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Abstract. A fundamental problem in the analysis of multi-
fractal processes is to estimate the scaling exponentK(q) of
moments of different orderq from data. Conventional esti-
mators use the empirical momentsµ̂

q
r =〈|εr(τ )|q〉 of wavelet

coefficientsεr(τ ), whereτ is location andr is resolution.
For stationary measures one usually considers “wavelets of
order 0“ (averages), whereas for functions with multifractal
increments one must use wavelets of order at least 1. One
obtainsK̂(q) as the slope of log(µ̂q

r ) against log(r) over a
range ofr. Negative moments are sensitive to measurement
noise and quantization. For them, one typically uses only the
local maxima of|εr(τ )| (modulus maxima methods). For the
positive moments, we modify the standard estimatorK̂(q) to
significantly reduce its variance at the expense of a modest
increase in the bias. This is done by separately estimating
K(q) from sub-records and averaging the results. For the
negative moments, we show that the standard modulus max-
ima estimator is biased and, in the case of additive noise or
quantization, is not applicable with wavelets of order 1 or
higher. For these cases we propose alternative estimators.
We also consider the fitting of parametric models ofK(q)

and show how, by splitting the record into sub-records as in-
dicated above, the accuracy of standard methods can be sig-
nificantly improved.

1 Introduction

The property of multifractality may be viewed as a scale in-
variance condition whereby, when the support of a random
processX(t) is contracted by a factorr≥1 and its amplitude
is multiplied by some random variableAr , the resulting pro-
cess is equivalent toX(t). HenceX(t) is multifractal if

X(t) = ArX(rt),r ≥ 1 (1)

where equality is in the sense of distributions (Gupta and
Waymire, 1990; Veneziano, 1999). This definition of multi-
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fractality can be extended to random measures, random fields
in spaces of higher dimension, and vector-valued processes
(e.g. Meneveau et al., 1990; Schertzer and Lovejoy, 1991;
Pflug et al., 1993; Veneziano, 1999). For example, for a ran-
dom measure on the real line, Eq. (1) becomes

ε(�) = Arε(r�),r ≥ 1 (2)

whereε(�) is the average measure density in�⊂R.
An important extension of Eqs. (1) and (2) (Veneziano,

1999) considers generalized random processesX(ϕ), where
ϕ(t) is a test or kernel function (for example a wavelet). On
generalized random functions, see Yaglom (1986). The pro-
cessX(ϕ) needs not have point valuesX(t); when it does,
X(ϕ)=

∫
∞

−∞
ϕ(t)X(t)dt . ForX(ϕ), the multifractal property

is expressed as

X(ϕr) = ArX(ϕ),r ≥ 1 (3)

whereϕr(t)=rϕ(rt) is a scaled and contracted version of
ϕ(t). What makes Eq. (3) important is that, by variously
constraining the class of functionsϕ under which it holds
(for example wavelets of certain orders), Eq. (3) includes
a wide variety of multiscaling processes, such as processes
with multifractal generalized increments of various orders
and so-called multi-affine functions such as those considered
by Vicsek and Barabasi (1991) and Benzi et al. (1993).

Multifractality is characterized by the distribution of the
scaling factorAr , but for inference it is more convenient to
work with the moments ofAr or equivalently the moment
scaling functionK(q)=logr E

[
A

q
r

]
, which does not depend

on r. The reason is thatAr is not observable, but forq
such that the momentsµq

t =E
[
|X(t)|q

]
, µq

�=E
[
|ε(�)|q

]
, or

µ
q
ϕ=E

[
|X(ϕ)|q

]
exist, one may estimateK(q) using the re-

lationships

µ
q
t/r ∝ rK(q), µ

q
�/r ∝ rK(q), µq

ϕr
∝ rK(q) (4)

which hold for any givent , � or ϕ.
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Equation (4) follows directly from Eqs. (1)–(3) and the
scaling of the moments ofAr , but its use is constrained by
three factors:

1. For some values ofq, say q≥q∗, E
[
A

q
r

]
may be fi-

nite but the momentsµq
rt , µ

q
r� or µ

q
ϕ may not exist.

This is a well-known phenomenon (e.g. Mandelbrot,
1974; Schertzer and Lovejoy, 1987). The critical mo-
ment orderq∗ depends on theK(q) function (Kahane
and Peyriere, 1976). Similar problems of moment di-
vergence are often encountered forq<0;

2. Equation (4) holds for the theoretical moments. The
empirical moments, even at very high resolutionsr, may
differ significantly from the theoretical moments and
not satisfy Eq. (4). This is associated with the so-called
linearization phenomenon, whereby theK(q) function
extracted from the empirical moments becomes linear
in q above some moment orderq+<q∗ (e.g. Ossiander
and Waymire, 2000, 2002; Lashermes et al., 2004). In
Sect. 2, we describe in some detail this phenomenon and
the calculation ofq+ from K(q);

3. The empirical moments may be heavily distorted by
noise or other data artifacts (e.g. Harris et al., 1997).

Our objective is to evaluate and improve current estima-
tors ofK(q) for positive or negativeq, including cases when
the data are exact, corrupted by noise, or degraded by quan-
tization. For numerical illustration and performance assess-
ment, we consider stationary non-negative multifractal mea-
sures in the unit interval. These include discrete multiplica-
tive cascades (Mandelbrot’s cascades) as well as stationary
continuous-scaling measures (conserved universal multifrac-
tal processes). In either case,Ar is assumed to have lognor-
mal distribution with unit mean. We useεn to denote the
average measure density in a generic sub-interval of length
2−n wheren is the resolution level andr=2n is the resolu-
tion. The non-diverging moments ofεn, µ

q
n=E

[
ε
q
n

]
, satisfy

µ
q
n∝2nK(q).
We have obtained results also for some processes with

multifractal increments, but results are similar to those for the
discrete cascades and stationary measures mentioned above
and are not presented. It should be noted that, although dis-
crete multiplicative cascades have many limitations as mod-
els of physical phenomena, they are pedagogically very at-
tractive due to their simplicity of construction and simulation
and the fact that, unlike “continuous scaling“ processes, they
satisfy the scale invariance condition in Eq. (2) exactly (over
the diadic partition of the unit interval).

