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Abstract. Here, we present a mapping method OBLIMAP, prove the reliability of GCM runs; evidently on geological
which projects and interpolates fields like surface temperatime scales with a highly variable ice extent, but also for sce-
ture, surface mass balance, and surface height between a geario runs with a time horizon of only 100 years.
ographical based coordinate system of a General Circulation Quantities that are calculated by GCM’s like the surface
Model (GCM) and a rectangular based Ice Model (IM). We temperature and the surface mass balance, the sum of accu-
derive an oblique stereographic projection and its inversemulation and surface melt, are the forcing of an ice sheet
which holds for any area at the Earth’s surface, and whichdetermining its expansion and retreat, which the other way
can be combined with two different interpolation methods. around affect the climate system via the albedo, the surface
The first one is suited to interpolate the projected fields of atopography, and the fresh water input in the ocean. For this
coarse GCM grid on a fine meshed IM grid. The second onaeason GCM’s and IM’s need to be coupled. In practice this
is appropriate for the opposite case. Both grids are allowed t@auses problems because GCM'’s are designed for global sim-
be arbitrary and irregularly spaced. Therefore the OBLIMAP ulations on a coarse grid based on geographical (longitude,
technique is suitable for any GCM-IM combination. After latitude) coordinates. Contrary, the ice dynamical equations
a first scan of the GCM grid coordinates and the specifica-are favorably solved on a grid with rectangular coordinates
tion of the IM grid, fast mapping of various fields is possi- because the transformation of the ice dynamical equations
ble. To and fro (GCM-IM-GCM) mapping tests with the Cli- to geographical coordinates introduces many extra compli-
mate Community System Model (CCSM) at T42 resolution cating terms, in particular given the tendency of including
(~313km) and the Regional Atmospheric Climate Model more and more stress terms (see €aftyn 2003 Reerink
(RACMO) at~11km and~55km, show average tempera- et al, 2009. Moreover calculations with a GCM are very
ture differences of less than 0.1 K with small standard devi-time consuming and therefore only limited runs can be per-
ations. OBLIMAP, available at GMD, is an accurate, robust formed with a relatively coarse resolution. Typical grid sizes
and well-documented mapping method for coupling an IMrange from T42 £313km) to T159 {45km). The typical
with a GCM or to map state of the art initial and forcing grid size for modeling ice sheets is about 20 km or smaller
fields available at geographical coordinates to any local IMand the extent of the IM grid is not globally, but limited to
grid with an optimal centered oblique projection. Currently, ice covered areas. The typical time scale for an ice cap run
the oblique stereographic and the oblique Lambert azimuthais ten-thousands of years whereas most GCM runs span only
equal-area projections for both the sphere and the ellipsoid few hundred years. This mismatch in spatial and temporal
are implemented in OBLIMAP. scale between IM’s and GCM'’s and the difference between
their coordinate systems, demands a coupling approach in
which both models are used in their own set up and in which
1 Introduction the resulting fields have to be mapped between them (see also
Rutt et al, 2009.
Ice sheets, are often poorly resolved in General Circulation Hitherto in a first coupling approach ice sheet models
Models (GCM's). Their extent and surface height distribu- were forced with time slice results of a GCM for near fu-
tion are fixed or only represented by a thin ice layer. How-ture conditions (e.gHuybrechts et al.2004 Van de Wal
ever, the complex interaction of the ice sheet with the oceangt al, 200]) or for paleo purposes (e.&abre et al.1998.
atmosphere system demands an interactive approach to in-his is not that critical as the mapping and projection is only
done once and the IM continues to run offline. In a kind of
. intermediate approadheConto and Pollar¢?003 coupled
Corres_,pondence tar. J. Reerink a single polarice sheet asynchronously, i.e. the results are
BY (t.reerink@uu.nl)
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exchanged between the two models only once in a whilesuccessful in all eight octants (and borders) of the spheri-
In another intermediate attempt, the climate anomalies frontal surface, and at the poles. AlSmyder(1987 p. 154)
the GCM are used to drive a mass balance model of an ic@resents equations for the oblique stereographic projection,
sheet, and contrary the fresh water flux from the IM affectsbut derivations are omitted. His equations are obtained by
the ocean model (e.gluybrechts et a]2002 Fichefetetal.  taking the polar projection with an additional translation to
2003. More demanding is the direct use of (regional) cli- the oblique case (senyder 1987, chapter 5 with its ex-
mate model output to estimate the surface mass balance arm@ptions and their alternatives). Here we directly derive the
the surface temperature to force the IM, and where the sureblique case by finding the points of intersection of sev-
face topography and other surface properties as the surfaceral surface equations and parameter representations. The
temperature and the albedo are transferred back to the GClvhapped data should be projected on well defined and well
after each time step. An example of such a study is the worloriented grid planes (of any size and at any location) requir-
by Ridley et al.(2005 who coupled the HadCM3 model ing this accurate and clear derivation. In case of OBLIMAP
to an ice-sheet model of Greenland. They used a coarsany projected IM grid has the Cartesian orientation relative
coupling as temperatures where corrected with fixed lapsé¢o the normal vector on the spherical surface, which implies
rates and ablation rates where calculated with a degree-datyat a continuous collection of projected grid planes over the
model. More recentlMikolajewicz et al.(2007) and Viz- globe is obtained including the polar cases.
caino et al(2009 presented results of a similar approach for  Because the projected grid points will not coincide with
the ECHAM model with also schematic ablation calculationsthe target grid points, the projected fields have to be in-
and a limited focus on the coupling technique itself. terpolated on the target grid. For both mapping directions

They all use a polar stereographic projection, which is ad-OBLIMAP contains two interpolation methods: for the case
equate for areas roughly centered around the poles. Howef a relatively coarse and a relatively fine meshed target grid.
ever, less centered regions like Greenland, any local part ofhe resolution of both model grids is not restricted, nor their
Antarctica like the Peninsula, or the Tibetan plateau demandyrid distribution, for instance a Gaussian grid is allowed.
a local centered projection which is independent of the lo-Both interpolation methods are robust for data gaps and lim-
cation, i.e. it should work for any area of interest. Besides,ited grid areas.
in a mapping strategy for the two way coupling no signifi-  Comparing the initial GCM fields with their correspond-
cant mass or energy might be lost just by the mapping, andng to and fro (GCM-IM-GCM) mapped fields tests the
the mapping needs to be fast. OBLIMAP suffices all thoseOBLIMAP mapping. The differences after mapping are only
requirements. due to interpolation (the projection is exact) and are small

Here we propose to use an oblique stereographic projeccompared to the local field errors. Average differences and
tion because it can be used for any area; equatorial, high latheir standard deviations for tests with the Climate Commu-
itude and polar. In the oblique case any area can be mappeagity System Model (CCSM) and the Regional Atmospheric
with an optimal centered projection because any axis can b€limate Model (RACMO) data are presented. OBLIMAP
chosen as the projection axis. Whereas only the north-soutls developed as a part of our ice model ICEDYN, but is
pole axis can be used in the polar stereographic case. Prgdded as a stand alone code at the GMD site (see sup-
jecting a local area at low latitude with a polar projection plementary materiahttp://www.geosci-model-dev.net/3/13/
will unnecessarily lead to larger distortions because the pro2010/gmd-3-13-2010-supplement)zgnd is distributed un-
jection plane cannot be centralized. der the terms of the GNU General Public License.

Another interesting projection in this contextis the oblique  OBLIMAP is also useful for experiments in which initial
Lambert equal-area projectioBifyder 1987 p. 182) which  fie|ds as ice thickness and bedrock topograplyyie et al,
is also available in OBLIMAP. In this manuscript we use the 2001, Bamber et al.2001, 2009 are combined with forc-
stereographic projection as the default to keep the structurghg fields of a nested higher resolution regional model like
clear, but both oblique projections are interchangeable whiclRaAcMO (van de Berg et a]2006 Ettema et al.2009. Such
will be addressed only in the discussion. The stereographinitial and forcing fields can be combined with an equal and

projection is conformal and azimuthal (i.e. perspective), a”doptimal centered projection towards a local IM subgrid.
by choosing an optimal parallel projection plane it will be

close to equal-area. Conformal means that the relative local

directions are true at any given point (e€smyder 1987, p. 4), 2 Method

which might be important from ice modeling perspective to

keep a match with the ice flow directions. The Lambertaz- 1 Mapping method

imuthal equal-area projection is equal-area and azimuthal but

non conformal. Its equal-area property is interesting with re-Mapping of the GCM fields which are defined on a

spect to the mapping of conserved quantities. coarse grid with geographical coordinates towards a fine IM
We derived for both the oblique and the inverse obliquegrid with rectangular coordinates is a sequence of projec-

stereographic projection a single set of equations which ard¢ion and interpolation by distance-weighted averaging. The
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coordinates of the GCM grid points are projected by an
oblique stereographic projection on to a plane which coin-
cides with the IM grid. The projected GCM grid point co-
ordinates will in general not coincide with the IM grid point
coordinates but fall in between irregularly. For each of the
fine meshed IM grid points we select the nearest projected
GCM grid point in each of the four quadrants around such
an IM grid point. With those four nearest projected GCM
grid points the resulting mapped value for this IM grid point
is obtained by a Shepard distance-weighted averaging inter- .-~
polation method. We call this the “quadrant method”. In |
case a projected point coincides with a target grid point it |
will dominate the weighting by adjusting its distance to 1 cm,
avoiding division by zero. It depends on the GCM, but for in-
stance for the CCSM T42 grid there are no GCM grid points
within the potentially ice covered areas betweed® <¢<—

87° and 87 <¢<9(° north (with¢ the latitude), in that case
the projected GCM points used for interpolation are located
further away in the quadrants.

