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1. INTRODUCTION

In this paper we study global existence and asymptotic behavior for a degenerate
parabolic system of the form{

St −∆φS(S) =− I (γS − δ) ,
It −∆φI(I) =I (γS − δ) ,

(x, t) ∈ Ω× (0, T ) = QT , (1.1)

in Ω× (0,∞), subject to the initial conditions

S (x, 0) = S0 (x) , I (x, 0) = I0 (x) , x ∈ Ω, (1.2)

and to the Neumann boundary conditions

∂φS(S)

∂η
(x, t) =

∂φI(I)

∂η
(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (1.3)

Herein, Ω is an open, bounded and connected domain in RN , N ≥ 1, with a smooth
boundary ∂Ω, ∆ is the Laplace operator in RN , I0, S0 ∈ C

(
Ω
)
, S0, I0 ≥ 0. Finally,

for k ∈ {S, I}, φk ∈ C2(R), φk(0) = φ′k(0) = 0 and φk(s) > 0, φ′k(s) > 0 for s > 0.
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This problem leads to the so-called (S − I − S) model: S, I represent respectively
the densities of susceptibles and infectives, γSI is the force of infection or the incidence
term, it represents the number of susceptible individuals S infected by contact with
infective individuals I per time unit, finally δI is the number of infectives who become
susceptibles after recovery.

System (1.1)–(1.3) is uniformly parabolic in the region D = [S 6= 0] ∩ [I 6= 0] and
degenerate into first order equations on QT \D. Note that degenerate diffusion is a
good approach in modeling slow diffusion of individuals in the spatial spread of an
epidemic disease, see Okubo [14].

In the spatially homogeneous case we found one of the models of propagation of
an epidemic disease described in [6, 11]. In fact that model deals with susceptibles,
infectives and removed, but if we eliminate the removed ones by adding them to
susceptibles we form the model below, without demography (no new borns or deaths)
and in that setting it is well known that when t→∞{

(S, I)→ (S0 + I0, 0) if S0 + I0 ≤ δ
γ ,

(S, I)→
(
δ
γ , S0 + I0 − δ

γ

)
otherwise.

(1.4)

A comprehensive analysis of generic models with linear diffusion is initiated in Fitzgib-
bon and Langlais [8] and Fitzgibbon et al. [9]. These models include a logistic effect
on the demography, yielding L1(Ω) a priori estimates on solutions independent of
the initial data for large time; this allows to use a bootstrapping argument to show
global existence and exhibit a global attractor. Finally quasilinear but non degenerate
systems of the form (1.1) was investigated by Fitzgibbon et al. [10].

For degenerate reaction-diffusion equations, and in the case where φK(s) = sm,
m > 1 was studied by Aliziane and Moulay [5], Aliziane and Langlais [3,4] studied the
SEIR model. Finally Hadjadj et al. [2] studied the case where the source term depends
on the gradient of solution, they resolved the problem of existence of globally bounded
weak solutions or blow-up, depending on the relations between the parameters that
appear in the problem.

This paper is organized as follows. In Section 2 the notion of a weak solution is
introduced and we state our main results. In Section 3 we will construct our solution
as a limit of solutions of quasilinear and nondegenerate problems depending on a
parameter ε, derive uniform a priori estimates on these solutions, and prove existence,
uniqueness and regularity results in Section 4. Finally, in the last section we prove
the large time behavior results which generalize (1.4).

2. MAIN RESULTS

2.1. BASIC ASSUMPTIONS AND NOTATIONS

Herein, Ω is an open, bounded and connected domain of the N -dimensional Euclidean
space RN , N ≥ 1, with a smooth boundary ∂Ω, a (N − 1)-dimensional manifold so
that locally Ω lies on one side of ∂Ω, x = (x1, . . . , xN ) is the generic element of RN .



Global existence and asymptotic behavior for a nonlinear degenerate SIS model 617

The gradient with respect to x is ∇ and the Laplace operator in RN is ∆, signε is a
smooth approximation of the function signum, finally if r is a real number, then we
set r+ = sup(r, 0), r− = sup(−r, 0).

