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Dynamic modelling of a multibody system plays very essential role in its analyses. As a resullt, sev-
eral methods for dynamic modelling have evolved over the years that allow one to analyse multibody systems in
a very dficient manner. One such method of dynamic modelling is based on the concept of the Decoupled Nat-
ural Orthogonal Complement (DeNOC) matrices. The DeNOC-based methodology for dynamics madelling,
since its introduction in 1995, has been applied to a variety of multibody systems such as serial, parallel, gen-
eral closed-loop, flexible, legged, cam-follower, and space robots. The methodology has also proven useful
for modelling of proteins and hyper-degree-of-freedom systems like ropes, chains, etc. This paper captures the
evolution of the DeNOC-based dynamic modelling applied feedént type of systems, and its benefits cver
other existing methodologies. It is shown that the DeNOC-based modelling provides deeper understanding of
the dynamics of a multibody system. The power of the DeNOC-based modelling has been illustrated using
several numerical examples.

difficult to find an explicit expression for the system'’s inertia

in terms of its link lengths, masses, and joint angles. Hence,

development of the equations of motion is an essential step
Over the last two decades, applications of multibody dynam-for the dynamic analysis.
ics have eXpanded over the fields of robotics, automobile, There are several fundamental methods for the formula-
aerospace, bio-mechanics, and many others. With continuougon of equations of motion (Greenwood, 1988). For exam-
development in the above mentioned fields, many complexyle, Newton-Euler (NE) formulation, Euler-Lagrange prin-
multibody systems have evolved whose dynamics play a pivtiple, Gibbs-Appel approach, Kane's method, D'Alembert’s
otal role in their behaviour. Hence, computer-aided dynamicprinciple, and similar others. All the above mentioned ap-
analysis of multibody systems has been a prime motive tqyroaches when applied to multibody systems have their own
the engineers, as high speed computing facilities are readilydvantages and disadvantages. For example, NE approach,
available. In order to perform computer-aided dynamic analwhich is one of the classical methods for dynamic formu-
ysis, the actual system is represented with its dynamic modetion, uses the concept of “free-body diagrams”. For cou-
which has the information of its link parameters, joint vari- pled systems, constrained forces (which are meant here to
ables and constraints. The dynamic model is nothing but thencjude both forces and moments) along with those applied
equations of motion of the multibody system at hand derivedexternally are included in the free-body diagrams. Mathe-
from the physical laws of motions. For a system with fewer matically, the NE equations of motion lead to three trans-
links, it is easier to obtain explicit expressions for the equa-|ational equations of motion of the Centre-of-Mass (COM),
tions of motion. However, finding equations of motion for and three equations determining the rotational motion of the

complex systems with many links is not an easy task. Somerigid body. The NE equations of any two free bodies are
times even with 4 or 5 links, say, a 4-bar mechanism, it is



related through the constraint forces acting at their interfacein the motion of a system. Hence, extra calculations are re-
The constraint forces arise due to the presence of a kineguired in motion studies. To avoid such extra calculations,
matic pair, e.g., a revolute or a prismatic, between the twothere are formulations proposed in the literature where the
neighbouring bodies. For an open-loop multibody system,equations of motion in the Euler-Lagrange (EL) form are ob-
these constraints along with other unknowns, i.e., the actutained from the NE equations. Huston and Passerello (1974)
ating forces can be easily solved recursively. However, for awere first to introduce a computer oriented method to re-
closed-loop system, the NE equations generally need to bduce the dimension of the unconstrained NE equations by
solved simultaneously in order to obtain the driving and con-eliminating the constraint forces. Later, Kim and Vander-
straint forces together. Hence, the use of the NE equations gfloeg (1986) derived the equations of motion in terms of rela-
motion for closed-loop systems is not @8aent as those for  tive joint coordinates from Cartesian coordinates through the
open-loop systems. use of velocity transformation matrix. Velocity transforma-
Euler-Lagrange (EL) formulation is another classical ap-tion matrix relates linear and angular velocities of the links
proach which is widely used for dynamic modelling. The EL with joint velocities. It is worth noting here that the vector
formulation uses the concept of generalized coordinates inef constraint forces is orthogonal to the columns of the ve-
stead of Cartesian coordinates. It is based on the minimizalocity transformation matrix. More precisely, the columns of
tion of a functional called “Lagrangian” which is nothing but the velocity transformation matrix span the nullspace of the
the diference between kinetic energy and potential energy ofmatrix of velocity constraints. Hence, the said velocity trans-
the system at hand. For open-loop multibody systems, wheréormation matrix is also referred to as an “orthogonal com-
typically the number of generalized coordinates equals thegplement matrix”. The phrase “orthogonal complement” was
degree-of-freedom of a system, the constraint forces do ndfirst coined by Hemami and Weimer (1981) for the modelling
appear in the equations of motion. For closed-loop multi-of nonholonomic systems. Orthogonal complements are not
body systems, however, the forces of constraints appear asnique. In some approaches, it was obtained numerically,
Lagrange’s multipliers. e.g., using singular value decomposition or treating it as an
Kane's formulation (Kane and Levinson, 1983), which is eigen value problem (Wehage and Haug, 1982; Kamman and
same as the Lagrange’s form of D’Alembert’s principle, hasHuston, 1984, Mani et al., 1985), which are computationally
also been used by many researchers for the development afefficient.
equations of motion. It is found to be more beneficial than Alternatively, Angeles and Lee (1988) presented a
other formulations when used for systems with nonholo-methodology where they derived an orthogonal complement
nomic constraints. Several other methods of dynamic for-naturally from the velocity constraints. Hence, the name Nat-
mulations were also proposed in the literature. For exam-ural Orthogonal Complement (NOC) was attached to their
ple, Khatib (1987) presented the operational-space formumethodology. The NOC matrix, when combined with the NE
lation, whereas Angeles and Lee (1988) presented the nakquations of motion, leads to the minimal-order constrained
ural orthogonal complement (NOC) based approach. Blajedynamic equations of motion by eliminating the constraint
et al. (1994) have also presented an orthogonal complemeribrces. This facilitates the representation of the equations of
based formulation for the constrained multibody systems.motionin Kane's form that is suitable for recursive computa-
Park et al. (1995) presented robot dynamics using a Lie groupion in inverse dynamics or in the EL form that is suitable
formulation, while Stokes and Brockett (1996) derived the for forward dynamics and integration. Later, Angeles and
equations of the motion of a kinematic chain using conceptdvia (1988), Cyril (1988), Angeles et al. (1989), and Saha and
associated with the special Euclidean group. McPhee (1996Angeles (1991) showed thdfectiveness of the use of the
showed how to use linear graph theory in multibody sys-NOC matrix while applied to systems with holonomic and
tem dynamics. Cameron and Book (1997) described a techronholonomic constraints.
nique based on Boltzmann-Hamel equations to derive dy-
namic equations of motion. Comprehensive discussion on
dynamic formalisms can be found in the seminal text by
Roberson and Schwertassek (1988), Schiehlen (1990, 1997f5ubsequently, Saha (1995, 1997) presented the decoupled
Shabana (2001), and Wittenburg (2008). Recent trends in dyform of the NOC for the serial multibody systems. The two
namic formalisms can also be found in the work by Eberhardresulting block matrices, namely, an upper block triangular
and Schiehlen (2006). and a block diagonal matrices, are referred to as the Decou-
pled NOC (DeNOC) matrices. In contrast to the NOC, the
DeNOC matrices allow one to recursively obtain the analyt-
ical expressions of the vectors and matrices appearing in the
It is pointed out here that the Newton-Euler (NE) equationsequations of motion (Saha, 1999a). This in turn helps to an-
of motion are still found to be popular in the literature of alytically decompose the Generalized Inertia Matrix (GIM)
dynamic modelling and analyses. However, it requires so-arising out of the constrained equations of motion of the sys-
lution of the constraint forces which do not play any role tem at hand, allowing one to obtain analytical inverse of the