The functionK(q) is usually estimated in two steps (Har-
ris et al., 1997; Lashermes et al., 2004). In the first step
one calculates the empirical momentsµ̂

q
n=〈ε

q
n〉 for a range

of n andq and for eachq one estimateŝK(q) as the slope
of the linear regression of log2(µ̂

q
n) againstn over a range

[nmin,nmax] of resolution levels. The maximum resolution

level nmax is generally taken as the resolution level of the
data,ndat. This operation is performed without assuming
any parametric form ofK(q); hence we refer toK̂(q) as a
nonparametric estimator. One may generalize this basic es-
timator by replacing the above local averages with the ab-
solute wavelet coefficientsεn=2n

|
∫

ϕ(2nt)X(dt)|, whereϕ

is a wavelet of order 0 or higher (the order is the lowest
integerq such that

∫
ϕq(t)dt 6=0). Hence a wavelet of or-

der 0 has non-zero integral. Wavelets of order 0 are appro-
priate for the multifractal measures considered here. The use
of higher-order wavelets (generalized differences of different
order) poses problems for the negative moments, because the
probability density ofεn at zero becomes nonzero and at least
the moments of orderq≤−1 diverge.

In the second step, one may use various criteria to fit a
parametric modelKpar(q) to K̂(q). For example, one may
fit Kpar(q) by least squares over a range[qmin,qmax] of mo-
ment orders. In this case the estimatorK̂(q) depends on
[nmin,ndat] and the estimatorK̂par(q) depends additionally
on [qmin,qmax].

The estimation ofK(q) is generally more challenging for
negative than for positive moments. The reason is that the
negative moments are sensitive to values ofεn close to zero
and therefore are strongly affected by additive noise, data
quantization and other measurement artifacts. As mentioned
above, for wavelets of order 1 there are problems with the
estimation ofK(q) for q≤−1, also when the data are not
corrupted. In all these cases one must use special techniques
that avoid low values ofεn (e.g. Muzy et al., 1991; Bacry et
al., 1993), but in general the accuracy of estimation remains
lower than for the positive moments. This is why parametric
modelsKpar(q) are typically fitted toK̂(q) over a range of
positive moments.

The bias and variance of the nonparametric estimator
K̂(q) depend on the trueK(q) function, the length and res-
olution of the record, the accuracy of the data, the wavelet
order used, the parameters[nmin,ndat], and the moment or-
derq. The same is true for the parametric estimator, withq

replaced by the moment range[qmin,qmax]. We find how the
bias and variance of various estimators vary with the above
parameters whenAr in Eq. (2) has lognormal distribution,
but our qualitative conclusions hold also for different distri-
butions ofAr . In the lognormal case the variance of ln(Ar)

depends onr as Var[ln(Ar)]=2C1ln(r) where 0<C1<1 con-
trols the variability of the measure and the functionK(q) is
given by (Schertzer and Lovejoy, 1987)

K(q) = C1(q
2
−q) (5)

The paper is organized as follows. Section 2 reviews what
is known about the performance of the nonparametric esti-
mator K̂(q). Section 3 introduces and evaluates a broader
class of estimators that aim at reducing the error variance
and the RMS error. The idea is to increase the effective num-
ber of independent realizations by partitioning the available
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record into a number of sub-records, then separately estimate
K(q) for each sub-record, and finally average the results. As
we show in Sect. 3, this operation is effective in reducing
the mean square error of the estimator and works well also
for negative moments, if the data are error-free and one uses
zero-order wavelets (e.g. local averages).

Section 4 focuses on the estimation ofK(q) for negative
moments when the data are corrupted by errors or one uses
wavelets of order 1. We show that techniques based on the
wavelet transform modulus maxima (WTMM) are biased and
suggest alternatives. The alternative methods have parame-
ters that can be adjusted to focus on values ofεn at different
distances from zero, a feature that is useful to deal with data
corrupted by different noise levels or with different degrees
of quantization.

Issues of parametric estimation are examined in Sect. 5.
We show how by using the nonparametric estimators intro-
duced in Sect. 3 one can significantly improve the accuracy
of standard parametric estimators. The main conclusions are
summarized in Sect. 6.

2 The standard nonparametric estimatorK̂(q)

An interesting property of the nonparametric estimatorK̂(q)

is that with probability 1, as the resolution level of the obser-
vationsndat→∞, K̂(q) becomes linear with some positive
slopeγ + above some orderq+>1 and with some negative
slopeγ − below some orderq−<0 (Ossiander and Waymire,
2000, 2002; Lashermes et al., 2004). The moment ordersq±

and slopesγ ± are found geometrically by drawing the tan-
gents toK(q) with Y -intercept equal to−1. γ + andγ − are
the slopes of these tangent lines andq+ andq− are the val-
ues ofq at the points of tangency; see Fig. 1. Henceq± and
γ ± can be calculated analytically by solving{

q±K ′(q±)−K(q±) = 1

γ ±
= K ′(q±)

(6)

whereK ′ is the derivative ofK. For K(q) in Eq. (5), one
finds

q±
= ±1/

√
C1, γ ±

= ±2
√

C1−C1 (7)

Next we elaborate on the “straightening” ofK̂(q) for q>q+,
but similar considerations apply to the negative moments for
q<q−.

The straightening ofK̂(q) aboveq+ is due to the non-
observability of extreme singularities in a sample. As the
resolution leveln→∞, the ensemble momentsµq

n=E
[
ε
q
n

]
are dominated by values ofεn on the order of 2nK ′(q), but
in a finite numbers of realizations, as the leveln→∞ these
values occur with probability one forq<q+ and with proba-
bility zero for q>q+ (Ossiander and Waymire, 2000, 2002;
Lashermes et al., 2004; Veneziano et al., 2006). It follows

q

K(q)

-1

q+q- 0 1

+
-

Fig. 1. Illustration of linearization of the estimator̂K(q). As
ndat→∞, K̂(q) becomes linear with probability 1 aboveq+ and
belowq−.

that with probaiblity 1 the sample maximum ofεn, εn,max,
satisfies

lim
n→∞

log2(εn,max)

n
= γ + (8)

These sample maxima control the empirical momentsµ̂
q
n for

q>q+, making them behave likêµq
n∼2n(qγ +

−1) and causing
the estimatorK̂(q) to become linear with slopeγ + for q>q+

(with probability 1). As mentioned in the Introduction, this
linearization phenomenon occurs at moment ordersq+ be-
low the orderq∗ of moment divergence. Therefore, what is of
concern in practice is linearization due to non-observability
of high-order singularities not linearization from divergence
of the moments.