Opposite, mapping the IM fields which are defined on a
fine meshed grid towards the coarse GCM grid, is also a serjg. 1. The figure shows the axes and their orientation for the 3-D
quence of projection and interpolation by distance-weightedcartesian rectangular coordinate systesi®, y3 2, z3P) and the
averaging but within a certain radius. The coordinates of the3-D spherical coordinate systern, (¢, ). The spherical coordi-

IM grid points are projected by an inverse oblique stereo-natex lies in thex3Dy3D_plane, while the spherical coordinate
graphic projection on to the curved plane which coincides¢ equals the angle OQP which lies in a plane perpendicular to this
with the Earth’s surface and the GCM grid. The projectedx*Py*P-plane. Above this3"y3D-plane is positive while be-

IM grid point coordinates coincide not necessarily with the 10W it ¢ is negative. As in a cartesian spherical systgris, chosen
GCM grid points. In case of a relatively coarse GCM grid counter-clockwise positive andis positive outward. P (A+2p,

size all projected IM points within a radius of the order of .d’:f”f‘.r:R) IS a.po'nrt].og tr;le Sphg.'@w'th radiusR. Herep lies

half the GCM grid size are included by a Shepard distance—'nt e first octant in which all coordinates are positive.
weighted averaging interpolation method to obtain a repre-

sentative value for this GCM grid point. We call this the — The 3-D rectangular cartesian coordinate systerfi>(
“radius method”. In this method projected points at zero dis- ~ y*°, 23P), with x3, y3'D, z3"PR and with the ori-
tance are neglected. Because of the limited extent of the IM  gin 0= (x3P=0, y3"P=0, z3'P=0). See Fig1.

grid, only those GCM points within the considered area will
participate in the inverse projection.

— The 3-D spherical coordinate systenk, ¢, r), with
0°<A<360 and with the originO=(%, ¢, r=0), which
coincides with the origir©Q of the 3-D rectangular carte-

2.2 The oblique stereographic projection ) .
g graphic proj sian coordinate system. See Fig.

OBLIMAP is capable of mapping any area on the Earth sur-  _ The 2.D rectangular cartesian coordinate systemi,(

face for which the middle point of interes$t = (Ays, ¢ar) is yim), With xiv, ymeR where we define the origin
specified. This area is projected from the center of projection M’=(x;m=0, ym=0). The plane spanned by, andym

C, being the anti-pole o#, on a plane lying parallel to the is calledS’. In the 3-D spherical coordinate system the
tangent plane i/ but some distance inward. This distance coordinates of the origin’ areM'=(%.y1, d, R COSx).

has to be sp_ecifieq by an anglevhich determines the exact The IM grid points are points in this 2-D rectangular
stereographic projection. cartesian coordinate system. See the red colored plane

First we define the used coordinate systems, thereuponwe Fig. 2.
continue with a qualitative description of the oblique stere-
ographic projection and its inverse before we present the re- — The 2-D geographical longitude-latitude coordinate sys-

sults. tem defined on the Earth's surfaceloA, lat) with
0°<lon<360 and—90°<lar<9(°. The curved spher-
2.2.1 Involved coordinate systems ical plane representing the surface of the Earth is de-

fined asS. In the 3-D spherical coordinate system these
We use the following coordinate systems in the derivation of 2-D (lon, lat) coordinates can be described with &,
the projection formula’s: r)=(x, ¢, R) with R the radius (in m) o and the Earth.
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Figurelillustrates the relation between both 3-D systems,
and Fig.2 illustrates the location of the plar# in the 3-D
rectangular coordinate system. For the 2-D geographical and
the 3-D spherical coordinate systems the value of the lon-
gitude A is undetermined at the North Pole (NP) and at the
South Pole (SP).

2.2.2 Description of the projection

In an oblique stereographic projection the points from a
spherical surface are projected to a rectangular plasig

see Fig2 for the projection of a single poirfe. This spher-

ical surfacesS is part of a sphere with radiug. In our case
the GCM grid points are points afiand the IM grid points
are points ons’. Roughly the oblique stereographic projec-
tion can be described as follows: Consider a specified point
M=y, ¢p, R) in the middle of an area of interest ¢h

The center of projectioit is the anti-pole ofM, it lies on

S but just at the opposite side 8f An arbitrary pointP on

S will be projected along the lin€ P into the planeS’, see
Fig. 2. Usually P is a point not too far fromM. The pro-

jected pointP’ is the point of intersection of the Iir@ and
the planeS’. The plane$’ is parallel to the plane which is
tangent to the sphergin point M, and therefore perpendic-

— . —>

ular to CM as well. The exact location &' (along C M)

depends on the place of intersection®fwith S. If I is

this point of intersection of’ with S, thena is the angle

M O1I which determines the exact stereographic projection,

see Fig.3. Often the complement angfe of « is used to

specify the stereographic projectioi=90°—«. M’ is the

point of intersection oC M (or O M) andS’, and will be the

origin of the 2-D rectangular coordinatesy, andyy of the

IM grid which coincides with the plang’. The extent of the

IM grid x[Jin, XN yin andyNa of S” have to be specified,

in OBLIMAP in terms of the grid sizes and the grid spacings.
At the intersection circle of and S’, distances are pro-

(b) jected one to one. While distances &mat theM side of S’

shrink and distances of at the O side enlarge, see Fi§.

Therefore an optimal leads on average to a one to one pro-

jection (or close to that in case an asymmetric region requires

S’ which coincides with the red colored IM grid. The coordinates a non—squgred grid) in th?,area of interest. A rgasonmble
of P’ in the IM grid which coincides withs’ are indicated by the .car.l be est'lmated by requmng 'that h"_"If the IM grid area falls
components (in green) relative to the IM axes. The global GCM grid inside the intersection circle with radiag’7:

coincides with the spheric surfade The IM is a regional model s 1

and therefore has a relatively small extent, see the red colored T (M) = ENXNY AxAy (2.1)
grid. Note that a relatively small IM grid is sketched, with a well
chosenx the horizontal extent will be larger than ti¢’'/ drawn
here. Figurgb) shows a close up of the projection plane.

Fig. 2. Figure(a) shows a GCM point on S which is projected
—
on §’” along the lineC P. The projected poin?’ is situated in plane

with Ny, Ny, Ax, andAy the number of grid points and the
grid spacing inc- andy-direction.

Then, from Fig.3 one can immediately derive that for a
grid with Ny Ny AxAy < 27 R? an optimakr equals

(1 /1
In fact these angle coordinates equal the:(lat) co- o= arcsm(ﬁ\/ ZNxNyAxAY> (2.2)

ordinates, s@on=A andlatr=¢. The GCM grid is based
on these coordinates, see thand¢ in Fig. 1 in case  With the red colored IM grid in Fig2 at the correct position
r=R. and witha as in EqQ. 2.2), an optimal projection is obtained.
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For Antarctica oftere=19 is chosen, and for Greenland,
because it is smaller, a lowerwill be better.
If Antarctica is the area of interest we choakeequal to

the SP. In that case the projection is called a polar stereo-
graphic projection for which our formula’s hold as well. The

stereographic projection is called oblique if the a&i&f can
be any axis, sa\ can be any point o. E.g. in case of
Greenland, we tak®f = (A, =320,y =72).

. . ——9 .
To summarize: the distandd M’ is controlled by spec-

ifying @ which determines the exact oblique stereographic
The area of interest is chosen by specifying

projection. :
M (A, ¢m) and the IM grid extents ", x[ax,
RtV

yu' and

2.2.3 The oblique stereographic projection

The longitude-latitude coordinatég and¢p of an arbitrary
point P on the spherical surfacg are projected to a rectan-
gular planeS’ which coincides with the IM grid with origin
M'’. After specifyingiy andgy, the coordinates)y ,, and
yim ,, of the projected poinP’ relative to the IM grid can be
calculated. Under the condition

Ay =0 for

oy =—90° & ¢y =90° (2.3)

the final result for the oblique stereographic projection is

XM, = R(COSppSIN(Ap —An))tp: (2.4)
YIM,, = R[singpcospy —

(Cosppsingy)COS(Ap — An)]tpr (2.5)
with
. 1+ cosx (2.6)

- 1+cosppCOSPp COS(Ap — A ) +Sing pSing s

which is derived in AppendipA. The angles are in degrees
and the distances in m.

2.2.4 The inverse oblique stereographic projection

0

Fig. 3. This cross section shows how the position of the plsinis
determined byx. S’ is parallel to the plane which is tangent to the
spheres in point M and S’ is shifted a certain distande M’ along
O—A)/I. This distance is determined by the intersection pdiwhich

is controlled bya. The choice ofx thus determines the distance
MM .

and
¢p = BOarctan— 2 x3P#£0 or y3P£0
bl x?,-DZer::,-DZ
¢p= o  for x3P=)3P=0 & 3P>0 (2.8)
bp= —90° x3P=y3P=0& FP<0
with
x3P = R(coshy cospu) (tp — 1) +x3 1p (2.9)
y¥P = R(sinky cospar) (tp — 1) +y3Ptp (2.10)
FP=R( singy)(tp—1)+23P1p (2.11)
in which
2R%242R
tr=— ST (2.12)
R2+2Ra+(x3°)"+(v3°) +(2p")
in which

_ 3-D ; 3-D H 3-D
The final result for the inverse oblique stereographic projec- = (C0S-m COSPa)xp” +(SiNkyr COSpa) v~ + (singu) 75” (2.13)

tion for an arbitrary poinf’ in §' to P in S, is given by
3-D 3-D
rp =180 + arctan'ty xpo<0
3
3-D 3-D ,3-D
Ap= %)arctany—xg_D xp >0 & yp~=20
3
180 y5 0 3$0-0 & y3P <0
Ap =360 + 7arctarfé:fb for P~ TPOET(2.7)
Ap= 90° x3P=0 & »3P>o0
Ap =270 x:’;;Dzo& y‘;’;D<O
— o 3-D 3-D
ap= 0 x3P=0& y}P=0

www.geosci-model-dev.net/3/13/2010/

and
x3P = RcosxCosh y Cospy — (Sinkpr) xim , —
(COS\ySINGar) YiM (2.14)
y3P = Rcosxsinky cospy + (COSp)xim , —
(SINA 1 SiNGAr) YiM (2.15)
23P = Rcoswsingy + (Cospu) yim . (2.16)

which is derived in AppendixB. The angles are in degrees
and the distances in m.
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Fig. 4. The figure illustrates the interpolation: through each grid paigj (m), yim (n)) we draw an imaginary cross (red cross) that divides
the area around the grid point into four quadrants. Then in each quadrant we determine the projected GCM grid point that lies closest to
xm (m), ym (n) (blue crosses). Those points we c8ll, P;,, P;;, andP;,,.

