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Abstract. A fundamental problem in the analysis of multi- fractality can be extended to random measures, random fields
fractal processes is to estimate the scaling expok&ny of in spaces of higher dimension, and vector-valued processes
moments of different ordey from data. Conventional esti- (e.g. Meneveau et al., 1990; Schertzer and Lovejoy, 1991;
mators use the empirical momerité=(|¢,(7)|?) of wavelet  Pflug et al., 1993; Veneziano, 1999). For example, for a ran-
coefficientse, (t), wherer is location andr is resolution.  dom measure on the real line, Eq. (1) becomes

For stationary measures one usually considers “wavelets of

order 0" (averages), whereas for functions with multifractal e(§) = Are(r§d),r=1 @)
incrgmepts one must use waveleqts of Qrder at least 1. Onﬁ/hereg(Q) is the average measure densityic R.

obtainsK (¢) as the slope of logi,) against logr) over a An important extension of Egs. (1) and (2) (Veneziano,
range ofr. Nega'tlve. moments are senS|t|\{e to measuremenliggg) considers generalized random processgs, where
noise and_quantlzatlon. For them, one typically uses only thew(t) is a test or kernel function (for example a wavelet). On
local maxima ofe, (7)| (modulus maxima methods). For the generalized random functions, see Yaglom (1986). The pro-
positive moments, we modify the standard estim&i¢y) to cessX (¢) needs not have point values(r): when it does,

significantly reduce its variance at the expense of a modesk((p)=foo o(1)X (t)dt. For X (), the multifractal property
increase in the bias. This is done by separately estimating expregg.éd as

K (¢) from sub-records and averaging the results. For the

negative moments, we show that the standard modulus maxX (¢,) = A, X (p),r >1 3)
ima estimator is biased and, in the case of additive noise or ) .
quantization, is not applicable with wavelets of order 1 or Where ¢, (=re(r?) is a scaled and contracted version of
higher. For these cases we propose alternative estimatoré(?)- What makes Eq. (3) important is that, by variously
We also consider the fitting of parametric modelskofy) constraining the class of funcnpms under which it r_lolds
and show how, by splitting the record into sub-records as in{for €xample wavelets of certain orders), Eq. (3) includes

dicated above, the accuracy of standard methods can be sig-Vide variety of multiscaling processes, such as processes
nificantly improved. with multifractal generalized increments of various orders

and so-called multi-affine functions such as those considered

by Vicsek and Barabasi (1991) and Benzi et al. (1993).
Multifractality is characterized by the distribution of the

scaling factorA,, but for inference it is more convenient to

The property of multifractality may be viewed as a scale in- Work with th_e moments Of, O(I; equiyalently the moment
variance condition whereby, when the support of a randon>cing functionk (¢)=log, E[A7], which does not depend
processX (¢) is contracted by a factor=1 and its amplitude ~ °N 7+ The reason is that, is ”Otti obzervable, b”qt fog
is multiplied by some random variabl., the resulting pro- Slleh thatthe momgnxs,q:E[|X(t)| ] MQ:E[|8FQ)| ] or
cess is equivalent t& (). HenceX (¢) is multifractal if Mw_:EU_X(‘P”q] exist, one may estimatk (¢) using the re-
lationships

Xt)=A,X@rt),r>1

L S q K(q) q K(q) q K(q)
where equality is in the sense of distributions (Gupta ande/r X7 7 Ky X770, Hg, XT (4)
Waymire, 1990; Veneziano, 1999). This definition of multi- \which hold for any given, Q or ¢.
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Equation (4) follows directly from Egs. (1)—(3) and the level nmax is generally taken as the resolution level of the
scaling of the moments of,, but its use is constrained by data,nga. This operation is performed without assuming
three factors: any parametric form oK (¢); hence we refer t& (¢) as a

. q i nonparametric estimator. One may generalize this basic es-
1. For some values of, sayq>q*, E[A]] may be fi-  gimator by replacing the above local averages with the ab-
nite but the momentsy;, 11/g OF (g May not exist.  solute wavelet coefficients,=2"| [ ¢(2'1)X (d1)|, whereg
This is a well-known phenomenon (e.g. Mandelbrot, js 5 wavelet of order 0 or higher (the order is the lowest
1974; Schertzer and Lovejoy, 1987). The critical mo- integerg such that/ ¢4 (t)dt#0). Hence a wavelet of or-
ment orderg™ depends on th& (¢) function (Kahane der 0 has non-zero integral. Wavelets of order 0 are appro-
and Peyriere, 1976). Similar problems of moment di- priate for the multifractal measures considered here. The use
vergence are often encountered §et0; of higher-order wavelets (generalized differences of different
order) poses problems for the negative moments, because the
probability density ot,, at zero becomes nonzero and at least
the moments of ordey< — 1 diverge.

2. Equation (4) holds for the theoretical moments. The
empirical moments, even at very high resolutionsmay

differ significantly from the theoretical moments and . o .
In the second step, one may use various criteria to fit a

not satisfy Eq. (4). This is associated with the so-called . .
fy Eq. (4) parametric modeKpar(g) to K (¢). For example, one may

linearization phenomenon, whereby tkidq) function X
extracted from the empirical moments becomes linearit Kpar(q) by least squares over a ranin. gmax] of mo-

in ¢ above some moment ordet <¢* (e.g. Ossiander ment orders. In this case the estimato(q) depe_n'ds on

and Waymire, 2000, 2002; Lashermes et al., 2004). In[”min,7da and the estimatoKpalg) depends additionally

Sect. 2, we describe in some detail this phenomenon an§" [9min, gmax]-

the calculation oy from K (¢); The estimation oK (¢) is generally more challenging for
negative than for positive moments. The reason is that the