GIM (Saha, 1999b) and a recursive algorithm for forward and applications. Rest of the paper is organized as follows:
dynamics (Saha, 2003). Later, Saha and Schiehlen (20013ect. 2 presents the DeNOC-based dynamic modelling for
showed the power of the DeNOC matrices in obtaining re-serial-chain systems, which forms the basis for the dynamic
cursive algorithms for the dynamics analyses of closed-loopmodelling of other type of systems, e.g., tree-type systems
parallel systems. Subsequently, Khan et al. (2005) illustrateaxplained in Sect. 3. Application to closed-loop systems is
the dfectiveness of the DeNOC-based methodology in mod-explained in Sect. 4, whereas two software, namely, Robo-
elling parallel manipulators. Inspired by the concept of the Analyzer and ReDySim, developed for the use by the stu-
DeNOC matrices, Dimitrov (2005) used a similar method for dents and researchers of multibody dynamics are explained
dynamic analysis, trajectory planning, and control of spacein Sect. 5. The computational aspects are provided in Sect. 6.
robots. Garcia de Jalon et al. (2005) have also derived maFinally, conclusions are given in Sect. 7.

trices which they have pointed out to be similar to the De-

NOC matrices of Saha (1995, 1997). The DeNOC matri-

ces have also found an application in the architecture de-

sign of a manipulator through its dynamic model simplifi-

cations (Saha et al., 2006). More recently, Chaudhary and'he Natural Orthogonal Complement (NOC) matrix pro-
Saha (2007) have applied the concept of the DeNOC maposed by Angeles and Lee (1988) relates the angular and
trices for the dynamic analyses of general closed-loop systinear velocities of the rigid bodies in a mechanical system
tems. They have also introduced the concepts like “deterto its associated joint-rates. It is used to develop a set of in-
minate” and “indeterminate” subsystems which helped todependent equations of motion from the unconstrained or un-
achieve subsystem-level recursions for the inverse dynameoupled Newton-Euler (NE) equations using free-body dia-
ics of a general closed-loop system. Systems with closedgrams. These independent set of equations was referred by
loops which are used in automobile steering systems werghe authors as the Euler-Lagrange equations of motion. Un-
analyzed by Hanzaki et al. (2009), whereas fuel injectionlike the NOC, its decoupled form, i.e., the DeNOC, proposed
pumps of diesel engines with rolling contacts were ana-py Saha (1995, 1997), allows one to write the expressions of
lyzed by Sundarranan et al. (2012). Extending the concepkach element of the matrices and vectors associated with the

of the DeNOC matrices to other type of systems, Mohandynamic equations of motion in analytical recursive form.
and Saha (2007) showed how to derive the DeNOC ma-

trices for a rigid-flexible multibody system. The methodol-

ogy not only provided ficient dynamic algorithms but also

produced numerically stable results. Very recently, Shah ef\n open-loop serial-chain system, e.g., a robotic manipula-
al. (2012a) introduced a concept of “kinematic module” to tor shown in Fig. 1, has a fixed-base, denoted by #0,rand
a tree-type multibody system and derived module-level De-moving rigid bodies or links, indicated with #1, ..n#ou-
NOC matrices, which provided macroscopic purview of the pled byn single degree-of-freedom (DOF) kinematic pairs
multibody systems. Moreover, intra- and inter-modular re-Or joints numbered as 1, .n, The joints are generally revo-
cursive algorithms were derived for the analyses and conlute or prismatic. In presence of higher-DOF joints, they are
trol of legged robots (Shah, 2011; Shah et al., 2013). It wagnodelled as combinations of single-DOF joints. For exam-
shown that the concept of Euler-angle-joints (EAJs) (ShahPle, a spherical joint can be modelled as three intersecting
et al., 2012b) coupled with the module-level DeNOC matri- revolute joints, whereas a cylindrical joint is modelled as a
ces provided veryféicient dynamic algorithms for the multi-  combination of revolute and prismatic joints. Few terms are
body system consisting of multiple branches and multiple-defined below which will be used throughout the paper for
degrees-of-freedom joints. The algorithms have been implethe derivation of the dynamic models.

mented in a free software called ReDySim (acronym for The 6-dimensional vectors, twist;) of thei-th rigid link
Recursive Dynamic Simulator), which can be downloadedundergoing motion in the 3-dimensional Cartesian space and
free from httpy/www.redysim.co.nr ReDySim can be eas- Wrench ), acting on the-th link are defined by:

ily used by the students and researchers of multibody dy- w; n;

namics. Note here that the DeNOC-based algorithm was alsé = [ .| andwi= [ f. ] @)
used by the researchers from other domain, e.g., Patriciu et ) ) ' ) )
al. (2004) have adopted the concept for the analysis of conWhere i is the 3-dimensional vector of angular velocity,

formational dependence of mass-metric tensor determinant@ndVi is the 3-dimensional vector of linear velocity of the
in serial polymers with constraints. mass centerq;) of thei-th link, whereas; and f; are the 3-