2.3 Interpolation of the projected fields In Fig. 4 an imaginary cross positioned at each IM grid
point (xim (m), yim (n)) divides the area around the grid point
With the formula’s presented in Se@.2.3and 2.2.4we  into four quadrants. For eagh, n combination we determine
can project any GCM grid pointi( ¢) towards an IM grid  jn each quadrant the closef to (xim (m), yim (n)). Figure4
(xim, yim), and vice versa. Suppose we want to map a two-gqemonstrates an example Wlﬂ}ﬁ Pj,, P],, andP;, being
dimensional GCM field £3;) to the IM grid, then the pro- e nearest IM grid points to the red cross.
jegted points will in generallnot coincide with thq IM gr|d Let d;, dy;, dr; andd;y be the Euclidian distance for
points. Therefore we determine the mapped two-dimensionalhe four quadrants respectively from each of these points to
IM field (FZP) values at the IM grid by interpolation of the ' the considered IM grid pointey (m), yim (1)), then the for-

projected GCM points in the surrounding quadrants. In themya for the Shepard distance-weighted averaging interpola-
opposite map direction, we determine tﬂgr?] values atthe  +ion pecomes:

GCM grid by averaging all projected IM grid points within

a certain radius, where each projected IM grid point con- % Fiem (Pg)
tributes depending on its distance to the considered GCM , ey B
point. Fim™ (Cam (m), yim () = — (2.17)
1
= @

2.3.1 Interpolation on to the IM grid of a projected
GCM field: quadrant method whereg counts over the four quadranits/ 1,111, andIV,
P, is the nearest projected GCM grid point in quadraratt
Leti and;j be the longitudinal and latitudinal grid indices for g distancejq relative to the considered IM grid point:(n),
the GCM grid andP;;=(A(i),¢ (j)) a pointatthe GCM grid.  ande is the distance weighting exponent, usuat is con-
Furthermore, let: andn be thex)y andyv grid indices for  sidered to be the fairest choice for this type of problems
the IM grid. Then corresponding t8;, Pl.’j is the projected  (Shepar1968.
point relative to the IM coordinate system and will in general
not coincide V\.'ith an IM grid ppint butfall in be“’ve;:‘g" see the 2.3.2 Interpolation on to the GCM grid of a projected
blue crosses in Figt. To obtain the values of thg; " field IM field: radius method
at the IM grid points i (m). yim (n)), the Fgop field values
of the nearesPl/j points are interpolated. Since theel? do In this case theP,,,, points coincide with the IM grid points,
not lie in an equidistant manner aroungh((m), yim (n)) we and the corresponding projected poifig, will in general
use a quadrant method based on the Shepard interpolatiamot coincide with the GCM grid pointsi(i),¢(j)). Be-
technique $hepargd1968. cause theP,,,, will not lie in an equidistant manner around
(A(@),9(j)), and because in this case the large GCM grid
should represent the many fine IM grid points in that area,

Geosci. Model Dev., 3, 134, 2010 www.geosci-model-dev.net/3/13/2010/
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the radius method is used. This is similar to the Shepard in-observations. Here, we use the surface temperature and sur-
terpolation Shepard1968 for a radiusk; of about half the  face mass balance resulting from the regional run for Antarc-
GCM grid size. The distancg,, (i, j) of a point P,,,, to the tica with RACMO2/ANT (Van de Berg et al2006 and from
point P;; at (A (i), ¢ (j)) is the shortest path over the spherical the regional run for Greenland with RACMO2/GEt{ema
surfaceS along a great circle: et al, 2009. The RACMO2/ANT data is defined on a re-
duced gaussian grid with 134.22 grid points and a resolu-
dn (i, j) = Rarcco§cos¢p,,)copp,,)CoLdp,, —¢p, )+ tion of approximately 55 km. RACMO2/GR data is defined
sin(¢p,,)sin(@p;) ] (2.18)  on a reduced gaussian grid with 24812 grid points and a
! resolution of approximately 11 km, and covers 9.4%16?
Weighting all projected IM points within a radiug, using in total.

the Shepard distance-weighted method, yields: The RACMO surface mass balance fields are masked to
the ice covered area because the runoff is only calculated
ijD(ﬁlf»;xn> there. We estimated the surface mass balance of the majority

mn (£,7)°

of the non ice covered points by summing the precipitation
1 (2.19) and the evaporation and subtracting 800 mm water equivalent
d. e, " runoff per year, but the surface mass balance for points close
to the ice margin are estimated with help of the ice masked
To treat the GCM points at the edge of the IM grid correctly, points in a short radius by a Shepard distance weighting to
the IM grid is extended with the grid edge values. provide a better local estimate.

dnn (i, ) <Ry

FZD000).¢ () =

3 Model specifications 3.3 The ICEDYN model

The ICEDYN model, developed at IMAU-Utrecht, is a so
called 3-D thermomechanical ice model which is suited to

simulate large ice caps like Antarctica and Greenland or

The Community Climate System Model (CCSM, see :
http://www.ccsm.ucar.edu designed by NCAR is a GCM smaller glacier systems over hundred thousands of years.
The current ICEDYN revision is rather flexible by using a

with four separate model components simulating the Earth’s’ "™ = X ) e .
atmosphere, ocean, land surface, and sea-ice which are CoEignﬂg_uratlon_ﬂle in which all _g_rld specnflcanons and time
pled by a central coupler component. We are mostly inter-Stepping choices can be specified. Choices for proper local

ested in the fields from the CCSM3 atmosphere componen&orcmgs as surface temperature and surface mass balance can
be specified in this configuration file, and new ones can eas-

for realistic OBLIMAP mapping tests. ; X
ily be added in the current modular set up of ICEDYN. By

The CCSM3 atmosphere fields are defined on a regud tault & 3.D th hanical | heet | led with
lar longitude-latitude T42 grid with 12864 grid points, see ea_uta Dt ermomechanical ice-s eetis coupie wit a
2-Dice-shelf, but also a simple shelfless shallow ice approxi-

Fig. 5. It has a horizontal resolution of 2.8 The grid a- ation (SIA) computation is optional from the configuration
most covers the complete globe but the latitude is restricted. . .
P J (me. Both input and output of ICEDYN are in netcdf format.

between-87° and +87 north. Data output are in netcdf for- EDYN ; I : he EISMINT benchmark
mat. We used the December—February averages of the Iaé? performs well against the enchmar

five years of a present day control run. The results of thisexperiments Kluybrechts e.t al.lgga Payne et aJ.ZOOQ,
control run agree witiCollins et al.(2005. which can be repeated by just using the EISMINT configura-

For the surface height we used the surface geopotentiatfOn file.

(PHIS) from CCSM. The CCSM surface temperature (TS) is. Depending on the_experimgntal setup, th? ICEDYN ch_jel
the temperature of the Earth’s surface at this surface geopo'—S capable of modeling each ice cap for which certain initial
tential. For the surface mass balance we added two CCSI\ﬁnd reference fields are available, and for which the forcing
components: the convective snow rate (PRECSC) and th& known. OBLIMAP is developed as a part of ICEDYN

large-scale snow rate (PRECSL). We left out the evaporatio and has a similar flexible grid specification from a configura-
and the runoff in the CCSM cases because these fields a?éon f'l.e' Using ICEDY.N IS co_nvemgnt totest the OB.LIMAP

only available in the CCSM land files for the land mask. And mapping for many gﬂd configurations. The coo.rdlnates qf
the complications to extend these fields are not in proportionthe ICEDYN grid points are rectangular cartesian coordi-

: . o nates like the IM grid points in OBLIMAP.
to our goal of just providing realistic fields for our test cases. The ICEDYN fields are defined on a rectangubag, yi)

grid. An example is shown in Figh with 281x281 grid
points. In this case the default horizontal resolution4and
The Regional Climate Model (RACMOZan Meijgaard y-direction is 20 km and represents Antarctica with a limited
etal, 2009 has been used to obtain best estimates for preserfi€@ Of 5600 knt 5600 km.