Then we set Ω × (0, T ) = QT and for 0 ≤ τ < T , Ω × (τ, T ) = Qτ,T . The norm
in Lp(Ω) is ‖ · ‖p,Ω and the norm in Lp(Qτ,T ) is ‖ · ‖p,Qτ,T for 1 ≤ p ≤ ∞. Finally
H1(Qτ,T ) = H1(Ω)× (τ, T ).

2.2. MAIN RESULTS

It is well known that the general problem (1.1)–(1.3) has no classical solutions. A suit-
able notion of a generalized solution is required. We adopt the notion of a weak solution
introduced by Oleinik et al. [15].

Definition 2.1. A couple of nonnegative and continuous functions (S, I) is a solution
of system (1.1)–(1.3) in QT , T > 0, for each ϕ,ψ ∈ C1(Q̄T ), such that ∂ϕ

∂η = ∂ψ
∂η = 0

on ∂Ω× (0, T ).

1. ∇φS(S) , ∇φI(I) exist in a distributional sense and ∇φS(S) , ∇φI(I) ∈ L2(QT );
2. S and I verify the identities:

a)
∫
Ω

S (x, T )ϕ (x, T ) dx−
T∫
0

∫
Ω

[Sϕt −∇φS(S)∇ϕ− I (γS − δ)ϕ] dxdt =

=
∫
Ω

S (x, 0)ϕ (x, 0) dx,

b)
∫
Ω

I (x, T )ψ (x, T ) dx−
T∫
0

∫
Ω

[Iψt −∇φI(I)∇ψ + I (γS − δ)ψ] dxdt =

=
∫
Ω

I (x, 0)ψ (x, 0) dx.

We are now ready to state our results.

Theorem 2.2. For each initial non negative data (S0, I0) in C
(
Ω
)
× C

(
Ω
)
there

exists a unique weak solution (S, I) of problem (1.1)–(1.3) on Q∞. Furthermore,

(i) S ∈ C(Q∞) ∩ L∞(Q∞),
(ii) I ∈ C(Q∞); and if S0 ≤ δ

γ , then I ∈ C(Q∞) ∩ L∞(Q∞).

Remark 2.3. These results can be extended to the case S0, I0 ∈ L∞(Ω) with
S, I ∈ C([τ, T ];L∞(Ω)) in the definition of the weak solution and using results of
Di Benedetto [7] to get:

(i) S ∈ C(Qτ,∞) ∩ L∞(Q∞) for all τ > 0,
(ii) I ∈ C(Qτ,T ); and if S0 ≤ δ

γ , then I ∈ C(Qτ,∞) ∩ L∞(Q∞) for all τ > 0.

For the large time behavior of the weak solution, we obtain the following result.

Theorem 2.4. Assume 0 ≤ S0 ≤ δ
γ and let M = 1

|Ω|
∫
Ω

(S0 + I0)(x)dx. Then:
1. if M ≤ δ

γ , then lim
t→∞

S(t, ·) = M and lim
t→∞

I(t, ·) = 0 in C(Ω̄);

2. if M > δ
γ , then

lim
t→∞

S(t, ·) =
δ

γ
and lim

t→∞
I(t, ·) = M − δ

γ
in C(Ω̄).
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3. AUXILIARY PROBLEM AND A PRIORI ESTIMATES

In this section we consider in Ω × (0,∞) the auxiliary quasilinear non-degenerate
system

{
St −∆d1(S) = −(I − ε) (γ(S − ε)− δ) ,
It −∆d2(I) = (I − ε) (γ(S − ε)− δ) ,

(x, t) ∈ Ω× (0, T ) = QT , (3.1)

subject to the initial and boundary conditionsS (x, 0) = S0,ε (x) , I (x, 0) = I0,ε (x) , x ∈ Ω,
∂d1(S)

∂n
(x, t) =

∂d2(I)

∂n
(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

(3.2)

d1, d2 : RN → ( ε2 ,∞) are smooth and increasing functions with

d1(S) = φS(S), ε ≤ S, and d2(I) = φI(I), ε ≤ I. (3.3)

If U0,ε represents one of the smooth functions S0,ε or I0,ε over Ω, then we require


U0,ε(x) ≥ ε, x ∈ Ω, 0 < ε ≤ 1,∫
Ω

(U0,ε(x)− ε)dx =

∫
Ω

U0(x)dx,

U0,ε → U0 in C(Ω) as ε→ 0.