The main motivation behind this paper is to bring forth the dimensional vectors of the moment and force applied about
developments of the DeNOC-based dynamic modelling forand atCi, respectively. The &6 matrices of mas;, and
multibody systems, which have taken place over more tharfgular velociyi, of thei-th body are represented by:
one and half decades. The paper explains the fundamental i O wix1l O
principles of the DeNOC-based formulation, their benefits ™' 0O ml O O ] )

and W; =
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wherew; x 1 is the 3x 3 cross-product tensor associated with
the angular velocity vectan; which when operates on any
3-dimensional Cartesian vectgrleads to the cross-product
vector betweerw; and x, i.e., (wj x1)X = wj x X. Also, 1
andO are the 3« 3 identity and zero matrices, respectively,
wheread; andm; are the 3x 3 inertia tensor about;, and
the mass of theé-th link, respectively. For the serial-chain
mechanical system shown in Fig. |, the method to obtain the

written in a compact form as
tiZBijtJ‘+ﬂéi 4)

whereB;; is the 6x 6 matrix andp, is the 6-dimensional vec-
tor which are given by

: : : , o m.o=| 1 O _| =
dynamic equations of motion using the DeNOC matrices isBij = Gjx1 1 andp = e xd ®)
as follows:
. . Here, ¢; is the 3-dimensional position vector fro@ to C;
— Derive the DeNOC matrices. given byc;; = —d; —rj, andc;j x 1 is the cross-product tensor
— Obtain the unconstrained NE equations of motion from associated with vector;. It is defined similar tow; x 1 of
the free-body diagrams of each link, and Eq. (2). Moreoverg is the unit vector parallel to the axis

of rotation of thei-th revolute joint. Interestingly, matrii;;
— Couple the DeNOC matrices with the unconstrained NEand vectorp, have the following interpretations:
equations to obtain a set of constrained independent

equations of motion which are same as the system’s EL — [f links #i and # are rigidly attachedB;; propagates
equations of motion. twist or velocities of # to #. Hence,B;; is termed in

Saha (1999a) as thevist-propagationmatrix, which
The above steps are explained next in the following subsec-  gatisfies

tions.
Bij Bjk = Bik and Bi=1 (6)

— On the other hand the vectqy takes into account the
motion of thei-th joint. Hence, vectop, is termed as the
joint-rate-propagationvector. The vectom in Eg. (5)
is defined for a revolute joint. For a prismatic joint, it is

The kinematic constraints in terms of the velocities of two
neighbouring links, sayti and#j, coupled by a revolute joint,
as shown in Fig. 2, are given by

wi = wj + 68 (3a) given by
Vi=Vj+wjXrIj+wixd (3b) gs[ 0 (7
€

wherew; andv; are the angular velocity and velocity of the

mass of linkj, i.e.,C;, respectively. Similarlyw; andv; are  Equation (4) can be written for=1, ...,n, as

defined for the neighbouring link whereas), is the joint- _

rate of thei-th joint. The above six scalar equations can be(1-B)t = Ngy0 (8a)



wherel is the 61x 6n identity matrix, and the i6x 6n matrix
B has the following representation:

O O 0]
B,y O 0]

= . (8b)
O - Bpn1 O

It is now simple matter to invert then 6n matrix, (L — B),
and hence, Eqg. (8a) can be rewritten as

t = N@, where N =N|Ng (9a)
In Eq. (9a), the matrixN is the 1xn Natural Orthogo- O/// X
nal Complement (NOC) matrix, as introduced by Angeles
and Lee (1988), whereag andNy are the decoupled form Inertial frame
of the NOC or the DeNOC matrices proposed first time in Eree-bodv di ¢ thieth link
Saha (1995). Thertx 6n matrix N; and the & x n matrix Ng ree-body diagram ot theth fink.
are given by
1 O ... O
B 1 - 0 :
Ni= .21 . . and Miti + WiMiti = w, (12)
B.nl B'n2 1 wheretj, wi andWi, M; are defined in Egs. (1) and (2), re-
0 0 spectively. Moreover; is the time derivative of the twid
%1 0 of thei-th link. For the whole system afrigid links, the &
Ng= P2 (9b) scalar equations (far=1, ..., n, wheren is the number of
oo T moving rigid links in the serial chain system) can be written
0O 0 - p, as
Note that in Eq. (9b)N; is a lower block-triangular matrix, Mt+WMt=w (13)
wheread\y is a block-diagonal matrix, as indicated through .
their subscripts “I" and “d”, respectively. Moreoved,and0 In Eq. (13),t is the time derivative of the generalized twist,

are the 6< 6 matrix of zeros and the 6-dimensional vector of MoreoverM andW are the & x 6n generalized mass matrix
zeros, respectively. Thedimensional vecto# is defined as  and generalized matrix of angular velocities, respectively,

ie.,
. . A
=00 .64 (10) M =diag[My,---,M;] and W =diag[W1,--- ,W,] (14)
which contains the joint-rates of all the joints in the serial- Moreover,w andt are the @&-dimensional vectors of gener-
chain system shown in Fig. 1. alized wrench and twist, respectively. They are defined as
w= [WI ,WI]T and t= [tI ,tI]T (15)

The unconstrained or uncoupled Newton-Euler (NE) equa-

tions of motion for the-th rigid-link (Saha, 1999a) can be

written from its free-body diagram, Fig. 3, as The kinematic constraints in velocities, i.e., Eq. (9a), then
can be incorporated into the unconstrained NE equations of

liwi + o xlio = (118 motion, Eq. (13). This is done by pre-multiplying with

. the & unconstrained NE equations of motions of Eq. (13),
my = f; (11b) e,
wherew; andv; are the angular acceleration and accelerationyT™ (M i+ WM t) -NT (WE " WC) (16)

of the mass centet;, respectively. Moreovet; is the 3x 3

inertia tensor of-th link about its mass cent€&;, andm is its wherew is substituted asw=wF +wC, in which wE and
mass. Other variables were defined after Eq. (1). The abovgf are the @-dimensional vectors of external and constraint
six scalar equations can be put in a compact form as wrenches, respectively. Since the constraint wrenches do



not do any work NTw® vanishes (Angeles and Lee, 1988).
Hence, N"w® = 0. Substituting the expression df from
Eq. (9a) and its time derivativé,= N4+ N¢ into Eq. (16),
one can get tha independent scalar dynamic equations of
motion, namely,

The inverse dynamics of a serial-chain system is defined as
the process of determining the joint forglesques when the
joint motions of the system are known. The inverse dynamics
algorithm calculates the joint torquas, fori = 1, ...,n, in two
recursive steps, namely, forward and backward recursions.
They are given below.

