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Abstract. Tidal flat sediments are subject to repetitive mix-
ing and resuspension events. In a short-term (24 h)15N-
labelling experiment, we investigated reactive nitrogen cy-
cling in a tidal flat sediment following an experimentally in-
duced resuspension event. We focused on (a) the relative im-
portance of assimilatory versus dissimilatory processes and
(b) the role of benthic microalgae therein.15N-labelled sub-
strate was added to homogenized sediment, and15N was sub-
sequently traced into sediment and dissolved inorganic nitro-
gen (DIN) pools. Integration of results in a N-cycle model
allowed us to quantify the proportion of major assimilatory
and dissimilatory processes in the sediment.

Upon sediment disturbance, rates of dissimilatory pro-
cesses like nitrification and denitrification were very high,
but declined rapidly towards a steady state. Once this was
reached, the balance between assimilation and dissimilation
in this tidal mudflat was mainly dependent on the nitrogen
source: nitrate was utilized almost exclusively dissimilatory
via denitrification, whereas ammonium was rapidly assimi-
lated, with about a quarter of this assimilation due to ben-
thic microalgae (BMA). Benthic microalgae significantly af-
fected the nitrogen recycling balance in sediments, because
in the absence of BMA activity the recovering sediment
turned from a net ammonium sink to a net source.

The driving mechanisms for assimilation or dissimilation
accordingly appear to be ruled to a large extent by exter-
nal physical forcing, with the entire system being capable
of rapid shifts following environmental changes. Assimila-
tory pathways gain importance under stable conditions, with
a substantial contribution of BMA to total assimilation.

1 Introduction

Nitrogen is a key element in aquatic ecosystems and human-
induced elevated inputs of nitrogen are a widespread problem
that often results in reduced water quality in coastal regions.
The ability of an ecosystem to deal with these increased in-
puts depends on its ability to remove the excess nitrogen. In
coastal ecosystems, the sediment is an important component
for uptake, transformation, and removal of reactive nitrogen.
In such shallow regions, the sediment acts as an important
filter for carbon and nitrogen, removing a large share of river-
ine nitrate via denitrification (Heip et al., 1995; Deek et al.,
2011). Overall, sediments hold a key role in nitrogen cycling,
as both oxic and anoxic processes can occur simultaneously
and on very small spatial scales.

When nitrogen is released from organic matter in the form
of ammonium it can enter a cascade of dissimilatory reac-
tions (primarily nitrification and denitrification) in which the
nitrogen compounds are converted to yield energy and which
eventually leads to permanent loss of N from the sediment
as N2 (e.g. Dalsgaard et al., 2005; Laursen and Seitzinger,
2002). Contrasting these dissimilatory reactions, ammonium
and nitrate can also be assimilated by the benthic micro-
bial community, supporting their nitrogen demand for growth
(Blackburn, 1979; Blackburn and Henriksen, 1983). These
assimilatory processes can retain anthropogenic nitrogen in
coastal sediments so that sediments act as a temporary buffer
for aquatic nutrient concentrations (Dähnke et al., 2010; van
Beusekom et al., 1999).
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Therefore, a key feature of the sediment with respect to
the removal of excess nitrogen is the balance between as-
similatory and dissimilatory pathways. In this respect, ben-
thic microalgae (BMA) play an important role in regulat-
ing sedimentary N-cycling. Besides their own contribution
in nitrogen assimilation, they can, in nitrogen-rich environ-
ments, increase nutrient fluxes to the sediment and the ben-
thic heterotrophic community (Piehler et al., 2010, An and
Joye, 2001). Competition for ammonium between BMA and
the heterotrophic community can however limit nitrification
rates under N-starved conditions (Risgaard-Petersen, 2003;
Risgaard-Petersen et al., 2004). BMA can also stimulate the
bacterial community via exudation of dissolved organic com-
pounds (Middelboe et al., 1998). However, processing path-
ways of reactive nitrogen in sediments depend on various en-
vironmental parameters, such as particle mixing due to bio-
turbation or waves and current activity (Holstein and Wirtz,
2009). Yet, the balance of nitrogen assimilation versus dis-
similation in coastal regions has often been merely studied in
the water column (e.g. Lipschultz et al., 1986, Andersson et
al., 2006b; Ward, 2005). In this study, we aimed for a com-
bined assessment of the sedimentary processes, using an in-
tegrated experimental and modelling approach, to investigate
this balance in tidal sediments from the eutrophic Scheldt es-
tuary.

Our principal goal was to investigate the balance between
assimilatory and dissimilatory processes in the benthic N-
cycle in sediments subject to repetitive resuspension events.
In tidal systems such as the Scheldt estuary, particles in sed-
iments are transported by waves, bioturbation and dredging
(Chen et al., 2005), and this sediment reworking can have a
large, though probably only short-term, impact on sediment
nitrogen cycling (Trimmer et al., 2005). To unravel nitrogen
cycling in sediments, and the potential role of different as-
similative and dissimilative processes therein, stable isotope
(15N) tracer studies have proven to be a valuable tool. Tracer
applications require uniform distribution during incubations.
We have therefore used homogenized sediments to ascer-
tain homogenous distribution of tracer and to mimic repet-
itive sediment disturbance events. Homogenized sediment-
water mixtures have shown to provide a good approximation
of relevant processes including potential canonical denitri-
fication rates in marine and estuarine sediments (e.g. Dals-
gaard and Thamdrup, 2002; Thamdrup and Dalsgaard, 2002;
Trimmer et al., 2003), and of the relative contribution of
the autotrophic versus heterotrophic community to N-cycling
(e.g. Risgaard-Petersen et al., 2005; Veuger et al., 2005).