day atmospheric fields using model physics and all available

3.1 The CCSM model

3.2 The RACMO model
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Fig. 5. The figure shows a global image of the surface temperature field betw&&nand +87 north (the color scale is in Kelvin). On top,
in black, the CCSM grid of the atmosphere component at T42 resolution is shown.
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Fig. 6. The figure shows an image of the surface height of Antarctica (the color scale is in meter). On top, in black, the relatively fine IM grid
is shown, which is in reality five times finer with a grid spacing of 20 km. The origin of the IM &ick\ (m=141)=0, y (n=141) = 0)
represents the South Pole, wherendn are the IM grid numbers in the- andy-direction, respectively.
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4 Mapping experiments tions of the deviations fof;, MB, and H, are shown, where
we sampled the full deviation range in 300 intervals. Most of
Several realistic mapping experiments with CCSM andthem are sharply peaked around zero, indicating that the ma-
RACMO data will demonstrate the performance of jority of the deviations are quite small. Although these dis-
OBLIMAP. Each experiment concerns a particular area andributions are not normal, theito2interval represents about
GCM data set of interest for which the surface temperatureg5% confidence. Points falling withirvland 2- are plotted
(Ty), the surface mass balandéB), and the surface height blue to visualize the confidence intervals.
(H,) will be mapped to and fro. The deviations between these |f necessary OBLIMAP is capable of converting the units
to and fro mapped 2-D fields and the initial field will be used of 7;, MB, and H, respectively to Kelvin, meter ice equiv-
to quantify the performance of the mapping. alent (mieq) per year (using an ice density of 910 kgfjn
Grid point coordinates which are to and fro projected with and meter, for the IM. In the tables and the figures all results
the oblique stereographic projection and its inverse remairincluding the GCM ones are presented in these IM units.
identical, which means the projection is exact. However, pro- In experiments 1-3 the fields are mapped between CCSM
jected points have to be interpolated on the target grid, thisand ICEDYN, for the results see TalBe Because in these
causes deviations after to and fro mapping. These deviationsxperiments the CCSM grid is coarse compared to the ICE-
evidently increase in case the resolution of the IM and theDYN grid we used for the ICEDYN-CCSM mapping the ra-
GCM differs. Therefore, in our experiments we start with dius method withR;~125km, which is 0.8times half the
the fields of the coarse GCM to prevent interfering deviationsCCSM grid diameter. We multiplied by a factor 0.8 to ensure
which are not due to the mapping technique itself. we include only points within each grid cell itself, because
In most situations we use the quadrant method to interpothe grid sizes differ slightly per latitude, whereRgsis taken
late. But in case the target grid resolution is about four orconstant in the current version of OBLIMAP. In Figsand
more times coarser the radius method is used, representing@&we show the results for Antarctica and Greenland, note that
better estimate of the many fine gridded points within eachthe low number of involved points for Greenland is reflected
single coarse target grid point. After IM-GCM mapping, the in the distribution plots. A lack of CCSM data betweef(°
mapped field values of the limited IM area are merged withand—87° complicates the mapping for Antarctica, however
those initial GCM field values which are not involved in the with our quadrant interpolation method we obtain realistic
mapping. Averages and standard deviationp dre calcu-  results of the south pole area for ICEDYN.
lated over the involved mapped points only. The higher RACMO resolution allows mapping tests on
Fourteen miscellaneous experiments show the accuracfields with sharper contours and larger gradients. Experi-
and the robustness of the OBLIMAP mapping for two dif- ments 4-11 map the RACMO/GR data set RG2 and exper-
ferent types of GCM data (Se@&.1and3.2). These fourteen iments 12—-14 map the RACMO/ANT data set RA, or parts
experiments and their specifications are listed in TAbtee  of them. For the results see Tal8e In experiment 4, see
abbreviations of the data sets are explained in Tableig- Fig. 9, the IM grid covers Greenland entirely with a 10 km
ures7—14 show the results of a number of these experimentsresolution. While in experiments 5-8, see Fiff3-12, and in
representing tests with: three GCM data sets (differing in resexperiments 9-11 grids with a resolution of a few kilometer
olution, in grid distribution, and in global extent), areas cov- are used to map local areas. Experiment 12, se€lBjgon-
ering data gaps (e.g. Antarctica), areas at the border of theerns Antarctica entirely. While experiment 13, see E#.
GCM domain (e.g. Ellesmere), areas with complicated pat-and experiment 14 show a local mapping case of this RA
terns because of the topography (e.g. Ellesmere), local areatata set. The difference in grid resolution is that large for the
being part of a larger (glaciated) system (e.g. Jakobshavn)CEDYN-RACMO mapping that we used a radius interpola-
areas covering the Greenwich longitude (e.g. Svalbard), diftion method withR;~4.4 km for experiments 5-11, and with
ferent amount of involved mapped points (e.g. Greenland~22 km for experiments 13—14 (see Talbje
versus Peninsula), different IM extents, and a spread of In general we see for all the experiments (Figsl4) that
oblique locations. the range and pattern of the mapped IM field are in very good
The deviation field is the to and fro mapped GCM field agreement with the initial GCM fields. And as mentioned be-
minus the initial GCM field. The average mapped deviationfore, after to and fro mapping the GCM fields look identical.
(AMD) is the mean absolute error (MAE) of this deviation From Table3 and Figs.7-14 we see for various grids for
field, and is presented in TabBstogether with the 2 confi- different locations a maximum AMD of 0.1 K fof;. The
dence interval. In addition the field range and the field aver-AMD for H; is about a few meter for these data. The AMD
age are shown in Tablgto judge these AMD and inter- for MB varies between one millimeter and a centimeter ice
vals. For several of the experiments we show in Figd4 equivalent per year, depending on the rang®8f The in-
the initial GCM field, the deviation field, and the mapped IM terpretation of the deviations of a field with a relatively wide
field for T;, MB, andH;. The to and fro mapped GCM fields range around zero (like théB) is more complicated because
are omitted because they look identical, as a result of the acef the difference in relative deviations. In these cases the
curate mapping. At the bottom of these figures the distribu-range relative deviation (RRD), equal to the percentage of
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Fig. 9. This figure concerns Greenland (data set RG2), see further the caption @f Fig.
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Geosci. Model Dev., 3, 134, 2010 www.geosci-model-dev.net/3/13/2010/



T. J. Reerink et al.: Mapping technique of climate fields between GCM’s and ice models

Jakobshavn (RG2)

Al 265.5
0.5
- agy 2675
@ b 285.5
Q
;gu 263 284.5
o 1 2615
k=] 259
et 2585
- 265 e 2575
g | 255.5
B 251 ) 253.5
s
- =y 2515
248.5
243 —e.7 247.5
1.4 018
1
— 0.8 0.08
o
8 0.2
Eo -0.2 P
o
=) -0.6
— 0
U -1
~
E A —0.04
'va’ -1.8
= e -0.08
-2.6
-3 —p.12
200 2600
2800 5 2400
2200
— 2400
] | 22 i 2000
i 2000 14 an
;0 E 1600
= 1600 1400
— € 0
© — 1200
3 1200 2 = 1000
= RO &no
—10 —
o 100
A 600
100 —1& 100
200
T T T T T T T T 0 T T T T T T T T T —26 0
-0  -56 —32 -4  —44 60 -56  -82 4B 44 -100 0 100 200
Longitude {degrees) Longitude (degrees) X (km)
initial GCM field mapping dfference mapped IM field
Ts MB Hs
r ST - r
[} 8 L J o 4 o [
Q = Q B O L
o [ o a o
o L o 1 0 9
~ o = L 4 [ ™ b
5 S L 1 5 < 5 L
SIS o O - -4 © [
O L (9] — L 4 (92 L
o [ o ] o 8L
o
5 oFfF 4 % 1% “r
[ N 5 o 1 o r
& of s ©r 73 8L
g 21 1 £ 4 E —r 1
3 3 - r r 1
o b L ] = [ 1 & r A 1
O b, wmpeo op meoqumes pmeninied’ | Wadtemt s o oge o) o O bepop oy oy op somyuas i | T PVRSeped apn | g o g O o o qmemuoem; I oo ooy w 0w | o
-0.5 0 0.5 -0.1 -0.05 0 0.05 0.1 —-20 0 20
difference (Kelvin) difference (mieq per year) difference (meter)

Fig. 12. This figure concerns Jakobshavn (data set RG2), see further the captionof Fig.
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Table 1. Overview of the mapping experiments. The first column numbers the various mapping experiments for several areas and data sets.
The IM grid sizesNy, Ny, the grid spacing\y=A, (in km), the intersection angle, and the coordinates of the middle point of interest

M(xpr, dp) (in °) are listed. The data sets are specified in Tabl&ll « are as given by Eq2(2) except for Antarctica where a little

smallera of 19° is used. The search radi&s is shown for those experiments which use the radius method for the IM-GCM mappiRg. If

is absent the quadrant method is used, like for all GCM—-IM mappings.Migithe amount of points which are involved in the mapping.

no area data Ny N,y Ay o AM dum Ry N

set (km) ©) ) () (km)
1 Antarctica A 281 281 20 19.0 0.0 -90.0 125.0 1268
2 Greenland A 76 141 20 7.5 320.0 72.0 125.0 160
3 Himalaya A 200 200 20 145 90.0 32.0 125.0 195
4 Greenland RG2 153 283 10 7.5 320.0 72.0 34880
5 Ellesmere RG2 211 281 3 26 278.2 79.8 4.4 4328
6 Svalbard RG2 200 235 2 1.6 18.2 78.5 4.4 1529
7 Iceland RG2 271 200 2 1.7 341.2 65.0 4.4 1736
8 Jakobshavn RG2 200 200 2 1.4 3087 70.0 4.4 1268
9 Helheim RG2 200 200 2 1.4 3239 67.1 4.4 1268
10 Humboldt RG2 200 200 2 1.4 298.0 80.0 4.4 1284
11 Storstremmen RG2 200 200 2 1.4 336.3 76.7 4.4 1272
12 Antarctica RA 281 281 20 19.0 0.0-90.0 10367
13  Amery RA 200 200 4 2.9 67.9 —73.1 22.0 206
14 Peninsula RA 200 200 4 29 291.5-72.2 22.0 204

Table 2. This table lists the GCM model with which each data set is created, and the area and epoch of that run. The references describe
these model runs.

data set model area epoch reference

A CCSM3  global Dec-Feb averaged Collins et al.(2005
RG2 RACMO Greenland 1990-2007 averagettttema et al(2009

RA RACMO Antarctica 1980-2004 averagedVan de Berg et al(2006

the AMD divided by the field range, might be more appro- R, are originating predominantly from the same GCM grid
priate to judge the quality of the mapping. The drawback ofpoints. Whereas in experiment 4 the quadrant method uses
the RRD is its dependence on the incidental field extremesthe values of the neighbour GCM points, causing larger de-
However, the fact that the RRD is for all experiments below viations due to the large gradients.
0.5% confirms the accuracy of the OBLIMAP mapping. Mapping large areas like the entire Northern Hemisphere,
The largest deviations in experiment 4 concern the areadny other oblique Hemisphere, or even areas larger than this
Ellesmere, Jakobshavn, Helheim, and Storstrammen, corS Possible. Select such a part of the globe by specifying an
taining the largest gradients with irregular patterns. Theseahgley being equal to the angleC M’ (see Fig.2). For a
areas are locally mapped in experiments 5, 8, 9, and 11. Fo#iven y, an optimala and a matchingv, Ax extent for a
instance, the results of experiments 5 and 8 for Ellesmeréduared IM grid can be obtained with:

and Jakobshavn in Figé0 and12 show a detailed mapping. 1

Note that experiment 10 for Humboldt with exactly the same o = 2arctar{ / o—tan(y) (4.1)
. . . JT

mapping conditions as experiment 8 for Jakobshavn (see Ta-

ble 1), reveals about two times smaller deviations because ofVx Ax = R[1+coga)]tan(y) (4.2)

the less complex gradients in the Humboldt fields (see Taforociyigoo_ With y =45 half the globe is mapped, yield-
ble 1). ing «=435°, and with e.g.N,=200 we haveAx=58 km.