3. The empirical moments may be heavily distorted by negative moments are sensitive to values,olose to zero

noise or other data artifacts (e.g. Harris et al., 1997). and therefore are strongly affected by additive noise, data

gquantization and other measurement artifacts. As mentioned

O”:{ objecftlve Is to evaluate and |.m|c;r%\./e i eﬁt'ma'above, for wavelets of order 1 there are problems with the
tors of K (¢) for positive or negativg, including cases When  qoqimation ofk (¢) for g< — 1, also when the data are not

the data are exact, corrupted by noise, or degraded by quar3:'0rrupted. In all these cases one must use special techniques

tization. For numerical illustration and performance aSSeSStat avoid low values of,, (e.g. Muzy et al., 1991; Bacry et

ment, we consider stationary non-negative multifractal mea, 1993) pyt in general the accuracy of estimation remains

sures in the unit interval. These include discrete muItipIica—IOWer than for the positive moments. This is why parametric
tive cascades (Mandelbrot’s cascades) as well as stationa%odels Kpar(q) are typically fitted toK (¢) over a range of
continuous-scaling measures (conserved universal multifrac

tal In eith ) dtoh | positive moments.
a prqce;se;). n el er.case,, IS assumed o have lognor e higs and variance of the nonparametric estimator
mal distribution with unit mean. We usg, to denote the

. . . K (¢) depend on the tru& (¢) function, the length and res-
average measure density in a generic sub-interval of IengtlESIu'[ion of the record, the accuracy of the data, the wavelet

—n H 7 _on -
tzion_V\%!]r?éennof_é::,i:;izlL:Tt:grr:ulaer:{gl ;‘tnizi bls[;’[?f ;ea?izlf; order used, the paramete{mnin,ndaﬂ, and_ the moment or-
4 onK(@) ' ' derg. The same is true for the parametric es_t|mator, with
In 2 : ) _ replaced by the moment ranfgnin, gmax]- We find how the
We have obtained results also for some processes Witlias and variance of various estimators vary with the above
multifractal increments, but results are similar to those fortheparameters when, in Eq. (2) has lognormal distribution,

discrete cascades and stationary measures mentioned abayg; oyr qualitative conclusions hold also for different distri-
and are not presented. It should be noted that, although diss tions ofA,. In the lognormal case the variance ofAn)
crete multiplicative cascades have many limitations as mOd‘depends on as VafIn(A,)]=2C1In(r) where 0<C1<1 con-

els of physical phenomena, they are pedagogically very atyq|s the variability of the measure and the functibing) is
tractive due to their simplicity of construction and simulation given by (Schertzer and Lovejoy, 1987)

and the fact that, unlike “continuous scaling” processes, they
satisfy tr_\e sca_lg invariance gqndition in Eq. (2) exactly (over K(q)=C1(¢*—q) (%)
the diadic partition of the unit interval).

The functionk (g) is usually estimated in two steps (Har- The paper is organized as follows. Section 2 reviews what
ris et al., 1997; Lashermes et al., 2004). In the first stepis known about the performance of the nonparametric esti-
one calculates the empirical momerité=(s?) for a range  mator K (¢). Section 3 introduces and evaluates a broader
of n andg and for each; one estimatex (¢) as the slope class of estimators that aim at reducing the error variance
of the linear regression of lggi,) againstz over a range  and the RMS error. The idea is to increase the effective num-
[7min,nmax] Of resolution levels. The maximum resolution ber of independent realizations by partitioning the available
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record into a number of sub-records, then separately estimate
K (g) for each sub-record, and finally average the results. As
we show in Sect. 3, this operation is effective in reducing 5
the mean square error of the estimator and works well also
for negative moments, if the data are error-free and one uses
zero-order wavelets (e.g. local averages).

Section 4 focuses on the estimationifg) for negative a )
moments when the data are corrupted by errors or one uses LN )
wavelets of order 1. We show that techniques based on the
wavelet transform modulus maxima (WTMM) are biased and 1
suggest alternatives. The alternative methods have parame- R
ters that can be adjusted to focus on values,ddt different ~ Fig- 1. lllustration of linearization of the estimatak(¢). As
distances from zero, a feature that is useful to deal with dat%dat_’oo' K (g) becomes linear with probability 1 aboye™ and
corrupted by different noise levels or with different degrees elowg
of quantization.

Issues of parametric estimation are examined in Sect. 5.
We show how by using the nonparametric estimators intro-that with probaiblity 1 the sample maximum &f, ¢, max
duced in Sect. 3 one can significantly improve the accuracysatisfies
of standard parametric estimators. The main conclusions are
summarized in Sect. 6. lim logy(en,max) _ yt

n—00 n

K(aff

)

These sample maxima control the empirical momgrftsor
g>q*, making them behave likg? ~27(av"=1) and causing
An interesting property of the nonparametric estimagy)  the estimatok (¢) to become linear with slope* for g>¢*

is that with probability 1, as the resolution level of the obser- (with probability 1). As mentioned in the Introduction, this
vationsngar— 00, k(q) becomes linear with some positive linearization phenomenon occurs at moment orderde-

2 The standard nonparametric estimatorK (q)

slopey™ above some ordes™>1 and with some negative
slopey ~ below some ordeg ~ <0 (Ossiander and Waymire,
2000, 2002; Lashermes et al., 2004). The moment okgers

and slopeg'* are found geometrically by drawing the tan-

gents toK (g) with Y-intercept equal te-1. y ™ andy ~ are

the slopes of these tangent lines aitdandg— are the val-

ues ofg at the points of tangency; see Fig. 1. Hegéeand

y* can be calculated analytically by solving
 K'(g")—K(@H=1

yE=K'(g%) ©

where K’ is the derivative ofK. For K(g) in Eq. (5), one
finds

gt =+1/\/C1, yT=+2/C1-C1 (7)

Next we elaborate on the “straightening” Kfg) for g>¢*,

but similar considerations apply to the negative moments for

q<q .
The straightening oK (¢) aboveq™ is due to the non-

low the ordely* of moment divergence. Therefore, what is of

concern in practice is linearization due to non-observability
of high-order singularities not linearization from divergence
of the moments.

