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Abstract. The non-invasive and radiation-free imaging of
the electrical activity of the heart with Electrocardiogra-
phy (ECG) or Magnetocardiography (MCG) can be help-
ful for physicians for instance in the localization of the ori-
gin of cardiac arrhythmia. In this paper we compare two
Kalman Filter algorithms for the solution of a nonlinear
state-space model and for the subsequent imaging of the
activation/depolarization times of the heart muscle: the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman Fil-
ter (UKF). The algorithms are compared for simulations of
a (6× 6) magnetometer array, a torso model with piecewise
homogeneous conductivities, 946 current dipoles located in
a small part of the heart (apex), and several noise levels. It is
found that for all tested noise levels the convergence of the
activation times is faster for the UKF.

1 Introduction

The localization of the origin of heart arrhythmia is an impor-
tant part of a successful treatment. For instance, in the con-
text of the Wolff-Parkinson-White syndrome (Nenonen et al.,
1991) a pathological accessory pathway is located parallel to
the atrioventricular node and can cause serious heart arrhyth-
mia like tachycardia. A non-invasive radiation-free localiza-
tion of the accessory pathway with ECG or MCG is help-
ful because it shortens the invasive and X-ray-based catheter
mapping procedure. One of the main problems in imaging the
electrical activity of the heart is the non-uniqueness of the in-
verse problem (Fokas et al., 2004) caused by the fact that the
number of current dipoles in the heart to be estimated is typ-
ically much larger than the number of ECG/MCG sensors.
Consequently, the system of linear equations to be solved is
ill-posed in general. While in potential imaging the state vec-
tor of the state-space model is the transmembrane potential
at all heart voxels (Schulze et al., 2009), in activation time

imaging the state vector includes the activation times of all
heart voxels. The idea behind activation time imaging (He
et al., 2002) is to include physiological action potential in-
formation, e.g. the wavefront velocity and the upstroke ve-
locity of the depolarization wavefront, to reduce the num-
ber of heart model parameters to be estimated without loos-
ing too much accuracy in the calculated sensor signal. The
physiological information is incorporated in a cellular au-
tomaton model (Weixue et al., 1993) approximating the de-
polarization wavefront with 3 states and neglecting repolar-
ization. The corresponding nonlinear state-space model can
be solved using Kalman Filter algorithms (Liu et al., 2011).
It has been shown that activation time imaging on a 3-D my-
ocardium is more stable with respect to measurement noise
than potential imaging (Cheng et al., 2003) and can provide
an averaged localization error of∼ 3 mm (Liu et al., 2011)
which is small compared to∼ 1 cm for single dipole localiza-
tion (Nenonen et al., 1991). In this paper the performances of
two different Kalman Filters for the solution of the nonlinear
state-space model of activation time imaging are compared
for Magnetocardiography: The Extended Kalman Filter and
the Unscented Kalman Filter. The convergence of activation
times is compared for a quadratic plane (6× 6) magnetome-
ter array and several measurement noise levels. In Sect.2 the
MCG signal as a function of the activation times is derived, in
Sect.3 the state-space model is explained, and Sect.4 sum-
marizes the used Kalman Filter algorithms. Section5 shows
the used sensor array, torso model and sources, in Sect.6.1
parameter tests for the Kalman Filters are described, while in
Sect.6.2 the EKF and UKF are compared for several mea-
surement noise levels.
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Fig. 1. Approximation of action potential in cellular automaton
model: 3 states Resting (R), Wavefront (W) and Excited (E).τ(r)

is the activation time at positionr in myocardium.

