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Abstract. In this paper the characteristics of small carbon
nanotube (CNT) dipole antennas are investigated on the ba-
sis of the thin wire Halĺen integral equation (IE). A surface
impedance model for the CNT is adopted to account for the
specific material properties resulting in a modified kernel
function for the integral equation. A numerical solution for
the IE gives the current distribution along the CNT. From the
current distribution the antenna driving point impedance and
the antenna efficiency are computed. The presented numer-
ical examples demonstrate the strong dependence of the an-
tenna characteristics on the used material and show the limi-
tations of nanoscale antennas.

1 Introduction

The electromagnetic behavior of nanoscale circuits, trans-
mission lines and antenna elements is of special interest for
future highly integrated electrical circuits operating at ex-
tremely high clock rates. Especially the wireless transmis-
sion of signals between nanoscale circuit components and the
microelectronic periphery is a key issue in present-day nano-
electronics. Carbon nanotubes (CNT) are interesting compo-
nents for further miniaturization of electrical circuits and can
be used as signal transmission lines as well as for antenna
elements. Their small dimensions however demand a special
treatment. Usually in antenna theory the metallic conductors
in the investigated structures are treated as perfect electric
conductors (Balanis, 1997). This assumption does not hold at
nanoscale dimensions. Here the inherent material losses are
considerable and impose limitations to the used materials like
copper or aluminum for components at the nanoscale. Car-
bon nanotubes (CNT) exhibit ballistic transport over length
of severalµm and have a relaxation time which is approx-
imately 50 times greater than in copper (Jishi et al., 1993).
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This offers the applicability of CNTs for the transmission and
reception of electromagnetic signals.

2 Theory

2.1 Integral equation method

An incident electromagnetic wave induces an electric cur-
rentIz(z

′) flowing in the thin wire dipole element (transverse
currents are neglected because of the small diameter). From
the current distribution and the excitation the antenna driving
point impedance and the antenna efficiency can be computed.
The two classical integral equations for linear antennas are
the Pocklington’s and Hallén’s integral equations (Balanis,
1997). As Hallén’s IE exhibit better stability properties a nu-
merical solution thereof is less error-prone and will be used
in the following (Sarkar, 1983). Hallén’s integral equation is
given by

∫
+l/2

−l/2
K(z, z′)Iz(z

′)dz′
=

−j

ZF0
[c1 cos(kz) + c2 sin(k|z|)]

(1)

with k as the wavenumber. The integral kernelK(z, z′) will
be discussed later in Sect.2.2. For a delta gap excitation in
the dipole center the constantc2 is given byc2=V0/2 withV0
as the driving voltage andc1 is obtained from the condition
Iz(±l/2)=0. For a numerical solution of Eq. (1) a Method of
Moments (MoM) approach is applied (Balanis, 1997). There
the unknown current densityIz(z

′) is replaced by a series of
known expansion functions. As expansion functions pulse-
functions

ui(z) =

{
1 for zi −

1z
2 < z < zi +

1z
2

0 elsewhere
(2)

are used with1z=l/N . The coefficients of the expansion
of Iz(z

′) are chosen such that at specific sampling points
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are used with∆z = l/N . The coefficients of the expansion
of Iz(z

′) are chosen such that at specific sampling points
zi = (2i − 1)∆z/2 the IE in (1) is fulfilled (point match-
ing). This results in a linear system of equations which can
be solved by matrix inversion.

2.2 Modified Kernel Function

In CNTs the electric current is confined to a thin cylindri-
cal shell and can be computed from the surface conductance
σ (Slepyan et al. (1999)). Hence the total current flowing in
the CNT dipole with radiusa is given by

Iz(z)

2πa
= σ

(

Es
z(z) + Ei

z(z)
)

(3)

whereEs
z is the scattered electric field andEi

z is the incident
electric field. Combination of (3) with the Hallén integral
equation yields

(

k2 + ∂2
z

)

∫ +l/2

−l/2

K(z, z′)Iz(z
′)dz′

= jωǫ
(

Z ′
iIz(z) − Ei

z(z)
)

(4)

whereZ ′
i is the impedance per unit length given by

Z ′
i =

1

2πaσ
(5)

In order to solve equation (4) in the same way then (1) the
unknown currentIz(z) on the right side of (4) must be elimi-
nated. With the help of the Green’s function for the differen-
tial operator

(

k2 + ∂2
z

)

the current termIz(z) can be written
as an integral over the dipole length. Thus the new IE com-
prising the surface conductance is given by

∫ +l/2

−l/2

K ′(z, z′)Iz(z
′)dz′

= c1 cos(kz) + c2 sin(k|z|) +
ωε

2k
e−jk|z|V0 (6)

with the modified integral kernel

K ′(z, z′) = K(z, z′) +
e−jk|z−z′|

2ZF0Z ′
i

(7)

Unlike in equation (4) in (6) the currentIz(z
′) is solely

given under the integral with the modified integral kernel
K ′(z, z′) and can be solved in the same way than equation
(1). Now both constantsc1 andc2 must be chosen such that
Iz(±l/2) = 0 is fulfilled.