(3.4)

We refer to [1] for a construction of such a set of initial data. From standard results,
[12, Theorem 7.4], local existence and uniqueness of a classical solution (Sε, Iε) of
(3.1)–(3.2) in some maximal interval [0, Tmax,ε) are guaranteed.

It is easy to check that [ε,∞)2 is an invariant region (see [16]), thus

0 < ε ≤ Sε(x, t), 0 < ε ≤ Iε(x, t), x ∈ Ω, 0 < t < Tmax,ε. (3.5)

Then one can apply results in [10] to show global existence, i.e. Tmax,ε =∞, of a
classical solution for (3.1)–(3.2). Using (3.3) and (3.5) we obtain global existence for

{
St −∆φS(S) =− (I − ε) (γ(S − ε)− δ) ,
It −∆φI(I) =(I − ε) (γ(S − ε)− δ) ,

(x, t) ∈ Ω× (0, T ) = QT , (3.6)

in Ω× (0,∞), together with (3.2).
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We derive a priori estimates. First, adding the two equations in (3.1) and using a
straightforward integration one can derive the conservation of the total mass:∫

Ω

Sε (x, T ) dx+

∫
Ω

Iε (x, T ) dx =

∫
Ω

S0,ε (x) + I0,ε (x) dx, T ≥ 0. (3.7)

In what follows, T is a positive number, M1, . . . ,Mn are positive constants indepen-
dent of T , ε, 0 < ε ≤ 1, and F1, . . . , Fn are non decreasing functions of T independent
of ε.

Lemma 3.1. There exist a constantM1 and a nondecreasing function F1 independent
of ε ∈ (0, 1] such that

0 < ε ≤ Sε(x, t) ≤M1, x ∈ Ω, t ≥ 0, (3.8)

0 < ε ≤ Iε(x, t) ≤ F1(T ), x ∈ Ω, 0 ≤ t ≤ T. (3.9)

If 0 ≤ S0 (x) ≤ δ
γ , then F1 is a constant.

Proof. As ‖S0,ε‖∞,Ω+ δ
γ is a supersolution of equation for Sε in (3.1)–(3.2), estimation

(3.8) follows.
Multiplying the equation for Iε by p(Iε − ε)p−1, p ≥ 1 and integrating over Ω, we

obtain

d

dt

∫
Ω

(Iε − ε)p(x, t)dx ≤ pγ
∫
Ω

(Iε − ε)p(Sε − ε)(x, t)dx, t ≥ 0.

Estimation (3.8) and Gronwall’s inequality lead to estimate (3.9).
Now if 0 ≤ S0 (x) ≤ δ

γ , we can construct S0,ε such that 0 ≤ S0,ε (x) ≤ δ
γ + ε, then

by the maximum principle applied to the equation for Sε we obtain

0 ≤ Sε(x, t)− ε ≤
δ

γ
, x ∈ Ω, t ≥ 0. (3.10)

A second application of the maximum principle to the equation for Iε gives

ε ≤ Iε(x, t) ≤ ‖I0‖∞,Ω + 1, x ∈ Ω, 0 ≤ t ≤ T.

Lemma 3.2. There exists a constant M2 independent of ε ∈ (0, 1] such that

∞∫
0

∫
Ω

(Iε − ε) (δ − γ(Sε − ε))2
dxdt ≤M2. (3.11)

Proof. Let Uε = (γ(Sε − ε)− δ). Then the equation for Sε can be written as
Ut − div(φ′S(Sε)∇U) + γ(I − ε)U = 0, (x, t) ∈ Ω× (0, T ),
∂U
∂n (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

U (x, 0) = γ(S0,ε − ε)− δ, x ∈ Ω.