1§+CO=1 (17)
where, | =NTMN: the nxn generalized inertia matrix
(GIM); C=NT(MN + WMN): the nx n matrix of convec-
tive inertia terms (MCI); and = NTwF: the n-dimensional
vector of generalized forces of driving, and those resulting
from gravity, dissipation, and other external forces like foot-
ground interaction of a walking robot, etc., if any.

First, the 6-dimensional twist and twist-rate vectors of each
link, i.e., tj andt;, respectively, are calculated, fio£l, ...,n,
using the following relations:

ti = Bij_1ti-1 + p6; (22)
The analytical expression of the generalized inertia matrixti = Bii-1ti-1 +Bij-ati-a + péi + 6 (23)
(GIM) appearing in Eq. (17) plays an important role in )
simplifying, mainly, the forward dynamics agorithm (Saha, Wi = Miti + WiM;t; (24)

1999a, 2003). In this section, the GIMis derived using
the expressions of the DeNOC matrices (Saha, 1995, 19
19994, b, 2003). Substituting the expressions of the DeNO
matrices given by Eq. (9b) into the expression of the GIM
appearing after Eq. (17), one gets

Q)n the above equationsy = 0 andto = 0, as link #0 is fixed
dli/ithout any motion.

The 6-dimensional vectoW;, and the scalar;, fori=n, ...,

— NTN7 1 = NT
I =NgMNag, where M =N MN; (18) 1, are calculated using the following relations:
The 1 x 6n symmetric matrixVl can be written as _ _ N
Y W = B;I:rl,iwi*'l’ and T = QTWi (25)
~ T T
My By M Bgl'\f' n where fori = n, Wn,1 = 0, as there is non(+ 1)st link in the
. M2B21 Mgy BoMn S :
M = (19) system. Hencel, = w,. The dfect of gravity can also be
: : : taken into account by providing negative acceleration due to
MnBni MnBpo M, gravity, g, to the twist-rate of the first link as an additional

B term (Kane and Levinson, 1983), i.e.,
where the 6 6 matrix,M;, fori =1, ---, n, can be obtained

recursively, i.e., t1 = pf + 161+ p, where p=[0",-g'| (26)
Note that Egs. (22)—(26) were reported in Saha (1999a) with
different notations, which actually have the same interpreta-
tions as given above, i.e., twist), twist-rate ¢;), wrench

of composite bodyW;), etc. Based on the above mentioned

Mi =M, +B,;Mi,1Bi.1;

i+,

(20)

in which M;,; =0, pecause there is ncml(l)st link in the
serial-chain. HenceéMl , = M. The matrix, M, is interpreted

as the mass matrix of theomposite Bodyi, that consists
of rigidly connected links ¥ ..., #h, as indicated in Fig. 1.
Finally, thenx n GIM | can be expressed as

i]_]_ sym

| = s Whereiij = HTMiBiJ’ pj (21)
inl inn

fori=1,..,n; j=1,..,i. The termj;; is a scalar and “sym”

denotes symmetric elements of the GIM

recursive inverse dynamics algorithm, a computer program
was developed in €+ which was called RIDIM (Recursive
Inverse Dynamic for Industrial Manipulators) (Saha, 1999a).
Recently, a similar algorithm has been rewritten in Visual
C# and implemented in the “IDyn” module of the newly de-
veloped software called RoboAnalyzer (Rajeeviochana and
Saha, 2011; Rajeevlochana et al., 2012) which also has 3-
dimensional visualisation of the system under study. It is
explained in Sect. 6.1, and available free frbitp;//www.
roboanalyzer.corfor the benefits of students and researchers
of multibody dynamics community.
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Prismatic
Joint 3

Forward dynamics of a serial-chain system is defined as the
process of determining the joint accelerations when the joint- Revolute
actuator torqueforces of the system are known. In order to  Joint 2
compute the joint acceleratiodsrecursively, the GIM) of
Eq. (17), is decomposed &s= UDUT (Saha, 1995, 1997,
1999b) based on the Reverse Gaussian Elimination (RGE)
method, whereJ andD are upper triangular and diagonal  grayity
matrices, respectively. THeDUT decomposition results in
an dficient ordern, i.e., O(n), computational algorithm in
contrast taO(n®) computations required by the Cholesky de-
composition of the GIM (Strang, 1998).

For the development of recursiv@(n) forward dynam-

Revolute
Joint 4

Revolute
Joint 5
Revolute

¢ Joint 6

~

Revolute
Joint 1

ics algorithm, the constrained dynamics equations of motion) The Stanford arm.
Eq. (17), are rewritten as
UDUT0=¢ (27)
whereyp = - C#. Then, three recursive steps are used to cal-Solution foré, where,d = U~T%. It is found as follows: For
culate the joint accelerations, which are given below. i=2,..,n
b =7~y (33)

Solution for#, where? = DUT0 = U 2. Itis found as fol-  wherew;;_y = Bjj_1;_1, #i_1 = B_16i1 +Hi_1j_p, and fori =
lows: Fori=n-1, ..., 1, calculate 1,p0=0.
. T Based on the above mentioned forward dynamics algo-
T=¢i= B (28) " fithm, another G+ program RFDSIM (Recursive Forward
wherer, ., is the 6-dimensional vector obtained recursively Pynamic and Simulation of Industrial Manipulators) was
as ' written which was reported in Saha (1999a). A similar al-

. gorithm was rewritten in Visual C# and implemented in the
Mijs1 = Biigimier and m,q = Tialing + Mg ipo (29)  “FDyn” module of RoboAnalyzer software (Rajeevlochana

et al., 2012;httpy/www.roboanalyzer.cojnwith which one
can see animation of the systems under study. The numerical
integrator used in RoboAnalyzer for the simulation purposes

A A T is based on the Runge-Kutta 4th order method (Bathe and
, Wherey; =M;p and M = p' ¢; (30) Wilson, 1976).

in which ..., =0, and the 6-dimensional vectar;,; is
evaluated using the following relations:

¥ =

3)"&)