The local experiments show smaller AMD’s and smaller Results of mapping the Northern Hemisphere with data set A
20 intervals. This has to do with the large gradients and theare in line with those in Tabl8, however for such extended
smaller IM grid resolution in combination with the radius cases the local scaling differences become rather large and
method, which is used for the IM-GCM mapping in those the large “easy” oceanic areas suppress the average devia-
cases. In the local experiments the contributing points withintions.
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Table 3. The table presents for each mapping experiment the field range and field average for comparison with the average mapped deviation
(AMD) and its standard deviatiom§. The AMD is the mean absolute error (MAE) of the deviations of the to and fro mapped GCM field,

and is used to quantify the quality of the mapping. About 95% of the mapped field deviations (all inside the range of 94-99%) lays within
the & interval. The range relative deviation RRD is the AMD divided by the field range, in percent.

no area data field range field AMD 62 RRD

set average (%)

T, (Kelvin)
1 Antarctica A 240.2 277.6 264.6 0.04 0.18 0.11
2  Greenland A 238.8 280.0 253.0 0.15 0.50 0.37
3  Himalaya A 2515 301.5 274.9 0.06 0.20 0.12
4  Greenland RG2 240.4 2825 260.2 0.12 0.70 0.27
5 Ellesmere RG2 242.8 263.0 254.3 0.06 0.24 0.30
6  Svalbard RG2 256.0 276.0 267.2 0.06 0.28 0.32
7 Iceland RG2 265.2 281.8 276.0 0.03 0.15 0.20
8 Jakobshavn RG2 2485 270.8 261.6 0.05 0.25 0.23
9 Helheim RG2 246.1 2775 260.6 0.03 0.17 0.10
10 Humboldt RG2 2440 259.1 251.3 0.03 0.14 0.20
11 Storstremmen RG2 2435 263.9 253.8 0.03 0.12 0.13
12 Antarctica RA 212.0 278.5 253.3 0.05 0.22 0.07
13  Amery RA 225.1 2549 238.7 0.03 0.14 0.11
14 Peninsula RA 2458 267.8 257.3 0.06 0.22 0.28
MB (mieq per year)
1 Antarctica A 0.00 0.61 0.19 0.001 0.005 0.20
2  Greenland A 0.12 1.17 0.40 0.003 0.014 0.33
3 Himalaya A 0.00 1.02 0.20 0.002 0.010 0.24
4 Greenland RG2 -3.18 422 —-0.10 0.018 0.114 0.25
5 Ellesmere RG2 -1.52 1.18 -0.42 0.006 0.026 0.23
6  Svalbard RG2 -1.15 099 -0.17 0.006 0.027 0.30
7 lIceland RG2 -2.46 2.07 -0.08 0.010 0.044 0.22
8  Jakobshavn RG2 —-2.91 0.71 -0.43 0.006 0.033 0.18
9 Helheim RG2 -1.08 3.69 0.90 0.006 0.029 0.13
10 Humboldt RG2 -1.35 054 -0.33 0.004 0.016 0.19
11 Storstremmen RG2 —1.73 0.37 -0.27 0.003 0.013 0.12
12 Antarctica RA -0.35 4.36 0.44 0.003 0.026 0.07
13 Amery RA -0.04 0.42 0.09 0.001 0.005 0.22
14 Peninsula RA -0.08 3.33 0.67 0.010 0.040 0.29
H (meter)

1 Antarctica A -111 3629 871 3.1 10.9 0.08
2  Greenland A —-65 2397 902 5.2 201 0.21
3 Himalaya A —-21 5034 1502 7.7 276 0.15
4  Greenland RG2 -12 3227 922 6.8 38.1 0.21
5 Ellesmere RG2 -10 1777 305 2.8 109 0.16
6  Svalbard RG2 -10 1111 116 1.7 7.4 0.15
7 lIceland RG2 -24 1672 241 1.8 7.3 0.11
8 Jakobshavn RG2 0 2529 788 2.2 10.4 0.09
9 Helheim RG2 0 3088 1354 1.8 7.9 0.06
10 Humboldt RG2 0 2220 887 1.6 6.4 0.07
11 Storstrammen RG2 —-10 2626 1035 1.3 56 0.05
12 Antarctica RA 0 4056 858 3.5 209 0.09
13  Amery RA 31 3164 1880 3.2 12.1 0.10
14 Peninsula RA 0 1930 497 7.4 259 0.38
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Table 4. The table presents for each mapping experiment the dif- However, our equations follow a direct oblique approach

ference between the area-integrated mass balance at the GCM aMfich is well documented, are unique for all situations, guar-
the IM grid: AMB in mieq per year. These area-integrated differ- antee a continuous collection of well defined Cartesian ori-

ences are divided by the total mapped area, to overcome a bias du@tated projection planes over the globe, use the intuitive an-
to small differences in surface size at the grid edges. WiB we gle « to define an optimal projection plane, and compared
denote the range relativeMB, which equals theAMB divided by to Snyder(1987) our inverse projection is two times faster in

the range oMB in percent. computation avoiding the use of both arcsin and arccos which
are vertical-asymptotic functions. Furthermore, our direct
no area dataset AMB sMB obligue methodology might be of interest in future applica-
(mieqy 1) (%) tions of high accuracy: to derive an oblique stereographic
1 Antarctica A 0.003 0.45 projection and its !nverse in case_the Ee_lrth’_s surface is rep-
2 Greenland A 0.002 0.18 resented by a geoid, or by a function which is even closer to
3 Himalaya A 0.006 0.63 the Earth’s topography. In that caSeshould be replaced by
4  Greenland RG2 0.005 0.07 that function, buf remains a sphere through’.
5 Ellesmere RG2 0.004 0.14 Repeating our applications with the Lambert azimuthal
6 Svalbard RG2 0.006 0.26 equal-area projection, reveals very similar results for both
7 Iceland RG2 0.005 011 projection methods. These results are in agreement with the
8  Jakobshavn RG2 0.010 0.27 quotes ofSnyder(1987, p. 3 and 5): tt cannot be said that
190 :3:‘]Ei(r)'l‘dt Eg; g-ggg g-ig there is one “best” projection for mapping. It is even risky
11 Storstremmen RG2 0.001 0.03 to claim that one has found the “best” projection for a given

applicatior and for areas as large as the USAx trained

12 Antarctica RA 0.004 0.09 . . .

13 Amery RA 0.001 0.28 eye cannot often distinguish whetht_—zr thg map is equal-area

14  Peninsula RA 0.004 0.10 or conformat. For small areas the distortions are that small
that an equal-area method is convenient because of its surface
conservation.

For those cases that a GCM data set is provided on a
grid which coincides with an ellipsoid instead of a sphere,

BLIMAP contains the equivalent oblique stereographic and

e obliqgue Lambert azimuthal equal-area projection and
their inverse for the ellipsoid (segnyder 1987 p. 160 and
187, respectively), with the frequently used World Geode-
Yic System 1984 (WGS84) ellipsoid as the default. As noted
by Snyden(1987 these ellipsoidal projections are not strictly
perspective. The mapping accuracy with the ellipsoidal pro-
jections are in agreement with those for the sphere as ex-
pected, because the accuracy depends mainly on the interpo-
5 Discussion lation.

In case the grid is irregular, in practice this concerns the

The oblique projection formula’s are capable of performing aGCM grid, OBLIMAP contains the option to read the 2-D
projection of a field defined on a grid which is based on geo-fields with the longitude and latitude coordinates of the grid
graphical coordinates around any point at the Earth’s surfac@oints. This allows the projection of fields which are defined
with an optimal centered projection for this location. Both, on a grid with an arbitrary distribution, because of the combi-
Snyders and our oblique stereographic projection, yield thenation with the quadrant and the radius interpolation method
same results for our applications, in case we addpto the  which search and weigh by distance only. The latter makes
Snyder projection instead &f. Working with« is more in-  the method also robust for data gaps.
tuitive, and anu for an optimal projection is estimated by =~ Depending on the ratio of the IM and GCM resolution and
OBLIMAP in advance, so a least squared method Geg on the mapping direction, the quadrant or the radius interpo-
der, 1987 p. 157) can be avoided. Though, an optimalan lation method can be used. In case both grid resolutions are
be different from Eq.Z.2), in case the area of interest differs of similar size or in case the target grid is finer, the quad-
significantly from the total grid area. For example, one needsant method is evidently the best option. Otherwise, in case
a relatively large grid for Antarctica to include the Peninsula the target grid is about four or more times coarser the radius
branch. In that case one can choosa little bit smaller,  method is most suited representing more than the centered
fitting better to a one to one projection for the average conti-points only. Actually, in our mapping experiments the quad-
nent. For example, Eg2(2) yields¢=20.6 in experiments 1  rant method generates about ten times lower AMD's for those
and 12 for Antarctica, but we used°19 latter cases, but that is because of our experimental set up in

Finally, in Table4 we present the differences of the area-
integrated mass balance per surface unit between the GC
grid and the IM grid, AMB (in mieqy1), andsMB (in %)
which is equal to the range relativeMB. Table 4 shows
for our experiments nearly conserved mapping of the mas
balance withAMB < 0.01 mieqy ! which is equivalent with
asMB typically about 0.2%.
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which we start with the coarse grid. So, we used the radius The scan needs the grid extents. The GCM grid extents are
method representing a realistic and fair test of the OBLIMAP deduced from the initial GCM grid, whereas the IM grid ex-
performance for those cases. tents are specified by, N,,, Ax, Ay. An optimal intersec-

Of course the OBLIMAP performance is sensitive to datation anglex depends on the IM extents, and has to be speci-
gaps, to a large difference in resolution between the IM andied. The same holds for the coordinaigs and¢,, defining
the GCM, and to steep gradients in combination with irregu-to the central point of the projection. The final scan option
lar field patterns, factors controlling any interpolation. How- concerns the choice between the quadrant and the radius in-
ever, OBLIMAP treats them correctly, and also the limited terpolation method for each mapping direction. In case of
extent of the IM grid is treated properly, which is reflected the radius method the search radRishas to be specified as
by the results revealing no artifacts. well.