The above applies as the maximum resolution level
ndar—>00. For finite ngag, I%(q) displays gradual straighten-
ing asq increases, becoming asymptotically lineagasco.
The asymptotic slope for finiteqa, Sayy T, differs fromy +
in Eqg. (8) and is obtained from the sample maximanax
as the slope of the linear regression ole()gl,max) against
n in the rang€nmin,ngad. Transition to linearity might be
considered to occur at the moment orger at which the
sample maxima, max contribute some fixed fraction of the
empirical momentg; (for alternative but essentially similar
criteria, see Harris et al., 1997). The maximanax vary sig-
nificantly from realization to realization (Harris et al., 1997;
Lashermes et al., 2004); hence also the transition ajdier
and the asymptotic slope™ are realization-dependent.

For nqat finite, theoretical evaluation of the bias and vari-
ance ofK (¢) is difficult. Wendt and Abry (2006, 2007) and
Wendt et al. (2007) estimated these quantities through asym-

observability of extreme singularities in a sample. As thetotic expansion or bootstrap, whereas Harris et al. (1997)

resolution leveln— oo, the ensemble moments]=E [« |

are dominated by values @f, on the order of 2K'@ | put
in a finite numbes of realizations, as the level-oco these
values occur with probability one far<g™ and with proba-

used numerical simulation of discrete cascades to show how
the bias and variance depend g (in Harris et al., 1997,
nmin IS close to zero and what is effectively variediigy).

The results confirm that fag>1 the estimato (¢) is bi-

bility zero for g>¢* (Ossiander and Waymire, 2000, 2002; ased towards low values and the bias and variance increase
Lashermes et al., 2004; Veneziano et al., 2006). It followsasg increases oryst decreases.
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The bias is contributed by two sources: one is the finite- 2 ‘ ‘ ‘ ‘ 7
ness of the sample and the other is the dependence among ,,"
the empirical moments estimated from the same sample at 15} ,,/
different scales. The first source of bias may be understood K@) 4
as follows. The empirical momenjs! are unbiased with 1}
nonzero variance. Since the logarithmic function is concave, g
the log moments log(}), which are the quantities used in 05}
the regression that producé’s(q), have negative bias. The
bias tends to increase as the moment ogdecreases, caus- 0 stepone - |
ing the slope of the regression to be negatively biased. For partiion coeMcient
g<q*, K(g) becomes asymptotically unbiased as the num- 05 ‘
ber of realizations— oc. ° ! 2 q : ¢ °

To understand the second source of biak ¢f), consider
the maximally biased case when a single realizatieri) is Fig. 2. Comparison ofK (¢) in Eq. (5) for C1=0.1 with the log-
observed at levelga=1. In this case the data consist of just moments log (E[¢}¢]) of the step-one partition coefficiet.
two valuesgs 1 andeq 2, being the average measure densities

in the first half and second half of the unit interval, and the
estimator becomes levelsn. Therefore the variance would be reduced if one

could increase the number of independent samples or reduce
5 (81#612) (8’1,1q+8’1,2q) ) the correlations. To achieve this objective, we partition the
K(@)=log, 2¢] =l0g; 2 =logei) () yailable record into sub-records, each rooted in a tile at a
fixed resolution Ie\(eh0<ndat; see Fig. 3 for a schematic il-
whereeo=0.5(s1,1+¢1.2) is the average measure density in lustration. We findk’; (¢) from each sub-recorg=1,..., 2"
the unit interval and the prime sign indicates normalizationUsing the conventional nonparametric estimator over a range
by 0. Normalization transforms the measure densitigs ~ Of resolution levelgnmin, ndad for somenmin>n,, and finally
and ey 2 into the partition coefficients’ , and ¢} , from  average the results to obtain

level 0 to level 1. These partition coefficients are always oo
between 0 and 2 and therefore have finite moments of allg (4) :2*”0213,’(41) (10)
positive orderg. For A, lognormal with parametef;=0.1, =

Fig. 2 compares the theoretical functifi{g) in Eq. (5) with ) . ) _
the log, of the moments of the one-step partition coefficient FOr @ny givemay, the “average estimatok (¢) depends on
£} =¢1/0. For the latter, we first calculated the distribution (o-/imin) OF €quivalentlyn,, An) whereAn=nmin—n,. For
of &} using a numerical procedure of the type in Veneziano’o=0, K (¢) reduces to the standard estimakoty ).

and Furcolo (2003) and then obtained the moméfts; 4 A reduction in the error variance is brought about by the
numerically. Figure 2 shows that, fgr-1, log, (E[¢;4]) is fact that the sub-record estimatdts(¢) may be considered

significantly smaller thark (¢). The caseiga=1 produces 25 mutually independent. To show the independence property

maximally biased estimators. As the next section shows th‘;f,or theAcase of discrete cascades, note that the standard esti-
bias decreases agyincreases. matorK (¢) is unaffected by multiplication of the record by a

positive constant. Henck j(g) does not vary if one divides
all the average densities, in the j-th sub-record by, ;,
3 Improved nonparametric estimation of K (¢) from the average measure density for that entire sub-record. Since
defect-free data in discrete cascades the normalized sub-records are indepen-
dent, the estimatorﬁ’j (g) are also independent. For contin-
With the main objective of reducing the error variance, we uous multifractal processes, the sub-record estimaﬁ@(@)
introduce a class of nonparametrig estimatorKaf) that are serially correlated. However, we have found through sim-
includes the conventional estimat&i(g) as a special case. ulation that the correlation is at most 0.04jalag 1 and is
The focus here is on the positive moments, but the estimatorstherwise very close to zero. Therefore, in practice the esti-
apply also to the negative moments if the data are defect-freenatorsk j(g) for different j may be taken as independent.
and one uses order 0 wavelets. The price one pays for the increase in the number of inde-
Suppose that the available record consists of a single megendent samples from 1 td<2is that the sub-records have a
sure realization at some finite resolution lengi;, asin Har-  reduced resolution rangeyar—n, compared with the range
ris et al. (1997), and that the data are not contaminated by Of the original data, and this causes the bias to increase
noise or quantized. The variance Kfig) is contributed in ~ somewhat. This operation of sub-sampling and averaging is
part by the strong correlation among the measure densitiebormally analogous to a variance-reduction technique used
g, In different intervals at the same or different resolution to estimate the power spectrum of stationary signals (Press et
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Fig. 3. lllustration of the resolution levels,,nmin, andnga Used - 104&_/

by the average estimatdf(q). i

al., 1992). In spectral analysis, one may use other variance-
reduction methods such as smoothing the empirical spec-
tral density over a range of frequencies, but these alternatives 44
methods do not work well witlk (¢) due to the high corre- =
lation of K (¢) for differentq.