2 From activation times on 3-D myocardium to sensor
signal

Following the bidomain theory (Miller and Geselowitz,
1978) we first have to solve the electrical volume conduction
problem:

∇ · (jp + jV ) = 0 (1)

jp = −σi∇Vm (2)

with the transmembrane potentialVm of the heart muscle
cells, primary current densityjp, volume current density
jV and intracellular conductivityσi . The volume conduction
problem (1) can be solved using the Finite Element Method
(FEM) on a 3-D tetrahedral mesh. For the FEM simulation
the SimBio neurofem program (SimBio Development Group,
2013) was used. The magnetic field has to be calculated from
the total current densityj = jp + jV using the Biot-Savart
law. Forn primary current dipoles

Jp(t) = (jp(r1, t), . . . ,jp(rn, t))
T (3)

(where the superscriptT denotes the transpose) andq mag-
netometers at a given polarization the superposition principle
yields the MCG signal vector caused by the primary currents
at the timet :

ϕB(t) = LJp(t) (4)

L is the corresponding(q × 3n) leadfield matrix calculated
from the volume conduction problem. The cellular automa-
ton approximation for the transmembrane potential at posi-
tion r in myocardium

Vm(r, t) = a(t − τ(r)) (5)

is shown in Figs.1 and2. Now inserting Eq. (5) into (2), then
Eq. (2) into (3) and Eq. (3) into (4), and define the activation
time state vector as

x = (τ (r1), . . . , τ (rn))
T

≡ (x1, . . . ,xn)T (6)
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Fig. 2. Diffusion of activation in the cellular automaton model
(Weixue et al., 1993). 1τ = 3 ms is the difference of activation
times between adjacent voxels.

as well as the corresponding data time seriest1, . . . , tN . Then
the (q × N) MCG signal matrixφB = (ϕB(t1), . . . ,ϕB(tN ))

finally is described by

φB = h(x) (7)

whereh (a(t − τ(r)) is representing a nonlinear function of
τ(r).

3 State-space model

To tackle the discussed non-uniqueness of Eq. (7) the follow-
ing state-space model is formulated:

xk = f(xk−1) + wk−1 (8)

φB,k = h(xk) + vk

wherexk is the activation time state vector of iteration step
k, f is a process function that predicts thek-th state from the
(k − 1)-th state,φB,k is the MCG signal matrix of thek-th
heart beat andvk andwk−1 are the measurement noise and
process noise, respectively. Both are assumed as Gaussian
white noise with the following normal distributions:

p(w) ∼ N(0,Q) p(v) ∼ N(0,R) (9)

whereR andQ are the noise covariance matrices of the mea-
surement and process, respectively. The process functionf is
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determined by the following rules:
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(10)

whereZ is the number of next neighbours (in;n = 1, . . . ,Z)
within a distanced, andv the isotropic activation wavefront
velocity. Consequently, the activation time of a voxel tends
to the average activation time of the adjacent voxels. In our
calculation we chose for the distance to next neighboursd =√

3d whered is the lattice constant of a cubic grid (Fig.2).

4 Kalman Filters

Generally, the application of Kalman Filters is limited to lin-
ear processes, and different methods have been proposed to
also treat nonlinear ones – as stated by Eqs. (9) and (7) – by
means of this powerful technique. Two of these methods will
be presented in the following.

4.1 Extended Kalman Filter (EKF)

The idea of the Extended Kalman Filter is the linearization
of the nonlinear state-space model Eq. (9) by calculating the
Jacobian matricesH,F of the functionsh, f and approximat-
ing the first partial derivatives with difference quotients (Liu
et al., 2011):

Hij =
hi(x

1, . . . ,xj
+ ρ, . . . ,xn) − hi(x

1, . . . ,xj
− ρ, . . . ,xn)

2ρ
(11)

with the temporal resolutionρ and omitting the iteration step
indexk. The Extended Kalman Filter now minimizes the er-
ror covariance matrix defined by:

Pk =< (xk − xtrue)(xk − xtrue)
T > (12)

wherextrue is the true activation sequence andxk the esti-
mated activation of stepk. In the “predict” procedure of the
algorithm a priori estimates of the state vector and the error
covariance matrix are projected from the last step:

x−

k = f(xk−1) (13)

P−

k = FkPk−1FT
k + Q (14)

In the “correct” procedure, the Kalman gainK k is calcu-
lated and the state vector and error covariance matrix are up-
dated with the measured dataφB,k:

K k = P−

k HT
k (HkP−

k HT
k + R)−1 (15)

xk = x−

k + K k(φB,k − h(x−

k )) (16)

Pk = (1− K kHk)P
−

k (17)

xk andPk are then used for the next iteration step.