The OBLIMAP fortran90 code is easy to implement be-  With three different data sets of various resolutions and
cause it is compact and modular. Simultaneous and fast magsased on two different GCM’s (CCSM and RACMO), four-
ping of fields is possible after a first scan of both grids and byteen miscellaneous mapping experiments show accurate re-
knowing the projection specifications. The scan, by far thesults for several locations. The average of the surface temper-
most time consuming, comprises the projection of the gridature deviations is 0.1K or less and the itervals are be-
coordinates to the target grid and the search of the nearbjween 0.1 and 0.7 K, for all these experiments (see Table
projected points thereafter, necessary to estimate the fieldhe results of the surface mass balance and the surface height
value of each target grid point by interpolation. By storing are more complex to interpret because relatively small de-
the indices of the projected grid points and the distance beviations of large values are mixed with those of small val-
tween those points and the target grid points, a subsequemtes, however their average deviation compared to their field
mapping consumes far less time. range deviates less than 0.4%. Considering the difference

The simultaneous 2-D mapping property of OBLIMAP al- in field patterns the range relative deviations are compara-
lows mapping of 3-D fields layer by layer. Note that each ble for all three quantities. With range relative mass balance
layer will be treated equally with respect to the projection, deviations of a few tenth percent (see Tedjl@arious exper-

i.e. no vertical adjustments are applied for the difference iniments showed nearly conserved GCM-IM mapping. To put
R. Actually, any field is mapped as a 2-D level field, i.e. no these results in perspective, the uncertainty of the CCSM sur-
volume conserving corrections are applied for a field like iceface temperature has to be assumed to be about a few degrees
thickness. (Collins et al, 2005, for RACMO-Greenland 2K (J. Ettema,

Down scaling of the forcing fields after mapping will be personal communication, 2009), and for RACMO-Antarctica
required to match the ice topography. This part of the IM- 2—4 K (Van de Berg et al 2007).

GCM coupling is beyond the scope of the work presented

here. However, because the topographic data fBamber )

et al. (2001 are used for the RACMO run of Greenland, a APPeNdix A

present day equilibrium run of the Greenland ice sheetis di- = . ) . o
rectly possible with the mapped RACMI andMB because Derivation of the oblique stereographic projection:
it matches with an equally (re)mappBdmber et al(200)  from GCM to IM

topography. . . . .
pograpny Each GCM pointP on S is projected along,'_f’ to P’ in S,

whereupon its relative position with respect to the IM coordi-
natesxy andyy are determined, see Fig. The approach
will be:

6 Conclusions

This work accompanies the OBLIMAP mapping routines
which are available from the GMD site (see supplemen-
tary material http://www.geosci-model-dev.net/3/13/2010/

gmd-3-13-2010-supplement.ziprhe core of these routines  _ Specifying iy, and ¢y the coordinates of the middle

are the oblique and the inverse oblique stereographic and point of interestM, with which the projection axis for
Lambert azimuthal equal-area projections for both the sphere any pointP is known.

and the WGS84 ellipsoid. Besides these optimal centered

— Specifyinga, which defines the exact oblique stereo-
graphic projection.

projections, the routines deal with all kinds of IM-GCM res- - ExpressM andM’ in 3-D rectangular coordinates.
olution ratios with respect to the interpolation on to these _ _ _
grids, with data gaps, with limited grid extents, with ad- — Find a parameterized 3-D vector expression for the pro-

justable unit conversions, with merging the local IM results jection axisC P.

with the GCM data, and they incorporate a fast mapping op-

tion once a scan of the contributing projected points around — Find the 3-D rectangular coordinates/f which is the
each target grid point is performed. point of intersection o P ands’.
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— Find the coordinates af’ relative to the IM coordinate
system.

The rectangular coordinatesit? of a pointM in the mid-
dle of an area of interest ofi with a radiusR, can be ex-
pressed in the spherical coordinate36f{A, ¢, r)=(Aur, dus
R) with use of Eq. C2)

_ _ _ —_—
M(x3 D 3D 3 D>:0M=

R (COS\ s COSPys, SINA 31 COSPs, SiNGar) (A1)

BecauseM’ is situated onOM (see Fig.2), we have in
spherical coordinates iR®

M’ = Gy by rmr) = (A . RCOx) (A2)

In rectangular coordinates iR® this becomes with use of
Eq. C2

R
M <x3-D’ y3-D7Z3-D> —OM =

RCOsx (COS\ s COSPyr, SINA 37 COSP s, SiNGpr) (A3)

In an oblique stereographic projection an arbitrary p#&int
(not too far fromM) on the spherical surfacgis projected

L= .
along the lineC P to a rectangular plan&’. The projected
point P’ is situated at the point of intersection of the line

— . .

C P and the plane’. By using a parameterized 3-D vector
—>

representatio’ Q along the lineC P and an equation for the

planeS’ we can calculate the 3-D rectangular coordinates of

P’. The relative position of?’ to the axescy and y;m of
the IM grid give the coordinategy ,, andyiv ,, of P in the

IM grid we are looking for. For the latter step we need the = (COSA 1 COSPar, SiNAps COSPs, SINP A1)
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If Q is a point situated on the Iiné‘_f’ then the parameter
L = .
representation of Q can be given by

—  —> —_— —

CQ=0C+<0P—0C)t forsome reR  (A5)
Because” andM are anti-poles we have

— —

ocC=-0M (A6)
this substituted in EqA5) gives

— — —_— —>
CQ=—0M+(0P+OM>t (A7)

which becomes with EqAQ) and Eq. A4)
C 0 = — R(COSh11 COSPar, SiNd.ps COSPar, SiNpr)
+ R (COSA p COSpp + COSA )1 COSPy7, SINA p COSP p
~+Sin s CcOSPyy, Singp +Sing ) ¢
So the coordinates a on C—Q>:<x?é'D, ygD,zsé'D)
expressed im are

X3P = R((COShpCOSpy) (t — 1)+ (COShpCOSpp)t)  (AB)
ygP = R((sinkyCOSP) (t — 1) + (SinrpCOSpp))  (A9)
5P = R(( singa) (t — 1)+ ( singp)r)  (A10)

Al.2 The equation ofS’

— .
BecauseD M is perpendicular t¢’ we can take the compo-
nents ofM (see EqALl) as the normal vectaNg for S’

Ng (xS-D’ y3-D’ Z3—D>

(A11)

parameterized 3-D vector representations of the IM grid axedJsing this as the normal vector in EqC3), this gives an

3-D 3-D
I andiye.

Al Determine P’

In this section we will determine the 3-D rectangular coor-

dinates of the projected poidt’. In Sect.Al.1 a parameter

representation for the vectOTQ) along the lineC P is given,
and in SectAl.2 an equation for the plang. In Sect.A1.3
we determine the parameter valiye belonging to the point

P’, the intersection point o @ ands’. In the last step, in
Sect.Al.4, we substitute thisp: into the parameter represen-

tation ofC—Q> to obtain the coordinates af'.
. —>
Al.1 The parameter representationC Q

. . —_—
For each arbitrary poinP=(Ap,¢p, R) on S the vectorO P
in 3-D rectangular coordinates is

p <x3-D’y3-D’Z3-D> —opP

= R(COS\Ap COSpp,SINApCOSPHp,SiNgp) (A4)
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equation fors’

S’ coShpCOSparx P +sink s cospy yI P +singyz®P =k

(A12)

for somekeR. To determinek we fill in M’ (see EqA3)
because it is part of’, to obtain the final equation fa¥':
S’ : coshyr cosparx P + sini g, cospa v P + singp 5P

= Rcos (A13)

Al1.3 Determing the parameters=tp: for P’

P’ is situated at the intersection GTQ) and S’. To obtain
tp we substitute the 3-D rectangular coordinategef P’
given by Eqgs. A8)—(A10) for r=¢p: into the plane Eq.A13)
for S’

COS\ 1 COSPpr [ R ((COSA s COSPpr) (tpr — 1) + (COSA pCOSPHP )1 p/)]
+SinA 7 cOSpar[ R ((SiNApr COSPar) (pr — 1) + (SiNA p COSPp )2 pr)]
+ singum [R(( Singa) (tpr — 1) +( singp)tp)]

= RCOSx
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which equals

(tpr—1)+[CcOSpps COSP p (COSA 3y COSA p+SiNA s SiNAp)
+singySingp]tpr = cosx

and with Eg. C5) this becomes

(14+-cospp COSPp COSApr—A p)+Singy Sing p )t pr=1+CoSx
so finally we get for p

1+cosx
tp= - - (Al4)
1+cospycosppCOS Ay —Ap)+Sing, Sing p

Al.4 The coordinates ofP’

Substitution oft=tp: given by Eq. Al14) into Eqgs. A8)—
(A10) for Q, gives the coordinates @t’. So the coordinates
of P’ are given by

1)+ (coshpcospp)tp) (AL5)
—1)+(sinLpcospp)tp) (ALG)

xP, = R((coSkpCOSpyy) (tpr —
yp, = R ((SiNA31 COSpyr) (tpr

3P =R(( singr) (tpr — 1)+ ( singp)tpr)  (ALT)
with
L= 1+cosy . . (A18)

1+Ccospp COSpp COSApr—A p)+Sing s Sing p

A2 The parameter representations of the IM grid axes

The IM grid coincides with the plan§’. The origin of the
IM axesxiy andyw coincides with the poindt’ = (xyy =

0, yim=0). In this section we will obtain the parameter repre-

sentat|0n$§m? and/3 D for thex;y andyim axes respectively,

in the 3-D rectangular coordinates.

A2.1 Theinner help sphereT

We introduce an extra inner help sphefewhich goes
throughM’ with O as origin. Becaus& goes throughv/’
the radius ofT is Ry=Rcosx. The plane$’ is the tangent
plane inM’ to this help spher&. The tangent line td in
the positivea direction at pointM’ in the planeS’ is chosen
to coincide with the positivey axis, while the tangent line
to T in the positivep direction at pointM’ in the planeS’ is
chosen to coincide with the positivey axis. To calculate
the 3-D parameter representations of thggeandy;y axes
of the IM grid we need respectively the derivatives.iand
¢ direction of T in M’.