(3.12)
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We multiply (3.12) by Uε and integrate over QT to find

1

2

∫
Ω

U2
ε (x, T )dx+

T∫
0

∫
Ω

φ′S(Sε) |∇Uε|2 (x, t)dxdt + γ

T∫
0

∫
Ω

(Iε − ε)U2
ε dxdt =

=
1

2

∫
Ω

(γ(S0,ε − ε)− δ)2
(x)dx.

Then the estimate (3.11) follows by (3.4).

Lemma 3.3. There exists a nondecreasing function F2 independent of ε ∈ (0, 1] such
that

T∫
0

∫
Ω

|∇φS(Sε)|2 (x, t)dxdt+

T∫
0

∫
Ω

|∇φI(Iε)|2 (x, t)dxdt ≤ F2(T ). (3.13)

If 0 ≤ S0 (x) ≤ δ
γ for each x ∈ Ω, then F2 is a constant.

Proof. The estimate on ∇φI(Iε) is obtained upon multiplying the equation for Iε by
φI(Iε) and integrating over QT = Ω× (0, T ):∫

Ω

ΦI(Iε (x, T ))dx+

T∫
0

∫
Ω

|∇φI(Iε)|2 dxdt =

=

∫
Ω

ΦI(I0,ε (x))dx+

T∫
0

∫
Ω

φI(Iε) (Iε − ε) (γ(Sε − ε)− δ) (x, t) dxdt,

(3.14)

where

ΦI(I) =

I∫
0

φI(s)ds.

By the Cauchy inequality and (3.9), one has∫
Ω

ΦI(Iε (x, T ))dx+

T∫
0

∫
Ω

|∇φI(Iε)|2 dxdt ≤
∫
Ω

ΦI(I0,ε (x))dx+

+ T
1
2mes

1
2 (Ω) F1φI(F1(T ))

 T∫
0

∫
Ω

(Iε − ε) (δ − γ(Sε − ε))2
(x, t)dxdt


1
2

.

(3.15)

Using Lemma 3.2 one obtains the desired estimate. If 0 ≤ S0 (x) ≤ δ

γ
for each

x ∈ Ω, putting (3.10) in (3.14) we obtain
∞∫

0

∫
Ω

|∇φI(Iε)|2 dxdt =

∫
Ω

ΦI(I0,ε (x))dx. (3.16)
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Now to obtain an estimate on∇Sε we multiply the equation for Sε by Smε , integrate
over QT and use the Cauchy inequality and Lemma 3.1. We have

∫
Ω

ΦS(Sε (x, T ))dx+

T∫
0

∫
Ω

|∇φS(Sε)|2 dxdt =

=

∫
Ω

ΦS(S0,ε (x))dx+

T∫
0

∫
Ω

φS(Sε) (Iε − ε) (δ − γ(Sε − ε)) (x, t) dxdt ≤

(3.17)

≤
∫
Ω

ΦS(S0,ε (x))dx+

+ φS(M1)F1mes
1
2 (Ω)

( T∫
0

∫
Ω

(Iε − ε) (δ − γ(Sε − ε))2
(x, t)dxdt

) 1
2

.

(3.18)

Then the estimate on ∇Sε in (3.13) follows from (3.18) and (3.11).

If 0 ≤ S0 (x) ≤ δ

γ
, x ∈ Ω, by integrating equation in Iε one gets

∞∫
0

∫
Ω

(Iε − ε) (δ − γ(Sε − ε)) dxdt ≤
∫
Ω

I0,ε(x)dx. (3.19)

Then by (3.19) and (3.17), we have

T∫
0

∫
Ω

|∇φS(Sε)|2 dxdt ≤
∫
Ω

ΦS(S0,ε (x))dx+ φS

(
δ

γ

)∫
Ω

I0,ε(x)dx.