4.2 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (LaViola, 2003) generates a
deterministic set of sampling points, stored in then×(2n+1)

sigma point matrixXk−1. The columns ofXk−1 are calcu-
lated by:

(Xk−1)1 = xk−1 (18)

(Xk−1)i = xk−1 + (
√

(n + λ)Pk−1)i, i = 2, . . . ,n

(Xk−1)i = xk−1 − (
√

(n + λ)Pk−1)i−n, i = n + 1, . . . ,2n + 1

where (
√

(n + λ)Pk−1)i is the i-th column of the matrix
square root andλ is defined by:

λ = α2(n + κ) − n (19)

where α and κ are scaling parameters that determine the
spread of the sigma points. The square rootA of a matrixB
satisfiesB = AAT and for the symmetric and positive def-
inite matrix B = (n + λ)Pk−1 it can be calculated using a
Cholesky decomposition (Rhudy et al., 2011). In the “pre-
dict” procedure the sigma points are propagated by the pro-
cess function:

(Xk)i = f((Xk−1)i), i = 1, . . . ,2n + 1 (20)

Then the a priori state estimate is calculated by:

x−

k =

2n+1∑
i=1

W
(m)
i (Xk)i (21)

whereW
(m)
i are weights defined by

W
(m)
1 =

λ

(n + λ)
(22)

W
(m)
i =

1

2(n + λ)
, i = 2, . . . ,2n + 1 (23)

and the a priori error covariance matrix is calculated by

P−

k =

2n+1∑
i=1

W
(c)
i [(Xk)i − x−

k ][(Xk)i − x−

k ]
T

+ Q (24)

with the process error covariance matrixQ and the following
weights:

W
(c)
1 =

λ

(n + λ)
+ (1− α2

+ β) (25)

W
(c)
i =

1

2(n + λ)
, i = 2, . . . ,2n + 1 (26)

β is another scaling parameter to adjust the speed of conver-
gence. In the “correct” procedure first the sigma points are
transformed by the measurement function:

(Zk)i = h((Xk)i), i = 1, . . . ,2n + 1 (27)

z−

k =

2n+1∑
i=1

W
(m)
i (Zk)i (28)
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With the field vectorz−

k we can now compute the a poste-
riori state estimate:

xk = x−

k + K k(φB,k − z−

k ) (29)

where the Kalman gainK k of the UKF is defined by

K k = Pxkzk
P−1

zkzk
(30)

with

Pzkzk
=

2n+1∑
i=1

W
(c)
i [(Zk)i − z−

k ][(Zk)i − z−

k ]
T

+ R (31)

Pxkzk
=

2n+1∑
i=1

W
(c)
i [(Xk)i − x−

k ][(Zk)i − z−

k ]
T (32)

whereR is the measurement noise covariance matrix. In the
last step the error covariance matrix has to be updated:

Pk = P−

k − K kPzkzk
KT

k (33)

The computation times of the EKF and the UKF are identical.

5 MCG sensor array and dipole sources

Figure 3 shows the(6× 6) array of circular magnetome-
ters with radiusr = 9 mm and the torso, lung and heart sur-
faces used in the simulations. For test purposes the activity
is restricted to a small part of the apex of the heart with
946 dipoles distributed on a cubic grid with a lattice con-
stant ofd = 1.5 mm. The conductivities of the body tissues
were set as in (Liu et al., 2011): torso (0.20 S m−1), lungs
(0.08 S m−1) and cardiac tissue (average of conductivity par-
allel and transverse to muscle fibre directions: 0.6 S m−1).
The non-uniform tetrahedral FEM grid was separated in
48 780 (cardiac tissue), 8045 (lungs) and 238 305 (torso)
tetrahedra. The activation wavefront velocity was assumed
to be isotropic and we chose the averagev = 0.5 m s−1 of the
velocity parallel and transverse to the muscle fibre orienta-
tion (He et al., 2002) so in the cellular automaton model the
difference between the activation times of adjacent voxels is
1τ = d/v = 3 ms.

