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Abstract. The non-invasive and radiation-free imaging of imaging the state vector includes the activation times of all
the electrical activity of the heart with Electrocardiogra- heart voxels. The idea behind activation time imagikig (
phy (ECG) or Magnetocardiography (MCG) can be help- et al, 20032 is to include physiological action potential in-
ful for physicians for instance in the localization of the ori- formation, e.g. the wavefront velocity and the upstroke ve-
gin of cardiac arrhythmia. In this paper we compare two locity of the depolarization wavefront, to reduce the num-
Kalman Filter algorithms for the solution of a nonlinear ber of heart model parameters to be estimated without loos-
state-space model and for the subsequent imaging of thang too much accuracy in the calculated sensor signal. The
activation/depolarization times of the heart muscle: the Ex-physiological information is incorporated in a cellular au-
tended Kalman Filter (EKF) and the Unscented Kalman Fil-tomaton model\(Veixue et al. 1993 approximating the de-

ter (UKF). The algorithms are compared for simulations of polarization wavefront with 3 states and neglecting repolar-
a (6x 6) magnetometer array, a torso model with piecewiseization. The corresponding nonlinear state-space model can
homogeneous conductivities, 946 current dipoles located irbe solved using Kalman Filter algorithmisiy et al., 2017).

a small part of the heart (apex), and several noise levels. It idt has been shown that activation time imaging on a 3-D my-
found that for all tested noise levels the convergence of theocardium is more stable with respect to measurement noise
activation times is faster for the UKF. than potential imaging&heng et al.2003 and can provide

an averaged localization error 6f3mm (iu et al, 2011
which is small compared te 1 cm for single dipole localiza-
tion (Nenonen et al1997). In this paper the performances of
two different Kalman Filters for the solution of the nonlinear
o - . . state-space model of activation time imaging are compared
The localization of the origin of heart arrhythmia is an impor- for Magnetocardiography: The Extended Kalman Filter and

tant part of a succes_sful treatment. For instance, in the COMhe Unscented Kalman Filter. The convergence of activation
text of the Wolff-Parkinson-White syndromiénonen et a). times is compared for a quadratic plane(6) magnetome-

1991 a patho_logical accessory pathway is 'QCatEd parallel Qer array and several measurement noise levels. In St
the atrioventricular node and can cause serious heart arrhytl’N/ICG signal as a function of the activation times is derived, in
mia like tachycardia. A non-invasive radiation-free localiza- g, 3 the state-space model is explained, and Sestim-
tion of the accessory pathway with ECG or MCG is help- marizes the used Kalman Filter algorithms. Secbm@hows
ful because it shortens the invasive and X-ray-based cathet%e used sensor array, torso model and sources, in Géct

mapping procedure. One of the main problems in imaging theparameter tests for the Kalman Filters are described, while in

electrical activity of the heart is the non-uniqueness of the in'Sect.6.2the EKF and UKF are compared for several mea-
verse problemRokas et al.2004) caused by the fact that the surement noise levels

number of current dipoles in the heart to be estimated is typ-
ically much larger than the number of ECG/MCG sensors.
Consequently, the system of linear equations to be solved is
ill-posed in general. While in potential imaging the state vec-
tor of the state-space model is the transmembrane potential
at all heart voxels$chulze et a).2009, in activation time

1 Introduction
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Fig. 1. Approximation of action potential in cellular automaton R WL_,R
model: 3 states Resting (R), Wavefront (W) and Excited ¢f) AT = da
is the activation time at positianin myocardium. v
2 From activation times on 3-D myocardium to sensor R R R
signal
d
Following the bidomain theoryMiller and Geselowitz ~
1978 we first have to solve the electrical volume conduction gig 2. piffusion of activation in the cellular automaton model
problem: (Weixue et al. 1993. At =3 ms is the difference of activation
. . times between adjacent voxels.
V-(jp+iv)=0 (1) J
jp =—0;VVy (2)

) ) as well as the corresponding data time seies ., ty. Then
with the transmembrane potenti#), of the heart muscle the (¢ x N) MCG signal matrixpg = (93 (t1), ..., 5 (Ix))
cells, primary current density,, volume current density finally is described by
Jjv and intracellular conductivity;. The volume conduction
problem () can be solved using the Finite Element Method b5 =h(x) @)
(FEM) on a 3-D tetrahedral mesh. For the FEM simulation
the SimBio neurofem prograr${mBio Development Group  whereh (a(t — 7 (r)) is representing a nonlinear function of
2013 was used. The magnetic field has to be calculated fromy ().
the total current density = j, 4+ jv using the Biot-Savart
law. Forn primary current dipoles
3,(0) = (jp(rl,t),...,j,,(r,,,t))T 3) 3 State-space model
(where the superscrifft denotes the transpose) apanag-  To tackle the discussed non-uniqueness of Exthe follow-
netometers at a given polarization the superposition principléng state-space model is formulated:

yields the MCG signal vector caused by the primary currents
at the timer: Xk = f(Xk—1) +Wk—1 (8)

