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Abstract. In this paper the characteristics of small carbon This offers the applicability of CNTs for the transmission and
nanotube (CNT) dipole antennas are investigated on the baeception of electromagnetic signals.

sis of the thin wire Hakn integral equation (IE). A surface

impedance model for the CNT is adopted to account for the

specific material properties resulting in a modified kernel2 Theory

function for the integral equation. A numerical solution for

the IE gives the current distribution along the CNT. From the2.1  Integral equation method

current distribution the antenna driving point impedance and

the antenna efﬁciency are Computed_ The presented numeAn incident eIectromagnetic wave induces an electric cur-
ical examples demonstrate the strong dependence of the afent/;(z’) flowing in the thin wire dipole element (transverse

tenna characteristics on the used material and show the limicurrents are neglected because of the small diameter). From
tations of nanoscale antennas. the current distribution and the excitation the antenna driving

pointimpedance and the antenna efficiency can be computed.
The two classical integral equations for linear antennas are
the Pocklington’s and Hah's integral equationsBalanis

1 Introduction 1997). As Hallen’s IE exhibit better stability properties a nu-
merical solution thereof is less error-prone and will be used

The electromagnetic behavior of nanoscale circuits, transin the following Sarkar 1983. Hallen’s integral equation is
mission lines and antenna elements is of special interest fogiven by

future highly integrated electrical circuits operating at ex-
tremely high clock rates. Especially the wireless transmis-qu/z

sion of signals between nanoscale circuit components and th
microelectronic periphery is a key issue in present-day nano* —//2
electronics. Carbon nanotubes (CNT) are interesting compo- @)
nents for further miniaturization of electrical circuits and can ) ]

be used as signal transmission lines as well as for antenndith k @s the wavenumber. The integral keri@(z, z') will
elements. Their small dimensions however demand a specid]® discussed later in Se@.2. For a delta gap excitation in
treatment. Usually in antenna theory the metallic conductordN€ dipole center the constantis given byc=Vo/2 with Vo

in the investigated structures are treated as perfect electrigS the driving voltage andh is obtained from the condition
conductorsBalanis 1997). This assumption does not hold at /z(//2)=0. For a numerical solution of EqlYa Method of
nanoscale dimensions. Here the inherent material losses afdoments (MoM) approach is applieBélanis 1997). There
considerable and impose limitations to the used materials likdh® Unknown current density (z) is replaced by a series of
copper or aluminum for components at the nanoscale. Carlgnow_n expansion functions. As expansion functions pulse-
bon nanotubes (CNT) exhibit ballistic transport over length functions

of severalum and have a relaxation time which is approx-
imately 50 times greater than in coppdishi et al, 1993.

K(z,2)I(zdz' = ' [c1 cogkz) + c2sin(k|z])]
ZFo

1 for zi—%<z<zi+%

ui(z) =

@)

0 elsewhere
Correspondence ta\. Fichtner are used withAz=I/N. The coefficients of the expansion
BY (fichtner@tum.de) of 1.(z') are chosen such that at specific sampling points
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Fig. 1. Current distribution along the dipole for approx. kernel (blue

line) and exact kernel (red line).

zi=(2i—1)Az/2 the IE in Eq. {) is fulfilled (point match-

ing). This results in a linear system of equations which can

be solved by matrix inversion.

2.2 Modified kernel function

In CNTs the electric current is confined to a thin cylindri-
cal shell and can be computed from the surface conductance
o (Slepyan et a).1999. Hence the total current flowing in

the CNT dipole with radiug is given by
I(z) _

g = o (ES(z) + EL(2)) (3)

whereE? is the scattered electric field adt is the incident
electric field. Combination of Eq3] with the Halken integral
equation yields

.\ [H2
(k +@)f K(z, ()7
—12
= joe (Z/1.) — EL2)) (4)

whereZ! is the impedance per unit length given by

1
2raoc

In order to solve Eq.4) in the same way then Eql)the
unknown current;(z) on the right side of Eq.4) must be

z; = (5)

eliminated. With the help of the Green’s function for the

differential operator(k2+a ) the current ternv,(z) can be
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Unlike in Eg. @) in Eq. (6) the currentl (') is solely given
under the integral with the modified integral keri€lz, z')

and can be solved in the same way than H}. Now both
constants:; andcz must be chosen such thai{(+1/2)=0 is
fulfilled.