Following the approach of Harris et al. (1997) &(g), 10°
we estimate the bias and error varianc&al) in Eq. (10) by ° An=n
simulating a large number of discrete cascade realizations i |n
the unit interval. FoiK (¢) in Eq. (5), the bias, variance and
root mean square error (RMSE) &f(g) depend on the mul-
tifractal parameterC;, the moment ordey, the resolutio_n ters of the estimator vary ag+0(2)12 andAn—=0(1)13—n,. The
level of the datagar and the parameters,,, An) of the esti- different plots in each panel are for different. The longer plots,

mator. Figure 4 shows results f6§=0.1, which for example  for =0, correspond to the standard estimatay). Results from
is a plausible value for rainfall during rainstorms (Langousis 1000 independent simulations.

and Veneziano, 2007}=-2, 2, 3 and 454,=14, and all

possible combinations af,=0(2)12 andAn=0,...,13—n,,.

The remaining number of levels, +4,—An, is the range  |ytion levels near the “root” of thg-th sub-record. As one
used to fit the regressions whose slope defines the estimatogpproaches the root level, the traditional estimator reflects
K j(g). Notice that forC1=0.1,g=4 exceeds the moment or- the moment scaling of the partition coefficients and is maxi-
derq+ =+/10=3.162 above whiclk (¢) tends to be linear. mally biased; see Eq. (9) and Fig. 2. The estimator variance
All results in Fig. 4 are based on 1000 fully dressed discretedecreases with increasimg (due to the larger number'2
cascade simulations. Dressing is accomplished by first calof independent sub-records) but is insensitive\ig for the
culating the distributionFz of the dressing factoZ by the  following reason. Lowering\n increases the range of reso-
procedure of Veneziano and Furcolo (2003) and then genernution levels used in the regressions, but the added levels cor-

*

Fig. 4. Absolute bias, standard deviation, and RMS erroKaf)
for moment ordergj=—2, 2, 3, 4. A single measure realization
with C1=0.1 is observed at resolution levgj;=14. The parame-

ating independent sample&=F, *(U;), where theU; are  respond to low resolutions for which the moment estimates
independent variables with umform distribution in the unit are less accurate. Hence it may happen that adding resolu-
interval. tion levels increases the variance of the least-squares regres-

Each panel of Fig. 4 includes several plots, one for eactsion slope. We have investigated the use of weighted rather
value ofn,, whereas\n varies along the horizontal axis from than ordinary least squares with weights that depend on the
0 to 13-n,. Therefore, the longer plots are associated withaccuracy of the log-moment estimates and found that there is
smaller values ot,. The longest plots, fai,=0, correspond  some gain in accuracy, but the gain hardly justifies the added
to the traditional estimatak (¢). In particular, the estimator complexity of the procedure. These qualitative traits of the
with n,=An=0, which is the one most frequently used in bias and variance ok (¢) hold for all positive and negative
practice, is marked with a star. moment orderg.

The bias increases when eithey increases oAn de- The behavior of the RMSE is more complicated because
creases. The reason is that either of these changes mak#®e bias and variance dominate the RMSE over different
the estimatoﬂ%j (¢g) rely more heavily on moments at reso- ranges ofn, and An (see schematic illustration in one of

www.nonlin-processes-geophys.net/16/641/2009/ Nonlin. Processes Geophys., 56362009
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the panels of Fig. 4), which further depend somewhag on C - 005
In general, the bias dominates for largg and smallAn, !
whereas the variance dominates for smglland largeAn.

The importance of the bias increases as the moment orde
increases.

In Fig. 4, the multifractal parametér and the resolution
level of the observationsy,; are kept fixed. We have made
similar analyses with different values of these parameters.
The results (not shown) are qualitatively similar, although
as expected the bias and variance tend to increaégr as
creases Ongyt decreases. The optimum valuemf varies
mainly with ngat asn,~0.5n4a—1 and the optimum oA\ rn is
such thatimin = n, + An~nga—2. We callK (¢) with these
parameter setting the optim&l(¢) estimator. The solid lines
in Fig. 5 show the relative RMS error of the optimal estimator
(the RMS error divided by the actual value &ig)) for dif- Fig. 5. Comparison of the relative RMS error of the optimal aver-
ferentq, C1=0.05, 0.1, 0.15 and 0.2, anda=8, 10, 12 and 546 estimatoi (¢) (solid lines) and the standard estimatdtg)

14. For comparison, the relative RMS errors of the standardqdashed lines). Different lines correspond to observations at differ-
estimatork (¢) (this is the estimatok (¢) for nmin=n,=0) ent resolution levels4;=8, 10, 12 and 14, increasing from above.
are shown as dashed lines. Increasing the multifractal paResults are based on 1000 independent simulations.

rameterC; and decreasing the resolution of the observations

have deleterious effects on both estimators. The same is true

for increasing the moment order Note that the estimators _

tend to become linear aboye =1/./Cy, which in Fig. 5is 4.1 Standard WTMM estimators

marked by a vertical dashed line; hence in these higb-
gions the RMS error is large. Fgr=2 and records of length
around 4000#y4: about 12), the relative RMS error of the
optimal estimator is 4.7%, 7.2%, 10.9% and 15.1% when orm

C1=0.05, 0.1, 0.15 and 0.2, respectively. For the standard es-n(f) _ 2,1/(1)[2” (t— I)]X(dt) (11)

T
C,=0.10 \
|
I

RMSE/K(q)

RMSE/K(q)

A popular technique (Muzy et al., 1991; Bacry et al., 1993,
Struzik, 2000) is to first obtain the continuous wavelet trans-

timator, these relative errors are much higher (16.2%, 19.3%",3

21.6% and 24.0%).