In this study, added15N was traced into various particulate
and dissolved N-pools, and integration of results by means
of an N-cycle model allowed us to quantify rates for all ma-
jor N-cycling processes. Thereby we could assess the overall
balance between assimilatory and dissimilatory processes in
the sediments directly following and during recovery from a
homogenization event.

2 Materials and methods

The Scheldt estuary (Fig. 1) is located in the SW Netherlands
and Belgium. The catchment area is densely populated, and
the system is highly eutrophic. The predominant form of re-
active nitrogen in the river is in the form of nitrate, with ni-
trate concentrations of 44 to 67 µM in the seaward part of the
estuary up to 2002 (Soetaert et al., 2006). Passing tidal flats,
the river discharges into the southern North Sea. Sediments
in these tidal flats in the outer estuary are mixed due to bio-
turbation, waves and, most importantly, tidal forcing (Chen
et al., 2005; Widdows et al., 2004), with a suspended matter
transport rate of∼ 0.7 tons m−2 per tide (Chen et al., 2005).
The tidal amplitude ranges from 3.8 m in the western to 5.2 m
in the eastern part of the estuary (Andersson et al., 2006a).

2.1 Sediment sampling

In early October 2008, surface sediment was collected
from an intertidal mudflat (Biezelingse Ham) in the brack-
ish/marine section of the Scheldt estuary (The Netherlands).
Surface sediment was sampled at low tide by carefully scrap-
ing off the oxic top layer of the sediment. 40 l of site water
were taken from nearby intertidal drains. In situ temperature
of the water was 16◦C, and the salinity was 21.3. Sediment
and site water were returned to the lab within 1 h, where
the sediment was sieved (mesh size 1 mm) to remove larger
fauna. The sediment was left to settle overnight at 17◦C be-
fore the slurries were prepared.

2.2 Sediment incubations

For the slurry preparation, overlying water was decanted, and
50 ml of the remaining sediment were aliquoted into 250 ml
glass bottles during continuous stirring. Site water was added
to the bottles to a total volume of approximately 200 ml. Half
the bottles were amended with 0.6 µmol15NH+

4 (added as
15(NH4)2SO4 (Sigma, 98 at %15N)); the other half was la-
belled with 0.6 µmol Na15NO3 (Sigma, 98 at %15N). To en-
sure identical starting conditions and nutrient concentrations
in the different15N-treatments, the same amounts of unla-
belled NH+

4 and NO−

3 were added to the15NO−

3 and15NH+

4
treatments respectively. After nutrient and label additions,
bottles were shaken to ensure homogeneous distribution of
the added substrates. Final labelling percentage in the sed-
iment slurries was 4.7 at %15N for the 15N-nitrate additions
and 4.5 at %15N for the 15N-ammonium additions, meaning
that both compounds were added at tracer level. Incubation
bottles were kept at 17◦C with open caps to enable free gas
exchange. To capture a maximal range of algal activity, paral-
lel batches of slurry bottles were incubated in dark and light.
Incubations were performed for 0.1, 0.5, 1, 3, 6 and 24 h. At
the respective incubation time points, two replicate bottles
from each treatment were homogenized to ensure equal nu-
trient and label distribution, followed by freezing in liquid
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Fig. 1.Map of the study area. Black circle indicates sampling site.

N2 to stop microbiological activity. The bottles were then
kept frozen at−18◦C until further processing. Natural, unla-
belled sediment and water were sampled for analysis of nat-
ural abundance of15N in the various pools analyzed for15N
content (see below).

2.3 Extraction procedures

Upon thawing, samples were split into a solid fraction (sed-
iment) and a water fraction (mixture of pore water and
overlying water); the total slurry volume was homogenized
and then centrifuged (1500 g, 15′). The supernatant was de-
canted, filtered (GF-D, combusted at 450◦C for 4 h), and
frozen for later analysis of concentrations of NH+

4 , NO−

2
and NO−

3 and isotope composition of NH+4 and NO−

3 + NO−

2 .
Concentrations of ammonium, nitrite and nitrate were mea-
sured with standard colorimetric techniques (Grasshoff and
Anderson, 1999) in an automated flow-through system.

To distinguish the15N in organic matter from ammonium
that was bound to sediment particles, a subsample of sedi-
ment was transferred to a 2 M KCl solution, shaken vigor-
ously and then centrifuged (1500 g, 15′) (Rich et al., 2008).
The supernatant was removed, and the pellet was washed
three times with Milli-Q water before the sediment was
freeze-dried for later isotope analysis.

15N incorporated into the KCl-extracted sediment is as-
sumed to represent15N assimilation into organic matter
while 15N in the untreated bulk sediment also includes KCl-
extractable15N (including sediment-bound15NH+

4 ). The lat-
ter will be presented as the difference between15N in un-
treated versus KCl-extracted sediment.