Lemma 3.4. There exist nondecreasing functions F3, F4 independent of ε, 0 < ε ≤ 1,
such that for all t > t0 > 0,∫

Ω

|∇φS(Sε)|2 (x, t) dx+

∫
Ω

|∇φI(Iε)|2 (x, t) dx ≤ F3(t),

t∫
t0

∫
Ω

|(φS(Sε))t|
2
dxds+

t∫
t0

∫
Ω

|(φI(Iε))t|
2
dxds ≤ F4(t).

If 0 ≤ S0 (x) ≤ δ
γ for each x ∈ Ω, then F3 and F4 are constants.
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Proof. We multiply the equation for Sε by (φS(Sε))t and integrate over Ω × (τ, t),
t
2 ≤ τ ≤ t ≤ T , to find

t∫
τ

∫
Ω

φ′S(Sε) (Sε)
2
t (x, s)dxds+

1

2

∫
Ω

|∇φS(Sε)|2 (x, t) dx =

=

t∫
τ

∫
Ω

(φS(Sε))t (Iε − ε)(δ − γ(Sε − ε))(x, s)dxds+
1

2

∫
Ω

|∇φS(Sε)|2 (x, τ) dx,

(3.20)

but
t∫
τ

∫
Ω

(φS(Sε))t (Iε − ε)(δ − γ(Sε − ε))(x, s)dxds ≤

≤ 1

2

t∫
τ

∫
Ω

φ′S(Sε) (Sε)
2
t (x, s)dxds+

+
1

2
‖φ′S(Sε)‖∞,Ω ‖Iε − ε‖∞,Ω

t∫
τ

∫
Ω

(Iε − ε)(δ − γ(Sε − ε))2(x, s)dxds.

(3.21)

Putting this estimate in (3.20) one obtains∫
Ω

|∇φS(Sε)|2 (x, t) dx ≤

≤
∫
Ω

|∇φS(Sε)|2 (x, τ) dx+

+ ‖φ′S(Sε)‖∞,QT ‖Iε‖∞,QT

t∫
τ

∫
Ω

(Iε − ε)(δ − γ(Sε − ε))2(x, s)dxds.

Integrating this inequality in τ over ( t2 , t) one finds∫
Ω

|∇φS(Sε)|2 (x, t) dx ≤

≤ 2

t

t∫
t
2

∫
Ω

|∇φS(Sε)|2 (x, τ) dxdτ+

+ ‖φ′S(Sε)‖∞,QT ‖Iε‖∞,QT

t∫
t
2

∫
Ω

(Iε − ε)(δ − γ(Sε − ε))2(x, s)dxds.
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The estimate for ∇φS(Sε) follows by Lemmas 3.1, 3.2 and 3.3. In the same way one
can obtain the estimate for ∇φI(Iε).

The estimate for (φS(Sε))t is immediately deduced from (3.20), (3.21) and
Lemma 3.3 keeping in mind that

|(φS(Sε))t|
2

= (φ′S(Sε))
2

(Sε)
2
t ≤

(
sup

0<s≤‖Sε‖∞,QT

φ′S(s)
)
φ′S(Sε) (Sε)

2
t .

The estimate for (φI(Iε))t follows immediately.

4. PROOFS FOR THE EXISTENCE AND UNIQUENESS

In this section we supply a quick proof of Theorem 2.2.

4.1. EXISTENCE

From estimates established in the previous section one has (Sε − ε)0<ε≤1 and
(∇φS(Sε))0<ε≤1 are respectively bounded in L2(QT ) and

(
L2(QT )

)N for a fixed
T > 0. Then there exists two sequences which are still denoted (Sε − ε)0<ε≤1 and
(∇φS(Sε))0<ε≤1 such that (Sε − ε)0<ε≤1 converges weakly to some function S in
L2(QT ) and (∇φS(Sε))0<ε≤1 converges weakly to V in

(
L2(QT )

)N . On the other
hand (Sε)0<ε≤1 is bounded in L∞(QT ); using the weak formulation of the equation
for Sε one can invoke the results in Di Benedetto [7] to get (Sε)0<ε≤1 relatively com-
pact in C