It is emphasized that we have optimizeg and An for
the case when only one multifractal realization is observed
In many practical cases, the available record includes man

where¢ is a wavelet of order O or higher and then calcu-
late the absolute moments using only the local maxima of
le,(1)]. The use of wavelets of order 1 or higher is problem-
%\tic, because their absolute coefficigiatg )| have nonzero
%robability density at zero; hence there is a higher probabil-
ity of finding local maxima that are very close to zero than
%or wavelets of order 0. For stationary multifractal measures
one can (and should) use 0-order wavelets, whereas for pro-
cesse« (¢) with stationary multifractal increments this is not

4 Improved nonparametric estimation of K (¢) from an option. Here we consider stationary multifractal measures

In practice, X (dr) is sampled at some finite resolution

Next we consider the estimation &f(q) from data affected level ngat and the wavelet coefficients in Eq. (11) are cal-
by imperfections like additive noise, multiplicative noise, culated for 2dat values ofr, equally spaced between 0 and
or quantization. Additive noise and quantization influencel. We still refer to this as the continuous wavelet trans-
mainly the estimates ok (¢) for negative moments; hence form (CWT) of the signal. The procedure that deriveg;)
the primary focus of this section is @n<0. This problem  from the local maxima of CWT is known as wavelet trans-
has been extensively discussed in the literature; see for eorm modulus maxima (WTMM) method. Several variants
ample (Harris et al., 1997; Muzy et al., 1991; Bacry et al., of the WTMM method exist, with the general aim to avoid
1993). The basic strategy is to use valueg,phiway from  local maxima that are still too close to zero and therefore
zero, while being careful that the operation of screening outare affected by data inaccuracies. The most popular method
the lower values does not alter the scaling of the moments. (“WTMM- with-sug) connects the local maxima at different
resolution levels to form modulus maxima lines. Then each
local maximum of|e, (7)| is replaced with  sup |&,/(7)|

’
n=n'<ndat

affect the bias of?(q) andK (¢), but reduces the error vari-
ance and therefore makes small-bias, large-variance estim
tors like K (¢) more appealing.
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where the supremum is along the maxima line that passes To reduce the number of local maxima that are close to
through the local maximum point (Muzy et al., 1993, 1994; zero, one could eliminate a given fraction of lowest local
Arneodo et al., 1995). We consider explicitly only the maxima within non-overlapping blocks gf of size Zt*,
WTMM method, but the qualitative results should extend to wherek is a positive integer. This operation produces the
variants of that method, including WTMME4th-sup “thinned scale-invariant estimator”.

Like the ordinary estimatok (¢), the WTMM estimator A third possibility is to use the maximum ¢, (j27")|
RwWTMM (¢) depends on the true functidfi(g) and the range  in each non-overlapping block of*2values of j, where A
of resolution levelSnmin, ndap) Used in the regression. The is a positive integer acting as a tuning parameter (larger val-
WTMM estimator has two bias components. One compo-ues ofA let one focus on increasingly higher valuesfi,
nent is similar to that of the standard estimakdfg) and is  although the number of maxima retained for moment analy-
due to dependence among the values,ofand hence of the ~ sis decreases). More in general, one could retain the largest
local maxima) for differentz. The other component is due 1<m<2" values ofs, (j27") within each 2* block. Prelim-
to a symmetry breaking of the CWT transform: in order not inary analyses have shown that the (A) estimator is rather
to affect scaling, the relative amount of overlapping of the insensitive tom and A and that retaining 1/8 to 1/4 of the
wavelet functions used for the calculation of two consecutiveoriginal wavelet coefficients is about optimal. We refer to
coefficients should not vary with the scale (similar concernsthis as the 2, A) WTMM estimator or simply the ‘i, A)
have been expressed by Lashermes et al., 2005). This meagstimator”. In this case it must bgyn>A. For a schematic
that the number of values ef (t) from which the local max- illustration of the continuous WTMM estimator, the scale-
ima are extracted should vary withas 2, whereas in the invariant estimator, the thinned scale-invariant estimator, and
WTMM method that number is constant and equaltén2  the (n, A) estimator, see Fig. 6.
This lack of scale invariance in the identification of the lo-
cal maxima alters the scaling of the moments and biases thé.3 Performance of various WTMM estimators
estimate ofK (¢); see below for a numerical illustration.

As noted above, another problem is that the WTMM pro-
cedure is ineffective in filtering out, (r) values that are
close to zero. Alternatives like WTMMvth-supare better
in this regard, but suffer from other limitations: the addi-
tional symmetry breaking caused by the fact that one take
the supremum over a range of resolution leyels:q4] that
narrows as increases, the fact that the method does not ap
ply when|e,/| along the maxima lines tends to increase with
increasings’ and is not effective in the opposite case, the
more complicated implementation etc.

Below we assess and compare the performance of these four
estimators under perfect and imperfect data conditions. Since
WTMM estimators operate on the local maximalef| in
time, it is desirable that the measukgdt) be stationary.
This excludes discrete cascades. The measures we simu-
Tate are stationary lognormal multifractal measures on the
unit interval, withC1=0.1 and one-sided log-spectral density
function Sin(x)(@)=0.1w~1 over the scaling range. Simu-
lation of In(X) is performed in Fourier space: for each 2-
fold increase ofv starting fromwmin=x-2"2 and ending at
omax=1-21, we use 2 waves with logarithmically spaced
frequencies. We have used the simulations at two resolution
4.2 Unbiased WTMM estimators levels: nga=14 andnga=8.