The above applies as the maximum resolution level
ndat→∞. For finitendat, K̂(q) displays gradual straighten-
ing asq increases, becoming asymptotically linear asq→∞.
The asymptotic slope for finitendat, sayγ̂ +, differs fromγ +

in Eq. (8) and is obtained from the sample maximaεn,max
as the slope of the linear regression of log2

(
εn,max

)
against

n in the range[nmin,ndat]. Transition to linearity might be
considered to occur at the moment orderq̂+ at which the
sample maximaεn,max contribute some fixed fraction of the
empirical momentŝµq

n (for alternative but essentially similar
criteria, see Harris et al., 1997). The maximaεn,max vary sig-
nificantly from realization to realization (Harris et al., 1997;
Lashermes et al., 2004); hence also the transition orderq̂+

and the asymptotic slopêγ + are realization-dependent.
For ndat finite, theoretical evaluation of the bias and vari-

ance ofK̂(q) is difficult. Wendt and Abry (2006, 2007) and
Wendt et al. (2007) estimated these quantities through asym-
totic expansion or bootstrap, whereas Harris et al. (1997)
used numerical simulation of discrete cascades to show how
the bias and variance depend onndat (in Harris et al., 1997,
nmin is close to zero and what is effectively varied isndat).
The results confirm that forq>1 the estimatorK̂(q) is bi-
ased towards low values and the bias and variance increase
asq increases orndat decreases.

www.nonlin-processes-geophys.net/16/641/2009/ Nonlin. Processes Geophys., 16, 641–653, 2009



644 D. Veneziano and P. Furcolo: Improved moment scaling estimation for multifractal signals

The bias is contributed by two sources: one is the finite-
ness of the sample and the other is the dependence among
the empirical moments estimated from the same sample at
different scales. The first source of bias may be understood
as follows. The empirical momentŝµq

n are unbiased with
nonzero variance. Since the logarithmic function is concave,
the log moments log2

(
µ̂

q
n

)
, which are the quantities used in

the regression that produceŝK(q), have negative bias. The
bias tends to increase as the moment orderq increases, caus-
ing the slope of the regression to be negatively biased. For
q<q+, K̂(q) becomes asymptotically unbiased as the num-
ber of realizationss→∞.

To understand the second source of bias ofK̂(q), consider
the maximally biased case when a single realization (s=1) is
observed at levelndat=1. In this case the data consist of just
two values,ε1,1 andε1,2, being the average measure densities
in the first half and second half of the unit interval, and the
estimator becomes

K̂(q)=log2


(
ε
q

1,1+ε
q

1,2

)
2ε

q

0

=log2


(
ε′

1,1
q
+ε′

1,2
q
)

2

=log2〈ε
′

1
q
〉 (9)

whereε0=0.5
(
ε1,1+ε1,2

)
is the average measure density in

the unit interval and the prime sign indicates normalization
by ε0. Normalization transforms the measure densitiesε1,1
and ε1,2 into the partition coefficientsε′

1,1 and ε′

1,2 from
level 0 to level 1. These partition coefficients are always
between 0 and 2 and therefore have finite moments of all
positive ordersq. ForAr lognormal with parameterC1=0.1,
Fig. 2 compares the theoretical functionK(q) in Eq. (5) with
the log2 of the moments of the one-step partition coefficient
ε′

1=ε1/ε0. For the latter, we first calculated the distribution
of ε′

1 using a numerical procedure of the type in Veneziano
and Furcolo (2003) and then obtained the momentsE

[
ε′

1
q
]

numerically. Figure 2 shows that, forq>1, log2
(
E

[
ε′

1
q
])

is
significantly smaller thanK(q). The casendat=1 produces
maximally biased estimators. As the next section shows, the
bias decreases asndat increases.

3 Improved nonparametric estimation ofK(q) from
defect-free data

With the main objective of reducing the error variance, we
introduce a class of nonparametric estimators ofK(q) that
includes the conventional estimatorK̂(q) as a special case.
The focus here is on the positive moments, but the estimators
apply also to the negative moments if the data are defect-free
and one uses order 0 wavelets.

Suppose that the available record consists of a single mea-
sure realization at some finite resolution levelndat, as in Har-
ris et al. (1997), and that the data are not contaminated by
noise or quantized. The variance ofK̂(q) is contributed in
part by the strong correlation among the measure densities
εn in different intervals at the same or different resolution

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2

q

K
(q

)

K(q)

step-one
partition coefficient

Fig. 2. Comparison ofK(q) in Eq. (5) for C1=0.1 with the log-
moments log2

(
E

[
ε′
1
q
])

of the step-one partition coefficientε′
1.

levels n. Therefore the variance would be reduced if one
could increase the number of independent samples or reduce
the correlations. To achieve this objective, we partition the
available record into sub-records, each rooted in a tile at a
fixed resolution levelno<ndat; see Fig. 3 for a schematic il-
lustration. We findK̂j (q) from each sub-recordj=1,...,2no

using the conventional nonparametric estimator over a range
of resolution levels[nmin,ndat] for somenmin≥no, and finally
average the results to obtain

K(q) = 2−no

2no∑
j=1

K̂j (q) (10)

For any givenndat, the “average estimator”K(q) depends on
(no,nmin) or equivalently(no,1n) where1n=nmin−no. For
no=0, K(q) reduces to the standard estimatorK̂(q).

A reduction in the error variance is brought about by the
fact that the sub-record estimatorsK̂j (q) may be considered
as mutually independent. To show the independence property
for the case of discrete cascades, note that the standard esti-
matorK̂(q) is unaffected by multiplication of the record by a
positive constant. HencêKj (q) does not vary if one divides
all the average densitiesεn in the j -th sub-record byεno,j ,
the average measure density for that entire sub-record. Since
in discrete cascades the normalized sub-records are indepen-
dent, the estimatorŝKj (q) are also independent. For contin-
uous multifractal processes, the sub-record estimatorsK̂j (q)

are serially correlated. However, we have found through sim-
ulation that the correlation is at most 0.04 atj -lag 1 and is
otherwise very close to zero. Therefore, in practice the esti-
matorsK̂j (q) for differentj may be taken as independent.