2.3 Kernel selection and stability

In computations with a large discretization numbeéri.e. a
small discretization length z, oscillations in the current dis-
tribution are observed near the dipole center and the dipole
ends.Fikioris and Wu(2001) have shown that the current os-
cillations arise from the approximate kernel functiégpp(z)

if the number of basis functions satisfiesV>>1/a. The ex-

act and approximate kernels are

T ik (z=2)?+4a? i’ 6/2
Kex(z, Z) = 27_[ do (8)
- \/(z 2)2 + 4a?sir? 9 /2

e~k (z—2")2+a?
V72 + a?

In Fig. 1 the current distribution along a 0.47ong dipole

with radiusa/1=0.007 andN=1.5 [ /a is shown for the ap-
proximate and exact kernel. The driving point impedance
for the particular cases ar€iapp=37.3—j41 Q and
Zinex=76.6—j42 Q. Thus the choice of the Kernel and the
number of expansion function$ strongly affects the input
impedance. Here the exact kernel is used at the cost of a ad-
ditional integration which increases the computational effort.

and

©)

Kapp(z, )=

3 Complex surface conductance

The complex surface conductance for a CNT was derived
by Slepyan et al(1999. Slepyan solved the single elec-
tron Boltzmann transport equation under consideration of the
band structure and the impulse quantization in transverse di-
rection. For small radii the CNT conductance can be approx-
imated by

Zeov F

I %%~ /o) (10)

Ocnt = —

written as an integral over the dipole length. Thus the new IE

comprising the surface conductance is given by

41/2
/ K'(z,2)I,(zhd7

—1/2
_ i WE —jklzl
= c¢1 c09kz) + c2sin(k|z]) + ze Vo (6)
with the modified integral kernel

e~ jklz=2|
K'(z,Z)=K(z,2) + (7

ZZFozl{
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whereeg is the elementary charge ang~9.71.10° m/s is
the Fermi velocity of graphene. The relaxation timeat
room temperature is about=1.4-10"12s. In order to com-
pare the characteristics of a CNT dipole with a copper dipole
the surface conductance for copper is needed. Fanmson
(2005 we get

2N2D
(11)

= —j—2¢
“ mc(w = J/Teu)

with N2 is the number of electrons perm
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Table 1. Input impedance and efficienay for perfect conduct- I F
ing (pc), CNT and copper dipole with lengtt=0.471. The el 115
operating frequency is 100 GHz amd=51 for the half dipole -
(N2P~1.93101° 1/nP). st
Radiusa Input impedance? Efficiency n/% % E
Zpe = 67— j19 100 & fz =
3um Zens = 140— j2575 16.10°3 [
Zey = 75— j1727 29.10°2
-15
Zpe = 63— 782 100
30 nm Zent = 950— j7934 11.1073 % 200 300 400 500 600 700 600 900  1000°
Zeu = 666— j4733 26-1073 Frequency (Sri)
Zpe =62—j109 100 Fig. 2. Normalized input impedance for a CNT nanoantenna for
3nm  Zey = 1819— j10730 68104 a=5nm and=20um (Ry=12.9 k).
Zew = 1978— j7913 76-10~4
5 Conclusions
Nanoantennas either of copper or of carbon exhibit inher-
4 Results

ently a very high resistance per unit length. A lower resis-

. . . . .. tance may be achievable due to doping of the CNTs. The
F_|rstly the input |mpedaqces and the ach|evable"eff|'c|en-low efficiency of nanoantennas restrict the signal transmis-
cies are computed for dipoles at nanometer radii with a1 very short distances as present in e.g. chip-to-chip or

length of /=0.47 A. Thus the surface conductances de- ; s
-ch .2008.
fined in Eqs. £0) and (L1) are combined with the [E5j and O C|P communication systemédrdanov et al.2009

solved for the unknown current distributidp(z). The input
impedance is obtained fro&, =Vy/1,(0) and the radiation  References
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