2.4 15N analyses

2.4.1 Nitrate and nitrite

15N enrichment of nitrite and nitrate was measured by the in-
dophenol extraction method based on Preston et al. (1998).
When referring to labelled15NO−

3 in the following, this ac-
cordingly includes nitrite. In a first step, the sample nitrate
was reduced to nitrite using cadmium granules. To ensure
sufficient reduction of nitrate, 5 ml of sample, containing
0.2 g of cadmium, were buffered with an ammonium chlo-
ride/hydroxide buffer to a pH of 8.5 (Jones, 1984). Samples
were then left to react for 3 h at room temperature on a hori-
zontal shaker at 130 rpm. This step was followed by isotope
analysis of nitrate and nitrite as described in detail by Pre-
ston et al. (1998). In brief, nitrite was converted to the colour
complex Sudan-I by diazotization with 2-naphthol and ani-
line sulfate. The colour complex was concentrated on a C-18
extraction column, eluted with ethylacetate and derivatized
for GC analysis using MTBSTFA (N-(t-butyldimethylsilyl)-
N-methyltrifluoroacetamide). Derivatized samples were ana-
lyzed by gas chromatography–mass spectrometry (GC–MS)
on a Thermo Finnigan Voyager quadrupole mass spectrome-
ter using selected ion monitoring ofm/z 305.2 and 306.2.
The ratio of these two masses was used to determine the
at %15N of the samples by comparison with standards of dif-
ferent15N enrichment levels (0.3 to 10 at %15N).

2.4.2 Ammonium

15N enrichment of ammonium was measured by the ammo-
nia diffusion method (Holmes et al., 1998; Sigman et al.,
1997). Before use, glassware used was soaked in 1 M HCl
over night and rinsed thoroughly with Milli-Q water; the
chemicals and filters were combusted at 450◦C for 4 h.

Different sample volumes, corresponding to 15 µg of
NH+

4 -N, were aliquoted in 100 ml screw cap bottles (Schott
Duran), followed by addition of NaCl solution (50 g l−1) to
achieve a final salinity of approx. 35 g l−1 and a final volume
of 90 ml. After addition of an ammonia trap (consisting of an
acidified GF/D filter sealed between two Teflon membranes)
and 0.27 g of MgO per bottle, the bottles were immediately
closed tightly and incubated at room temperature on a shaker
table (60 rpm) for 14 days. Thereafter, filter packs were dried
and filters were placed in tin capsules and analyzed for their
15N / 14N ratios on an elemental analyzer coupled to an iso-
tope ratio mass spectrometer (EA-IRMS, Thermo Delta V).

2.4.3 Sediment samples

15N enrichment of freeze-dried samples of untreated bulk
sediment and of KCl-extracted sediment was analyzed on an
elemental analyzer coupled to an isotope ratio mass spec-
trometer (EA-IRMS, Thermo Delta V). All data were refer-
enced to international standard material (IAEA N2) and an

www.biogeosciences.net/9/4059/2012/ Biogeosciences, 9, 4059–4070, 2012



4062 K. Dähnke et al.: Balance of assimilative and dissimilative nitrogen processes

internal standard; the standard deviation for standards and
replicate analysis was better than 0.2 ‰.

2.4.4 Calculations

Stable isotope results will be presented as concen-
tration excess15N per bottle, which were calculated
as follows: concentration excess15N = [(at %15Nsample
– at %15Ncontrol) / 100]× [concentration N in sample].
At % 15N was calculated fromδ15N as

at%15N = [100× Rstandard× (δ15Nsample/1000) + 1]/

[1+ Rstandard× (δ15Nsample/1000) + 1]

andδ15N was calculated as

δ15N(‰) = [(Rsample/Rstandard)− 1] × 1000.

whereR =
15 N/14N andRstandard= 0.003677. To correct for

ambient15N, unlabelled sediment or water were used as con-
trols. For an easier comparison of15N in particulate and dis-
solved pools, excess label is expressed as total nmol15N per
bottle.

2.5 Modelling of process rates

To unravel the complex fluxes of nitrogen in the sediment
incubations, the experimental data were incorporated into a
zero-dimensional N-cycle model. A schematic of the relevant
reactions in the model is shown in Fig. 2; the reaction kinetics
and a detailed description of the model can be found in the
supplementary material.

In a 0-D model, processes can occur simultaneously, and
there is no vertical resolution, which resembles the condi-
tions in the homogenized slurries, where oxic and anoxic
processes will occur simultaneously despite varying diffu-
sion gradients. The relevant biogeochemical reactions that
were taken into account in the final version of the model were
incorporation of nitrate and ammonium into biomass, miner-
alization of organic matter (including heterotrophic denitri-
fication), bulk N2 production, nitrification, dissimilatory ni-
trate reduction to ammonium (DNRA), storage of nitrate in
diatom cells and physical ad- and desorption processes of
ammonium to sediment particles (see Fig. 2). Furthermore,
the model was based on the following assumptions:

1. There is no stable isotope fractionation during biologi-
cal processing over time.

2. Due to the short incubation time, there is no recycling
of 15N-labelled organic matter to the ammonium pool.
Overall mineralization of14N organic matter depends
on two pools of decaying detritus: one rapidly decom-
posing fraction and one that decomposes slowly. The
former pool represents easily accessible organic matter.