The 3-D rectangular coordinates ©fcan with Eq. C2)
be given as

T (x

D y3_D,z3'D> = RCOsx (COS\COSp, SINL.COSP, SiNg)
(A19)
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A2.2 Thex and ¢-derivatives in M’ on T

The A-derivative on the spherical surfa@ein rectangular
coordinates is

9T (SD’ySD 3D)

= 9, (RCOSx (COS\.COSp, SiNA.COSP, Sing))

= Rcosxcosp(—sini,cosk,0) (A20)
with norm
‘EMT (x3'D, y3'D,z3'D) ‘ = Rcosx|cosp| (A21)

The normalized.-derivative vector in poind/’ is then

— 0Spm

uhT(M)= N S\, 0 A22
k()lcosp|(smMCOM) (A22)
For the range-90° <¢; <90° we have that

Coshy _ (A23)
|cospy |

Except for the north and the south pole, which should be
treated separately anyhow becauss not unambiguous at
the poles, Eq.A22) becomes

0, T(M’)=(—sinky,coshy,0) for —90° < ¢y <90°

(A24)

The ¢-derivative on the spherical surfaZein rectangular
coordinates is

9T (XS-D’yS-D’ZS-D)

= 0y (RCOSx (COSACOSp, SINA.COSP, Sing))

= Rcosx( —cos\sing, —SinAsing, cosp) (A25)
with norm
‘8¢T(x3'D, y3D, z?’_D)‘ — Rcosx (A26)

The normalizedp-derivative vector in poind/’ is then

9.7 (M) = (—COSk s Singy, —SiNA s Sing s, COSPar)
(A27)

A2.3 The parameter representations of D and /3.0

The parameter representaﬂdﬁ# and/3P describe respec-
tively the x;y and theyy axes in 3- D rectangular coordi-
nates with parametersandv, respectively:

—>
BO=0M +43Du forsome ueR (A28)
130 = 0M'+dl?m'ﬂ3v for some veR (A29)

Here ared;3P andd:flMD the normalizedx;y and ym-

directions respectively. Actually andvare thex;y andym
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coordinates of some point i${, because their values are the And the parameter representation for the north pole
values along the axes and relative to the origfihof the IM (¢pr=90°) becomes

grld 13 D

The plane$’ is the tangent plane i’ to T. The tangent "X = (0.0, Rcow) +(0,1.0) u (A38)
line to T in the positivei direction at pointM’ in the plane lfgm'f (0,0,Rcosx)+(—1,0,0) v (A39)

S’ is chosen to coincide with the positiwg axis, while the

tangent line td" in the positivep direction at pointM’ in the

plane$’ is chosen to coincide with the positivgy axis.
Therefore the.-derivative onT in M’ gives the direction

of the x; -axis and thep-derivative onT in M’ gives the di-

rection of theym -axis. So the normalizet-derivative vec- g for by =—90 & ¢y =90 (A40)

tor in M’ equals the normalizedy direction vector and the

normalizedg-derivative vector inM’ equals the normalized for all projection cases the same parameter representations

yim direction vector

Taking the undetermined,, equal to zero in Eqs.A34)—
(A35) gives exactly the required parameter representations
for both polar cases as in EQ#A36)—(A39). So, conve-
niently, under the condition

13D = Rcosx(coshy cospy, Sinky cOSpar, Sing )
dlxm =(hTM) (A30) +(—siniz,coS\ur, O)u (A41)
43P =09,T (M A31
Ly o T (M) (A31) limﬁ’_Rcosa(coskoosxz)M,smkoos/W,smcj)M)

In this paragraph, we only consider the oblique cases. Be- (—COS\p1 SiNg s, —SiNAys SiNgr, COSPa )Y (A42)
cause the.-direction is undetermined for the polar cases with ' ’

ou=—90° and ¢ =90, they will be handled in the next can be used. Writing the components separately for the pa-
paragraph. Then, substituting Eg824) and Eq. A27) re- rameter representaticiﬁl'MD which describes the)y axis in

spectively in Eqs.A30)—-(A31) we get the 3-D rectangular coordinate system we have (seA&H).
d;¥P = (—siniy,cosiy,0) (A32) 3D :
x|M = M M x™% = RCOSx COSk s COSpyr — (SINAps)u

dzyIM — (—COSLy SNy, —SiNky SNy, cospy)  (A33) 150+ 1 y¥P = Rcosy sinky cospy + (cosiy)u  (A43)

3D :
. . . = Rcosx sin

Using Eq. A3) and respectively Egs.AB2)—(A33) in ¢ oM

Egs. (\28)—-(A29) we obtain Writing the components separate for the parameter represen-

D tation/3 P which describes the axis in the 3-D rectangu-

Iy = RCOSx(COSkp COSPi, SINA 4y COSPi, SiNG s ) lar coordinate system we have (see E42)

+(=sinA s, cosh 7, O)ue (A34)
13D = Rcosx(COSky COSpyr, SiNkpy COSpas, SiNr) x3P = Rcosx coshy cospy — (COSky Singu)v
+(—COSky1 SiNgyr, —SinkyrSing s, cospa) v (A35) 15 = { y¥P = Rcos sinky cospyy — (sinky singa)v
3P = Rcoxy sing + ( COSPA)V
(A44)

A2.4 Thei?D and /3D including the SP and the NP

XIM

Both parameter equations Eq84@3)—(A44) hold for any

In case of a polar stereographic projection the chagen Specified coordinatay.

coincides with the SP or the NP witfy,—_sp= —90° or

dm=Np=90° respectively. In those cases we need perpen-p3 The coordinatesxim ,, and yw

dicular cartesian IM coordinates as well, but the lambda di- r

rection is undefined, so we can not use E®4). Therefore,  The relative position o’ to the/3D and 3D axes of the
inthe polar cases, we take the limit of thelerivative vector |\ grid give the coordinatesiv ,, andyn\/l,,, of P’inthe IM

in pomt M’ (sﬂgy e.g. Fig2) and take that d|rect|on as the grid. P, ls-D andl§ D are all S|tuated in the plang’. We

d,3ID Thedlf’;lD is constructed perpendicular to thi; ym',? create a pIan@/l (see FigAl) which is perpendicular to the

such that they form a cartesian coordinate system pomtlngmel "D and through?’, the point of intersection divy with
outward. The parameter representation for the south pol¢3 D we call pointQ1. Substituting the coordinates of the

(#m=—90") becomes parameter representatiofi? into the equation for plan#;
3D will give the value ofu=u p» which equals they ,, coordi-
Law = (0.0.—Rcow) +(0.1.0) u (A36) nate. Analogue we create a plai& (see Fig.AfZ) which
lim'f (0,0,—Rcosx) +(1,0,0) v (A37) s perpendicular to the lin€> and through?”’, the point of
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T

Fig. Al. The figure shows how plan#; is created: perpendicular

to thel%‘,\? axis and through?’. The red distance between’ and

Q1 is u=u ps which is the value of they ” coordinate.

intersection ofW, with 13;,\? we call pointQ,. Substituting

the coordinates of the parameter representalﬁl'@into the
equation for planeéW, will give the value ofu=vp, which
equals they ,, coordinate.

To calculate: pr andv p: we first have to find the equations
for the planed¥; and Wo.

A3.1 The equation for plane Wy

—_—
Becaused; 2P (see Eq.A32) is a normal vector tavy, in

IM
combination with Eq.C3), we can create an equation for the
planeW; (see FigA1l)

W1 (—siniy)x>P 4 (coshy)y3P =kt (A45)
Note that under conditionA40) this equation holds for all
projection cases. To determirte we substitute the point
P’ situated in plané¥y, the coordinates of’ are given by
Egs. A15)—(A17)

—(SinA 1) R ((COShps COSPpr) (1pr — 1) + (COSA p COSPp )t pr)
+(COS\ 1) R ((SiNA 31 €OSPys) (tpr — 1) + (SiNA pCOSPp )t pr) = k1
The left terms cancel and we get

k1= R(COSpp)(SINA p COSA ) —COSA p SiNApy )t pr
and with use of Eq.E6) we obtain

k1= R(cosppSin(Lp —Ay))tp (A46)

www.geosci-model-dev.net/3/13/2010/

Wy

Fig. A2. The figure shows how plan#, is created: perpendicular
to thel)3q',\',|D axis and throughP’. The red distance betweeés’ and
Q2 is v=vps which is the value of they p coordinate.

A3.2 Calculation of the parameteru=u p

37

Substituting the coordinates of the parameter representation

3-D
lxIM

01

— (SinA ) (RCOSX COSA 37 COSPps — (SiNApg ) pr)

(A43) into Eq. (A45) for planeW,, gives theu=u p: for

+ (COShps) (RCOSSiNA s COSPps + (COSA ) u pr) = k1

The left terms cancel so we get
upr=k1

filling in Eq. (A46) for k1 we get under conditionA40) for
all projection cases

upr =R(COS(/J)PSin()Lp—)LM))Z‘p/ (A47)

which is thex;y ,, coordinate we are looking for.

A3.3 The equation for planeW»

—

Becaused;3 > (see EqA33) is a normal vector td¥s, in

combination with Eq.C3), we can create an equation for the
planeW; (see FigA2)

(—COSky Singa) x3 P+

(—sin g singa) y3P + (cospar) 3P =k (A48)

To determinek, we substitute the poinP’ situated in
plane W», the coordinates of’ are given by Eqgs.A15)—

(A17)

—(COSkySing ) R ((COShp COSPar) (tpr — 1) + (COSA p COSPp )t pr)
—(SinX 7 SiNgpr) R ((SiNApy COSPar) (2pr — 1) + (SINA p COSPp )2 pr)

+( Cospu) R ( (singp) (tpr — 1)+ (singp)tp) =kz
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The left terms cancel and we get Appendix B

k2 = —R[(singy COSpp)(COSk s COSA p + SiNA p SINA p) Derivation of the inverse oblique stereographic
_ projection: from IM to GCM
—Cospy Singp|tp:
which becomes with EqC5) In the inverse oblique stereographic projection the p@inht
) ) with IM coordinatesyu ,, andym ,, is known, so in this case
k2 = R[cOSpy Singp — (SiNy COSPp) COSAp — A p)]1p! we have to find the longitude-latitude coordinatesand¢ p
(A49)  of point P. Point P is obtained by projecting®’ which is
situated in plane’, to the spherical surfacg along the line

—_—
CP’. We have to calculate the 3-D rectangular coordinates
ﬂf P, with which.p and¢p can be determined.

A3.4 Calculation of the parameterv=vp:

Substituting the coordinates of the parameter representatio

[ (A44) into Eq. (A48) for the planeWz, gives thev for But first we need a parameter representatib@ along
—>
Q2 C P’ to determine the parametetsp for its point of inter-
—(COSA 37 SiNg 7 ) (R COS COSA 3y COSP s — (COSAp SiNg ) vpr) section withS. To prepare the construction 6fQ, we first
—

expressO P’ in the given IM coordinatesiv ,, andyim .