The price one pays for the increase in the number of inde-
pendent samples from 1 to 2no is that the sub-records have a
reduced resolution rangendat−no compared with the range
ndat of the original data, and this causes the bias to increase
somewhat. This operation of sub-sampling and averaging is
formally analogous to a variance-reduction technique used
to estimate the power spectrum of stationary signals (Press et
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Fig. 3. Illustration of the resolution levelsno,nmin, andndat used
by the average estimator̄K(q).

al., 1992). In spectral analysis, one may use other variance-
reduction methods such as smoothing the empirical spec-
tral density over a range of frequencies, but these alternative
methods do not work well withK(q) due to the high corre-
lation of K̂(q) for differentq.

Following the approach of Harris et al. (1997) forK̂(q),
we estimate the bias and error variance ofK(q) in Eq. (10) by
simulating a large number of discrete cascade realizations in
the unit interval. ForK(q) in Eq. (5), the bias, variance and
root mean square error (RMSE) ofK(q) depend on the mul-
tifractal parameterC1, the moment orderq, the resolution
level of the datandat and the parameters(no,1n) of the esti-
mator. Figure 4 shows results forC1=0.1, which for example
is a plausible value for rainfall during rainstorms (Langousis
and Veneziano, 2007),q=−2, 2, 3 and 4,ndat=14, and all
possible combinations ofno=0(2)12 and1n=0,...,13−no.
The remaining number of levels, 14−no−1n, is the range
used to fit the regressions whose slope defines the estimators
K̂j (q). Notice that forC1=0.1,q=4 exceeds the moment or-
der q+

=
√

10=3.162 above whichK(q) tends to be linear.
All results in Fig. 4 are based on 1000 fully dressed discrete-
cascade simulations. Dressing is accomplished by first cal-
culating the distributionFZ of the dressing factorZ by the
procedure of Veneziano and Furcolo (2003) and then gener-
ating independent samplesZi=F−1

Z (Ui), where theUi are
independent variables with uniform distribution in the unit
interval.

Each panel of Fig. 4 includes several plots, one for each
value ofno, whereas1n varies along the horizontal axis from
0 to 13−no. Therefore, the longer plots are associated with
smaller values ofno. The longest plots, forno=0, correspond
to the traditional estimator̂K(q). In particular, the estimator
with no=1n=0, which is the one most frequently used in
practice, is marked with a star.

The bias increases when eitherno increases or1n de-
creases. The reason is that either of these changes makes
the estimatorK̂j (q) rely more heavily on moments at reso-

Fig. 4. Absolute bias, standard deviation, and RMS error ofK̄(q)

for moment ordersq=−2, 2, 3, 4. A single measure realization
with C1=0.1 is observed at resolution levelndat=14. The parame-
ters of the estimator vary asno+0(2)12 and1n=0(1)13−no. The
different plots in each panel are for differentno. The longer plots,
for no=0, correspond to the standard estimatorK̂(q). Results from
1000 independent simulations.

lution levels near the “root” of thej -th sub-record. As one
approaches the root level, the traditional estimator reflects
the moment scaling of the partition coefficients and is maxi-
mally biased; see Eq. (9) and Fig. 2. The estimator variance
decreases with increasingno (due to the larger number 2no

of independent sub-records) but is insensitive to1n, for the
following reason. Lowering1n increases the range of reso-
lution levels used in the regressions, but the added levels cor-
respond to low resolutions for which the moment estimates
are less accurate. Hence it may happen that adding resolu-
tion levels increases the variance of the least-squares regres-
sion slope. We have investigated the use of weighted rather
than ordinary least squares with weights that depend on the
accuracy of the log-moment estimates and found that there is
some gain in accuracy, but the gain hardly justifies the added
complexity of the procedure. These qualitative traits of the
bias and variance ofK(q) hold for all positive and negative
moment ordersq.

The behavior of the RMSE is more complicated because
the bias and variance dominate the RMSE over different
ranges ofno and 1n (see schematic illustration in one of

www.nonlin-processes-geophys.net/16/641/2009/ Nonlin. Processes Geophys., 16, 641–653, 2009



646 D. Veneziano and P. Furcolo: Improved moment scaling estimation for multifractal signals

the panels of Fig. 4), which further depend somewhat onq.
In general, the bias dominates for largeno and small1n,
whereas the variance dominates for smallno and large1n.
The importance of the bias increases as the moment order
increases.

In Fig. 4, the multifractal parameterC1 and the resolution
level of the observationsndat are kept fixed. We have made
similar analyses with different values of these parameters.
The results (not shown) are qualitatively similar, although
as expected the bias and variance tend to increase asC1 in-
creases orndat decreases. The optimum value ofno varies
mainly withndat asno≈0.5ndat−1 and the optimum of1n is
such thatnmin = no +1n≈ndat−2. We callK(q) with these
parameter setting the optimalK(q) estimator. The solid lines
in Fig. 5 show the relative RMS error of the optimal estimator
(the RMS error divided by the actual value ofK(q)) for dif-
ferentq, C1=0.05, 0.1, 0.15 and 0.2, andndat=8, 10, 12 and
14. For comparison, the relative RMS errors of the standard
estimatorK̂(q) (this is the estimatorK(q) for nmin=no=0)
are shown as dashed lines. Increasing the multifractal pa-
rameterC1 and decreasing the resolution of the observations
have deleterious effects on both estimators. The same is true
for increasing the moment orderq. Note that the estimators
tend to become linear aboveq+

=1/
√

C1, which in Fig. 5 is
marked by a vertical dashed line; hence in these high-q re-
gions the RMS error is large. Forq=2 and records of length
around 4000 (ndat about 12), the relative RMS error of the
optimal estimator is 4.7%, 7.2%, 10.9% and 15.1% when
C1=0.05, 0.1, 0.15 and 0.2, respectively. For the standard es-
timator, these relative errors are much higher (16.2%, 19.3%,
21.6% and 24.0%).

It is emphasized that we have optimizedno and1n for
the case when only one multifractal realization is observed.
In many practical cases, the available record includes many
independent realizations. The higher sample size does not
affect the bias ofK̂(q) andK̄(q), but reduces the error vari-
ance and therefore makes small-bias, large-variance estima-
tors likeK̂(q) more appealing.