(
Ω× [0, T ]

)
. It follows that (Sε − ε)0<ε≤1converges to S in C

(
Ω× [0, T ]

)
and (φS(Sε))0<ε≤1 converges to φS(S) in C

(
Ω× [0, T ]

)
. As a first consequence of

this, V = ∇φS(S). By the same way one can prove that there is a function I such
that (Iε)0<ε≤1 converges to I in C

(
Ω× [0, T ]

)
and (∇φI(I))0<ε≤1 converges weakly

to ∇φI(I) in
(
L2(QT )

)N . Now let us multiply equation for Sε in (3.6) by ϕ, equation
for Iε by ψ, integrate by parts over Ω× (0, T ) and let ε goes to zero, to conclude that
(S, I) is the desired solution.

The regularity results for ∇φS(S), ∇φI(I), (φS(S))t and (φI(I))t follow from the
a priori estimates in Lemmas 3.1, 3.2 and 3.4.

4.2. UNIQUENESS

The uniqueness is obtained by choosing an adequate test function in the definition of
the weak solution as in [13].

Let (S1, I1) and (S2, I2) be two weak solutions of problem (1.1)–(1.3). They verify
the integral identity∫

Ω

(S1 − S2)(x, T )ϕ1(x, T )dx−
∫
QT

(φS(S1)− φS(S2))∆ϕ1(x, t)dxdt =

=

∫
QT

[∂tϕ1(S1 − S2)− (f(S1, I1)− f(S2, I2))ϕ1](x, t)dxdt

(4.1)
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and ∫
Ω

(I1 − I2)(x, T )ϕ2(x, T )dx−
∫
QT

(φI(I1)− φI(I2))∆ϕ2(x, t)dxdt =

=

∫
QT

[∂tϕ2(I1 − I2) + (f(S1, I1)− f(S2, I2))ϕ2](x, t)dxdt

(4.2)

for every ϕi ∈ C1(Q̄T ), i = 1, 2, such that
∂ϕi
∂η

= 0 on ∂Ω× (0, T ) and ϕi > 0, where

f(S, I) = I (γS − δ). Let us introduce two functions ψ1, ψ2 as follows:

ψ1(x, t) =


φS(S1)− φS(S

2
)

S1 − S2
(x, t), if S1 6= S2,

0, otherwise,

ψ2(x, t) =


φI(I1)− φI(I2)

I1 − I2
(x, t), if I1 6= I2,

0, otherwise.

Let us consider a sequence of smooth functions (ψi,ε)ε≥0 such that ψi,ε ≥ ε, ψi,ε is
uniformly bounded in L∞(QT ) and

lim
ε→0
‖(ψi,ε − ψi)/

√
ψi,ε‖L2(QT )

= 0.

For any 0 < ε ≤ 1, let us introduce the adjoint nondegenerate boundary value problem
∂tϕi + ψi,ε∆ϕi = 0 in Ω× (0, T ),
∂ϕi
∂η

(x, t) = 0 on ∂Ω× (0, T ),

ϕi(x, T ) = χi in Ω.

(4.3)

For any smooth χi with 0 ≤ χi(x, t) ≤ 1, i = 1, . . . , 4, and any 0 < ε ≤ 1, this problem
has a unique classical solution ϕi,ε such that (see [13])

0 ≤ ϕi,ε(x, t) ≤ 1,∫
QT

ψi,ε(∆ϕi,ε)
2dxdt ≤ K1.

If in (4.1)–(4.2) we replace ϕi by ϕi,ε, where ϕi,ε is the solution of problem (4.3) with
χ1(x) = χ1,ε(x) = sign+

ε (S1 − S2)(x, T ) and χ2(x) = χ2,ε(x) = sign+
ε (I1 − I2)(x, T ),

then we obtain∫
Ω

χ1,ε(x)(S1 − S2)(x, T )dx−
∫
QT

(ψ1 − ψ1,ε)(S1 − S2)∆ϕ1,ε(x, t)dxdt =

= −
∫
QT

(f(S1, I1)− f(S2, I2))ϕ1,ε(x, t)dxdt
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and ∫
Ω

χ2,ε(x)(I1 − I2)(x, T )dx−
∫
QT

(ψ2 − ψ2,ε)(I1 − I2)∆ϕ2,ε(x, t)dxdt =

=

∫
QT

(f(S2, I2)− f(S1, I1))ϕ2,ε(x, t)dxdt.