In Eq. (30), the 6 6 matrix,M; is obtained recursively as
Mi =M, + B, Mi.1Bi.1j,

L The dynamic analyses of the 6-link 6-DOF serial-chain sys-

where M, = Mi,1 — Yi.ay],,and My = M, (31)  tem with both revolute and prismatic joints, namely, the Stan-
ford arm as shown in Fig. 4, were carried out using RoboAn-
alyzer. The Denavit and Hartenberg (DH) paramters, which
were proposed by Denavit and Hartenberg (1955), and the
mass and inertia propoerties are taken from Saha (1999a) as
per the notations explained there and in Saha (2008). The
numerical values are not reproduced here since the focus of
this paper is to review the DeNOC-based formulations and
their applicability. However, the joint torques (Joints 1-2, 4—
6) and force (Joint 3) obtained from the “IDyn” module of
RoboAnalyzer software for the following joint input motions

Solution forz, where# = UT = D-1%. Itis found as follows: ~ are plotted in Fig. 5:

fori =1,..,n, o (T)—9 (0) T on
_ 6, = 6 (0) + ————~ [t - —sin(—t)]
32) T 21 T

_4
m for i=1,2,4,56 (34)

The 6x 6 symmetric matriXVl; is the mass matrix ofrtic-
ulated Bodyi, defined as the linksi#..., #h, coupled by the
jointsi+1, ...,n. This is in contrast to the definition of the
Composite Bodyi, given after Eq. (20), where the links are
rigidly connected, i.e., the joints are locked. Note that the
mass matrix of thé-th Articulate BodyM; is nothing but the
Articulated-Body-Inertia (ABI) of Featherstone (1987).
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N A tree-type system has a set of links connected by kinematic
S S S 184 ; ; ; P :
g, g 1705 g pairs, typically, a revol_ut_e ora prlsmatl_c joint, as showrl in
- - = 182 Fig. 7. Other type of joints, say, a universal or spherical,
ol 179 180 and a cylindrical, can be modelled as a combination of two
0 05 o 05 o 0.5 or three intersecting revolute joints, and a pair of revolute-
time(s) time(s) time(s)

prismatic joints, respectively, as mentioned in the beginning
Simulated joint motions for the free-fall of the Stanford Of Sect. 2.1. Based on the modelling of serial-chain systems,
arm. Shah et al. (2011, 2013) extended the methodology to model
a tree-type system. For this, the tree-type system was as-
sumed to be a combination of several serial-chain systems
called “kinematic modules”. Consequently, multi-modular
bs (T) = bs (0) T (2n recgrsive algorithms for the tree_-type syste_ms were presented
T [ =5 n(?t)] (35)  against “full-body-level” recursive dynamics algorithms of
Featherstone (1987) and Rodriguez (1992). Each “module”
whereg; (0) = 0, fori = 1-2, 4-6 and (0) = 0 are the vari-  Of the tree-type architecture was defined as a set of serially
able DH parameters (Saha, 2008) or the joint variables afonnected links emerges from the last link of its parent mod-
time T = 0, whereas the total time of motion i§,= 10s.  ule. For example, as indicated in Fig. 8, the parent module of
Gravity was acting in the negativg @irection. The variable, ~Mi is moduleMp.
7, fori = 1-2, 4-6, and in Fig. 5 are the joint torques and _ For the analyses purposes, the tree-type system was first
force’ respective'y_ The results were verified with those re_kinematica”y modularized before its kinematic constraints
ported in Saha (2008). were derived. The modules are denoted Wi, M1, My,

The forward dynamics and simulation of the Stanford armetc., where a child module bears a number higher than its
was also performed using “FDyn” module of RoboAnalyzer. Parent module. Moreover, the links inside any module, say,
The Stanford manipulator was assumed to fall freely underMi, are denoted as #1... , #]', where the super-
gravity without any external torques and force at the actu-SCripti signifies the module number. Considering the tree-
ating joints. The initial positions were taken same as in thetype system, there arenumber of modules in the system,
inverse dynamics analysis given after Eq. (35). The resultend there arg' number of links in thé-th module. The to-
are p|0tted in F|g 6 where the variations of the ]0|nt mo- tal number of links in the whole SyStem is then obtained by

S
tions with respect to time are shown. The results were alsq = 2,7 The kinematic constraints were next derived at the
verified with those reported in Saha (2008).

b3 = b3 (0) +

mtra-modular level, i.e., amongst the links inside a module,
and inter-modular level, i.e., between the modules. The dy-
namic analyses were done using intra- (Inside the module)



how the simplest form of the NE equations of motion given

Q by Eq. (1) can be used with the definition of the DeNOC ma-
Ms 7 trices, as demonstrated in the original work of Saha (1995,
0 1997, 19994, b, 2003).
ﬁ Now, with the new definitions of; with respect toO;,
. Q’G Eq. (4) is rewritten as
\ ti = Ajjtj + QQ (36a)
Qoéziznam wheret; andt; are the 6-dimensional twist vectors defined in

Eq. (1) but with respect to (w.r.t.) the new definitiongfi.e.,
w.r.t. pointQ;. Accordingly, the 6<6 matrix A;; is the new
twist-propagation matrix. A diierent notation is used here to
distinguish it fromB;; which was defined after Eq. (4) w.r.t.
the definition of the velocity o€;. The 6x 6 matrixA;j, and
the 6-dimensional joint-rate-propagation vecrare given
by

1 @)
a;,—xl 1

S
0

The multi-modular tree-type system.

Aij = , and

and inter-modular (between the modules) recursions, as prep, =[ ] for revolute; p =[ 0 ] for prismatic  (36b)
sented in Fig. 9. &

where the 3-dimensional vectay is shown in Fig. 2. Notice
the change in the expressionwfin Eq. (36b) in comparison

. ] ) . to the same in Eq. (5) whexgwas defined w.r.iC;. For seri-
Intra-modular kinematic constraints affeetively the veloc- ally connected rigid links in theth serial-chain module, one

ity constraints between the links of a serial-chain system decan write the expression for the generalized t\/\usl$|mllar
rived in Egs. (3—10). Here, however, a little modification is to Eq. (9a), as

proposed in the definition of each link’s linear velocity In
contrast to the definition of the velocity of the mass center of-
thei-th link, C;, asv; of Eq. (1), itis defined in this section as ti =
the velocity of pointO; where the-th joint couples thg-th
link with the i-th one, as indicated in Fig. 2. Such definition v
of v in twist expression of Eq. (1) was necessitated mainly toand ther'-dimensional generalized joint-rates vecérare
take care of the branching issue of the serial-modules in thelefined as follows:

tree-type system, as shown in Fig. 8. The velocity ofittie

Niai, where Ni = [N|Nd]i (37)