6 Results

6.1 Parameter selection, initial state and true state

For the optimization of the convergence of the Kalman Filters
several parameters need to be optimized: the scaling param-
etersα,β,κ for the UKF and the temporal resolutionρ for
the EKF. To measure the speed of convergence we define the
Relative Error (RE) between the actual state vectorxk of step
k and the true state vectorxtrue:

RE=
||xk − xtrue||

||xtrue||
(34)

Fig. 3.Left: small heart model with 946 dipoles distibuted on a 3-D
cubic grid with lattice constantd = 1.5 mm, Right:(6× 6) mag-
netometers with radiusr = 9 mm in a quadratic plane array 1 cm
above the torso. The magnetic flux is calculated with 16 integration
points per sensor. The data sampling rate is1t = tj+1 − tj = 3 ms.

with the Euclidian norm|| · ||. Both the initial and the true
state are calculated with the cellular automaton model. In
praxis the location of the origin of the initial state can be cal-
culated with a single dipole localization applied on the delta
wave (Nenonen et al., 1991) of Wolff-Parkinson-White syn-
drome. The parameters are optimized for the case of mea-
surement noise covarianceR = 10−4

· 1, process noise co-
varianceQ = 0 and the initial value of the error covariance
matrix is the unity matrix (P = 1). Figure4 shows the pa-
rameter test for the temporal resolutionρ of the EKF. The
temporal resolutionρ = 3ms with the fastest convergence of
the Relative Error is selected for all further EKF calculations.
Figure5 shows the test for the parameterα of the UKF. The
other parameters of the UKF are fixed (β = 0 = κ). To en-
able a stable and fast convergence of the activation times the
spread parameterα = 5 was chosen for all further UKF cal-
culations.β andκ have a smaller influence on RE thanα.

6.2 Comparison of the EKF and the UKF for several
measurement noise levels

Figure6 depicts the convergence of RE as a function of the
iteration stepk for the EKF (diamonds) and the UKF (dots)
for several measurement noise levels with the noise covari-
ance matrixR = σ 2

n ·1. The calculated standard deviations of
the Gaussian white noise areσn = 0.01,0.03,0.05,0.1,0.5
while the minimum of the calculated signal isφB,min =

−3.085 and the maximum of the calculated signal is
φB,max = 1.077. For all calculated noise levels Fig.6 shows
that the UKF enables a faster convergence of the RE than
the EKF, especially during the first 100 steps. Both for the
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Fig. 4.Relative Error RE= ||xk−xtrue||
||xtrue||

as a function of the iteration
stepk for the EKF and several temporal resolutionsρ for the differ-
ence quotients of the JacobiansH,F (Q = 0,R = 10−4

· 1). Every
5th iteration step is shown.

Fig. 5. Relative Error RE =||xk−xtrue||
||xtrue||

as a function of the iteration
stepk for the UKF and several scaling parametersα for the spread
of the sigma points (Q = 0,R = 10−4

· 1, β = 0 = κ). Every 5th it-
eration step is shown.

Fig. 6.Relative Error RE= ||xk−xtrue||
||xtrue||

as a function of the iteration
stepk for the EKF (diamonds) and UKF (dots) and several measure-
ment noise levels with noise covariance matrixR = σ2

n · 1 (Q = 0).
Every 5th iteration step is shown.

Fig. 7. Activation times for the EKF and measurement noiseσn =

0.01 (Q = 0,ρ = 3 ms). Top: initial state, middle: 1000 iteration
steps, bottom: true state.