Using the local Lipschitz continuity of f and the properties of ψi,ε and ϕi,ε, we deduce,
by letting ε→ 0, that∫

Ω

(
(S1 − S2)+ + (I1 − I2)+

)
(x, T )dx ≤ K

∫
QT

(|S1 − S2|+ |I1 − I2|) dxdt,

whereK is the Lipschitz constant of the vector field f . In a similar fashion we establish
an analogous inequality for (S1 − S2)− and (I1 − I2)− and deduce that∫

Ω

(|S1 − S2|+ |I1 − I2|) (x, T )dx ≤ K
∫
QT

(|S1 − S2|+ |I1 − I2|) (x, t)dxdt.

We conclude by using Gronwall’s Lemma.

5. LARGE TIME BEHAVIOR: PROOFS

5.1. THE ω-LIMIT SET

In this section we assume that 0 ≤ S0 ≤ δ
γ and set ψk = φ−1

k for k ∈ {S, I}.
By Lemma 3.3, the set {(φS(S) (·, t) , φI(I) (·, t))}t≥t0 is bounded in

(
H1 (Ω)

)2
hence precompact in

(
L2 (Ω)

)2, and we conclude that the ω-limit set

ω (S0, I0) =
{

(U, V ) ∈
(
H1 (Ω) ∩ L∞ (Ω)

)2
: ∃tk →∞

(φS(S), φI(I)) ( · , tk)→ (U, V ) (·) on
(
L2 (Ω)

)2}
is well-defined. Now we give a characterization of ω (S0, I0).

Proposition 5.1. Let (U, V ) ∈ ω (S0, I0). Then (U, V ) is a solution of the homoge-
neous Neumann problem{

−∆U = −ψI(V ) (γψS(U)− δ) ,
−∆V = ψI(V ) (γψS(U)− δ) , in Ω, (5.1)

∂U

∂n
=
∂V

∂n
= 0 in ∂Ω. (5.2)
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Proof. Let (U, V ) ∈ ω (S0, I0). Then there exists tk →∞ such that

(U, V ) (·) = lim
k→∞

(φS(S), φI(I)) (·, tk) in
(
L2 (Ω)

)2
.

Let us consider two sequences Uk, Vk in L2 (Ω× (−1, 1)) defined as

Uk (x, s) = S (x, tk + s) ,
Vk (x, s) = I (x, tk + s) ,

x ∈ Ω, −1 < s < 1, k > 0.

For each s ∈ (−1, 1),∫
Ω

|φS(Uk) (x, s)− φS(S) (x, tk)|2 dx =

∫
Ω

|φS(S) (x, tk + s)− φS(S) (x, tk)|2 dx =

=

∫
Ω

∣∣∣∣∣∣
tk+s∫
tk

(φS(S))t dt

∣∣∣∣∣∣
2

dx ≤

≤
∫
Ω

tk+s∫
tk

|(φS(S))t|
2
dx2

tdt ≤

≤
∫
Ω

∞∫
tk

|(φS(S))t|
2
dxdt.

Hence

‖φS(Uk)− φS(S) (·, tk)‖L2(Ω×(−1,1)) ≤

∫
Ω

∞∫
tk

|(φS(S))t|
2
dxdt

 1
2

.

By Lemma 3.4, we get

lim
k→∞

∫
Ω

∞∫
tk

|(φS(S))t|
2
dxdt = 0.