In Eq. (37), the §'-dimensional generalized twist \_/ectar

link defined here with respect ©; (sometimes referred to t 01
as the origin of thé-th link). It is actually the velocity of the _ :
previous link at its connection point, namely, the last link of ;i =| t | and Z’i =| 8, (38)

the parent module where the first link of the child module is
coupled. Hence, where branching occurs no additional com- :

putations are required for the calculation of the velocity of t, (9,7

the first link belonging to the child module. This was not the

case with the definition of the velocity of theh link with ~ where a bar (*”) over an entity in Egs. (37) and (38) sig-
respect to its mass cent€r in which additional computa- nifies that the quantity is related to a module and the super-
tions would be required to calculate the Ve|ocity of the massSCl'ipt,i, outside the brackets identifies the module. As a con-
centerC; from the originO;. Moreover, as the main objec- sequence, the generic notatign(or ty) in Eq. (38) is the
tive of dynamic analyses is to calculate either joint torques6-dimensional twist vector for tHe" link in thei-th module.

or joint motions, selection db; as a reference point, instead The 67'x6r' and 6 ' DeNOC matrices for the serial-chain
of theC;, can lead to ficient recursive inverse and forward Module, denoted a¥; andNg, respectively, are given by
dynamics algorithms, as shown by Shah et al. (2011, 2013).

In fact, for the serial-chain systems considered in Sect. 2, the

same definition with respect 10, could have been adopted.

This was done with the “IDyn” and “FDyn” modules of the

RoboAnalyzer software. In Sect. 2, however, it was shown
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Recursive dynamics algorithms (Shah, 2011; Shah et al., 2013).
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Nd\ = . . . (39)
0O O P,

Having obtained the intra-modular kinematic constraints inA

the velocity-level, it is now possible to derive the inter-
modular kinematic (velocity) constraints, i.e., between two
neighbouring serial-chain modules. In a way, each module
has been treated similar to a link in a serial-chain module
presented in Sect. 2 or Sect. 3.1. For this, modujgs con-

sidered as the parent of modMg, as shown in Fig. 8. This
is similar to link j of Fig. 2 which is the parent of link The

6r'-dimensional generalized twidf is then obtained from
the 67°-dimensional generalized twis} as

Ei = Ki’/ﬁ/; + Niéi (40)
whereﬂiﬁ is the 6' x 67° module-twist-propagation matrix
which propagates the generalized twist of the parent module
(B) to the child moduleif andN; is the 6;' x;' module-joint-
rate propagation matrix, which are given by

O O Ali’,?ﬁ
ip=| P (41a)
@) O A,p



and

pP1 0 0
N =[NNg =| 2 (41b)
Appr Apl - P

The vectors?i and 6, are defined in Eqg. (38). Next, Serial chain
the @-dimensional generalized twist vectoy and then- '@ inside ith module
dimensional generalized joint-rate vectéyrfor the whole

tree-type system which comprises ©fmodules ana links
are defined as

- - - 9T Definition of y;.
t= [tT tI R L ] and

. S z =17
95[ 6, 6, - o8 - 6l ] (42)  matricesN, andNg are the desired Decoupled Natural Or-
thogonal Compliment (DeNOC) matrices for the whole tree-

wheret, and 8, correspond to the base moduly which ~ YP€ System at hand. Note here that the matribesindNg

may not be fixed. For example, in the case of a spacecrai‘?f Eq. (9b), and\y a_nde. Of. Eq. .(39)’ are the special cases
carrying a manipulator, the spacecraft floats with motion ofOIc the DeNOC matrices derly ed n Egs. (44) and (45)’ where
6-degrees-of-freedom (DOF). For the analysis purposes, it?ach module has only one link without any branching.
motion need to be specified for further motion analyses of
other modules, e.g., the manipulator of the above system.
Upon substitution of the expressionshffrom Eq. (41b),
for i=1,.., s in Eg. (40), and manipulating the expres-
sions like Egs. (8)—(9), one obtains the expression of the 6
dimensioanl generalized twistfor the whole tree-type sys-
tem as

In contrast to the expressions for the Newton-Euler (NE)
equations of the-th link given by Eq. (11) or (12), a de-
viation in their expressions will be observed. This is due to
the modified definition of the velocity of theth link, i.e.,v;,
with respect to poin®;. This was mentioned in Sect. 3.1. The
NE equations of motion of thie-th link (as the letter i will

be used to denote module) of théh module with respect to

in which, N andNg are the 66+ 1)x 6(n+ 1) and 6+ 1) x point Ok can be expressed as (Shah et al., 2011, 2013)
(n+ ng) matrices, respective_ly, as the tree-type System wag, ¢, + mydy x Vi + i X |y = Ny (46a)
assumed to have modulé, with one-link withng DOF. Ma-

tricesN; andNy for the tree-type system are given by

t= N|Nd9 (43)

1 MVk — Milie X @k — i X (Mt X wi) = fi (46b)
ﬁlo _11 _ O's Combining Egs. (46a)—(46b), one can obtain an expression
N =| Ao Az 12 , equivalent to Eq. (12) as
I Mt + QM Exctie=wi (47a)
Ay Ag - - 1
_ ) where the 6< 6 matricesM, Qi, andEy are defined as
where Aji =0, if M; ¢y (44)
M, = I medy x 1 O, = wox1l O
and K=l -madkx1l md | TS| 0 wxx1 |
No O's and Ey = [ 1o ] (47b)
Ny O O
Ng = (45) Note in Eq. (47b), thalt, is the 3x 3 mass moment of inertia

o ' N tensor of thek-th link aboutOx. Combining Eq. (47a) for all
S s n' links of thei-th module and for alk modules, one can

_ _ . i ) write a compact expression equivalent to Eq. (13) as (Shah et
In Eq. (44),1 is the 6;' x65' identity matrix, whereag; al., 2011, 2013)

stands for the array of all modules including modMgeand _
outward to it, as shown within dashed line of Fig. 10. The Mt + QMEt=w (48)
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Z (Vertical)
at ankles
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(Forward)
(a) Biped architecture (b) Modules of the biped
A 7-link spatial biped.

where matrice!, Q, andE are the 6+ 1)x 6(n+ 1) block- 0.2 0.02 2
diagonal matrices defined similar to Eq. (14). For detalils, N
readers are referred to the Ph.D. thesis of Shah (2011) or th¢ © = 001 A
book by Shah et al. (2013).

