysis and the decision-
tree-like approach. The accuracy was evaluated with the statistical indices Sensitivity (Se) and 
Specificity (Sp), calculated as follows: 
 

beatser of PVC Total Numb
VC beatsDetected PCorrectly 

Se =     (10) 

 

beatsNofNumberTotal
beatsNDetectedCorrectly

Sp
    
   

=    (11) 
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The results achieved with the stepwise discriminant analysis, which includes at each step the 
highest ranked parameter, are presented in Table 1. 
 

Table 1. Stepwise discriminant analysis – specificity (Sp), sensitivity(Se) and discriminant 
functions F’(N beats) and F’’(PVC beats) on each step. 

 

Step Parameters Sp(%) Se(%) F’ (for N beats) F’’ (for PVC beats) 

1 DA 91.3 87.4 6.68*DA-1.32 24.46*DA-9.12 

2 DA, RRDiff 95.6 91 6.65*DA-
0.00232*RRDiff-1.32 

25.9*DA+0.11*RRDiff-
12.29 

3 DA, RRDiff, 
DB 

95.6 90.7 1120*DA+0.098*RRDiff
+1225*DB-611 

1148*DA+0.213*RRDiff+1
235*DB-632 

 

Fig.4. Categorized distributions of the parameters: (a) DA, (b) DB, (c) RRDiff and (d) 
Scatterplot DA- RRDiff, for the two heartbeat groups - N and PVC. 

 
The decision-tree-like algorithm was designed in accordance with the results from the 
statistical analysis of the parameters RRDiff, DA and DB, which were assessed for all beats in 
the database. The estimated statistical distributions for the two categories of N and PVC beats 
are presented in Fig. 4. They were used as a basis for setting the decision rules and the 
efficacy of each step is presented in Table 2.  

(a) (b) 

(c) (d) 
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Table 2. The percent of correctly and erroneously classified N and PVC beats estimated 
towards the total number of N and PVC beats at each step of the decision-tree-like algorithm. 

 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 
True N 3.6% 87.6% - - - - - 3.4% 
False N - - 0.4% 3.9% 0.9% 0.03% 0.09% - 
True PVC - - 69.6% 14.5% 7.3% 1.1% 0.8% - 
False PVC 0.1% 3% - - - - - 3.6% 
 
The total accuracy achieved with the decision-tree-like classification approach is shown in 
Table 3. The best results, which were attained at the second step of the discriminant analysis, 
are also added for comparison. 
 
Table 3. Specificity (Sp) and sensitivity(Se) obtained with the discriminant analysis (second 

step) and the decision-tree-like classification method. 
 

Classification Method Sp(%) Se(%) 
Discriminant analysis (DA, RRDiff) 95.6 91 

Decision-tree-like method 94.6 93.3 
 
Discussion  
The study was focused on the widely discussed problem for automatic discrimination between 
normal and premature ventricular contractions. We investigated the projection of the cardiac 
electrical vector on the single-plane formed by two Holter chest leads, aiming to find out 
significant differences between the VCG loops of the N and the PVC beats in one patient. 
Since the analysis of the spatial correlation of two VCG loops is associated with time-
consuming and relatively complicated mathematical procedures, we applied an approach for 
approximation of the VCG loops, thus reducing the complexity to operations with binary 
matrixes. The size of the introduced VCG matrix defines the step of approximation. In our 
study, the operation with matrixes 100x100 is suggested to be a rational compromise between 
complexity and accuracy. Thus, we can apply a relatively fast algorithm for searching the 
VCG matrix elements, which are internal for the VCG loop, and then easily calculate the 
corresponding VCG loop area. Moreover, we proposed an approach for relative assessment of 
the spatial displacement of the tested VCG loop area from the position of a reference VCG 
loop area. The calculated VCG area parameters are minimally dependent on the patient 
individuality and the ECG recording conditions and, therefore, their statistical comparison for 
all beats in the database becomes reasonable. We should mention that the number of QRS 
complexes, which are involved in the estimation of the reference VCG loop, depends on the 
available memory, speed and computation resources when quasi-real time operation is 
expected. In our study, a number of five consecutive beats for the reference VCG matrix 
proved to be appropriate.  
 