UKF and the EKF the converged value of RE increases pro-
portional to the noiseσn. The convergence of the activation
times for the EKF and the measurement noiseσn = 0.01 is
shown in Fig.7. The convergence of the activation times for
the UKF and the measurement noiseσn = 0.01 is shown in
Fig. 8.

7 Conclusions

In this paper the performance of cardiac activation time
imaging with the help of a cellular automaton model includ-
ing physiological information and Kalman Filter algorithms
for the solution of a nonlinear state-space model have been
investigated. The comparison of the EKF and the UKF in
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Fig. 8. Activation times for the UKF and measurement noiseσn =

0.01 (Q = 0,α = 5,κ = 0 = β). Top: initial state, middle: 1000 it-
eration steps, bottom: true state.

Fig. 6 yields a faster convergence of the activation times of
the UKF for all measurement noise levels. The signal and
process functionsh andf are nonlinear and even non-smooth
functions of the activation times. The EKF is an algorithm
of 1st order accuracy while the UKF captures the mean and
covariance of the Gaussian distributed state vector to the 3rd
order Taylor series (Wan and van der Merwe, 2000). In the
next steps the heart model needs to be extended to the total
ventricles and a muscle fibre model needs to be introduced
to include an anisotropic activation wavefront velocity with
respect to muscle fibre orientations. For an application to re-
alistic data the heart model parameters, e.g. the process noise
covarianceQ, need to be estimated from the data. This can
be done e.g. with the Expectation-Maximization (EM) algo-
rithm (Khan and Dutt, 2007).

Acknowledgements.This work was supported by the SFB 855
Magnetoelectric Composites – Future Biomagnetic Interfacesof the
Deutsche Forschungsgemeinschaft.

References

Cheng, L. K., Bodley, J. M., and Pullan, A. J.: Comparison of
Potential- and Activation-Based Formulations for the Inverse
Problem of Electrocardiology, IEEE T. Bio-Med. Eng., 50, 11–
22, 2003.

Fokas, A. S., Kurylev, Y., and Marinakis, V.: The unique determina-
tion of neuronal currents in the brain via magnetoencephalogra-
phy, Institute of Physics Publishing, Inverse Problems, 20, 1067–
1082, 2004.

He, B., Li, G., and Zhang, X.: Noninvasive three-dimensional acti-
vation time imaging of ventricular excitation by means of a heart-
excitation model, Phys. Med. Biol., 47, 4063–4078, 2002.

Khan, M. E. and Dutt, D. N.: An expectation-maximization algo-
rithm based Kalman smoother approach for event-related desyn-
chronization (ERD) estimation from EEG, IEEE T. Bio-Med.
Eng., 54, 1191–1198, 2007.

LaViola Jr., J. J.: A Comparison of Unscented and Extended
Kalman Filtering for Estimating Quaternion Motion, P. Am.
Contr. Conf., 3, 2435–2440, 2003.

Liu, C. and He, B.: Noninvasive Estimation of Global Activation
Sequence Using the Extended Kalman Filter, IEEE T. Bio-Med.
Eng., 58, 541–549, 2011.

Miller, W. T. and Geselowitz, D. B.: Simulation studies of the elec-
trocardiogram. I. The normal heart, Circ. Res., 43, 301–315,
1978.

Nenonen, J., Purcell, C. J., Horacek, B. M., Stroink, G., and Katila,
T.: Magnetocardiographic Functional Localization Using a Cur-
rent Dipole in a Realistic Torso, IEEE T. Bio-Med. Eng., 38,
658–664, 1991.

Rhudy, M., Gu, Y., Gross, J., and Napolitano, M. R.: Evaluation of
Matrix Square Root Operations for UKF within a UAV GPS/INS
Sensor Fusion Application, Int. J. Navigation and Observation,
2011, Article ID 416828, doi:10.1155/2011/416828, 2011.

Schulze, W., Farina, D., Jiang, Y., and Dössel, O.: A Kalman fil-
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