The same process formulations, using the same parameter
values, were used to describe the four different experimental

Fig. 2. Conceptual diagram of N fluxes in the N-cycle model.
Turnover processes: (1) denitrification; (2) oxic and anoxic mineral-
ization; (3) mineralization coupled to denitrification; (4) ammonium
assimilation; (5) nitrate assimilation; (6) nitrification; (7) DNRA;
(8) nitrate storage in diatoms; (9) ammonium adsorption to parti-
cles, (10) desorption of ammonium from particles. Processes 8, 9
and 10 specifically apply to15N-labelled pools (see Sect. 2.5 for
details).

conditions (NO−3 / NH+

4 addition versus dark/light). To im-
prove the model fit, a process reacting differentially on the
two isotope species of NO−3 + NO−

2 needed to be included,
in this case preferentially reacting on heavy isotopes. While
such preferential turnover of heavy isotopes is not expected
for the majority of biological pathways – a basic assumption
of labelling studies – any process driven by diffusion (includ-
ing ion-exchange between pore-water, sediment and biota)
will preferentially sequester heavy isotopes upon addition of
a labelled substrate until isotopic equilibrium is achieved.
Hence, removal rates for the heavier isotope are expected to
be fast at the beginning of the experiment, until equilibrium
is reached.

The model reflects the different conditions in light and
dark incubations by toggling on and off MPB assimilation.
The slurries were prepared in light and thus treated equally
in the beginning, so initial rates should be identical for dark
and light incubations, assuming changes will occur with or
some time after the change of light conditions. Light condi-
tions should primarily affect nutrient uptake by BMA; effects
on heterotrophic uptake should be less pronounced. We fur-
thermore assume that dissimilatory reaction rates will remain
constant in the dark.
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3 Results

3.1 Dissolved inorganic nitrogen concentrations

The total concentration of dissolved inorganic nitrogen
(DIN) decreased in both light and dark incubations (Fig. 3).
This decrease was most pronounced in the light incubations,
where total DIN had decreased by 51 % after one day. An
initial drop in ammonium concentrations coincided with in-
creasing nitrite concentration. Barring a DIN maximum af-
ter 6 h, concentrations of all 3 inorganic nitrogen species
dropped to final values of 27, 0.8 and 12 µM for ammonium,
nitrite and nitrate, respectively.

Up to 3 h after the start of the experiment, the dark nutrient
concentrations were roughly comparable to those measured
in light. After this time, the most pronounced difference was
a steady increase in ammonium concentrations from 35 µM
after 1 h to 53 µM after 24 h in the dark, whereas nitrite and
nitrate concentration was comparable in light and dark incu-
bations over the course of the entire incubation.

3.2 15N in NO−
3 and NH+

4

The label distribution in light or dark incubations was compa-
rable for up to 3 h. Absolute values of measured15N-excess
in the various pools and model fits are shown in Fig. 4. The
relative percentage of the label distribution in different pools
during the incubation time is outlined in Fig. 5.

3.2.1 15N-nitrate additions

In the 15NO−

3 incubations, the majority of added label was
not recovered in the dissolved pool, and we only found a
slight15N increase in ammonium and organic matter. For the
sediment compartment, the increase corresponded in only a
small 1δ15N of ∼ 3 ‰, and is thus subject to some uncer-
tainty. Nevertheless, standard deviations for replicateδ15N
measurements were usually better than 0.3 ‰, and indicate
that the data are reasonably robust. Over the course of the en-
tire experiment, a large part of the added label (i.e. the sum of
all 15N recovered after 0.1 h) disappeared. Only a small frac-
tion (∼ 8.0 % after 24 h) of15N was found in ammonium or
organic matter, and the main transfer of label to these pools
occurred within the first hours of the incubation, when15N
in KCl-extracted sediment (representing assimilation into or-
ganic matter) peaked, and15N in ammonium rose to 7.3 and
7.4 µmol per incubation bottle in light and dark, respectively
(Figs. 4 and 5). Overall, the comparison of light vs. dark in-
cubations showed only little differences in nitrate incorpo-
ration into organic matter or reduction of15NO−

3 to ammo-
nium, while the15NO−

3 pool decreased slightly faster in light
than in dark incubations (Fig. 5). Still, the final amount of
missing15NO−

3 in the budget was roughly comparable, 77 %
and 72 % in dark and light, respectively. The label distribu-
tions for these pools show good agreement with the model
results, verifying the underlying assumptions (Fig. 4).

Fig. 3. Data and model fits for concentrations of ammonium and
nitrate in dark (left side) and light (right side). The dark shaded
area of the modelled curve represents one standard deviation; light
shading indicates minimum and maximum values.

3.2.2 15N-ammonium additions

The 15N in the ammonium additions was mostly recovered
in the sediment over the course of the experiment; only mi-
nor amounts of label were recovered in oxidized nitrogen
components. In both light and dark,15NH+

4 was rapidly re-
moved from the dissolved pool, with only 21 % and less than
4 % remaining in the free ammonium pool after 24 h of dark
and light incubations, respectively (Figs. 4 and 5). Initially,
a considerable fraction of the label was transferred to the
NO−

3 pool, with a peak of∼ 65 nmol excess15N after 0.5 h
(Fig. 4b). In both the light and dark incubations, the portion
of labelled15NO−

3 then decreased, dwindling at the detection
limit after 24 h.