—(sinxsin Rcosxsiniy, co — (sinxpSin /
(SiNag Singas)( #COSPay — (SIMkay SINGir)vp') And for S we need an equation of the spherical surface.

+(cospyr) (Rcosxsing s + (COSpp ) vpr =ko

The left terms cancel and the right terms just add to one time®1  Determing P
vps, With Eq. (A49) for k2 resulting in

vpr=kp=R[COSpy SiNg p — (SiNgps COSPpp) COSA p—Apr)]2pr (AS0) Projiti)ng a poinf?’, which is situated in plang’, along the
line C P’ on the spherical surfacggives the projected point
P. We have to calculate the 3-D rectangular coordinates of

- H . - -
A4 The final oblique stereographic projection P. First we expres®) P’ in the given IM coordinatesv ,,

—
) _ ) ] and yv,,. Then we useOM and O P’ to create the pa-
The longitude-latitude coordinatég and¢p of an arbitrary

L —— .
point P on the spherical surfacgare projected to a rectan- _rameter _repreﬂ]tatlaﬁg. The.parametezr at_the_ point of
gular planes’ which coincides with the IM grid with origin mtersectlon&t)‘Q andS is obtained by substituting the co-
M’. As soon as the middle point of the area of interes§@  ordinates ofC Q with r=tp into the equation fos. With this
known by specifyingi.,; and¢y the coordinatesiy,, and  p the_?;-D coordinates of can be found by substituting
yim ,, of the projected poinP’ relative to the IM grid can be into C Q.

calculated by

which is theyv ,, coordinate we are looking for.

_ —>
XIMp =Uup’ (AS1) B1.1 Calculation of O P’
YIMp =Vp/ (A52)

The final result for the oblique stereographic projection isThe IM coordinatesy » andy ,, of the given pointpP’

”
(see EqsA47, ASO, and A18) under the condition (see situated inS’ are used to expre®® P’. From Fig.2 in com-

Eq.A40) bination with Fig.A1 or Fig. A2 we see that
Ay =0° for opm = —-90 & oM = 9 (A53)
we have P pAr . q.3D 3D
OP =0M +dy,, X|MP,+d1yIM YIM s (B1)
XM, = R(COSppSIN(Ap —Ap))tp: (A54)
YIM ,, = R[SiNg p cOSpy — substitution of Eq.4A3) and Egs. A32)—(A33) gives
(cosppsingy) cOhp —Am)]tp: (AS5)
with o - -
O P’ = Rcosx(COS\ s COSpys, SINA  COSPar, SING A7)
= 1+cosx _ _ (A56) + (—sinAM,coskM,O)mMP,
1+cospp Ccospy COSAp — Ap) +SiNgpSingy + (—COSk s SiNg, —SiNA y7 SiNG a7, COSPAL) YIM 5,
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The coordinates of P’ equal

—
O0P'=(x3P y3P . z3P) which are given by

x3P = Rcosxcoshy cospy — (sinky)x'M —
(CoShy SiNg ) yim s (B2)
y3P = Rcossini s cospy + (coshp)x'M —
(SinApSiNgar) yim (B3)
Z3P = Reosxsingy + (Cospa) yim (B4)

B1.2 The parameter representationC—é

In contrast to Eq.A5) we want to expresﬁ?—Q) this time
relative to P/, because the IM coordinates #f are given.
The 3-D rectangular coordinates Bf, expressed in the IM
coordinatescv ,, and yim ,,, are given by Eqs.B2)—(B4)

. —_—
and come into account vi@ P’.

—
If O is a point situated on the lin€ P’ then the parameter

representation o@ can be given with

—_—>  —> —_— —
cCQ=0C+(OP —-0C) forsome reR (B5)
with 0C=—0M as in Eq. A6) this becomes
—> — —_—
COQ=-O0OM+(OP +0OM)t (B6)
— —
=O0OM(t-1)+OP't (B7)

e S —
with OM as in Eqg. Al) and the components @ P’, equal
to the coordinates aP’ as in Eqs. B2)—(B4), we get

C O = R(COS\p; COSppr, SNy COSPar, SiNr) (7 — 1)

3D 3D 3-D)t

+(xp, Yo T (B8)

So the coordinates of on CQ:(xZD,yZD,ZZD) ex-
pressed in are

x5P = R(COSAy COSpy ) (t — 1) + x50t (B9)
y¥P = R(sinky cospar) (¢ — 1) + y 3Pt (B10)
2P =R( singy ) (r — 1) +z3 Pt (B11)

with x3P, y3P andz3P as in Egs. B2)-(B4).

B1.3 The equation forS

Because the radius of the Earth &s the equation for the
spherical Earth’s surfacgin R3 with Eq. (C4) is

S: (x:,s;D> + (y?p'D) + (Z:;’;D> =R? (B12)

www.geosci-model-dev.net/3/13/2010/

the components of Bl1.4 Determining the parameter:=tp for P

P is situated at the intersection OTQ) andS. To obtaintp

we substitute the 3-D rectangular components—cﬁ given
by Egs. B9)—(B11) with r=zp into the plane Eq.B12) for S

_ 2
R(coshycospy)(tp —1) +X3;;/Dtp]

r 2
+ | R(SiNApCOSPp) (2p — 1) +y3;,Dtp]

+ | R(

sing ) (tp — 1) +z§’,',Dtp]2 = R?
which equals
R?(cOSh 1 COSPar)2(tp — 1)% +
2R (cOShy COSpu) xS (tp — L)tp + (x?l’;,D>2t123
+ R2(sinkycospa)2(tp — 12+
2R (SinkprCOSPy) ¥ (tp — Dtp + (yf,?D)zt%
+ R singy)P(tp— 12+
2R( singa)z 5P (tp — Ltp + (z%‘P)ztf, —R?

the left squared trigonometric-terms sum up to one, so we get
2 2 2
R*(tp — )%+ ((xi,'/D> + (y%_/D> + (z%’P) )t,zg
+ 2R ((coskM cospur) x 5P + (sinky cospar) y 5P
p’ M M)Y p/

+ (singu) 25P) (tp — Dip = R?
and then
R%*2 —2R?tp 4+ R?+ bt +2Rat3 — 2Ratp = R?
with
a = (COSAp1 COSP)x 5P + (SiNAar COShA) Y5 L + (Singar )25
b=(G3P)2+ 0P+ 3P
which equals
(R2+2Ra+b)t2 = (2R?>+2Ra)tp

One solutiorep=0 gives pointC, which we are not looking
for. In the other caser #0, so we can divide byp and end
up with

2R?+2Ra
tp=——— B13
P RZY2Ra+b (B13)
finally we write forzp
2R?+2R
tp +2Ra (B14)

 R242Ra+ (x3P)7 4+ (y3P)% + (3P)?
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with B3 The inverse projectedp
a = (COS\y COSpy ) x 51 + And thegp for the arbitrary pointP, inverse projected from
(Sinkpy cos¢M)y3;,',D + (sin¢M)z?;,D (B15)  apointP’in §'to S, is given by
¢p= %)arctaniﬁ;’-D ; x3P#£0 or y3P#0
. AR for 3D _ 3D 30 _ g (B25)
B1.5 The 3-D rectangular coordinates ofP br= o xp =yp =0 & z57>0
op= —90° xf,'D =y§,'D =0 & z?;D <0

The 3-D rectangular coordinates &f can be obtained by

i 3D 3D 3D e -
taking=1p in Eqs. B9)—(BL1) for the components of ¢.  Withxp, v~ andzy, - asin Eqs.§16)-(B18). We omitted

o 3-D_ 3-D_ 3D

So the coordinates df can be given by the trivial caser; "=y "=z~ =0.

x50 = R(coshycospy)(tp — 1) +x5Ptp (B16) _

3-D . 3-D Appendix C

yp~ = R(sinkycospy)(tp—1D)+yp tp (B17)

3P = R( singa) (tp — 1) +23Ptp (B18)  Some basic geometrical math

with 7p as in Eq. B14) Points lying on the surface of an arbitrary sph&revith ra-
) dius Rx can be described in geographical coordinate&dn

tp 2R"+2Ra (B19) with A, ¢ andr:

R24+2Ra+ (x3D 2 3-D 2 3-D 2
(x5°) +0p") +(50) K:Gudr)=(hod Ri) (C1)
with a as in Eq. B15)
The same spherk described in rectangular cartesian coor-
dinatesx®P, y3°0 andz3 P in R can be expressed in terms
of the 3-D spherical angle coordinates and the radipsof

W)

a = (COS\ 1 COSP ) x50 4 (SN 4y COSPA) Y52 + (Sindar) 25,

(B20) spherek (see Figl):
with x3P°, y3P andz3P as in Egs. B2)-(B4) 5D 3D 3D _ :
K: (x V3P, ):RK (COS\COSp, SINACOSP, SiN)
x3P = Rcosxcoshy cospy — (Sinka)xim , — ©2)
(COSA 1 SINAL) YIM . (B21)
y%-p = RCOSSiNy COSpys + (COSp) XM, — !f L is a plane inR3 .with a n??rmal vectorN_:(nx?’,ny,nZ)
(sinay Sinay) (B22) in rectangular coordinates iR°, then planel in R® can be
MSINGM)YIM given by the equation
Z3P = Rcoswsingy + (CoSpy) yim (B23)

L:nxx3'D+nyy3'D+nzz3'D=k forsome keR (C3)

B2 The inverse projectedi p The equation for a sphere with radiRg is

2,2, .2 2 3
L . ) X+ y“4+z°=R% for (x,y,2)eR C4
Considering the positive and negative values of the coordi- Y K (.3.2) (C4)
nates of P in the different quadrants thep can be deter-  Two trigonometric summation rules we will use are
mined. Theip for an arbitrary pointP, inverse projected

from a pointP’ in §' to S, is given by cos(a)cosb) +sin(a)sin(b) =cosa—b) = cosb—a)  (C5)
3D 3D _g sin(a)cogb) —coga)sin(b) =sin(a—b) = —sin(b—a) (CB6)

ip =180 +arctanis Ypo<

Ap= @arctan% 3P >0 & y3P>0
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