ep(t) =L, (1) (@) PBr=h0o0)+V

L is the correspondingg x 3n) leadfield matrix calculated wherex; is the activation time state vector of iteration step
from the volume conduction problem. The cellular automa-*. f i @ process function that predicts théh state from the

ton approximation for the transmembrane potential at posi<k — 1)-th state¢p ; is the MCG signal matrix of thé-th
tion r in myocardium heart beat and;, andw;_1 are the measurement noise and

process noise, respectively. Both are assumed as Gaussian
Vin(r,t) =a(t —1(r)) (5)  white noise with the following normal distributions:

is shown in Figsl and2. Now inserting Eq.5) into (2), then
Eqg. @) into (3) and Eg. 8) into (4), and define the activation
time state vector as

pW)~N(@©,Q  p(v)~N(OR) ©)

whereR andQ are the noise covariance matrices of the mea-
X=(t(r1),...,tra)) =L ... M7 (6) surement and process, respectively. The process furfason
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determined by the following rules: 4.2 Unscented Kalman Filter (UKF)

j 1 &, The Unscented Kalman FilteL§Viola, 2003 generates a
Xe1— 7 2 M
n

- deterministic set of sampling points, stored inithe(2n+1)
xl{ = (10) sigma point matrixX;_1. The columns oft;_; are calcu-
zZ . lated by:
% oy, if
n=1 (X—1)1 = Xk—1 (18)
whereZ is the number of next neighbours {n = 1,...,7) (G- =X—1+( +2)Pe2)i, i=2,....n

within a distancel, andv the isotropic activation wavefront  (X;_1); = Xi—1 — (/1 + M)Px—1)i_n,i =n+1,....2n+1

velocity. Consequently, the activation time of a voxel tends . ) .
to the average activation time of the adjacent voxels. In ourVhere (v (e + MP—y); is the i-th column of the matrix

calculation we chose for the distance to next neighbduss ~ Sduare rootand is defined by:
V/3d whered is the lattice constant of a cubic grid (F®). A =al(n+x)—n (19)

<

j .
Xj_q, f <

>

<

. VA .
J 1 In
X1 T 7 X
n=1

wherea and « are scaling parameters that determine the
spread of the sigma points. The square aif a matrixB
satisfiesB = AAT and for the symmetric and positive def-
ipite matrix B = (n + A)P;_1 it can be calculated using a

olesky decompositiorRhudy et al. 201J). In the “pre-
dict” procedure the sigma points are propagated by the pro-
cess function:

4 Kalman Filters

Generally, the application of Kalman Filters is limited to lin-
ear processes, and different methods have been proposed
also treat nonlinear ones — as stated by E®jsaid (7) — by
means of this powerful technique. Two of these methods wiill
be presented in the following.

4.1 Extended Kalman Filter (EKF) (Xi =H( X)), 1=1,....2n+1 (20)

) ] ) ] o Then the a priori state estimate is calculated by:
The idea of the Extended Kalman Filter is the linearization

of the nonlinear state-space model E).l{y calculating the 2l -
Jacobian matriceld, F of the functionsh, f and approximat- X, = Z W (Xi (21)
ing the first partial derivatives with difference quotieritgu( i=1
etal, 2011): (m) i ;
whereW;™ are weights defined by
h,-(xl ..... xj—i—p ..... x”)—h,-(xl ,,,,, xJ —Pyenns x™)
2p w. = 22

_ _ » o L+ (22)
with the temporal resolutiop and omitting the iteration step ) 1
indexk. The Extended Kalman Filter now minimizes the er- W, = i=2...,2n+1 (23)

2+’
and the a priori error covariance matrix is calculated by

ror covariance matrix defined by:

Pr =< (X — Xtrue) (Xx — Xtrue)T > (12)
B 2n+1 © B o
wherexque is the true activation sequence andthe esti- P = > WX — ) X —x 1T +Q (24)
mated activation of step. In the “predict” procedure of the i=1
algorithm a priori estimates of the state vector and the eIrokyith the process error covariance maifband the fo||owing
covariance matrix are projected from the last step: weights:
X, = f(Xg— 13
¢ = 10%-) . 9 oo 2 La-a24p) (25)
Py =FiPeaFf +Q (14) (n+2)
1
L. (©) .
In the “correct” procedure, the Kalman ga is calcu- W, = 2ty 0T 2,....2n+1 (26)
lated and the state vector and error covariance matrix are up- ) )
dated with the measured dafg, i B is another scaling parameter to adjust the speed of conver-
gence. In the “correct” procedure first the sigma points are
Kk = Py HI (HP HE +R) ! (15)  transformed by the measurement function:
Xi =% +Ki(@px —h() (16)  (zi =h(xn. i=1..21+1 (27)
Pr = (1-KiHP, a7 2n+1
z, =Y W™ (2 (28)

Xr andPy, are then used for the next iteration step. =
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With the field vectoiz, we can now compute the a poste-
riori state estimate:

Xe =X +Ki(@px —7Z;) (29)
where the Kalman gaiK of the UKF is defined by
Kt = Pxz, P51, (30)
with
2n+1
Paz = 3 WOl -z (20 —z)"+R (31)
i=1
2n+1
Prz = Y WOl —x (20 —zg 1" (32)

i=1

whereR is the measurement noise covariance matrix. In the

last step the error covariance matrix has to be updated:

Py = Py — KiPgz KY (33)

The computation times of the EKF and the UKF are identical.