02, 0.5 % 0.5 o 05

time (sec) time (sec) time (sec)
(a) Trunk‘s COM
0.5 0 0.1

The constrained equations of motion for the tree-type sys- 002
tems are derived in this subsection in a similar manner to tha<
of the serial-chain system of Sect. 2, i.e., pre-multijyN

of Eq. (43) to the unconstrained NE equations given by o s % s o 05
Eq. (48) to obtain a set of constrained independent equation fme foect me foect me foect

of motion by eliminating the constraint wrenches. These con-
strained equations are also referred to as the Euler-Lagrangg Designed trajectories of the trunk's center of mass

equations of motion of the tree-type system at hand. They argcom) and ankle (Shah, 2011; Shah et al., 2013).
given by

(b) Ankle of the swing foot

1§+CO=1 (49)

wherel is generalized inertia matrix (GIMY; is the matrix
of convective inertia terms (MCI), andis the vector of gen-  In order to illustrate the recursive dynamics algorithms pre-
eralized driving forces, and due to gravity, dissipation, exter-sented in this section, ReDySim was used to analyze a spatial
nal forces, etc., which have expressions similar to those aftebiped shown in Fig. 11. The model parameters were taken
Eq. (17). from Shah (2011) which will appear in the book by Shah
Note that the expression of Eq. (49) is same as Eq. (17t al. (2013) also. They are not reproduced here due to the
but the sizes of the corresponding matrices and vectors areeasons cited in Sect. 2.8. However, the designed input mo-
different because they represent twdatent architectures of tions of the trunk’s centre-of-mass (COM) and ankle for sta-
the multibody systems. Based on Eq. (49), recursive inversdle walking (Shah, 2011) are shown in Figs. 12 and 13, re-
and forward dynamics algorithms for tree-type systems werespectively. Based on the inputs of Figs. 12 and 13, the inverse
developed by Shah (2011) and implemented in a softwarelynamics results were obtained which are shown in Fig. 14.
called ReDySim (Recursieve Dynamics Simulator) (Shah et Forced simulation was performed next, as reported in
al., 2012c). ReDySim was written in MATLAB environment Shah (2011), where the motion of the biped was studied un-
and available free frorhttp;//www.redysim.co.nr der the application of joint torques calculated above, i.e.,


http://www.redysim.co.nr
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Joint trajectories of the biped obtained from the trajectories of trunk and ankle (Shah, 2011; Shah et al., 2013).

those shown in Fig. 14. The joint motions were calculated — Extension of the body-to-body velocity transformation
using the forward dynamics module of ReDySim. The plots relationship to module-to-module velocity transforma-
for the simulated joint angles are shown in Fig. 15, along with tion relationship.

the desired one. It can be seen that the simulated joint angles ) ] )
match with the desired joint angles up to 0.1, i.e., until 0.1s — COmpact representation of the system’s kinematic and
movement of the biped. After this, the system behaves unex- ~ dynamic models.

pectedly as evident from the divergent plots of the simulated
angles in Fig. 15a. The deviation in the simulated angles is
mainly attributed to what is known as zero eigen-value ef-
fect (Saha and Schiehlen, 2001). The physical system may
also not behave as expected due to disturbances caused by— Module-level analytical expressions of the matrices and
unmodelled parameters like friction, backlash, etc., and non-  vectors appearing in the equations of motion.

exact geometrical and inertia parameters. Hence, a control ) o . . .

scheme must be considered, as this forms a part and parcel ~ Ease of investigation of any inconsistency in the results
of achieving proper walking. These aspects were explained ~ ©f modules without the need to investigate the whole
in detail in Shah (2011) and Shah et al. (2013), and not elab- ~ SyStéem.

orated further due to space limitation of the paper.

Note several advantages of the concept of the kinematic
modules in the dynamics modelling of tree-type systems con-
sisting of serially connected links (Shah, 2011; Shah et al.,
2013), which are as follows:

— Uniform development of the inverse and forward dy-
namics algorithms with inter- and intra-modular recur-
sions.

— Possibility of hybrid recursive-parallel algorithms,
where each module can be analyzed using recursive re-
lations in parallel.
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Torques at dferent joints of the biped (Shah, 2011; Shah et al., 2013).

wherew! is the -dimensional vector of generalized wrench
due to Lagrange multipliers acting at the cut joints. For the
The DeNOC-based dynamic modelling of serial-chain and4-bar mechanism shown in Fig. 16a, the two cut-open serial-
tree-type open-loop systems presented in Sects. 2 and 3hain subsystems are shown in Fig. 16b. The resulting open-
respectively, can be extended to closed-loop systems prdeop tree-type subsystems have one and two links, respec-
vided one cuts the closed-loops of a system at suitable lotively, connected by one and two one-DOF revolute joints.
cations to make it open. Note that, one needs to use suitOther terms have same meaning as in Sects. 2 and 3. In
able constraint forces at the cut-joints to represent the actuatq. (50),NTw® = 0 for the reason given after Eq. (16), but
presence of the joints. Such constraint forces are known ilNTw! # 0. These terms are now the new unknowns to the
the literature as Lagrange multipliers (Chaudhary and Sahanverse and forward dynamics problems that need to be eval-
2007, 2009, and others). The multipliers need to be evaluuated with the help of loop-closure constraints.
ated from the loop-closure constraints before they can be For the closed-loop 1-2-3-4 of the 4-bar mechanism shown
used as external forces to the resulting open-loop systemsn Fig. 16a, one can write
In this section, a planar 4-bar mechanism shown in Fig. 16 is
considered to illustrate the concept. However, the methodoly, | 5 - 4, + a, (51)
ogy is applicable to any general multi closed-loop systems,

as shown in Chaudhary and Saha (2007), Shah (2011), and e . . o
Shah et al. (2013). where 2-dimensional vectors of the planar systenior i =

Note that to model an open-loon svstem resulting from aO, 1, 2, 3, represent the relative position vectors of the joints
P b sy 9 in the 4-bar mechanism, Fig. 16a.fRirentiating Eq. (51)

glsosed-loop system, one needs to re-write Egs. (13) or (48 ith respect to time, one obtains

NT(Mt+ QME t) = NT(WE + W' +wC) (50) J6=0, whered=| 6, 6, 65| (52a)
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Simulated joint angles for the biped (Shah, 2011; Shah et al., 2013).
and the %3 Jacobian matrix for the 4-bar mechanism at handDeNOC matrices were also derived in Saha (2008). The re-

can be given by sulting constrained dynamic equations of motion for the two
subsystems are then written as

_| TS - @S2t a3S123 ~RS12+a3S123  —aAz3S123 LAl ol | N
7| aci+@axCip—asCipz  @Cip+azCizz A3Ci23 I'g' +Co =7 +(1) (54a)
(52b) ) '
|”0“ +C”0” — T“ +(T/l)|| (54b)

wheres;, = sin(01 + 62), S123 = Sin(@1 + 62 + 63), and similarly
c12 and cip3 etc. Equation (52b) was also derived in Depending on the type of dynamics problem, i.e., inverse

Chaudhary et al. (2007, 2009) as or forward, Egs. (54a)—(54b) can be solved using recursive
“subsystem” or “system” approach. For inverse dynamics,
Ji I Il “subsystem recursion” provides a bettéfi@ency, as pointed
J= , where J, =A,N' and J, = AN 53 '
Ju I = Ten = Ten (53) out by Chaudhary and Saha (2009).