4 Improved nonparametric estimation ofK(q) from
noisy or quantized data

Next we consider the estimation ofK(q) from data affected
by imperfections like additive noise, multiplicative noise,
or quantization. Additive noise and quantization influence
mainly the estimates ofK(q) for negative moments; hence
the primary focus of this section is onq<0. This problem
has been extensively discussed in the literature; see for ex-
ample (Harris et al., 1997; Muzy et al., 1991; Bacry et al.,
1993). The basic strategy is to use values ofεn away from
zero, while being careful that the operation of screening out
the lower values does not alter the scaling of the moments.
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Fig. 5. Comparison of the relative RMS error of the optimal aver-
age estimatorK̄(q) (solid lines) and the standard estimatorK̂(q)

(dashed lines). Different lines correspond to observations at differ-
ent resolution levelsndat=8, 10, 12 and 14, increasing from above.
Results are based on 1000 independent simulations.

4.1 Standard WTMM estimators

A popular technique (Muzy et al., 1991; Bacry et al., 1993;
Struzik, 2000) is to first obtain the continuous wavelet trans-
form

εn(τ ) = 2n

∫
φ

[
2n(t −τ)

]
X(dt) (11)

whereφ is a wavelet of order 0 or higher and then calcu-
late the absolute moments using only the local maxima of
|εn(τ )|. The use of wavelets of order 1 or higher is problem-
atic, because their absolute coefficients|εn(τ )| have nonzero
probability density at zero; hence there is a higher probabil-
ity of finding local maxima that are very close to zero than
for wavelets of order 0. For stationary multifractal measures
one can (and should) use 0-order wavelets, whereas for pro-
cessesX(t) with stationary multifractal increments this is not
an option. Here we consider stationary multifractal measures
X(dt) in the unit interval.

In practice,X(dt) is sampled at some finite resolution
level ndat and the wavelet coefficients in Eq. (11) are cal-
culated for 2ndat values ofτ , equally spaced between 0 and
1. We still refer to this as the continuous wavelet trans-
form (CWT) of the signal. The procedure that derivesK̂(q)

from the local maxima of CWT is known as wavelet trans-
form modulus maxima (WTMM) method. Several variants
of the WTMM method exist, with the general aim to avoid
local maxima that are still too close to zero and therefore
are affected by data inaccuracies. The most popular method
(“WTMM- with-sup”) connects the local maxima at different
resolution levelsn to form modulus maxima lines. Then each
local maximum of|εn(τ )| is replaced with sup

n≤n′≤ndat

|εn′(τ )|
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where the supremum is along the maxima line that passes
through the local maximum point (Muzy et al., 1993, 1994;
Arneodo et al., 1995). We consider explicitly only the
WTMM method, but the qualitative results should extend to
variants of that method, including WTMM-with-sup.

Like the ordinary estimator̂K(q), the WTMM estimator
K̂WTMM (q) depends on the true functionK(q) and the range
of resolution levels(nmin,ndat) used in the regression. The
WTMM estimator has two bias components. One compo-
nent is similar to that of the standard estimatorK̂(q) and is
due to dependence among the values ofεn (and hence of the
local maxima) for differentn. The other component is due
to a symmetry breaking of the CWT transform: in order not
to affect scaling, the relative amount of overlapping of the
wavelet functions used for the calculation of two consecutive
coefficients should not vary with the scale (similar concerns
have been expressed by Lashermes et al., 2005). This means
that the number of values ofεn(τ ) from which the local max-
ima are extracted should vary withn as 2n, whereas in the
WTMM method that number is constant and equal to 2ndat.
This lack of scale invariance in the identification of the lo-
cal maxima alters the scaling of the moments and biases the
estimate ofK(q); see below for a numerical illustration.

As noted above, another problem is that the WTMM pro-
cedure is ineffective in filtering outεn(τ ) values that are
close to zero. Alternatives like WTMM-with-supare better
in this regard, but suffer from other limitations: the addi-
tional symmetry breaking caused by the fact that one takes
the supremum over a range of resolution levels[n,ndat] that
narrows asn increases, the fact that the method does not ap-
ply when|εn′ | along the maxima lines tends to increase with
increasingn′ and is not effective in the opposite case, the
more complicated implementation etc.

4.2 Unbiased WTMM estimators

In formulating alternatives to the above WTMM methods,
one should pursue three objectives: avoid distortions of the
K(q) function, retain simplicity, and include tunable pa-
rameters to focus on values of|εn(τ )| that are at different
“distances” from zero. This last feature allows one to obtain
accurate estimates ofK(q) under different levels of data cor-
ruption, for example different additive noise levels or degrees
of coarseness of the quantization. To avoid distortions, one
should subject the wavelet transform to a filtering operation
that preserves the scaling of the moments. For example, one
can avoid the second source of bias ofK̂WTMM (q) mentioned
above by using the discrete wavelet transform whereby one
retains only the coefficientsεn(j2−n) for j=1,...,2n. The
estimator ofK(q) that uses the local maxima of these coeffi-
cients is referred to as the scale-invariant WTMM estimator
or simply the “scale-invariant estimator”. Since in this case
one can extract the local maxima only at resolution levels
n≥2, one must setnmin≥2.

To reduce the number of local maxima that are close to
zero, one could eliminate a given fraction of lowest local
maxima within non-overlapping blocks ofj of size 22+k,
wherek is a positive integer. This operation produces the
“thinned scale-invariant estimator”.

A third possibility is to use the maximum of|εn

(
j2−n

)
|

in each non-overlapping block of 21 values ofj , where1

is a positive integer acting as a tuning parameter (larger val-
ues of1 let one focus on increasingly higher values of|εn|,
although the number of maxima retained for moment analy-
sis decreases). More in general, one could retain the largest
1≤m≤21 values ofεn

(
j2−n

)
within each 21 block. Prelim-

inary analyses have shown that the (m, 1) estimator is rather
insensitive tom and1 and that retaining 1/8 to 1/4 of the
original wavelet coefficients is about optimal. We refer to
this as the (m, 1) WTMM estimator or simply the “(m, 1)
estimator”. In this case it must benmin≥1. For a schematic
illustration of the continuous WTMM estimator, the scale-
invariant estimator, the thinned scale-invariant estimator, and
the (m, 1) estimator, see Fig. 6.