A large fraction of labelled ammonium rapidly appeared
in the KCl-extractable pool representing particle-bound am-
monium (Figs. 4 and 5). After an initial peak a few minutes
after slurry preparation (Fig. 4b), the15N excess in this pool
remained rather stable at around 20 % of the total label ad-
dition. In the non-extractable nitrogen pool (assumed to be a
good approximation of15N assimilated into organic matter),
excess15N increased steadily, containing 56 % and 34 % af-
ter 24 h in light and dark, respectively.

Figure 3 shows a comparison of measured and model-
predicted pool sizes of ammonium and nitrite/nitrate. Gener-
ally, the changes in total pool size of DIN (i.e. predominantly
the unlabelled fraction) are predicted well by the model, with
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Fig. 4. Measured pools of15N for 15N-nitrate additions(A) and 15N-ammonium additions(B) in dark (filled circles) and light (open
circles). Solid lines and shading indicate model fits. Dark shaded areas represent one standard deviation; light shading indicates minimum
and maximum values. Note different scales of y-axes.

ammonium concentrations dropping initially and then rising
in the dark incubations, whereas they dropped in the light in-
cubations (Fig. 3). For total15NO−

3 concentration, the model
predicts an initial rise in concentration, followed by a de-
crease towards the end of the incubation, with no significant
differences in light and dark incubations, which is in accor-
dance with the data. This suggests that the model assump-
tions are correct and provide valuable estimates not only of
DIN pool sizes, but also of process rates of assimilatory and
dissimilatory turnover.

For both nitrogen species, ammonium and nitrate, data
were generally well described by the model (Figs. 3 and 4).
The only exception is the prediction of the15NH+

4 distribu-
tion in the15N-ammonium incubations: The model overesti-

mates particle-bound N in15NH+

4 incubations while under-
estimating it in15NO−

3 additions (Fig. 4).

3.3 Process rates – model results

Figure 6 gives an overview of the model-derived process
rates for the light and dark incubations. Model results for15N
ammonium and nitrate additions are comparable and are thus
not discussed separately. Due to the addition of unlabelled
substrates in the different incubations, total initial nutrient
concentrations are identical; thus the same should apply to
process rates. Generally, there is a pronounced difference in
process rates between the first hours of the experiment versus
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Fig. 5. Relative distribution of labelled N in different pools of ni-
trogen. (A) 15N-nitrate addition in light and(B) dark; (C) 15N-
ammonium addition in light and(D) in dark. Asterisk in plot(D):
sediment-bound ammonium and organic matter were not deter-
mined separately. The amount of the pool “missing label” was cal-
culated by difference in comparison to the initial label addition, in-
dicated by the dashed line (see text for details).

those for the 6–24 h period, which often reduce to but a frac-
tion of the initial rate (Fig. 6).

In both incubations, assimilation of ammonium clearly
outweighed assimilatory nitrate uptake. Initial ammonium
uptake rates were as high as 0.8 µmol per bottle h−1, whereas
nitrate uptake occurred at a fraction of this rate,∼ 0.02 µmol
per bottle h−1 (Fig. 6). Overall uptake rates for nitrate and
ammonium were higher in light than in dark incubations. Ini-
tial rates of light and dark uptake were comparable, but there
was a marked decrease in dark process rates. Ammonium up-
take slowed down to about 75 % of the initial rate, whereas
nitrate uptake decreased gradually, approaching zero after
24 h. (Fig. 6).

Regarding dissimilative processing, the model reveals only
few differences between light and dark incubations. In both
setups, nitrification is most pronounced after mixing at the
beginning of the incubation, with initial rates of more than
5 µmol h−1 bottle−1, which decrease to lower, but still sub-
stantial, turnover rates of µmol h−1 over the course of the
experiment. It was not possible to make a reliable dis-
tinction between N2 production by denitrification versus
anammox; therefore, these two processes are presented as
their sum. Gross N2 production is remarkable, with max-
imal rates approaching 1 µmol per bottle h−1, levelling off
to ∼ 0.25 µmol h−1 (Fig. 6). DNRA, however, was quantita-
tively less important, with rates> 0.1 µmol h−1 only within
the first few hours of the incubation.

Fig. 6. Process rates derived from model. Left: rates in light, right
side: rates in dark incubations.

4 Discussion

The evaluation of experimental data provides a good
overview of the relative importance of various turnover
mechanisms in the sediment incubations, and the compari-
son of these estimates with the model-derived process rates
brings up interesting questions on the controlling mecha-
nisms. In what follows, we will first discuss the process
rates that are derived from model and experimental data,
distinguishing between the initial phase of the experiment,
when process rates were triggered by physical disturbance,
and the second phase, when biogeochemical gradients re-
established, and process rates returned to a new steady
state. Furthermore, we will assess the influence of ben-
thic microalgae and specify the added value and insights
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regarding process rates that we gained from the modelling
approach.