The generation of well-dressed continuous MF processes
In formulating alternatives to the above WTMM methods, at high resolution (e.gnga=14) can be computationally
one should pursue three objectives: avoid distortions of thevery demanding. To dress our simulations f@g=14 we
K (g) function, retain simplicity, and include tunable pa- used the following ad-hoc procedure. The signal was first
rameters to focus on values pf, ()| that are at different  (over)sampled at intervals of lengttr 43 and then av-
“distances” from zero. This last feature allows one to obtaineraged in groups of 8 to achieve the desired resolution of
accurate estimates &f(q) under different levels of data cor- 2'#. We call this the “bare” process. To generate a sample of
ruption, for example different additive noise levels or degrees‘dressing factors”, we increased the resolution of the simu-
of coarseness of the quantization. To avoid distortions, ondation in 10000 intervals of size 24 by a factor of 3° and
should subject the wavelet transform to a filtering operationtook the ratios between the averages of the high resolution
that preserves the scaling of the moments. For example, ongignal and the “bare” values as randomly simulated dressing
can avoid the second source of biakgftvm (g) mentioned  factors. Finally, we obtained the dressed simulation by ap-
above by using the discrete wavelet transform whereby onglying randomly selected “dressing factors” from the pool of
retains only the coefficients,(j27") for j=1,...,2". The 10000 to the “bare” signal.
estimator ofK (¢) that uses the local maxima of these coeffi- The parameters of the estimators have been set as fol-
cients is referred to as the scale-invariant WTMM estimatorlows. For the 2, A) WTMM estimator, in analyses with
or simply the “scale-invariant estimator”. Since in this casenga=14 we have setz=4 and A=5 (meaning that we se-
one can extract the local maxima only at resolution levelslect the 4 largest values from each non-overlapping block of
n>2, one must setmin>2. 32 coefficients) and in those witly,=8, we have seitn=1
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Fig. 6. Schematic illustration of four estimators &f(g). Sub-

els” of additive noise, multiplicative noise or quantization; see text.
The open circles indicate the resolution levelsised to estimate

K(q).

sequent figures compare the performance of these estimators in the
case of negative moments and either exact observations or variously
corrupted data. ther 5% or 10% of the standard deviationspj,, (setting to

zero any resulting negative value). In the case of multiplica-
tive noise, we multiply the,,, values by independent log-

and A=3 (thus retaining the largest value within each block normal random variables with mean value 1 and log-standard
of 8 coefficients). If the increments ¢f,(j27")| had inde-  deviation equal to either 20% or 50% of the log-standard de-
pendent signs, on average one fourth of the wavelet coefviation of the noiseless values. Finally, quantization is intro-
ficients would be local maxima, whereas the aboxe 4) duced by assuming a resolution of the recording instrument
estimators retain only one eight of the values. Due to thisequal to either the 5-th or 20-th percentile of the actyg),
higher selectivity, one may anticipate the,(A) estimatorto ~ values.
be less affected by data inaccuracies but have larger variance Figure 7 shows plots of the moments of orger—1, —2,
than the scale-invariant estimator. To compare #heX) es- —3 and—4 for the four estimators whe@i1=0.1, nga= 14,
timator with an estimator that uses approximately the samend the data are noiseless (top row) or variously defective,
number of wavelet coefficients, in the thinned scale-invariantwith defects set at “low levels”. The analyzing wavelet is
estimator we eliminate 50% of the local maxima within non- of order 0. The values plotted in Fig. 7 are the averages of
overlapping; blocks of size 32. We seiyn, the lower reso-  the log of the moments obtained in 1000 independent sim-
lution level for the regression, to 2 for the WTMM and scale- ulations. Therefore the plots are affected by small statisti-
invariant estimators and to 5 for the thinned scale-invariantcal variability and can be used to assess systematic devia-
and (n, A) estimators. Finally, we set the upper resolution tions from moment scaling. The open dots indicate the range
level for the regressionmayx to the upper limit of the moment  (nmin, nmax) Used in each case to estimate #h&;) function.
scaling range. This upper limit coincides in some cases within general, there is a progression towards increased linearity
ndat, the resolution level of the data, but in general dependsof the plots as one moves to the right, from the continuous
on the estimator and the type and level of data corruption; se&VTMM estimator to the iz, A) estimator. Of the various
below. The analyzing wavelets are of order O (correspondingorms of data corruption, additive noise and quantization are
to local averaging) or order 1 (Haar wavelets). the most disruptive of moment scaling, especially at the high

We apply the above estimators to noiseless data and simesolutions (because the high-resolution values can be very
ulated records with various types and levels of corruption.close to zero). These qualitative observations hold also for
The uncorrupted process is a continuous-scaling stationargther values ofigqt and for the higher levels of data corrup-
lognormal multifractal measure in the unit interval. Data cor- tion but, as we shall see later, not for analyzing wavelets of
ruption is always applied at the observation levg};, as fol-  order 1.
lows. In the case of additive noise, we add independent zero- Figures 8 and 9 compare the performance of the same
mean Gaussian variables with standard deviation equal to eifour estimators, applied to a single measure realization with
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Fig. 8. m=to intervals for the estimators in Fig. 6, applied to a single Fig. 9. Same as Fig. 8 fotg,~8.
measure realization witild’1=0.1 observed at resolutionya=14.

The panel at the top is for noiseless data. The bottom three rows
consider variously corrupted data. The type and level of corruption
are indicated in each panel; see text for details. All results are based .
on 1000 measure simulations.

10° - 10

6

moments

C1=0.1, when observations are at resolution levgl=14 10
(Fig. 8) or resolution levekq,=8 (Fig. 9). Also included

are results for low and high levels of data corruption (left

and right columns in each figure). In each panel, the con- ° Y ° T
t_inuous black line is the aCtuaﬁ(q_) function ‘find the Othe'j Fig. 10. Sources of bias for the continuous WTMM method. Com-
lines are the mean values of the different estimators, obtainegarison of the marginal moments of order—2 and—4 (star sym-
from 1000 independent simulations. The vertical bars areyols) with the same moments of the modulus maxima used by the
m=o intervals for the estimators. The panel at the top, for wTMM estimator (open circles) and scale-invariant estimator (dia-
noiseless data, shows the maximum achievable performanac@onds). The reference straight lines have the theoretical &gpe

of the estimators. The plots extend mainly over the negafrom Eq. (5) withC,1=0.1. The measures are observed at resolution
tive moment orders. Results for positive moments up to or-levelnga=14 or 8.