2.3 Kernel Selection and Stability

In computations with a large discretization numberN , i.e.
a small discretization length∆z, oscillations in the cur-
rent distribution are observed near the dipole center and the
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Figure 1: Current distribution along the dipole for approx.
kernel (blue line) and exact kernel (red line).

dipole ends. Fikioris and Wu (2001) have shown that the
current oscillations arise from the approximate kernel func-
tion Kapp(z) if the number of basis functionsN satisfies
N ≫ l/a. The exact and approximate kernels are

Kex(z, z′) =
1

2π

∫ π

−π

e−jk
√

(z−z′)2+4a2 sin2 θ/2

√

(z − z′)2 + 4a2 sin2 θ/2
dθ (8)

and

Kapp(z, z′) =
e−jk

√
(z−z′)2+a2

√
z2 + a2

(9)

In Figure 1 the current distribution along a 0.47λ long dipole
with radiusa/λ = 0.007 andN = 1.5 l/a is shown for the
approximate and exact kernel. The driving point impedance
for the particular cases areZin,app = 37.3 − j41 Ω and
Zin,ex = 76.6 − j42 Ω. Thus the choice of the Kernel and
the number of expansion functionsN strongly affects the in-
put impedance. Here the exact kernel is used at the cost of a
additional integration which increases the computationalef-
fort.

3 Complex surface conductance

The complex surface conductance for a CNT was derived
by Slepyan et al. (1999). Slepyan solved the single elec-
tron Boltzmann transport equation under consideration of the
band structure and the impulse quantization in transverse di-
rection. For small radii the CNT conductance can be approx-
imated by

σcnt
∼= −j

2e2
0vF

π2~(ω − j/τ)
(10)

wheree0 is the elementary charge andvF ≈ 9.71 · 105 m/s
is the Fermi velocity of graphene. The relaxation timeτ at
room temperature is aboutτ = 1.4 ·10−12 s. In order to com-
pare the characteristics of a CNT dipole with a copper dipole
the surface conductance for copper is needed. From Hanson
(2005) we get

σcu = −j
e2
0N

2D
e

me(ω − j/τcu)
(11)

Fig. 1. Current distribution along the dipole for approx. kernel (blue
line) and exact kernel (red line).

zi=(2i−1)1z/2 the IE in Eq. (1) is fulfilled (point match-
ing). This results in a linear system of equations which can
be solved by matrix inversion.

2.2 Modified kernel function

In CNTs the electric current is confined to a thin cylindri-
cal shell and can be computed from the surface conductance
σ (Slepyan et al., 1999). Hence the total current flowing in
the CNT dipole with radiusa is given by

Iz(z)

2πa
= σ

(
Es

z(z) + Ei
z(z)

)
(3)

whereEs
z is the scattered electric field andEi

z is the incident
electric field. Combination of Eq. (3) with the Halĺen integral
equation yields(
k2

+ ∂2
z

) ∫
+l/2

−l/2
K(z, z′)Iz(z

′)dz′

= jωε
(
Z′

iIz(z) − Ei
z(z)

)
(4)

whereZ′

i is the impedance per unit length given by

Z′

i =
1

2πaσ
(5)

In order to solve Eq. (4) in the same way then Eq. (1) the
unknown currentIz(z) on the right side of Eq. (4) must be
eliminated. With the help of the Green’s function for the
differential operator

(
k2

+∂2
z

)
the current termIz(z) can be

written as an integral over the dipole length. Thus the new IE
comprising the surface conductance is given by∫

+l/2

−l/2
K ′(z, z′)Iz(z

′)dz′

= c1 cos(kz) + c2 sin(k|z|) +
ωε

2k
e−jk|z|V0 (6)

with the modified integral kernel

K ′(z, z′) = K(z, z′) +
e−jk|z−z′

|

2ZF0Z
′

i

(7)

Unlike in Eq. (4) in Eq. (6) the currentIz(z
′) is solely given

under the integral with the modified integral kernelK ′(z, z′)

and can be solved in the same way than Eq. (1). Now both
constantsc1 andc2 must be chosen such thatIz(±l/2)=0 is
fulfilled.