4.1 The fate of ammonium

At steady state, the major share of ammonium is turned
over via assimilatory pathways, whereas nitrification seems
to play a subordinate role. Illumination increased ammonium
uptake by about 25 %, suggesting a significant contribution
of BMA to total sedimentary ammonium uptake. Overall, as-
similatory processes clearly prevail for ammonium turnover;
56 and 34 % of the added label were recovered in the organic
matter fraction in light and dark, respectively. In comparison,
nitrification appears to be only relevant in the initial phase of
the experiment. This is consistent with findings by Black-
burn and Henriksen (1983), who investigated nitrogen fluxes
in Danish sediments and found that largest fractions of am-
monium were either assimilated or bound in the sediments,
whereas nitrification was of subordinate role.

However, during the initial incubation phase, i.e. condi-
tions following a sediment disturbance event, we found a
clear transfer of label to the NO−3 pool (Fig. 4b) and accord-
ingly high initial nitrification rates of∼ 5 nmol bottle−1 h−1

(Fig. 6). After this, nitrification rates dwindled to a steady
state of 0.16 µmol bottle−1 h−1. This decrease was swift and
likely linked to oxygen limitation. During slurry prepara-
tion, oxygen was mixed into the sediment, and all preformed
biogeochemical gradients were disrupted. Nitrification could
thus proceed at a high rate until oxygen was depleted, after
which it became limited by oxygen diffusion into the sedi-
ment.

Another candidate sink for ammonium is the anammox re-
action. We did not measure the production of labelled N2 in
the slurries and can thus not distinguish between denitrifica-
tion and anammox, but it seems unlikely that anammox will
play a significant role in a shallow, tidal, i.e. dynamic, en-
vironment like the tidal flat, because anammox bacteria are
slow-growing and thus usually favoured by stable environ-
mental conditions (Jensen et al., 2009). Denitrification, the
alternative source for dinitrogen, appears to play a more im-
portant role, removing large amounts of nitrate in the incu-
bation assay.

4.2 The fate of nitrate

There was little assimilation of nitrate into organic matter,
and light conditions had only little influence on net nitrate
uptake (Figs. 6 and 7). Rates for assimilation of nitrate were
negligible in comparison to those for ammonium or to N2-
production and had no significant effect on nutrient concen-
trations or label appearance in organic material. Overall, it
appears that nitrate was almost exclusively subject to dissim-
ilatory turnover (Fig. 6).

Dissimilatory processing of nitrate (i.e. denitrification or
DNRA) decreased rapidly within the first hours of the incu-

bation. Nitrate turnover was mostly coupled to a transport
into the “missing label” pool (Fig. 5), which is consistent
with the high rates of N2 production (Fig. 6). After a peak
in N2 production rates at the beginning of the experiment,
rates dropped significantly, approaching a stable level after
20 to 24 h. These N2 production rates were apparently con-
trolled by the availability of easily degradable organic matter.
Denitrification depends on the availability of readily avail-
able electron acceptors (Pfenning and McMahon, 1997) as
they are present in the labile detritus fraction. The concen-
tration of this labile fraction was high at the beginning of the
experiment, fuelling high denitrification rates, and decreased
during the experiment. A further kinetic control on denitrifi-
cation is exerted by the diffusion of nitrate into the denitrifi-
cation zone: as the nitrate concentration in the homogenized
sediment decreases with the establishment of stable biogeo-
chemical gradients, less and less nitrate will find its way into
the active denitrifying zone in the sediment, with rates con-
sequently levelling off towards the end of the incubation.

Other potential dissimilatory processes like DNRA ap-
peared to be of minor importance. The model approach
revealed that initial DNRA rates were reasonably high
(∼ 0.1 µmol bottle−1 h−1), but like denitrification rates, they
decreased over the course of the experiment and resulted in
little net production of labelled ammonium. Contrastingly,
Porubsky et al. (2009) investigated tidal flats in South Car-
olina and Georgia, USA, and found that DNRA was signif-
icant and in direct competition with denitrification in sedi-
ments. They argue that DNRA appears to be stimulated and
favoured over denitrification at temperatures above 20◦C.
While we used a moderately high temperature of 17◦C, it
seems plausible that bacterial communities are adapted to
lower temperatures at our study site. This apparently resulted
in little quantitative importance of DNRA in our experiment
in comparison to the competing process, denitrification, re-
gardless of light conditions or BMA activity.

4.3 The balance between assimilatory versus
dissimilatory processes

The primary goal of this study was to evaluate the balance
between assimilative and dissimilative nitrogen cycling pro-
cesses in a tidal mudflat sediment exposed to different light
levels and repetitive resuspension events. We found that this
balance is governed not only by presence or absence of light,
but just as well by physical disturbance. In the initial phase of
the incubation, dissimilative processes clearly prevail, with
nitrification and denitrification reaching maximum rates. As
the experiment proceeds, process rates level off and approach
a steady state, indicating the re-establishment of biogeo-
chemical gradients in the sediment (cf. Risgaard-Petersen et
al., 2004).