der 2 mainly confirm that fog >0 all the estimators perform

well and are insensitive to data artifacts. In general, the con-

tinuous WTMM estimator has smaller variance but signifi- To understand the sources of bias of the continuous
cantly higher bias than the other estimators. This is espeWTMM estimator especially in the case of low-resolution
cially true when the record covers a narrow range of scalesrecords, Fig. 10 shows moment plots of the type in Fig. 7 for
see Fig. 9. The other estimators have generally comparablg=—2 and—4, comparing the theoretical slogé(g) (thin
performance, with thex{, A) estimator having lower bias but straight lines) with the marginal moments of the values
slightly higher variance than the scale-invariant and thinned(stars; these are the moments used by the standard estimator
scale-invariant estimators. Multiplicative noise, even at thek (¢)), the moments of the local maxima used by the contin-
higher level, produces minimal deterioration in the perfor- uous WTMM estimator (open circles), and the moments of
mance of all estimators. the local maxima used by the scale-invariant estimator (dia-

10 —e— WTMM
” —o— scale-inv.
—— marginal

s
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monds). The resolution level of the observationgy, is 14 WTMM scale-invariant  thinned scale-inv. (m=4, 4=5)
in Fig. 10a and 8 in Fig. 10b. In all cases, the moments are 4 1°| /.
log-averages over 1000 independent simulations with noise-g .|

less data. Therefore the moments for the continuous WTMM 2 ;|- Wi
and scale-invariant estimators are the same as those in th [/

first row of Fig. 7. It is interesting that, over a range of %103 :

low resolutions, the continuous WTMM moments are practi- < ol ==
cally identical to the marginal moments. This means thatthe ,

distribution of the local maxima is virtually the same as the § wa ,
marginal distribution (due to the high degree of overlapping é‘i: .ii"?:‘é:«

of the averaging windows in the continuous wavelet trans-
form). In this scale range the continuous WTMM method
displays scaling but is ineffective and retains the bias of the
ordinary estimator. At higher resolutions, the WTMM mo-
ments do not scale due to the lack of scale invariance of ° n n n n
the maximume-extraction procedure that was noted earlier in

this section. By contrast, the moments of the scale-invarianfig- 11. Same as Fig. 7 for Haar wavelets of order 1.
method scale over all resolutions, with an exponent that is

much closer to the theoretical slofigg). The lack of scal-
ing of the WTMM method is especially severe when the data
are at low resolution (Fig. 10b), explaining the high negative
bias of that method in Fig. 9.

Results using Haar wavelets of order 1 are shown in
Figs. 11 and 12, in both cases limited tQa=14. Fig-
ure 11 is analogous to Fig. 7 and Fig. 12 is analogous to
Fig. 8. The main difference between using wavelets of or-
der 0 or 1 is that in the latter case the absolute wavelet
coefficients have nonzero probability density at zero. This
makes the estimation & (¢) for negativeq more difficult, n, =0 oA
especially for methods that are ineffective at filtering out the | ,,, ... = 0° reproducing K (¢) (12¢)
low values. This is why in Figs. 11 and 12 the continuous
WTMM method produces nonsensical results. The perfor- For the range of moment orders used in the LS estima-
mance of the other methods is somewhat deteriorated relaor, we selgmin=0 and selecmax such that the slope of the
tive to the order O case, although these methods do not breasstimatork (¢) at gmax is a fixed fraction of the estimated

Quantization
=
5

In addition to choosing the randémin, gmax] for the LS
e_stimator, one must select the parametgrsand nmin Of
K (q). Three choices are especially meaningful:

ny, =nda—1 . .
¢ dat— - for minimum variance (12a)

Nmin = Ndat—1

n, = 0.5ngx—1

, forminimum RMS error  (12b)
Rmin = Ndat— 2

down. asymptotic slopg ™. The latter slope is obtained by regress-
ing the logs of the moments of the maximum measurements
5 Improved parametric estimation of K (¢) en.max at different resolution levels, as explained in Sect. 2.

In the numerical results shown below, the fraction is 0.5.
Harris et al. (1997) discuss at length the selection of the posTherefore ougmax is about one half the value used in Harris
itive moment-order rang/min, gmax such that the paramet- et al. (1997).
ric estimatorKpar(¢), fitted by least-squares % (¢) inside Figure 13 compares results for different true value€ of
that range, is minimally affected by the straighteningaf) (which varies along the horizontal axis), different resolutions
for largeg. They setgmax=g™, the moment order above of the data (different columns), different parameter&¢f)
which k(q) is essentially linear, and suggest two specific in Eq. (11) (different rows), and different ways of fitting the
ways to obtain estimate$™ from a realization. Here we parametric function in Eq. (5) (solid lines for the LS estima-
consider the same problem in the context of the lognormator, dotted lines for the Slope estimator). The data are noise-
model in Eqg. (5) (hence the problem of estimatifig, with less and the results are based on 1000 independent simula-
the difference that we repladé(q) with the average estima- tions. The vertical bars are+o intervals. As expected, all
tor K (¢) in Eq. (10) and compare two different estimators of estimators perform much better faga=14, since the record
C1, one obtained from LS fitting ok (¢) within some range  is 2=64 times longer than forga=8. This is especially true
[gmin.gmax] @and the other withC1 estimated as the slope of for the parameter settings (a) and (b) in Eq. (12), since these
K (¢) atg=1. We refer to these as the LS estimator and Slopesettings take advantage of the higher resolution to split the
estimator ofCy, respectively. Due to the superior perfor- record into a larger number of independent sub-records and
mance ofK (¢), one may expect significant gains in accuracy by so doing reduce the estimator variance. The gain in ac-
from usingK (¢) instead ofk(q). curacy is not as high in the case of the standard estimator
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Fig. 13. Performance of various estimators@f in Eq. (5), based

on a single measure realization observed at resolutionAgyet14

or 8. The continuous lines are for the LS estimator and the dotted
(Eq. 12c). Also notice that the settings (b) and (c) producelines are for the Slope estimator. The parametgrandnmn vary
nearly unbiased estimates, whereas there is a large bias iR different rows. The toga) and middie(b) rows correspond to
case (a). The LS and Slope estimators have very similagqn%enf‘itr']’inr::‘:;gég%g‘:('th rg?'m“ml'va”ance’(022’;"1;25:”;;%;')