2.3 Kernel selection and stability

In computations with a large discretization numberN , i.e. a
small discretization length1z, oscillations in the current dis-
tribution are observed near the dipole center and the dipole
ends.Fikioris and Wu(2001) have shown that the current os-
cillations arise from the approximate kernel functionKapp(z)

if the number of basis functionsN satisfiesN�l/a. The ex-
act and approximate kernels are

Kex(z, z
′) =

1

2π

∫ π

−π

e−jk
√

(z−z′)2+4a2 sin2 θ/2√
(z − z′)2 + 4a2 sin2 θ/2

dθ (8)

and

Kapp(z, z
′) =

e−jk
√

(z−z′)2+a2

√
z2 + a2

(9)

In Fig. 1 the current distribution along a 0.47λ long dipole
with radiusa/λ=0.007 andN=1.5 l/a is shown for the ap-
proximate and exact kernel. The driving point impedance
for the particular cases areZin,app=37.3−j41 � and
Zin,ex=76.6−j42 �. Thus the choice of the Kernel and the
number of expansion functionsN strongly affects the input
impedance. Here the exact kernel is used at the cost of a ad-
ditional integration which increases the computational effort.

3 Complex surface conductance

The complex surface conductance for a CNT was derived
by Slepyan et al.(1999). Slepyan solved the single elec-
tron Boltzmann transport equation under consideration of the
band structure and the impulse quantization in transverse di-
rection. For small radii the CNT conductance can be approx-
imated by

σcnt
∼= −j

2e2
0vF

π2h̄(ω − j/τ)
(10)

wheree0 is the elementary charge andvF ≈9.71·105 m/s is
the Fermi velocity of graphene. The relaxation timeτ at
room temperature is aboutτ=1.4·10−12 s. In order to com-
pare the characteristics of a CNT dipole with a copper dipole
the surface conductance for copper is needed. FromHanson
(2005) we get

σcu = −j
e2

0N
2D
e

me(ω − j/τcu)
(11)

with N2D
e is the number of electrons per m2.
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Table 1. Input impedance and efficiencyη for perfect conduct-
ing (pc), CNT and copper dipole with lengthl=0.47λ. The
operating frequency is 100 GHz andN=51 for the half dipole
(N2D

e ≈1.93·10191/m2).

Radiusa Input impedance/� Efficiencyη/%

Zpc = 67− j19 100
3 µm Zcnt = 140− j2575 1.6 · 10−3

Zcu = 75− j1727 2.9 · 10−2

Zpc = 63− j82 100
30 nm Zcnt = 950− j7934 1.1 · 10−3

Zcu = 666− j4733 2.6 · 10−3

Zpc = 62− j109 100
3 nm Zcnt = 1819− j10730 6.8 · 10−4

Zcu = 1978− j7913 7.6 · 10−4

4 Results

Firstly the input impedances and the achievable efficien-
cies are computed for dipoles at nanometer radii with a
length of l=0.47 λ. Thus the surface conductances de-
fined in Eqs. (10) and (11) are combined with the IE (6) and
solved for the unknown current distributionIz(z). The input
impedance is obtained fromZin=V0/Iz(0) and the radiation
efficiency is given by

η =
Rin

Rin + Rhf

with Rhf = <

{
l

2πa

√
ωµ0

2σ

}
(12)

andRin=< {Zin}. The results are summarized in Table1.
From Table1 follows that for smaller radii the impedance
values as well as the efficiency of CNT and copper dipoles
are comparable. In the present discussion the efficiency of
copper dipoles may even decrease at nanometer radii if we
account for the additional surface and grain scattering (Han-
son, 2005) which is not included in Eq. (11). The conduc-
tivity of CNTs however is not affected by surface or grain
scattering because of their regular structure and can even be
increased up to a factor of 30 if the CNT is doped (Dekker,
1999).

Besides the efficiency the frequency dependence of the in-
put impedance of a CNT dipole is investigated. In Fig.2 the
dipole driving impedance from 0 to 1000 GHz is shown. Re-
markable are the positions of the resonances. Usually the first
resonance would be atf =c0/2l=7.5 THz whereas here the
first resonance is atf =160 GHz. Consequently the wave-
lengthλ on the CNT dipole must be reduced by a factor of
λ0/λ≈50 which is denoted as the slow wave factor (Hanson,
2005). This behavior can be explained by the presence of re-
tarded plasmon modes in CNTs (Fichtner and Russer, 2006).

Fig. 2. Normalized input impedance for a CNT nanoantenna for
a=5 nm andl=20µm (R0=12.9 k�).

5 Conclusions

Nanoantennas either of copper or of carbon exhibit inher-
ently a very high resistance per unit length. A lower resis-
tance may be achievable due to doping of the CNTs. The
low efficiency of nanoantennas restrict the signal transmis-
sion to very short distances as present in e.g. chip-to-chip or
on-chip communication systems (Yordanov et al., 2008).
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