But how does this peak activity compare to a natural sys-
tem? The most evident analogy to sediment mixing in our
experiment is sediment reworking due to bioturbation and,
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especially important in a tidally influenced system like the
Scheldt estuary, due to tidal forcing. Such mixing can lead
to disruption of preformed gradients in the sediment, and to
burial of benthic microalgae (Kamp et al., 2011). Trimmer
et al. (2005) investigated the impact of mixing due to bot-
tom trawling and tides. Similar to the rapid recovery in our
experiment, they found that sedimentary processes rapidly
return to their former status. However, the most pronounced
factor governing the assimilatory/dissimilatory balance obvi-
ously is this physical disturbance, be it in tidal sediments in
the estuary or in our experimental assay.

After this initial experimental phase, when sediments re-
turn to their former state, we were aiming to estimate the
microalgal contribution by comparing process rates in light
versus dark sediment incubations. A limitation to this ap-
proach is that a certain portion of algal N uptake can continue
under dark conditions. Evrard et al. (2008) found that dark
nitrate uptake was decoupled from carbon assimilation and
approached 75 % of the light uptake. For ammonium, dark
uptake rates can also approach 20 % of those found in light
(Thornton et al., 1999). However, the lack of light clearly re-
duced algal uptake and provides us with a minimum estimate
of their impact in this sediment.

The most important result from our study is that ammo-
nium was predominantly assimilated in the sediment regard-
less of the light conditions (see previous section). Dissimila-
tory processes like nitrification are primarily of importance in
the initial phase of the experiment. In contrast, assimilation
is of subordinate role for nitrate or nitrite. At steady state an
average of 6 % of the added15NO−

3 entered the organic mat-
ter pool , while dissimilatory processing of nitrate, mainly as
denitrification, clearly prevailed

What are the implications of our results for nutrient
turnover in the Scheldt estuary? Today, the main input of re-
active nitrogen to the Scheldt estuary is in the form of nitrate;
ammonium comprises< 10 % of the total reactive nitrogen
load (e.g. Soetaert et al., 2006). Our results indicate that ni-
trate will mainly be removed via denitrification in the estuary,
and that this removal is likely stimulated on short time scales
by sediment mixing due to tidal forcing, wave activity and
bioturbation.

Overall, while net nitrate retention in the Scheldt estu-
ary has decreased, our results indicate that perturbations of
the sediment, like we deliberately induced by shaking the
slurries, have a very high short-term impact on the N-cycle.
The natural equivalent of this manual shaking is bioturba-
tion and wave- or tide-induced mixing of sediment. Partic-
ularly in the outer tidal flat system, the estuary is heavily
influenced by tidal forcing (Vanderborght et al., 2007) and
waves (Callaghan et al., 2010). Our results suggest that these
processes can trigger dissimilatory pathways like denitrifica-
tion and nitrification for a short time period, and a coupling
of these two processes can lead to substantial nutrient re-
moval (Laursen and Seitzinger, 2002). After re-establishment
of stable biogeochemical gradients, other factors, like the oc-

currence of benthic microalgae, apparently gain in impor-
tance. These interactions of physical processing and biolog-
ical turnover rates should be kept in mind as natural process
rates can be altered in disturbed systems due to human in-
teractions not only in the Scheldt estuary, but also in other
shallow coastal regions.

4.4 The role of benthic microalgae

The nutrient and label distribution in the equilibrated incuba-
tions points towards some marked differences between light
and dark conditions, providing clear evidence that the activ-
ity of benthic microalgae had an impact on sedimentary N-
cycling in tidal sediments from the Scheldt estuary.

The most striking difference between light and dark in-
cubations was the change in ammonium assimilation rates.
Within the first hour of the incubation, the dark assimilation
rate dropped to∼ 75 % of that in light (Fig. 6). Thus, BMA
seem to have been responsible for at least a quarter of the
overall uptake rate in the light. Interestingly, this was suffi-
cient to convert the sediments from being a net ammonium
source (dark incubations, cf. Figs. 3 and 6) into being a net
sink for reactive nitrogen.

Besides this obvious effect on ammonium assimilation,
this shows that BMA compete with the bacterial community
– including nitrifiers – for ammonium. This can lead to re-
duced nitrification and a lower flux of nitrate to denitrifica-
tion. Coupled nitrification/denitrification often represents a
significant share of total denitrification and is reduced when
assimilation by MPB is increased. Thornton et al. (2007) ex-
plored sedimentary nutrient fluxes in the Colne estuary and
found that denitrification was governed by light conditions,
with significantly higher rates during dark phases. We did not
see such inhibition in our experiment; it is apparently over-
come by other factors favouring denitrification. A candidate
mechanism is the exudation of organic matter during illumi-
nation (Cook et al., 2009): Denitrifiers rely not only on ni-
trate but also on organic substrates, and, accordingly, easily
accessible sources of organic matter can potentially enhance
rates of denitrification.

The combined effect of the observed higher assimilation
of ammonium and continuous nitrification/denitrification in
the light resulted in a much stronger sequestration of NH+

4
in the experiment (cf. Fig. 3) in light. While the sediments
still were net total DIN sinks due to strong denitrification
in both light and dark, they shifted from being a net sink
for ammonium under illuminated conditions to being a net
ammonium source in the dark. Such net efflux of ammonium
can be due to DNRA in some environments (Fulweiler et al.,
2008; Gardner et al., 2006), but the role of DNRA appears to
be limited in intertidal Scheldt estuary sediments (see above).
We presume that, in this case, the shift to net sedimentary
ammonium production in the dark is due to dwindling BMA
ammonium uptake when light is limiting, not to increasing
DNRA.
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4.5 Selective removal of15N?