Then for a subsequence still denoted Uk, Vk: φS(Uk) → U , φI(Vk) → V in
L2 (Ω× (−1, 1)) and almost everywhere in Ω × (−1, 1) as k → ∞, and then by the
Lebesgue dominated convergence theorem we have

Uk → ψS(U), Vk → ψI(V ), Vk (γUk − δ)→ ψI(V ) (γψS(U)− δ)

in L2(Ω× (−1, 1)).
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Next, let ξ ∈ C2
(
Ω̄
)
be such that ∂ξ

∂η = 0 on ∂Ω and ρ ∈ C1
0 ((−1, 1)), ρ ≥ 0,∫ 1

−1
ρ (s) ds = 1. We set ϕ (x, t) = ρ (t− tk) ξ (x) and use ϕ as a test function in the

definition of S with T = tk + 1 and tk ≥ 1. We get

T∫
0

∫
Ω

[Sρt (t− tk) ξ (x) + φS(S)ρ (t− tk) ∆ξ − I (γS − δ) ρ (t− tk) ξ] dxdt = 0,

i.e.

tk+1∫
tk−1

∫
Ω

[Sρt (t− tk) ξ + φS(S)ρ (t− tk) ∆ξ − I (γS − δ) ρ (t− tk) ξ] dxdt = 0.

Setting s = t− tk, we get

1∫
−1

∫
Ω

Ukρt (s) ξ (x) + φS(Uk)ρ (s) ∆ξ − Vk (γUk − δ) ρ (s) ξdxds = 0.

Passing to the limit as k →∞ and since
1∫
−1

ρ′ (s) ds = 0 we obtain

( 1∫
−1

ρ (s) ds

)(∫
Ω

U (x) ∆ξ (x)− ψI(V ) (γψS(U)− δ) ξdx

)
= 0.

We conclude that for any ξ ∈ C2
(
Ω̄
)
,
∂ξ

∂η
= 0 on ∂Ω. We have

∫
Ω

U (x) ∆ξ − ψI(V ) (γψS(U)− δ) ξdx = 0.

Thus U is a weak solution of−∆U = −ψI(V ) (γψS(U)− δ) in Ω,
∂U

∂n
= 0 on ∂Ω.

In the same way, we prove that V is a weak solution of−∆V = ψI(V ) (γψS(U)− δ) in Ω,
∂V

∂n
= 0 on ∂Ω.
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5.2. PROOF OF THEOREM 2.4

The semi-orbits {(S(·, t), I(·, t)) : t ≥ 0} are relatively compact in (C(Ω))2, because
they are bounded in (L∞(Q∞))2 by Lemma 3.1 and one may use results of Di
Benedetto [7].

Let (U, V ) ∈ ω (S0, I0). Then (U, V ) is a solution of (5.1)–(5.2). The function U+V
is a solution of { −∆ (U + V ) = 0 in Ω,

∂

∂n
(U + V ) = 0 on ∂Ω.

Then U + V is constant.
Now multiply the equation for V by V and integrate over Ω to obtain∫

Ω

|∇V |2 dx+

∫
Ω

V ψI(V ) (δ − γψS(U)) dx = 0. (5.3)

Since δ − γψS(U) ≥ 0, we conclude that V is constant, and then also U is constant.
Putting these conclusions in (5.3) one has

V ψI(V ) (δ − γψS(U)) = 0→ V = 0 or U = φS

(
δ

γ

)
.

Now using estimate (3.7), we get

ψS(U) + ψI(V ) =
1

|Ω|

∫
Ω

S0 (x) + I0 (x) dx.

Keeping in mind S ≤ δ
γ , i.e. U ≤ φS( δγ ), then either

V = 0 → U = φS

 1

|Ω|

∫
Ω

S0 (x) + I0 (x) dx

 ≤ φS( δ
γ

)
and this is possible only if

1

|Ω|

∫
Ω

S0 (x) + I0 (x) dx ≤ δ

γ
,

or
U = φS

(
δ

γ

)
→ ψI(V ) =

1

|Ω|

∫
Ω

S0 (x) + I0 (x) dx− δ

γ
≥ 0

and this is possible only if
1

|Ω|

∫
Ω

S0 (x) + I0 (x) dx ≥ δ

γ
.
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