. . . =V.on s Amin=n y .
pgrformanpe I.evels and in fact are nearly identical (for ANy bottom ro W) is fgr the S(:gtn_dar dménstimd;td_ff @ ( I?F(’q) withy
glven Set?”?g in Eq. 12, angs _and anyngay, the F:orrela— o=nmin=0). Results are based on 1000 independent simulations.
tion coefficient between them is about 0.95). Since one of
the estimators is local and the other is global, this is an in-
dication that the parametric estimators are highly efficient in
using information fromk (¢). Due to its greater simplicity, 6 Conclusions
the Slope estimator is more attractive, but the LS estimator is
more general and can be used in cases whep has several We have revisited the classical problem of estimating the
unknown parameters. moment-scaling functioik (¢) of multifractal signals from

Overall, in terms of the RMS error, estimator (b) performs data. Specifically, we have focused on stationary multifrac-
the best. However, one can devise an even better estimatdal measures (discrete-cascades or continuous-scaling), ob-
by correcting the minimum-variance estimator (a) for bias.served at different resolution levels with or without noise or
In our experiment with lognormal MF processes, this is donequantization. For these measures and under these data condi-
by finding the value of"; for which the expected estimator tions, we have sought to evaluate and improve existing non-
E [6‘1] equals the actual estimate. The top panels in Fig. 13°arametric estimators df (¢) for positive and negative mo-

i R ) ment orderg;, as well as existing parametric estimators. All
show that, for estimator (a)’1 underestimate€’s by ap- e estimators considered are based on the absolute wavelet
proximately 20%, independently afyar Therefore, bias-  efficientss, at different resolution levels calculated from
corrected estimators are given by the given record. We use wavelets of order O (in this case
él,nobias= 1‘20@1(0) (13) en is just a local ayerage) or wavelets of ordgr 1 (of the

Haar type). Numerical results have been obtained by sim-
Whereél(a) is the estimatoC’; under setting (a) in Eq. (12). ulating “lognormal measures” witlk (¢) given by Eq. (5).
These bias-corrected estimators are far superior to the starn parametric estimation, we have assuniég) to satisfy
dard parametric estimators (c). Eq. (5) withC1 unknown. Our main results and conclusions

Fig. 12. Same as Fig. 8 for Haar wavelets of order 1.
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are as follows. We call the resulting estimators 6% the LS estimator
and the Slope estimator, respectively. These estimators
perform very similarly and, when used with the opti-
mal nonparametric estimatd (¢) in place of the tra-
ditional estimatorX (¢), significantly reduce the RMS
error of C1. Additional accuracy can be gained by using
the estimatoiX (¢) with minimum error variance (with
the parameter settings in Eq. 12a) and then correcting
C1 for bias using Eq. (13).

1. When the data are accurately recorded (no noise or
quantization), one can improve the performance of the
standard estimataf (¢), which is given by the slope of
the least squares regression of Jag) againstn over
the resolution range of the data. The improvement is ob-
tained by partitioning the record into sub-records, calcu-
lating I%(q) for each sub-record, and averaging the re-
sults. The resulting average estimakbfg) has two pa-
rameters, one that determines the number of sub-recorddl! the numerical work reported here is for stationary mul-
and the other that controls the range of moment orderdifractal measures. In many cases, one needs to estimate the
used to estimat& (¢) from each sub-record. Based on Moment-scaling properties of processgg) with multifrac-
extensive simulations, we have determined a simple ruldal increments (often referred to as multiaffine processes).
to set these parameters to minimize the RMS error ofWe have done some analyses also with these processes (not

K (q). Different settings minimize the variance and the reported here). The main difference is that the analyzing
bias. As F|g 5 ShOng(q) is much more accurate than wavelet must be of order at least 1. We have found that the

K(q). qualitative results are similar to those when using the same
N _ wavelets with stationary measures.
2. For the positive momentsK (¢) performs well also Another context in which higher-order wavelets are used is

when the data are noisy or quantized and with analyz-the analysis of multifractal measures (or functions with mul-
ing wavelets of order 0 or 1. By contrast, fp<0, tifractal increments) with additive polynomial trends (Lash-
K () should be used only with wavelets of order 0 and ermes and Foufoula-Georgiou, 2007). The non-scaling trend
data that are perfectly recorded or are corrupted by mulcan be filtered out by choosing a wavelet of suitable order,
tiplicative noise. The reason for these restrictions isbut one has to contend with the issues of divergent negative
that in all other cases the wavelet coefficiegtshave moments and low local maxima mentioned above.

nonzero probability density at 0 and their absolute mo- We conclude with a remark on the negative moments.
ments of ordey< —1 diverge. The standard way to There are many difficulties in accurately estimatikigq)

deal with this problem is to calculate the scaling of the for 4 <0. Moreover, one is often interested in the large val-
moments of the local maxima ¢f,| (WTMM method  ues ofe,, which are controlled by the scaling of the posi-
and variants). We have shown that the WTMM estima- tive moments. Therefore, it is generally recommended that
tor has several drawbacks, also in the case of perfecbne limits the inference ok (¢) to the positive moments.
data recording and wavelets of order 0: at high resolu-If needed, scaling of the negative moments may be inferred
tion levelsn, the moments do not scale because the localthrough parametric extension &f(q) from the positive mo-
maxima are extracted in a way that violates scale invari-ments.

ance. For smallet, the method is ineffective in filter-
ing out the values of,, that are close to zero, so that the
negative modulus-maxima moments are virtually iden-
tical to the marginal wavelet transform moments. In
the case of wavelets of order 1, the latter drawback isgyjteq by: T. Chang

even more severe. We have suggested various alterngeyiewed by: three anonymous referees
tives to the WTMM method that are essentially unbi-

ased and perform well also with noisy or quantized data
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