The model was essential in unravelling our15N results and
translating these into process rates for the complex benthic
N-cycle. In some cases, the initial model assumptions and
the experimental data were not entirely consistent and mod-
ification of the original conceptual model was required in
order for the model to be able to reproduce the experimen-
tal results. The most profound difference was that the orig-
inal model was unable to reproduce the initial decrease in
the labelling percentage of nitrate. This offset between data
and model could be overcome by inclusion of a process that
selectively removed15NO−

3 from the total dissolved NO−3
pool (see materials and methods section). We can only spec-
ulate on what process accounted for this selective removal,
but one probable mechanism is intracellular nitrate storage
by diatoms. Diatoms can represent a substantial part of the
BMA in the sediment (Sundback et al., 2011) and domi-
nate the BMA community in our study area (Veuger and van
Oevelen, 2011). They are known to store nitrate internally
in up to millimolar concentrations (Dortch et al., 1984; Pet-
tersson and Sahlsten, 1990; Flynn et al., 2002), thus play-
ing an important role in marine nutrient cycling. Interest-
ingly, it has long been hypothesized that this uptake of ni-
trate by diatom cells is at least party regulated via diffusion
(Lomas and Glibert, 1999; Serra et al., 1978). Unlike most
other uptake mechanisms, diffusion will, in a label addition
experiment, differentially act on the two isotope species. Un-
like active transport mechanisms, a diffusion-driven uptake
will preferentially act on the newly added15N until an equi-
librium is achieved. Consequently,15N will initially diffuse
into the cells until equilibrium with15N in the environment
is achieved. This can explain the rapid decrease in labelled
15NO−

3 in the dissolved pool in our experiment (Fig. 4a). This
pool of internally stored nitrate is not captured in the pool of
15N in organic matter because the latter involves particulate
organic material (i.e. biomass) while intracellular dissolved
NO−

3 was likely removed by the KCl extraction.
Surprisingly, a similar phenomenon can be seen for the

removal of 15NH+

4 . There appears to be a similar process
acting preferentially on the heavier ammonium isotope, but
it is not easy to infer which process might be responsi-
ble for this behaviour. Some authors (Lomas and Glibert,
2000; Baek et al., 2008) observed internal storage of excess
ammonium in flagellates, but it is not clear whether these
mechanisms play a role in our experiment, where sedimen-
tary turnover governs process rates. Furthermore, there is no
proof of diffusion-driven uptake of ammonium by these or-
ganisms, so the mechanistic basis of this ammonium uptake
remains somewhat speculative.

Barring uncertainty about the precise processes involved
for ammonium, these selective uptake processes are only re-
vealed by the modelling approach used in this study in ad-
dition to the experimental data. This shows that such a com-
bined approach provides valuable additional information on

the processes under study – in this case the presence and rel-
evance of diatoms in coastal nitrogen cycling. Consequently,
even though our data do not allow the precise identification
and quantification of the two mechanisms that are responsi-
ble for the selective removal of labelled ammonium or ni-
trate, our results clearly demonstrate its relevance for inter-
pretation of the stable isotope tracer results and quantification
of resulting process rates. This highlights the added value of
the combined approach of modelling and experimental data,
which allowed us not only to determine process rates for our
setup, but also revealed these – unexpected – selective re-
moval mechanisms that we would have been unable to detect
using the experimental data alone. Yet, such selective pro-
cesses have a significant impact on the pool size of labelled
compounds, which are the basis for most calculations of pro-
cess rates. Accordingly, disregarding these processes can ob-
viously lead to erroneous process rate estimations.

5 Conclusions

The outcome of this study is two-fold: First, we find that
the balance of assimilative/dissimilative processes is al-
tered by sediment homogenization, enhancing dissimilatory
processes and most probably triggering coupled nitrifica-
tion/denitrification. This means that, even though nitrifica-
tion rates on the long term are low, such sediments have a
high potential for nitrification which is expressed if they are
physically perturbed. In the field, such perturbations are ex-
pected by fauna or currents, suggesting that assimilation or
dissimilation can be driven to a large extent by external phys-
ical or biotic forcing, with the entire system being capable of
rapid shifts following environmental changes.

After a short equilibration time in our experiment, results
then indicate that the balance between assimilation and dis-
similation in the investigated sediment differed depending
on the nitrogen source. Ammonium was primarily assimi-
lated, while nitrate was utilized almost exclusively in dis-
similatory processes like denitrification, with only little ev-
idence of other dissimilatory processes like nitrification or
DNRA. Benthic microalgae apparently did not stimulate dis-
similatory pathways in our sediment, but had a substantial
impact on sedimentary ammonium assimilation: When BMA
ammonium assimilation ceased, sediments in our experiment
switched from being a net sink for ammonium to being a net
source.

Second, our combined experimental and modelling ap-
proach highlights the importance of pathways that selec-
tively remove labelled ammonium, as well as nitrate. We can
merely speculate on the precise mechanisms involved, but
there is further need to study the relevance of these processes
in natural environments.
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Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
4059/2012/bg-9-4059-2012-supplement.pdf.
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