5 MCG sensor array and dipole sources

Figure 3 shows the(6 x 6) array of circular magnetome-
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Fig. 3. Left: small heart model with 946 dipoles distibuted on a 3-D
cubic grid with lattice constard = 1.5 mm, Right: (6 x 6) mag-
netometers with radius =9 mm in a quadratic plane array 1cm
above the torso. The magnetic flux is calculated with 16 integration
points per sensor. The data sampling rat&fs=¢;, 1 —; = 3ms.

with the Euclidian norn| - ||. Both the initial and the true

ters with radius = 9 mm and the torso, lung and heart sur- State are calculated with the cellular automaton model. In
faces used in the simulations. For test purposes the activitpraxis the location of the origin of the initial state can be cal-
is restricted to a small part of the apex of the heart with culated with a single dipole localization applied on the delta
946 dipoles distributed on a cubic grid with a lattice con- wave (Nenonen et al.1991) of Wolff-Parkinson-White syn-
stant ofd = 1.5mm. The conductivities of the body tissues drome. The parameters are optimized for the case of mea-
were set as inlfu et al, 2011): torso (0.20Sm?), lungs  surement noise covariané@=10"*.1, process noise co-
(0.08 S 1) and cardiac tissue (average of conductivity par- varianceQ = 0 and the initial value of the error covariance
allel and transverse to muscle fibre directions: 0.6$)yn  matrix is the unity matrix @ = 1). Figure4 shows the pa-
The non-uniform tetrahedral FEM grid was separated inrameter test for the temporal resolutipnof the EKF. The
48780 (cardiac tissue), 8045 (lungs) and 238305 (torsofemporal resolutiom = 3ms with the fastest convergence of
tetrahedra. The activation wavefront velocity was assumedhe Relative Error is selected for all further EKF calculations.
to be isotropic and we chose the averaged.5ms ! ofthe  Figure5 shows the test for the parameteof the UKF. The
velocity parallel and transverse to the muscle fibre orienta-other parameters of the UKF are fixgl£ 0= «). To en-

tion (He et al, 2002 so in the cellular automaton model the able a stable and fast convergence of the activation times the

difference between the activation times of adjacent voxels isspread parameter= 5 was chosen for all further UKF cal-
At =d/v=3ms. culations.f andx have a smaller influence on RE than

6.2 Comparison of the EKF and the UKF for several

6 Results measurement noise levels

6.1 Parameter selection, initial state and true state Figure6 depicts the convergence of RE as a function of the
iteration stepk for the EKF (diamonds) and the UKF (dots)

For the optimization of the convergence of the Kalman Flltersfor several measurement noise levels with the noise covari-

several parameters need to be optimized: the scaling ParaMi,ce matrixR = o2 1. The calculated standard deviations of
=1

etersa, B, k for the UKF and the temporal resolutignfor the Gaussian white noise asg = 0.01, 0.03,0.05,0.1, 0.5
the EKF. To measure the speed of convergence we define the, ., "+ 0" icimum of the calcul;elte’d 'sig’nél lZSB T
,min =

Relative Error (RE) between the actual state vextaf step ~3085 and the maximum of the calculated signal is

k and the true state vect&ie:

Xk = Xtruel|

RE = (34)

[ Xtruel|
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¢B.max= 1.077. For all calculated noise levels F§jshows
that the UKF enables a faster convergence of the RE than
the EKF, especially during the first 100 steps. Both for the
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Fig. 4. Relative Error RE= w as a function of the iteration

stepk for the EKF and several temporal resolutignfor the differ-
ence quotients of the JacobiadsF (Q=0,R = 1074. 1). Every

5th iteration step is shown.
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Fig. 7. Activation times for the EKF and measurement naige=
0.01 Q =0, p=3ms). Top: initial state, middle: 1000 iteration
steps, bottom: true state.

N . UKF,5_=0.01
04 UKF,c =0.03 .
) : UKF:Gn:O.OS UKE and the EKF Fhe converged value of RE increases pro-
|t . *UKF oo eoee] portional to the noise,,. The convergence of the activation
" KF.0 05 oo times for the EKF and the measurement naige= 0.01 is
‘ EKF,6:=O.01 shown in Fig.7. The convergence of the activation times for

i , EKF,0,=0.03 :

the UKF and the measurement noise= 0.01 is shown in

b, . EKF,G, =0.05 Fig. 8.
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In this paper the performance of cardiac activation time
Fig. 6. Relative Error RE= w as a function of the iteration  imaging with the help of a cellular automaton model includ-
stepk for the EKF (diamonds) and UKF (dots) and several measure-ing physiological information and Kalman Filter algorithms
ment noise levels with noise covariance malix-o7-1(Q=0).  for the solution of a nonlinear state-space model have been
Every Sth iteration step is shown. investigated. The comparison of the EKF and the UKF in
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