In Eq. (53),N' andN" are the 6<1 and 12x 2 NOC matri-

ces for the two open-chain subsystems | and Il, respectively,

shown in Fig. 16b, whereas!,, andA! are the 6 and  For the numerical results, ReDySim software mentioned
2x 12 twist-propagation matrices for the last link from the in Sect. 3 was used using the lengths of crank (#1), out-
point of contact to its previous link to the point where the put link (#2), coupler (#3) and fixed-base (#0) as 0.038 m,
jointis cut, i.e., Joint 4 of Fig. 16b. Such Jacobians using the0.1152 m, 0.1152 m and 0.0895 m, respectively. The masses
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A 4-bar mechanism. parisons of computational complexities required by several
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400 0s (Fig. 19a), 2-DOF (Fig. 19b), 3-DOF (Fig. 19c) and equal
w50 0, o4 numbers of 1-2- and 3-DOF joints (Fig. 19d). It may be seen
s that the recursive inverse dynamics algorithm given in Fig. 9
e 0 of Sect. 3 performs as fast as the fastest algorithm available
g 250 e o 0, S in the literature when the system has only 1-DOF joints, as
2 200 S g ™ evident from Fig. 19a. However, when multiple-DOF joints
§ 150 g 0 are introduced in the system, the algorithms of Sect. 3 (Shah,
e 5 -01 2011), which have been implemented in ReDySim, outper-
R N 02 forms the other algorithms available in the literature. This is
50 S -0 -03 clear from Fig. 19b—d.
o 04 From Fig. 20, it is also clear that the forward dynamics al-
0 e Lo 0 S et Y*  gorithm of Fig. 9 explained in Sect. 3 (Shah, 2011) performs
better than any other algorithm available in the literature.
(a) Joint angles (b) Joint torques

More the number of multiple-DOF joints, more the improve-
ment in the computationatiéciency, as shown in Fig. 20b—d.
This is mainly due the implicit inversion of the GIM based on
the Reverse Gaussian Elimination (Saha, 1995, 1997) of the

of the crank, output link and coupler were taken as 1.5 kgs,GlM' and simplification of the expressions associated with

3kgs and 5kgs, respectively. The input joint angle and themultiple-DOF joints (Shah ?t al., 2012Db). In the tree-type
joint torque at joint 1 are plotted in Fig. 17. The forward 'oPOtiC systems, such as biped, quadruped, etc., where the

dynamics of the 4-bar mechanism was carried out using th&?OF Of the system is more than 30, and the system consists
same initial configuration, as specified in the inverse dynam-°f many multiple-DOF joints, the DeNOC-based algorithms
ics. The simulation was done for the free-fall of the mech- Significantly improve the computationafieiency.

anism under gravity without any external torque applied at

joint 1. The joint angles and rates are plotted in Fig. 18.

The results of inverse dynamics and forward dynamics were

validated with MATLAB’s SimMechanics model, as re- q build he i in th f multibod
ported in Shah et al, (2012¢) In order to build up the interest in the areas of multibody

dynamics and to providefficient tools to perform the dy-
namic analyses, the following multibody simulation tools

Inverse dynamics for a 4-bar mechanism.
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Performance of several inverse dynamics algorithms (Shah, 2011; Shah et al., 2013).

were developed for the students and researchers using thie
DeNOC-based formulations presented in Sects. 2—4:

— RoboAnalyzer: for serial-chain open-loop systems ~ Recursive Dynamic Simulator (ReDySim) (Shah et al.,

2012c) is a multibody dynamics simulation tool which was

— ReDySim (Recursive Dynamic Simulator): for general developed in MATLAB environment. It was developed based
tree-type systems on the concept of the DeNOC matrices, and kinematic mod-
ules of a tree-type system, as explained in Sect. 3. ReDySim
can be used to perform inverse dynamics and simulation of
multibody systems. It has two modules, namely, fixed-base
and floating-base modules. The latter was not presented in

RoboAnalyzer (Rajeeviochana et al., 2012) is a 3.this paper due to limited page restriction of a paper. How-
dimensional model-based software to solve kinematics an§Ver the interested readers can refer to Shah (2011) or Shah
dynamics problems of an serial-chain open-loop system. €t @l- (2013) for the dynamics analyses of biped, quadruped
was developed using Visual C# and OpenGL that take theét"d six-legged walking robots using the floating-base con-
description of a serial-chain system using the DH param_cept. Note here that the firchlteqtural mformg’gon of the tree-
eters (Denavit and Hartenberg, 1955: Saha, 2008), and thi/P€ Systems were provided using the modified-DH param-
mass and inertia properties of each link. In RoboAnalyzer,Eters (MDH) parameters, as proposed by Khalil aqd Klg-
one can also see the animation of the analyzed systems. Fgpfinger (1986), instead of the DH parameters defined in
the benefit of the users, CAD models of the standard sysSaha (2008). This was done mainly to improve the computa-
tems like KUKA, PUMA robots, and others were made avail- fional gficiency of the tree-type systems.

able for analysis. The software is freely downloadable from Re€DySim was also used to solve flexible systems like
httpy/www.roboanalyzer.com ropes, etc. which were modelled as hyper-degrees-of-

freedom rigid-link systems (Shah, 2011). In fact, the simu-
lation of long chains with the aid of ReDySim showed con-
siderable improvement over commercial software like Recur-
Dyn in terms of the computational time and correctness of

These are explained briefly in the following subsections.
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Performance of forward dynamics algorithms (Shah, 2011; Shah et al., 2013).

the results. These results were separately communicated tospectively, were explained. It is expected that the algorithms,
journal for publication (Agarwal et al., 2012). ReDySim can and more importantly, the software will benefit immensely
be downloaded free frorhttpy//www.redysim.co.nrwhere  the students and researchers of multibody dynamics commu-
the user’'s manual and some demos are also made availabigty.

for the benefits of the users.
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