4.3 Performance of various WTMM estimators

Below we assess and compare the performance of these four
estimators under perfect and imperfect data conditions. Since
WTMM estimators operate on the local maxima of|εn| in
time, it is desirable that the measureX(dt) be stationary.
This excludes discrete cascades. The measures we simu-
late are stationary lognormal multifractal measures on the
unit interval, withC1=0.1 and one-sided log-spectral density
function Sln(X)(ω)=0.1ω−1 over the scaling range. Simu-
lation of ln(X) is performed in Fourier space: for each 2-
fold increase ofω starting fromωmin=π ·2−2 and ending at
ωmax=π ·214, we use 24 waves with logarithmically spaced
frequencies. We have used the simulations at two resolution
levels:ndat=14 andndat=8.

The generation of well-dressed continuous MF processes
at high resolution (e.g.ndat=14) can be computationally
very demanding. To dress our simulations forndat=14 we
used the following ad-hoc procedure. The signal was first
(over)sampled at intervals of length 2−(14+3) and then av-
eraged in groups of 8 to achieve the desired resolution of
214. We call this the “bare” process. To generate a sample of
“dressing factors”, we increased the resolution of the simu-
lation in 10 000 intervals of size 2−14 by a factor of 210 and
took the ratios between the averages of the high resolution
signal and the “bare” values as randomly simulated dressing
factors. Finally, we obtained the dressed simulation by ap-
plying randomly selected “dressing factors” from the pool of
10 000 to the “bare” signal.

The parameters of the estimators have been set as fol-
lows. For the (m, 1) WTMM estimator, in analyses with
ndat=14 we have setm=4 and1=5 (meaning that we se-
lect the 4 largest values from each non-overlapping block of
32 coefficients) and in those withndat=8, we have setm=1
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Fig. 6. Schematic illustration of four estimators ofK(q). Sub-
sequent figures compare the performance of these estimators in the
case of negative moments and either exact observations or variously
corrupted data.

and1=3 (thus retaining the largest value within each block
of 8 coefficients). If the increments of|εn(j2−n)| had inde-
pendent signs, on average one fourth of the wavelet coef-
ficients would be local maxima, whereas the above (m, 1)
estimators retain only one eight of the values. Due to this
higher selectivity, one may anticipate the (m, 1) estimator to
be less affected by data inaccuracies but have larger variance
than the scale-invariant estimator. To compare the (m, 1) es-
timator with an estimator that uses approximately the same
number of wavelet coefficients, in the thinned scale-invariant
estimator we eliminate 50% of the local maxima within non-
overlappingj blocks of size 32. We setnmin, the lower reso-
lution level for the regression, to 2 for the WTMM and scale-
invariant estimators and to 5 for the thinned scale-invariant
and (m, 1) estimators. Finally, we set the upper resolution
level for the regressionnmax to the upper limit of the moment
scaling range. This upper limit coincides in some cases with
ndat, the resolution level of the data, but in general depends
on the estimator and the type and level of data corruption; see
below. The analyzing wavelets are of order 0 (corresponding
to local averaging) or order 1 (Haar wavelets).

We apply the above estimators to noiseless data and sim-
ulated records with various types and levels of corruption.
The uncorrupted process is a continuous-scaling stationary
lognormal multifractal measure in the unit interval. Data cor-
ruption is always applied at the observation levelndat, as fol-
lows. In the case of additive noise, we add independent zero-
mean Gaussian variables with standard deviation equal to ei-
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Fig. 7. Plots of the moments of orderq=−1, −2, −3 and−4 for
the estimators in Fig. 6. The plotted values are the averages of the
log of the moments over 1000 simulations withC1=0.1, observed at
resolution levelndat=14. The bottom three rows include “low lev-
els” of additive noise, multiplicative noise or quantization; see text.
The open circles indicate the resolution levelsn used to estimate
K(q).

ther 5% or 10% of the standard deviation ofεndat (setting to
zero any resulting negative value). In the case of multiplica-
tive noise, we multiply theεndat values by independent log-
normal random variables with mean value 1 and log-standard
deviation equal to either 20% or 50% of the log-standard de-
viation of the noiseless values. Finally, quantization is intro-
duced by assuming a resolution of the recording instrument
equal to either the 5-th or 20-th percentile of the actualεndat

values.
Figure 7 shows plots of the moments of orderq=−1, −2,

−3 and−4 for the four estimators whenC1=0.1,ndat= 14,
and the data are noiseless (top row) or variously defective,
with defects set at “low levels”. The analyzing wavelet is
of order 0. The values plotted in Fig. 7 are the averages of
the log of the moments obtained in 1000 independent sim-
ulations. Therefore the plots are affected by small statisti-
cal variability and can be used to assess systematic devia-
tions from moment scaling. The open dots indicate the range
(nmin, nmax) used in each case to estimate theK(q) function.
In general, there is a progression towards increased linearity
of the plots as one moves to the right, from the continuous
WTMM estimator to the (m, 1) estimator. Of the various
forms of data corruption, additive noise and quantization are
the most disruptive of moment scaling, especially at the high
resolutions (because the high-resolution values can be very
close to zero). These qualitative observations hold also for
other values ofndat and for the higher levels of data corrup-
tion but, as we shall see later, not for analyzing wavelets of
order 1.

Figures 8 and 9 compare the performance of the same
four estimators, applied to a single measure realization with
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Fig. 8. m±σ intervals for the estimators in Fig. 6, applied to a single
measure realization withC1=0.1 observed at resolutionndat=14.
The panel at the top is for noiseless data. The bottom three rows
consider variously corrupted data. The type and level of corruption
are indicated in each panel; see text for details. All results are based
on 1000 measure simulations.

C1=0.1, when observations are at resolution levelndat=14
(Fig. 8) or resolution levelndat=8 (Fig. 9). Also included
are results for low and high levels of data corruption (left
and right columns in each figure). In each panel, the con-
tinuous black line is the actualK(q) function and the other
lines are the mean values of the different estimators, obtained
from 1000 independent simulations. The vertical bars are
m±σ intervals for the estimators. The panel at the top, for
noiseless data, shows the maximum achievable performance
of the estimators. The plots extend mainly over the nega-
tive moment orders. Results for positive moments up to or-
der 2 mainly confirm that forq>0 all the estimators perform
well and are insensitive to data artifacts. In general, the con-
tinuous WTMM estimator has smaller variance but signifi-
cantly higher bias than the other estimators. This is espe-
cially true when the record covers a narrow range of scales;
see Fig. 9. The other estimators have generally comparable
performance, with the (m, 1) estimator having lower bias but
slightly higher variance than the scale-invariant and thinned
scale-invariant estimators. Multiplicative noise, even at the
higher level, produces minimal deterioration in the perfor-
mance of all estimators.
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Fig. 10. Sources of bias for the continuous WTMM method. Com-
parison of the marginal moments of orderq=−2 and−4 (star sym-
bols) with the same moments of the modulus maxima used by the
WTMM estimator (open circles) and scale-invariant estimator (dia-
monds). The reference straight lines have the theoretical slopeK(q)

from Eq. (5) withC1=0.1. The measures are observed at resolution
levelndat=14 or 8.