The proposed algorithm for PVC detection, which relies on fast VCG analysis, uses fixed-size 
window of 250ms around the fiducial point for the VCG loop construction. Thus, we 
guarantee that the selected ECG segment contains the high amplitude QRS complex samples, 
which specify the most significant part of the VCG loop area. The advantage of this approach 
is that we avoid the complicated procedures for finding the onsets and the offsets of the ECG 
waves.  
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The VCG analysis itself does not contain information about the temporal ECG characteristics. 
In order to obtain independent from the heart rate temporal QRS characteristics, we 
introduced a parameter for relative assessment of the interbeat RR intervals differences. The 
simple calculation of this parameter corresponds to the concept for quasi-real time operation 
of the algorithm.  
 
The statistical assessment of the proposed VCG and RR interval parameters showed 
distinguishing distributions for N and PVC beats (see Fig. 4). As expected, the parameter DA 
(Fig. 4a), summarizing the areas of the reference VCG loop and the tested VCG loop, which 
are outside their common area, has predominantly low values for the N beats (<0.3) and high 
values for the PVC beats (>0.5), for more than 80% of the cases. The parameter DB (Fig. 4b), 
which estimates the ratio between the common area and the size of both the reference VCG 
loop and the tested VCG loop, feature with high values for the N beats (>0.7) and relatively 
low values for the PVC beats (<0.7). This proved the assumption that the N-beats being the 
predominant beats in the calculation of the reference VCG loop matrix, would repeat the 
spatial VCG loop distribution of a tested N-beat (see Fig.3 a,b) and just in opposite, the 
reference VCG loop would be highly distinguishable from a casual PVC beat (see Fig.3 c,d). 
The more complicated cardiac dysfunctions associated with frequent alteration of N or PVC 
beats (more than 3 PVCs in a number of 5 consecutive beats), would lead to calculus of a 
reference VCG matrix with predominant PVC loops, that could mislead the values of DA and 
DB parameters typical for N and PVC beats. We consider that a supplementary analysis of the 
type of the predominant beats in the reference VCG matrix would improve the accuracy by 
classifying the tested beat as belonging or not to the type of the predominant beats in the 
reference set.  
 
The analysis of the RR intervals shows that the parameter RRDiff (Fig. 4c) has well expressed 
peak between –20% and +20% for the N beats, which appear normally in regular RR 
intervals. In contrast, the PVC beats have wider RRDiff distribution, resulting from the variety 
of PVCs with complete compensatory pause, non-complete compensatory pause or lack of 
compensatory pause. Moreover, we should take into account that the RRDiff parameter has 
similar values for the ventricular and the atrial premature contractions, the last being part from 
the N group.  
 
The discriminant analysis classified the VCG descriptor DA as the top-ranked parameter in 
the studied parameter set (see Table 1). The use of RRDiff in combination with DA improved 
the accuracy to 95.6% in recognition of N beats and 91% in recognition of PVC beats. The 
discriminant analysis was unable to provide better results when including the second VCG 
parameter DB. The designed decision-tree-like classification algorithm operates together with 
DA, DB and RRDiff parameters, and achieves more balanced results with specificity of 94.6% 
and sensitivity of 93.3%. The results do not outmatch the reported accuracy of other methods 
for heartbeat classification, but there are several factors, which might influence the 
performance of the analyzed parameters. For example, the Holter MIT-BIH database was 
collected with different combinations of chest leads, which obviously changed the projections 
of the electrical vector on the relevant VCG planes. Thus, the relation between the spatial 
displacements of the VCG loops for N and PVC beats could vary - in some leads being very 
enhanced, while in others being hardly visible. Therefore, the use of Holter electrodes 
placement, which ensures almost independent orthogonal VCG leads, is a potential approach 
for improvement of the reliability of the studied VCG parameters. Another action towards 
results improvement is the use of smaller step for VCG loop approximation, which however is 
associated with large VCG matrixes and more heavy computation procedures.  
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Conclusion 
We proposed an approach for PVC detection from 2 non-orthogonal Holter leads, which was 
based on a fast algorithm for VCG loop analysis and interbeat RR intervals differences 
calculation. The performed statistical assessment of the extracted parameter set proved the 
potential ability of the VCG loop and RR intervals analyses to provide a reliable tool for PVC 
classification in Holter ECG recordings. We suggested possibilities for accuracy improvement 
with adequate electrodes placement of the Holter leads, supplementary analysis of the type of 
the predominant beats in the reference VCG matrix and smaller step for VCG loop 
approximation. 
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