To understand the sources of bias of the continuous
WTMM estimator especially in the case of low-resolution
records, Fig. 10 shows moment plots of the type in Fig. 7 for
q=−2 and−4, comparing the theoretical slopeK(q) (thin
straight lines) with the marginal moments of theεn values
(stars; these are the moments used by the standard estimator
K̂(q)), the moments of the local maxima used by the contin-
uous WTMM estimator (open circles), and the moments of
the local maxima used by the scale-invariant estimator (dia-
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monds). The resolution level of the observations,ndat, is 14
in Fig. 10a and 8 in Fig. 10b. In all cases, the moments are
log-averages over 1000 independent simulations with noise-
less data. Therefore the moments for the continuous WTMM
and scale-invariant estimators are the same as those in the
first row of Fig. 7. It is interesting that, over a range of
low resolutions, the continuous WTMM moments are practi-
cally identical to the marginal moments. This means that the
distribution of the local maxima is virtually the same as the
marginal distribution (due to the high degree of overlapping
of the averaging windows in the continuous wavelet trans-
form). In this scale range the continuous WTMM method
displays scaling but is ineffective and retains the bias of the
ordinary estimator. At higher resolutions, the WTMM mo-
ments do not scale due to the lack of scale invariance of
the maximum-extraction procedure that was noted earlier in
this section. By contrast, the moments of the scale-invariant
method scale over all resolutions, with an exponent that is
much closer to the theoretical slopeK(q). The lack of scal-
ing of the WTMM method is especially severe when the data
are at low resolution (Fig. 10b), explaining the high negative
bias of that method in Fig. 9.

Results using Haar wavelets of order 1 are shown in
Figs. 11 and 12, in both cases limited tondat=14. Fig-
ure 11 is analogous to Fig. 7 and Fig. 12 is analogous to
Fig. 8. The main difference between using wavelets of or-
der 0 or 1 is that in the latter case the absolute wavelet
coefficients have nonzero probability density at zero. This
makes the estimation ofK(q) for negativeq more difficult,
especially for methods that are ineffective at filtering out the
low values. This is why in Figs. 11 and 12 the continuous
WTMM method produces nonsensical results. The perfor-
mance of the other methods is somewhat deteriorated rela-
tive to the order 0 case, although these methods do not break
down.

5 Improved parametric estimation of K(q)

Harris et al. (1997) discuss at length the selection of the pos-
itive moment-order range[qmin,qmax] such that the paramet-
ric estimatorK̂par(q), fitted by least-squares tôK(q) inside
that range, is minimally affected by the straightening ofK̂(q)

for large q. They setqmax=q+, the moment order above
which K̂(q) is essentially linear, and suggest two specific
ways to obtain estimateŝq+ from a realization. Here we
consider the same problem in the context of the lognormal
model in Eq. (5) (hence the problem of estimatingC1), with
the difference that we replacêK(q) with the average estima-
tor K̄(q) in Eq. (10) and compare two different estimators of
C1, one obtained from LS fitting of̄K(q) within some range
[qmin,qmax] and the other withC1 estimated as the slope of
K̄(q) atq=1. We refer to these as the LS estimator and Slope
estimator ofC1, respectively. Due to the superior perfor-
mance ofK̄(q), one may expect significant gains in accuracy
from usingK̄(q) instead ofK̂(q).
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Fig. 11. Same as Fig. 7 for Haar wavelets of order 1.

In addition to choosing the range[qmin,qmax] for the LS
estimator, one must select the parametersno and nmin of
K̄(q). Three choices are especially meaningful:{

no = ndat−1
nmin = ndat−1

, for minimum variance (12a)

{
no = 0.5ndat−1
nmin = ndat−2

, for minimum RMS error (12b)

{
no = 0
nmin = 0

, reproducingK̂(q) (12c)

For the range of moment orders used in the LS estima-
tor, we setqmin=0 and selectqmax such that the slope of the
estimatorK̄(q) at qmax is a fixed fraction of the estimated
asymptotic slopêγ +. The latter slope is obtained by regress-
ing the logs of the moments of the maximum measurements
εn,max at different resolution levelsn, as explained in Sect. 2.
In the numerical results shown below, the fraction is 0.5.
Therefore ourqmax is about one half the value used in Harris
et al. (1997).

Figure 13 compares results for different true values ofC1
(which varies along the horizontal axis), different resolutions
of the data (different columns), different parameters ofK̄(q)

in Eq. (11) (different rows), and different ways of fitting the
parametric function in Eq. (5) (solid lines for the LS estima-
tor, dotted lines for the Slope estimator). The data are noise-
less and the results are based on 1000 independent simula-
tions. The vertical bars arem±σ intervals. As expected, all
estimators perform much better forndat=14, since the record
is 26=64 times longer than forndat=8. This is especially true
for the parameter settings (a) and (b) in Eq. (12), since these
settings take advantage of the higher resolution to split the
record into a larger number of independent sub-records and
by so doing reduce the estimator variance. The gain in ac-
curacy is not as high in the case of the standard estimator
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Fig. 12. Same as Fig. 8 for Haar wavelets of order 1.

(Eq. 12c). Also notice that the settings (b) and (c) produce
nearly unbiased estimates, whereas there is a large bias in
case (a). The LS and Slope estimators have very similar
performance levels and in fact are nearly identical (for any
given setting in Eq. 12, anyC1 and anyndat, the correla-
tion coefficient between them is about 0.95). Since one of
the estimators is local and the other is global, this is an in-
dication that the parametric estimators are highly efficient in
using information fromK̄(q). Due to its greater simplicity,
the Slope estimator is more attractive, but the LS estimator is
more general and can be used in cases whenK(q) has several
unknown parameters.

Overall, in terms of the RMS error, estimator (b) performs
the best. However, one can devise an even better estimator
by correcting the minimum-variance estimator (a) for bias.
In our experiment with lognormal MF processes, this is done
by finding the value ofC1 for which the expected estimator

E
[
Ĉ1

]
equals the actual estimate. The top panels in Fig. 13

show that, for estimator (a),̂C1 underestimatesC1 by ap-
proximately 20%, independently ofndat. Therefore, bias-
corrected estimators are given by

Ĉ1,nobias= 1.20Ĉ1(a) (13)

whereĈ1(a) is the estimator̂C1 under setting (a) in Eq. (12).
These bias-corrected estimators are far superior to the stan-
dard parametric estimators (c).
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Fig. 13. Performance of various estimators ofC1 in Eq. (5), based
on a single measure realization observed at resolution levelndat=14
or 8. The continuous lines are for the LS estimator and the dotted
lines are for the Slope estimator. The parametersno andnmin vary
in different rows. The top(a) and middle(b) rows correspond to
the estimatorsK̄(q) with minimum-variance (no=nmin=ndat−1)
and minimum RMSE (no=0.5ndat−1;nmin=ndat−2), respectively.
The bottom row(c) is for the standard estimator̂K(q) (K̄(q) with
no=nmin=0). Results are based on 1000 independent simulations.

6 Conclusions

We have revisited the classical problem of estimating the
moment-scaling functionK(q) of multifractal signals from
data. Specifically, we have focused on stationary multifrac-
tal measures (discrete-cascades or continuous-scaling), ob-
served at different resolution levels with or without noise or
quantization. For these measures and under these data condi-
tions, we have sought to evaluate and improve existing non-
parametric estimators ofK(q) for positive and negative mo-
ment ordersq, as well as existing parametric estimators. All
the estimators considered are based on the absolute wavelet
coefficientsεn at different resolution levelsn calculated from
the given record. We use wavelets of order 0 (in this case
εn is just a local average) or wavelets of order 1 (of the
Haar type). Numerical results have been obtained by sim-
ulating “lognormal measures” withK(q) given by Eq. (5).
In parametric estimation, we have assumedK(q) to satisfy
Eq. (5) withC1 unknown. Our main results and conclusions
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are as follows.

1. When the data are accurately recorded (no noise or
quantization), one can improve the performance of the
standard estimator̂K(q), which is given by the slope of
the least squares regression of log2〈ε

q
n〉 againstn over

the resolution range of the data. The improvement is ob-
tained by partitioning the record into sub-records, calcu-
lating K̂(q) for each sub-record, and averaging the re-
sults. The resulting average estimatorK̄(q) has two pa-
rameters, one that determines the number of sub-records
and the other that controls the range of moment orders
used to estimatêK(q) from each sub-record. Based on
extensive simulations, we have determined a simple rule
to set these parameters to minimize the RMS error of
K̄(q). Different settings minimize the variance and the
bias. As Fig. 5 shows,̄K(q) is much more accurate than
K̂(q).

2. For the positive moments,̄K(q) performs well also
when the data are noisy or quantized and with analyz-
ing wavelets of order 0 or 1. By contrast, forq<0,
K̄(q) should be used only with wavelets of order 0 and
data that are perfectly recorded or are corrupted by mul-
tiplicative noise. The reason for these restrictions is
that in all other cases the wavelet coefficientsεn have
nonzero probability density at 0 and their absolute mo-
ments of orderq≤− 1 diverge. The standard way to
deal with this problem is to calculate the scaling of the
moments of the local maxima of|εn| (WTMM method
and variants). We have shown that the WTMM estima-
tor has several drawbacks, also in the case of perfect
data recording and wavelets of order 0: at high resolu-
tion levelsn, the moments do not scale because the local
maxima are extracted in a way that violates scale invari-
ance. For smallern, the method is ineffective in filter-
ing out the values ofεn that are close to zero, so that the
negative modulus-maxima moments are virtually iden-
tical to the marginal wavelet transform moments. In
the case of wavelets of order 1, the latter drawback is
even more severe. We have suggested various alterna-
tives to the WTMM method that are essentially unbi-
ased and perform well also with noisy or quantized data
and wavelets of either order.

3. For parametric estimation, we follow the standard pro-
cedure of least-squares fitting a parametricK(q) func-
tion to nonparametric estimates over a range of posi-
tive moments. In our case we use nonparametric es-
timates of theK̄(q) type. For the range of moments,
we consider two cases: a range[0,qmax] whereqmax
is approximately one half of the moment order beyond
which K̂(q) becomes linear (see text for details), or a
range

[
1−,1+

]
around 1. The latter fitting procedure is

suggested by the fact that, whenK(q) has the form in
Eq. (5), the parameterC1 is the slope ofK(q) at q=1.

We call the resulting estimators ofC1 the LS estimator
and the Slope estimator, respectively. These estimators
perform very similarly and, when used with the opti-
mal nonparametric estimator̄K(q) in place of the tra-
ditional estimatorK̂(q), significantly reduce the RMS
error ofĈ1. Additional accuracy can be gained by using
the estimatorK̄(q) with minimum error variance (with
the parameter settings in Eq. 12a) and then correcting
Ĉ1 for bias using Eq. (13).

All the numerical work reported here is for stationary mul-
tifractal measures. In many cases, one needs to estimate the
moment-scaling properties of processesX(t) with multifrac-
tal increments (often referred to as multiaffine processes).
We have done some analyses also with these processes (not
reported here). The main difference is that the analyzing
wavelet must be of order at least 1. We have found that the
qualitative results are similar to those when using the same
wavelets with stationary measures.

Another context in which higher-order wavelets are used is
the analysis of multifractal measures (or functions with mul-
tifractal increments) with additive polynomial trends (Lash-
ermes and Foufoula-Georgiou, 2007). The non-scaling trend
can be filtered out by choosing a wavelet of suitable order,
but one has to contend with the issues of divergent negative
moments and low local maxima mentioned above.

We conclude with a remark on the negative moments.
There are many difficulties in accurately estimatingK(q)

for q<0. Moreover, one is often interested in the large val-
ues ofεn, which are controlled by the scaling of the posi-
tive moments. Therefore, it is generally recommended that
one limits the inference ofK(q) to the positive moments.
If needed, scaling of the negative moments may be inferred
through parametric extension ofK(q) from the positive mo-
ments.
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